WO2017131226A1 - N,n-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びにn,n-ビス(2-ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の製造方法 - Google Patents

N,n-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びにn,n-ビス(2-ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の製造方法 Download PDF

Info

Publication number
WO2017131226A1
WO2017131226A1 PCT/JP2017/003116 JP2017003116W WO2017131226A1 WO 2017131226 A1 WO2017131226 A1 WO 2017131226A1 JP 2017003116 W JP2017003116 W JP 2017003116W WO 2017131226 A1 WO2017131226 A1 WO 2017131226A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
atom
optionally substituted
independently
Prior art date
Application number
PCT/JP2017/003116
Other languages
English (en)
French (fr)
Inventor
裕治 中山
光 中島
Original Assignee
高砂香料工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高砂香料工業株式会社 filed Critical 高砂香料工業株式会社
Priority to CN201780003545.XA priority Critical patent/CN108290910B/zh
Priority to CA3012962A priority patent/CA3012962A1/en
Priority to US16/073,660 priority patent/US10407448B2/en
Priority to EP17744455.1A priority patent/EP3409681B1/en
Priority to JP2017563888A priority patent/JP6913635B2/ja
Publication of WO2017131226A1 publication Critical patent/WO2017131226A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/505Preparation; Separation; Purification; Stabilisation
    • C07F9/5063Preparation; Separation; Purification; Stabilisation from compounds having the structure P-H or P-Heteroatom, in which one or more of such bonds are converted into P-C bonds
    • C07F9/5077Preparation; Separation; Purification; Stabilisation from compounds having the structure P-H or P-Heteroatom, in which one or more of such bonds are converted into P-C bonds from starting materials having the structure P-Metal, including R2P-M+
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5027Polyphosphines

Definitions

  • the present invention relates to an N, N-bis (2-dialkylphosphinoethyl) amine-borane complex, a process for producing the same, and a ruthenium complex having N, N-bis (2-dialkylphosphinoethyl) amines as a ligand It relates to the manufacturing method.
  • a tridentate metal complex having an imino group in the molecule as one of the coordination groups exhibits high catalytic activity in, for example, a hydrogenation reaction of a carbonyl compound or a dehydrogenation reaction of alcohols, In these catalytic organic synthesis reactions, it is known that the hydrogen atom on the imino group greatly affects the activity expression.
  • N, N-bis (2-phosphinoethyl) amine is known, and these ruthenium complexes function as excellent catalysts in the hydrogenation reaction of esters.
  • N, N-bis (2-diarylphosphinoethyl) amine used as a ligand introduces a phosphino group which is a coordinating group to N, N-bis (2-chloroethyl) amine which is a substrate. Can be easily synthesized.
  • N, N-bis (2-dialkylphosphinoethyl) amine having an alkyl group substituted on phosphorus is synthesized, N, N-bis (2-chloroethyl) amine is low because of the low yield in the above method.
  • Non-patent Document 4 A method has been developed in which the imino group is protected with a trimethylsilyl group to give N, N-bis (2-chloroethyl) trimethylsilylamine, and a dialkylphosphino group is introduced at an extremely low temperature.
  • this production method is difficult to purify because the substrate N, N-bis (2-chloroethyl) trimethylsilylamine is decomposed during distillation, requires an expensive silylating agent, and is used at extremely low temperatures.
  • There are problems such as that operation is necessary and that the obtained N, N-bis (2-dialkylphosphinoethyl) amine is unstable to air, so that complicated operation such as degassing is necessary.
  • Zhaobin Han Liangce Rong, Jiang Wu, Lei Zhang, Zheng Wang, and Kuiling Ding, Angew. Chem. Int. Ed. Ingl., 2012, 51, 13041. Martin Nielsen, Anja Kammer, Daniela Cozzula, Henrik Junge, Serafino Gladiali, Matthias Beller, Angew. Chem. Int. Ed. Ingl., 2011, 50, 9593.
  • A. A. Danopoulos A. R. Wills, P. G. Edwards, Polyhedron, 1990, 9, 2413.
  • the present invention relates to ruthenium having N, N-bis (2-dialkylphosphinoethyl) amines as ligands having excellent performance such as catalytic activity in hydrogenation reaction of carbonyl compounds and dehydrogenation reaction of alcohols.
  • An object of the present invention is to provide a production method capable of producing a metal complex simply and with high yield. Furthermore, it is an object to provide a N, N-bis (2-dialkylphosphinoethyl) amine-borane complex useful as a ligand raw material and a novel, safe and practical production method thereof. It is.
  • N, N-bis (2-chloroethyl) amine As a result of intensive studies to solve the above problems, the present inventors have reacted carbon dioxide with N, N-bis (2-chloroethyl) amine to produce 3- (2-chloroethyl) -2.
  • a novel N, N-bis (2-dialkylphosphinoethyl) amine-borane complex can be easily synthesized by inducing to oxazolidinone and reacting this compound with a dialkylphosphine-borane compound in the presence of a base. It was found that it can be synthesized with good yield by operation.
  • This new compound is stable to air and can be easily purified by column chromatography, recrystallization, etc., and by reacting in the presence of a ruthenium precursor and amines, a hydrogenation reaction of a carbonyl compound or Ruthenium metal complexes with N, N-bis (2-dialkylphosphinoethyl) amines, which have excellent performance such as catalytic activity in dehydrogenation of alcohols, etc., are safe and high yield in a short process.
  • the present invention has been completed by finding that it can be produced.
  • the present invention has an N, N-bis (2-dialkylphosphinoethyl) amine-borane complex and a production method thereof, and N, N-bis (2-dialkylphosphinoethyl) amines as a ligand.
  • a method for producing a ruthenium complex is provided.
  • the present invention includes the following contents [1] to [11]. [1] General formula (1)
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, or a substituent.
  • R 3 to R 10 represent a group selected from the group consisting of an alkenyl group that may have a group, an aryl group that may have a substituent, and an aralkyl group that may have a substituent. And may be bonded to each other to form a ring which may have a substituent)
  • R 1 and R 2 each independently have a substituent.
  • An alkyl group which may be substituted, or a cycloalkyl group which may have a substituent, adjacent R 1 and R 2 may be bonded to each other to form a ring which may have a substituent.
  • the phosphorus compound represented by general formula (3) is reacted in the presence of a base.
  • R 1 and R 2 are each independently substituted. Represents an optionally substituted alkyl group or an optionally substituted cycloalkyl group, and adjacent R 1 and R 2 are bonded to each other to form an optionally substituted ring.
  • LG is composed of a halogen atom, a methanesulfonyloxy group (OMs), a p-toluenesulfonyloxy group (OTs), a benzenesulfonyloxy group (OSO 2 C 6 H 5 ) trifluoromethanesulfonyloxy group (OTf)
  • OMs methanesulfonyloxy group
  • OTs p-toluenesulfonyloxy group
  • OSO 2 C 6 H 5 benzenesulfonyloxy group
  • R 1 and R 2 are each independently substituted. Represents an optionally substituted alkyl group or an optionally substituted cycloalkyl group, and adjacent R 1 and R 2 are bonded to each other to form an optionally substituted ring.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently have a hydrogen atom, an alkyl group which may have a substituent, or a substituent.
  • a group selected from the group consisting of an optionally substituted cycloalkyl group, an optionally substituted alkenyl group, an optionally substituted aryl group and an optionally substituted aralkyl group; in representing .R 3 ⁇ R 10 join to good .n 2 ⁇ be formed a ring which may have a substituent group 3 together Ri, BH 3 is coordinated to a nitrogen atom or a phosphorus atom) And a compound represented by the general formula (4)
  • a solid line represents a single bond
  • a triple line represents a triple bond
  • a broken line represents a coordination bond
  • C represents a carbon atom
  • H represents a hydrogen atom
  • O represents an oxygen atom
  • Ru represents a ruthenium atom
  • X represents an anionic group
  • L 1 , L 2 and L 3 each independently represents a monodentate ligand
  • a solid line represents a single bond
  • a triple line represents a triple bond
  • a broken line represents a coordination bond.
  • C represents a carbon atom
  • H represents a hydrogen atom
  • N represents a nitrogen atom
  • O represents an oxygen atom
  • P represents a phosphorus atom
  • Ru represents .
  • X representing the ruthenium atom .R 1 and R 2 represents an anionic group are each independently an optionally substituted alkyl group, a cycloalkyl group which may have a substituent.
  • adjoining R 1 and R 2 may combine with each other to form a ring which may have a substituent
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently has a hydrogen atom, an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent.
  • 3 ⁇ R 10 may form a ring which may have a substituent bonded to each other) The manufacturing method of the ruthenium complex represented by these.
  • R 1 and R 2 are each independently substituted. Represents an optionally substituted alkyl group or an optionally substituted cycloalkyl group, and adjacent R 1 and R 2 are bonded to each other to form an optionally substituted ring.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently have a hydrogen atom, an alkyl group which may have a substituent, or a substituent.
  • a group selected from the group consisting of an optionally substituted cycloalkyl group, an optionally substituted alkenyl group, an optionally substituted aryl group and an optionally substituted aralkyl group; in representing .R 3 ⁇ R 10 join to good .n 2 ⁇ be formed a ring which may have a substituent group 3 together Ri, BH 3 is coordinated to a nitrogen atom or a phosphorus atom)
  • the present invention provides a simple and practical method for producing a novel N, N-bis (2-dialkylphosphinoethyl) amine-borane complex.
  • the N, N-bis (2-dialkylphosphinoethyl) amine-borane complex according to the present invention is stable to air and can be easily purified by column chromatography, recrystallization or the like.
  • a ruthenium precursor and amines Coordinates N, N-bis (2-dialkylphosphinoethyl) amines with excellent performance such as catalytic activity in the hydrogenation reaction of carbonyl compounds and the dehydrogenation reaction of alcohols. Ruthenium metal complex as a child can be produced safely and with high yield in a short process
  • 1 is a 1 H NMR chart of carbonyl chlorohydrido ⁇ bis [2- (dicyclohexylphosphino) ethyl] amine ⁇ ruthenium (II) (Example 2).
  • 1 is a 1 H NMR chart of carbonyl chlorohydrido ⁇ bis [2- (bis tert-butylphosphino) ethyl] amine ⁇ ruthenium (II) (Example 4).
  • the method for producing the N, N-bis (2-dialkylphosphinoethyl) amine-borane complex represented by the general formula (3) of the present invention can be represented by the reaction formula (6).
  • the leaving group represented by LG may be any group that enables a nucleophilic substitution reaction, and specifically includes a fluorine atom, a chlorine atom, a bromine atom, iodine.
  • Halogen atoms such as atoms, methanesulfonyloxy groups (OMs), p-toluenesulfonyloxy groups (OTs), benzenesulfonyloxy groups (OSO 2 C 6 H 5 ), trifluoromethanesulfonyloxy groups (OTf), etc.
  • a halogen atom is mentioned, More preferably, a chlorine atom is mentioned.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently have a hydrogen atom, an alkyl group that may have a substituent, or a substituent.
  • the alkyl group in R 3 to R 10 may be linear or branched, and examples thereof include alkyl groups having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 2-butyl group, isobutyl group, tert-butyl group, cyclobutyl group, n-pentyl group, 2-pentyl group, 3- Pentyl group, tert-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 2-methylbutan-3-yl group, 2,2-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, tert-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 2-methylpentan
  • cycloalkyl group examples include saturated or unsaturated monocyclic or polycyclic cycloalkyl groups having 3 to 8 carbon atoms, preferably 5 to 7 carbon atoms.
  • examples thereof include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, and the like, and preferably a cyclopentyl group and a cyclohexyl group.
  • the alkenyl group may be linear, branched or cyclic, for example, an alkenyl group having 2 to 20 carbon atoms, preferably an alkenyl group having 2 to 14 carbon atoms, more preferably an alkenyl group having 2 to 8 carbon atoms.
  • Specific examples include vinyl group, 1-propenyl group, 2-propenyl group, allyl group, 1-cyclohexenyl group, 1-styryl group and 2-styryl group.
  • aryl group for example, an aryl group having 6 to 18 carbon atoms, preferably an aryl group having 6 to 14 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms, specifically, a phenyl group, 1- A naphthyl group, a 2-naphthyl group, etc. are mentioned, A phenyl group is mentioned as a preferable specific example.
  • aralkyl group examples include an aralkyl group in which at least one hydrogen atom of the alkyl group is substituted with the aryl group, and a polycyclic aralkyl group that is generated when the cyclic alkyl group is condensed with the aryl group, Specifically, benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylpropyl group, 2-phenylpropyl group, 3-phenylpropyl group, 1-phenyl-2-propyl group, 2-phenyl- Examples include 2-propyl group, 1-indanyl group, 2-indanyl group, and 9-fluorenyl group.
  • the alkyl group in R 3 ⁇ R 10, cycloalkyl group, alkenyl group, aryl group and aralkyl group, R 3 ring ⁇ R 6 are bonded to each other to form one another, by combining R 7 ⁇ R 10 together with each other
  • Examples of the substituent that the ring formed and the ring formed by combining R 3 to R 10 with each other include an alkyl group, a halogen atom, an alkenyl group, an aryl group, a heteroaryl group, an aralkyl group, a halogeno group
  • An alkyl group, an alkoxy group, etc. are mentioned, An alkyl group, a halogen atom, an alkenyl group, an aryl group, an aralkyl group, and these substituents are the same as the group explained in detail above.
  • the heteroaryl group includes a 5- to 6-membered aromatic heterocycle having 1 to 4 heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom, and the aromatic heterocycle is represented by the aryl group.
  • Examples include heteroaryl groups derived from polycyclic aromatic heterocycles produced by condensed rings, such as 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group, and 2-benzofuryl group. , 3-benzofuryl group, 2-benzothienyl group, 3-benzothienyl group and the like.
  • alkoxy group examples include an alkoxy group having 1 to 10 carbon atoms, preferably an alkoxy group having 1 to 4 carbon atoms. Specifically, a methoxy group, an ethoxy group, a 1-propoxy group, a 2-propoxy group, 1 -Butoxy group, 2-butoxy group, tert-butoxy group and the like.
  • halogenoalkyl group examples include groups in which at least one hydrogen atom of the alkyl group is substituted with a halogen atom, and specific examples include a trifluoromethyl group and an n-nonafluorobutyl group.
  • each of R 1 and R 2 independently represents an alkyl group which may have a substituent or a cycloalkyl group which may have a substituent.
  • the alkyl group in R 1 and R 2 may be linear or branched, and examples thereof include alkyl groups having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 2-butyl group, isobutyl group, tert-butyl group, cyclobutyl group, n-pentyl group, 2-pentyl group, 3- Pentyl group, tert-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 2-methylbutan-3-yl group, 2,2-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, tert-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 2-methylpentan-3
  • Examples of the cycloalkyl group for R 1 and R 2 include saturated or unsaturated monocyclic or polycyclic cycloalkyl groups having 3 to 8 carbon atoms, preferably 5 to 7 carbon atoms. Examples thereof include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, and the like, and preferably a cyclopentyl group and a cyclohexyl group.
  • R 1 and R 2 may be bonded to each other to form a ring that may have a substituent.
  • a ring include a phosphetane ring and a phosphorane ring.
  • alkyl group and cycloalkyl group in R 1 and R 2 and examples of the substituent which may have ring to which R 1 and R 2 are bonded to each other to form one another, an alkyl group, a halogen atom, an alkenyl group, An aryl group, a heteroaryl group, an aralkyl group, a halogenoalkyl group, an alkoxy group, and the like can be given.
  • An alkyl group, a halogen atom, an alkenyl group, an aryl group, an aralkyl group, and their substituents are represented by the general formula (1). This is the same as the group described in detail.
  • N-bis (2-dialkylphosphinoethyl) amine-borane complex represented by the general formula (3) an alkyl group which may have a substituent represented by R 1 or R 2 , and a substituent
  • Examples of the cycloalkyl group which may have a group and the ring which may have a substituent formed by bonding adjacent R 1 and R 2 to each other include the same groups as those in the general formula (2). It is done.
  • the N represented by the general formula (3), N-bis (2-dialkylphosphino ethyl) amine - in borane complex, R 3, R 4, R 5, R 6, R 7, R 8, R 9 and Each R 10 independently has a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an alkenyl group that may have a substituent, or a substituent. It represents a group selected from the group consisting of an aryl group which may be substituted and an aralkyl group which may have a substituent, and preferably represents a hydrogen atom.
  • alkyl group in R 3 to R 10 an alkenyl group which may have a substituent, an aryl group which may have a substituent, and an aralkyl group which may have a substituent are represented by the general formula (1) and The same groups are mentioned.
  • N, N-bis (2-dialkylphosphinoethyl) amine-borane complex represented by the general formula (3) will be described in detail.
  • the oxazolidinone represented by the general formula (1) can be synthesized by a method similar to a method known in Japanese Patent Application Laid-Open No. 2003-292798, for example.
  • N, N-bis (2-chloroethyl) amine hydrochloride is reacted with carbon dioxide to give 3- (2-chloroethyl) -2- Oxazolidinone can be synthesized.
  • the phosphine-borane complex represented by the general formula (2) can be synthesized by a method similar to a known method such as Lydia McKinstry, Tom, Livinghouse, Tetrahedron, 1995, 51, 7655. For example, it can be produced by reacting a secondary phosphine with borane-dimethylsulfide complex (BH 3 -SMe 2 ), borane-tetrahydrofuran complex (BH 3 -THF) or the like.
  • BH 3 -SMe 2 borane-dimethylsulfide complex
  • BH 3 -THF borane-tetrahydrofuran complex
  • the general formula (3) N, N-bis (2-dialkylphosphinoethyl) amine-borane complex represented by the following formula can be produced.
  • the amount of the phosphine-borane complex represented by the general formula (2) is not particularly limited, but is usually 0.6 to 20 equivalents based on the oxazolidinone represented by the general formula (1), preferably It is appropriately selected from the range of 1 equivalent to 10 equivalents, more preferably 2 to 5 equivalents.
  • the phosphine-borane complex represented by the general formula (2) may be used after purification by column chromatography, recrystallization or the like in the production process, or using a solution washed with water after extraction with a solvent. Also good.
  • the base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, strontium hydroxide and barium hydroxide, hydrogenation Metal hydrides such as lithium, sodium hydride, potassium hydride, calcium hydride, sodium borohydride and lithium aluminum hydride, lithium methoxide, sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium Alkali metal alkoxides such as tert-butoxide and potassium tert-butoxide, organolithium compounds such as methyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium and phenyllithium, lithium amide Alkali metal amides such as sodium amide, lithium diisopropylamide and lithium hexamethyldisilazide, and Grignard reagents such as methylmagnesium
  • the amount of the base used is not particularly limited, but is usually 0.3 to 10 equivalents, preferably 0.5 to 5 equivalents, more preferably 0.8 to the compound represented by the general formula (2). It is appropriately selected from the range of 8 to 3 equivalents.
  • the addition method of a base in this reaction is not specifically limited,
  • the compound and base which are each represented by General formula (2) may be added independently, and are represented by General formula (2). It may be added as a mixture of a compound and a base (and a solvent), or may be added as a phosphide-borane complex obtained by reacting (in a solvent) a compound represented by the general formula (2) and a base. Good.
  • the solvent include aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, n-octane, n-decane, cyclohexane and decalin, benzene, toluene, xylene, mesitylene, p-cymene and Aromatic hydrocarbons such as 1,4-diisopropylbenzene, monohydric alcohols such as methanol, ethanol, 2-propanol, n-butanol, tert-butanol, 2-methyl-2-butanol and 2-ethoxyethanol, ethylene Polyhydric alcohols such as glycol, propylene glycol, 1,2-propanediol and glycerin, diethyl ether, diisopropyl ether, tert-butyl methyl ether, cyclopentyl methyl
  • the amount of the solvent used is not particularly limited, but is usually 1 to 200 times, preferably 2 to 100 times, more preferably 5 to 50 times the capacity of the compound represented by the general formula (1). It is suitably selected from the range.
  • This reaction is preferably performed in an inert gas atmosphere.
  • the inert gas include argon gas and nitrogen gas.
  • the reaction temperature is usually selected from the range of ⁇ 78 to 150 ° C., preferably ⁇ 40 to 100 ° C., more preferably ⁇ 20 to 80 ° C. While the reaction time naturally varies depending on the base, solvent, reaction temperature and other conditions, it is usually selected appropriately from the range of 1 minute to 48 hours, preferably 5 minutes to 24 hours, more preferably 10 minutes to 15 hours.
  • the N, N-bis (2-dialkylphosphinoethyl) amine-borane complex represented by the general formula (3) thus obtained can be subjected to post-treatment, isolation and purification as necessary. it can.
  • post-treatment methods include concentration, solvent replacement, washing, extraction, back extraction, filtration, and crystallization by addition of a poor solvent, and these can be performed alone or in combination.
  • isolation and purification methods include decolorization with an adsorbent, column chromatography, distillation, recrystallization, and crystallization of a salt obtained by crystal washing with a poor solvent, and these are performed alone or in combination. be able to.
  • the production method of the ruthenium complex represented by the general formula (5) can be represented by the reaction formula (8). That is, the ruthenium carbonyl complex represented by the general formula (4) and the N, N-bis (2-dialkylphosphinoethyl) amine-borane complex represented by the general formula (3) It can be produced by stirring in the presence.
  • the amount of the N, N-bis (2-dialkylphosphinoethyl) amine-borane complex represented by the general formula (3) is not particularly limited, but is usually ruthenium represented by the general formula (4). It is appropriately selected from the range of usually 0.5 to 20 equivalents, preferably 0.7 equivalents to 10 equivalents, more preferably 0.8 to 3 equivalents with respect to the carbonyl complex.
  • the anionic group represented by X includes a hydride ion (H ⁇ ); a halogen ion such as a chlorine ion (Cl ⁇ ), a bromine ion (Br ⁇ ), or an iodine ion (I ⁇ ).
  • a halogen ion such as a chlorine ion (Cl ⁇ ), a bromine ion (Br ⁇ ), or an iodine ion (I ⁇ ).
  • BH 4 , BF 4 , BPh 4 , PF 6 composite anions such as acetoxy group, trifluoromethanesulfonyloxy group, and the like.
  • a halogen ion is preferable, and a chlorine ion (Cl ⁇ ) is more preferable.
  • Examples of the neutral monodentate ligand represented by L1, L2 and L3 include alcohol, ether, sulfide, sulfoxide, amine, amide, nitrile, isonitrile, heteroarene, secondary phosphine, secondary phosphine oxide, tertiary phosphine, Phosphite, phosphoramidite, tertiary arsine, carbene, hydrogen molecule and carbon monoxide are mentioned, and tertiary phosphine, phosphite and carbon monoxide are more preferred. More preferably, tertiary phosphine etc. are mentioned.
  • R 11 , R 12 and R 13 each independently represents an alkyl group, an alkenyl group which may have a substituent, an aryl group which may have a substituent, Represents a group selected from the group consisting of a heteroaryl group which may have a substituent or an aralkyl group which may have a substituent, R 11 to R 13 are bonded to each other to have a substituent; May form a ring that may be.
  • the compound represented by these is mentioned.
  • R 11 , R 12 and R 13 are each independently an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent.
  • the alkyl group may be linear or branched, for example, an alkyl group having 1 to 30 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 2-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 2-pentyl group, 3-pentyl group Tert-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 2-methylbutan-3-yl group, 2,2-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, tert- Hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylpentan-3-yl, 2-methylpent
  • cycloalkyl group examples include saturated or unsaturated monocyclic and polycyclic cycloalkyl groups having 3 to 8 carbon atoms, preferably 5 to 7 carbon atoms.
  • examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, and the like, preferably a cyclopentyl group and a cyclohexyl group.
  • the alkenyl group may be linear, branched or cyclic, for example, an alkenyl group having 2 to 20 carbon atoms, preferably an alkenyl group having 2 to 14 carbon atoms, more preferably an alkenyl group having 2 to 8 carbon atoms.
  • Specific examples include vinyl group, 1-propenyl group, 2-propenyl group, allyl group, 1-cyclohexenyl group, 1-styryl group and 2-styryl group.
  • aryl group for example, an aryl group having 6 to 18 carbon atoms, preferably an aryl group having 6 to 14 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms, specifically, a phenyl group, 1- A naphthyl group, a 2-naphthyl group, etc. are mentioned, A phenyl group is mentioned as a preferable specific example.
  • the heteroaryl group includes a 5- to 6-membered aromatic heterocycle having 1 to 4 heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom, and the aromatic heterocycle is represented by the aryl group.
  • Examples include heteroaryl groups derived from polycyclic aromatic heterocycles produced by condensed rings, such as 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group, and 2-benzofuryl group. , 3-benzofuryl group, 2-benzothienyl group, 3-benzothienyl group and the like, and preferred specific examples include 2-furyl group.
  • aralkyl group examples include an aralkyl group in which at least one hydrogen atom of the alkyl group is substituted with the aryl group, and a polycyclic aralkyl group that is generated when the cyclic alkyl group is condensed with the aryl group, Specifically, benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylpropyl group, 2-phenylpropyl group, 3-phenylpropyl group, 1-phenyl-2-propyl group, 2-phenyl- Examples include 2-propyl group, 1-indanyl group, 2-indanyl group, and 9-fluorenyl group.
  • R 11 to R 13 may combine with each other to form a ring that may have a substituent.
  • a ring include a phospholane ring, a phosphole ring, a phosphinan ring, and a phosphinin ring.
  • R 11 ⁇ alkenyl group for R 13, an aryl group, the heteroaryl group and aralkyl group, and, R 11 ⁇ R 13 is a substituent which may be ring formed bonded to has each other, an alkyl group, halogenoalkyl group Alkenyl group, aryl group, heteroaryl group, aralkyl group, hydroxyl group, alkoxy group, alkoxycarbonyl group, carboxyl group, amino group, sulfo group and halogeno group.
  • the alkyl group, alkenyl group, aryl group, heteroaryl group and aralkyl group are the same as the groups in the detailed description of R 11 to R 13 .
  • halogenoalkyl group examples include groups in which at least one hydrogen atom of the alkyl group is substituted with a halogen atom, and specific examples include a trifluoromethyl group and an n-nonafluorobutyl group. Preferred specific examples Examples thereof include a trifluoromethyl group.
  • alkoxy group examples include an alkoxy group having 1 to 10 carbon atoms, preferably an alkoxy group having 1 to 4 carbon atoms.
  • a methoxy group, an ethoxy group, a 1-propoxy group, a 2-propoxy group, 1 -Butoxy group, 2-butoxy group, tert-butoxy group and the like can be mentioned, and preferred specific examples include methoxy group.
  • alkoxycarbonyl group examples include a methoxycarbonyl group.
  • amino group examples include a dimethylamino group and a 4-morpholinyl group.
  • halogeno group examples include a fluoro group, a chloro group, a bromo group, and an iodo group, and a fluoro group and a chloro group are preferable.
  • tertiary phosphine represented by the general formula (9) include trimethylphosphine, triethylphosphine, tricyclohexylphosphine, triphenylphosphine, tris (4-trifluoromethylphenyl) phosphine, tris (4-methoxyphenyl). ) Phosphine and tris (2-furyl) phosphine. More preferred is triphenylphosphine.
  • each substituent in General Formula (5) represents the same meaning as described above.
  • the borane of the N, N-bis (2-dialkylphosphinoethyl) amine-borane complex represented by the general formula (3) is dissociated.
  • the ruthenium complex represented by the general formula (5) it may be used for the complexing reaction while dissociating borane in the reaction system.
  • the complexing reaction is performed while dissociating borane in the reaction system.
  • any dissociator that is generally used can be used as long as it does not affect the complexation. Can be mentioned.
  • amines include diethylamine, triethylamine, tri-n-butylamine, diisopropylethylamine, N, N-dimethylaniline, 4-dimethylaminopyridine, pyrrolidine, piperidine, N-methylmorpholine, 1,5-diazabicyclo [ 4.3.0] Nona-5-ene (DBN) and 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU), N, N, N ′, N′-tetramethylethylenediamine ( TMEDA), 1,4-diazabicyclo [2.2.2] octane (DABCO) and the like, preferably diethylamine N, N, N ′, N′-tetramethylethylenediamine (TMEDA), 1,4-diazabicyclo [ 2.2.2] -octane (DABCO), more preferably 1,4-diazabicyclo 2.2.2] octane (DA
  • the amount of amines to be used is not particularly limited, but is usually 0.5 to 30 equivalents, preferably 0.7 to 20 equivalents, more preferably 0 to the compound represented by the general formula (4). It is appropriately selected from the range of 8 to 10 equivalents.
  • the method for adding amines is not particularly limited.
  • the compound represented by the general formula (3) and the base may be added individually, and represented by the general formula (3). It may be added as a mixture of a compound and a base (and a solvent).
  • the solvent include aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, n-octane, n-decane, cyclohexane and decalin, benzene, toluene, xylene, mesitylene, p-cymene and Aromatic hydrocarbons such as 1,4-diisopropylbenzene, halogenated aromatic hydrocarbons such as chlorobenzene and o-dichlorobenzene, methanol, ethanol, 2-propanol, n-butanol, tert-butanol, 2-methyl- Alcohols such as 2-butanol and 2-ethoxyethanol, polyhydric alcohols such as ethylene glycol, propylene glycol, 1,2-propanediol and glycerin, diethyl ether, diisopropy
  • the amount of the solvent used is not particularly limited, but is usually 0.5 to 100 times, preferably 1 to 50 times, more preferably 2 to 40 times the amount of the compound represented by the general formula (4). It is appropriately selected from the range of double capacity.
  • This reaction is preferably performed in an inert gas atmosphere.
  • the inert gas include argon gas and nitrogen gas.
  • the reaction temperature is appropriately selected from the range of usually 0 to 250 ° C, preferably 10 to 200 ° C, more preferably 20 to 180 ° C.
  • the reaction time naturally varies depending on the amines, solvent, reaction temperature and other conditions, but is usually selected from the range of usually 1 minute to 48 hours, preferably 5 minutes to 24 hours, more preferably 10 minutes to 15 hours.
  • the ruthenium complex represented by the general formula (5) thus obtained can be post-treated, isolated and purified as necessary.
  • post-treatment methods include concentration, solvent replacement, washing, extraction, back extraction, filtration, and crystallization by addition of a poor solvent, and these can be performed alone or in combination.
  • Proton nuclear magnetic resonance spectroscopy ( 1 H NMR): Varian Mercury plus 300 type device (resonance frequency: 300 MHz, manufactured by Varian) or 400 MR DD2 type device (resonance frequency: 400 MHz, manufactured by Agilent) Internal standard: Tetramethylsilane (0 ppm (singlet peak)) or residual light solvent (dichloromethane: 5.32 ppm (triplet peak), chloroform: 7.26 ppm (singlet peak)) 2) Carbon 13 nuclear magnetic resonance spectroscopy ( 13 C NMR): Varian Mercury plus 300 type apparatus (resonance frequency: 75 MHz, manufactured by Varian) or 400 MR DD type 2 apparatus (resonance frequency: 100 MHz, manufactured by Agilent) Internal standard: Chloroform (77 ppm (triplet peak)) 3) Phosphorus 31 nuclear magnetic resonance spectroscopy ( 31 P NMR): Varian Mercury plus 300
  • borane - tetrahydrofuran solution (BH 3-THF solution, concentration: 0.9mol / L, 24.8mL, 22.3mmol , 1.1 equiv) in the syringe, so that the internal temperature to maintain the 10 ° C. or less It was dripped over 30 minutes.
  • the reaction solution was concentrated under reduced pressure, toluene (50 mL) and water (25 mL) were added, and the mixture was stirred and allowed to stand to separate the aqueous layer. The organic layer was washed again with water (20 mL) and concentrated under reduced pressure.
  • Step 4-1 Synthesis of bis tert-butylphosphine-borane complex
  • n-butyllithium (n-BuLi) in n-hexane (concentration: 1.64 mol / L, 7.06 mL, 11.57 mmol, 0.95 equivalent) was charged into the dropping funnel, and the internal temperature was 10 ° C. It was dripped at the solution over 30 minutes at the speed which keeps below.
  • 3- (2-chloroethyl) -2-oxazolidinone (0.82 g, 5.48 mmol, 0.45 equivalent) and dehydrated tetrahydrofuran (2.5 mL) were charged into the dropping funnel.
  • the solution was added dropwise over 30 minutes at a speed that kept the internal temperature at 25 ° C. or lower, and stirred at room temperature for 2 hours.
  • the reaction solution was concentrated under reduced pressure, ethyl acetate (50 mL) and water (30 mL) were added, and the mixture was stirred and allowed to stand to separate the aqueous layer.
  • the aqueous layer was extracted again with ethyl acetate (10 mL ⁇ 2), the combined organic phases were dried over MgSO 4 and filtered, and the filtrate was concentrated under reduced pressure.
  • the obtained crude product was purified by a silica gel column to obtain 1.64 g of the title compound as a white powder.
  • Step 5-2 Synthesis of bisisopropylphosphine-borane complex
  • n-hexane solution of n-butyllithium (n-BuLi) (concentration: 1.64 mol / L, 5.27 mL, 8.64 mmol, 0.95 equivalent) was charged into the dropping funnel, and the internal temperature was 10 ° C. It was dripped at the solution over 30 minutes at the speed which keeps below.
  • 3- (2-chloroethyl) -2-oxazolidinone (0.61 g, 4.09 mmol, 0.45 equivalent) and dehydrated tetrahydrofuran (2.5 mL) were charged into the dropping funnel.
  • the solution was added dropwise over 30 minutes at a speed that kept the internal temperature at 25 ° C. or lower, and stirred at room temperature for 2 hours.
  • the reaction solution was concentrated under reduced pressure, ethyl acetate (50 mL) and water (30 mL) were added, and the mixture was stirred and allowed to stand to separate the aqueous layer.
  • the aqueous layer was extracted again with ethyl acetate (10 mL ⁇ 2), the combined organic phases were dried over MgSO 4 and filtered, and the filtrate was concentrated under reduced pressure.
  • the obtained crude product was purified by a silica gel column to obtain 0.1 g of the title compound as a white powder.
  • the present invention relates to ruthenium having N, N-bis (2-dialkylphosphinoethyl) amines as ligands having excellent performance such as catalytic activity in hydrogenation reaction of carbonyl compounds and dehydrogenation reaction of alcohols.
  • the present invention provides a production method capable of producing a metal complex simply and with high yield.
  • the present invention provides an N, N-bis (2-dialkylphosphinoethyl) amine-borane complex useful as a ligand raw material and a novel, safe and practical production method thereof.
  • N, N-bis (2-dialkylphosphinoethyl) amine-borane complex is stable in air and can be easily purified by column chromatography, recrystallization, etc., in the presence of ruthenium precursor and amines.
  • the ruthenium metal complex can be easily produced in a short process safely and with high yield, and is suitable for industrial use.
  • the N, N-bis (2-dialkylphosphinoethyl) amine-borane complex of the present invention, a method for producing the same, and a ruthenium complex using the N, N-bis (2-dialkylphosphinoethyl) amine-borane complex This production method is useful in the field of organic industrial chemistry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本発明は、水素添加反応等において優れた触媒活性を示すルテニウム錯体の一種である、N,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びにN,N-ビス(2-ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の効率的な製造方法を提供することを目的とする。 オキサゾリジノン化合物(1)とジアルキルホスフィン-ボラン化合物(2)を塩基の存在下で反応させることにより、アミン-ボラン錯体(3)を効率的に製造することが出来る。 また、アミン-ボラン錯体(3)とルテニウム化合物(4)をアミン類の存在下で反応させることによりルテニウム錯体(5)の効率的な製造することが出来る。 (式中、実線、破線、B、C、H、L~L、LG、n、N、O、P、Ru、X、及びR~R10は明細書中に定義された意味を有する)

Description

N,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びにN,N-ビス(2-ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の製造方法
本発明は、N,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びに配位子としてN,N-ビス(2-ジアルキルホスフィノエチル)アミン類を有するルテニウム錯体の製造方法に関する。
金属種と配位子から構成される種々の金属錯体が、有機合成反応における触媒として広く用いられている。このような触媒の性能及び活性を発現させる因子として、金属錯体における金属種のみならず配位子、すなわち金属種に配位しうる孤立電子対を持つ基(配位基)を有する有機化合物が、極めて重要な役割を果たすことが知られている。中でも、配位基の一つとしてイミノ基を分子内に持つ三座配位子の金属錯体は、例えばカルボニル化合物の水素添加反応やアルコール類の脱水素反応等において高い触媒活性を示すことや、これらの触媒的有機合成反応においてイミノ基上の水素原子が活性発現に大きく影響することが知られている。このような三座配位子の例として、N,N-ビス(2-ホスフィノエチル)アミンが知られており、それらのルテニウム錯体がエステル類の水素添加反応において優れた触媒として機能することが報告されている(特許文献1~4及び非特許文献1~3)。配位子として用いられるN,N-ビス(2-ジアリールホスフィノエチル)アミンは、基質であるN,N-ビス(2-クロロエチル)アミンに対して配位基であるホスフィノ基を導入することで容易に合成可能である。一方、リン上にアルキル基が置換したN,N-ビス(2-ジアルキルホスフィノエチル)アミンを合成する場合は、前述の方法では低収率のためN,N-ビス(2-クロロエチル)アミンのイミノ基をトリメチルシリル基で保護してN,N-ビス(2-クロロエチル)トリメチルシリルアミンとし、極低温下でジアルキルホスフィノ基を導入する方法が開発されている(非特許文献4)。しかしながら、この製造法は基質のN,N-ビス(2-クロロエチル)トリメチルシリルアミンが蒸留中に分解するために精製が困難であること、高価なシリル化剤が必要であること、極低温での操作が必要なこと、得られてくるN,N-ビス(2-ジアルキルホスフィノエチル)アミンが空気に不安定なために脱気操作など煩雑な操作が必要であること、などの問題を有していた。
N,N-ビス(2-ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の製造法としては、RuHCl(CO)(PPhを前駆体として用いる製造法などが知られているが、配位子が空気に不安定なため煩雑な操作が必要であること、高温で長時間反応させる必要があることなど、工業化のためには不利な問題点を有していた。
このため上記のごとき問題点を有さない、すなわち製造工程が短く、温和な反応条件、簡便且つ高収量で製造することができる、工業化に適した実用的なN,N-ビス(2-ジアルキルホスフィノエチル)アミン類及びそのルテニウム錯体の製造方法が望まれている。
国際公開公報第2011/048727号 特開2012-067021号公報 特開2014-519472号公報 特開2014-114257号公報
Lei Zhang, Zhaobin Han, Xiaoyu Zhao, Zheng Wang, and Kuiling Ding, Angew. Chem. Int. Ed. Ingl., 2015年, 54, 6186. Zhaobin Han, Liangce Rong, Jiang Wu, Lei Zhang, Zheng Wang, and Kuiling Ding, Angew. Chem. Int. Ed. Ingl., 2012年, 51, 13041. Martin Nielsen, Anja Kammer, Daniela Cozzula, Henrik Junge, Serafino Gladiali, Matthias Beller, Angew. Chem. Int. Ed. Ingl., 2011年, 50, 9593. A. A. Danopoulos, A. R. Wills, P. G. Edwards, Polyhedron, 1990年, 9, 2413.
本発明は、カルボニル化合物の水素添加反応やアルコール類の脱水素反応等において、触媒活性など優れた性能を有するN,N-ビス(2-ジアルキルホスフィノエチル)アミン類を配位子とするルテニウム金属錯体を、簡便かつ高収量で製造することができる製造方法を提供することを目的とするものである。さらには、配位子原料として有用なN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体、及び、それらを新規で安全かつ実用的な製造方法を提供することを目的とするものである。
本発明者らは上記の課題を解決するために鋭意検討を重ねた結果、N,N-ビス(2-クロロエチル)アミンに対して二酸化炭素を反応させることで3-(2-クロロエチル)-2-オキサゾリジノンへ誘導し、この化合物に対してジアルキルホスフィン-ボラン化合物を塩基の存在下に反応させることで、新規なN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体を、簡便な操作で収率良く合成できることを見出した。この新規な化合物は空気に安定で、カラムクロマトグラフィーや再結晶等で容易に精製することが可能であり、ルテニウム前駆体とアミン類の存在下に反応せしめることにより、カルボニル化合物の水素添加反応やアルコール類の脱水素反応等において触媒活性など優れた性能を有するN,N-ビス(2-ジアルキルホスフィノエチル)アミン類を配位子とするルテニウム金属錯体を、短工程で安全かつ収率良く製造できることを見出して、本発明を完成したものである。
すなわち、本発明は、N,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びに配位子としてN,N-ビス(2-ジアルキルホスフィノエチル)アミン類を有するルテニウム錯体の製造方法を提供する。
本発明は以下の[1]~[11]の内容を含むものである。
[1]一般式(1)
Figure JPOXMLDOC01-appb-C000008
(式中、実線は単結合、二重線は二重結合を表す。Cは炭素原子、Nは窒素原子、Oは酸素原子を表す。LGは脱離基を表す。R、R、R、R、R、R、R及びR10は各々独立して水素原子及び、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基、置換基を有しても良いアルケニル基、置換基を有しても良いアリール基及び置換基を有しても良いアラルキル基から構成される群より選択される基を表す。R~R10は互いに結合して置換基を有しても良い環を形成してもよい)
で表される化合物と、一般式(2)
Figure JPOXMLDOC01-appb-C000009
(式中、実線は単結合、破線は配位結合を表す。Bはホウ素原子、Hは水素原子、Pはリン原子を表す。R及びRは各々独立して、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基を表す。隣接するR及びRは互いに結合して、置換基を有してもよい環を形成してもよい。)
で表されるリン化合物を、塩基の存在下で反応させることを特徴とする、一般式(3)
Figure JPOXMLDOC01-appb-C000010
(式中、実線は単結合を表す。Bはホウ素原子、Cは炭素原子、Hは水素原子、Nは窒素原子、Pはリン原子を表す。R及びRは各々独立して、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基を表す。隣接するR及びRは互いに結合して、置換基を有してもよい環を形成してもよい。R、R、R、R、R、R、R及びR10は各々独立して水素原子、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基、置換基を有しても良いアルケニル基、置換基を有しても良いアリール基及び置換基を有しても良いアラルキル基から構成される群より選択される基を表す。R~R10は互いに結合して置換基を有しても良い環を形成してもよい。n=2~3であり、BHは窒素原子又はリン原子に配位している)
で表される化合物の製造方法。
[2]R、R、R、R、R、R、R及びR10が水素原子である[1]に記載の製造方法。
[3]R及びRは各々独立して、イソプロピル基、シクロヘキシル基、tert-ブチル基から構成される群より選択された化合物である[1]又は[2]のいずれかに記載の製造方法。
[4]LGがハロゲン原子、メタンスルホニルオキシ基(OMs)、p-トルエンスルホニルオキシ基(OTs)、ベンゼンスルホニルオキシ基(OSO)トリフルオロメタンスルホニルオキシ基(OTf)から構成される群より選択された化合物である、[1]~[3]のいずれかに記載の製造方法。
[5]塩基がアルキルリチウムである[1]~[4]のいずれかに記載の製造方法。
[6]一般式(3)
Figure JPOXMLDOC01-appb-C000011
(式中、実線は単結合を表す。Bはホウ素原子、Cは炭素原子、Hは水素原子、Nは窒素原子、Pはリン原子を表す。R及びRは各々独立して、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基を表す。隣接するR及びRは互いに結合して、置換基を有してもよい環を形成してもよい。R、R、R、R、R、R、R及びR10は各々独立して水素原子、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基、置換基を有しても良いアルケニル基、置換基を有しても良いアリール基及び置換基を有しても良いアラルキル基から構成される群より選択される基を表す。R~R10は互いに結合して置換基を有しても良い環を形成してもよい。n=2~3であり、BHは窒素原子又はリン原子に配位している)
で表される化合物と、一般式(4)
Figure JPOXMLDOC01-appb-C000012
(式中、実線は単結合、三重線は三重結合、破線は配位結合を表す。Cは炭素原子、Hは水素原子、Oは酸素原子、Ruはルテニウム原子を表す。Xはアニオン性基を表す。L、L及びLは各々独立して単座配位子を表す)
で表されるルテニウム化合物をアミン類の存在下で反応させることを特徴とする、一般式(5)
Figure JPOXMLDOC01-appb-C000013
(式中、実線は単結合、三重線は三重結合、破線は配位結合を表す。Cは炭素原子、Hは水素原子、Nは窒素原子、Oは酸素原子、Pはリン原子、Ruはルテニウム原子を表す。Xはアニオン性基を表す。R及びRは各々独立して、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基を表す。隣接するR及びRは互いに結合して、置換基を有してもよい環を形成してもよい。R、R、R、R、R、R、R及びR10は各々独立して水素原子及び、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基、置換基を有しても良いアルケニル基、置換基を有しても良いアリール基及び置換基を有しても良いアラルキル基から構成される群より選択される基を表す。R~R10は互いに結合して置換基を有しても良い環を形成してもよい)
で表されるルテニウム錯体の製造方法。
[7]R、R、R、R、R、R、R及びR10が水素原子である[6]に記載の製造方法。
[8]R及びRは各々独立して、イソプロピル基、シクロヘキシル基、tert-ブチル基から構成される群より選択された化合物である[6]又は[7]のいずれかに記載の製造方法。
[9]L、L及びLが3級ホスフィンである[6]~[8]のいずれかに記載の製造方法。
[10]Xがハロゲン原子である[6]~[9]のいずれかに記載の製造方法。
[11]一般式(3)
Figure JPOXMLDOC01-appb-C000014
(式中、実線は単結合を表す。Bはホウ素原子、Cは炭素原子、Hは水素原子、Nは窒素原子、Pはリン原子を表す。R及びRは各々独立して、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基を表す。隣接するR及びRは互いに結合して、置換基を有してもよい環を形成してもよい。R、R、R、R、R、R、R及びR10は各々独立して水素原子、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基、置換基を有しても良いアルケニル基、置換基を有しても良いアリール基及び置換基を有しても良いアラルキル基から構成される群より選択される基を表す。R~R10は互いに結合して置換基を有しても良い環を形成してもよい。n=2~3であり、BHは窒素原子又はリン原子に配位している)
で表される化合物。
本発明によって、新規なN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体の簡便で実用的な製造方法が提供される。本発明によるN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体は空気に安定で、カラムクロマトグラフィーや再結晶等で容易に精製することが可能であり、ルテニウム前駆体とアミン類の存在下に反応せしめることにより、カルボニル化合物の水素添加反応やアルコール類の脱水素反応等において触媒活性など優れた性能を有するN,N-ビス(2-ジアルキルホスフィノエチル)アミン類を配位子とするルテニウム金属錯体を、短工程で安全かつ収率良く製造できる
カルボニルクロロヒドリド{ビス[2-(ジシクロヘキシルホスフィノ)エチル]アミン}ルテニウム(II)(実施例2)のH NMRチャートである。 カルボニルクロロヒドリド{ビス[2-(ビスtert-ブチルホスフィノ)エチル]アミン}ルテニウム(II)(実施例4)のH NMRチャートである。
以下、本発明を詳細に説明する。
本発明の一般式(3)で表されるN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体の製造方法は反応式(6)で表すことができる。
Figure JPOXMLDOC01-appb-C000015
上記一般式(1)で示されるオキサゾリジノンにおいて、LGで表される脱離基としては求核置換反応を可能にする基であれば良く、具体的にはフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メタンスルホニルオキシ基(OMs)、p-トルエンスルホニルオキシ基(OTs)、ベンゼンスルホニルオキシ基(OSO)、トリフルオロメタンスルホニルオキシ基(OTf)などがあげられ、好ましくはハロゲン原子が挙げられ、より好ましくは塩素原子が挙げられる。
、R、R、R、R、R、R及びR10は各々独立して、水素原子及び、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有しても良いアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表し、好ましくは水素原子を表す。
~R10におけるアルキル基は、直鎖状でも分岐状でも良く、例えば炭素数1~30、好ましくは炭素数1~20、より好ましくは炭素数1~10のアルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、2-ペンチル基、3-ペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、2-メチルブタン-3-イル基、2,2-ジメチルプロピル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、tert-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、2-メチルペンタン-3-イル基、2-メチルペンタン-4-イル基、3-メチルペンタン-2-イル基、3-メチルペンタン-3-イル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2,2-ジメチルブタン-3-イル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-ヘキサデシル基等が挙げられ、好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基が挙げられる。
シクロアルキル基としては、例えば炭素数3~8、好ましくは炭素数5~7の飽和又は不飽和の単環式、多環式のシクロアルキル基が挙げられる。例えばシクロプロピル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基等が挙げられ、好ましくはシクロペンチル基、シクロヘキシル基が挙げられる。
アルケニル基としては、直鎖状でも分岐状でも又は環状でもよい、例えば炭素数2~20のアルケニル基、好ましくは炭素数2~14のアルケニル基、より好ましくは炭素数2~8のアルケニル基が挙げられ、具体的にはビニル基、1-プロペニル基、2-プロペニル基、アリル基、1-シクロヘキセニル基、1-スチリル基及び2-スチリル基等が挙げられる。
アリール基としては、例えば炭素数6~18のアリール基、好ましくは炭素数6~14のアリール基、より好ましくは炭素数6~10のアリール基が挙げられ、具体的にはフェニル基、1-ナフチル基及び2-ナフチル基等が挙げられ、好ましい具体例としてはフェニル基が挙げられる。
アラルキル基としては、前記アルキル基の少なくとも一つの水素原子が前記アリール基によって置換されたアラルキル基及び、前記環状アルキル基が前記アリール基によって縮環されることで生じる多環アラルキル基が挙げられ、具体的にはベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、2-フェニルプロピル基、3-フェニルプロピル基、1-フェニル-2-プロピル基、2-フェニル-2-プロピル基、1-インダニル基、2-インダニル基及び9-フルオレニル基等が挙げられる。
また、R~R10におけるアルキル基、シクロアルキル基、アルケニル基、アリール基及びアラルキル基、R~R同士が互いに結合して形成する環、R~R10同士が互いに結合して形成する環、並びにR~R10同士が互いに結合して形成する環が有してもよい置換基としては、アルキル基、ハロゲン原子、アルケニル基、アリール基、ヘテロアリール基、アラルキル基、ハロゲノアルキル基、アルコキシ基等が挙げられ、アルキル基、ハロゲン原子、アルケニル基、アリール基、アラルキル基、及びこれらの置換基は前記にて詳細を説明した基と同様である。
ヘテロアリール基としては、窒素原子、酸素原子及び硫黄原子からなる群より選ばれるヘテロ原子を1~4個有する5~6員環の芳香族複素環及び、該芳香族複素環が前記アリール基によって縮環されることで生じる多環芳香族複素環由来のヘテロアリール基が挙げられ、具体的には2-フリル基、3-フリル基、2-チエニル基、3-チエニル基、2-ベンゾフリル基、3-ベンゾフリル基、2-ベンゾチエニル基及び3-ベンゾチエニル基等が挙げられる。
アルコキシ基としては、例えば炭素数1~10のアルコキシ基、好ましくは炭素数1~4のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、1-プロポキシ基、2-プロポキシ基、1-ブトキシ基、2-ブトキシ基及びtert-ブトキシ基等が挙げられる。
ハロゲノアルキル基としては、前記アルキル基の少なくとも一つの水素原子がハロゲン原子によって置換された基が挙げられ、具体的にはトリフルオロメチル基及びn-ノナフルオロブチル基等が挙げられる。
上記一般式(2)で示されるホスフィン-ボラン錯体において、R又はRは各々独立して、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基を表す。
及びRにおけるアルキル基は、直鎖状でも分岐状でも良く、例えば炭素数1~30、好ましくは炭素数1~20、より好ましくは炭素数1~10のアルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、2-ペンチル基、3-ペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、2-メチルブタン-3-イル基、2,2-ジメチルプロピル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、tert-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、2-メチルペンタン-3-イル基、2-メチルペンタン-4-イル基、3-メチルペンタン-2-イル基、3-メチルペンタン-3-イル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2,2-ジメチルブタン-3-イル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-ヘキサデシル基等が挙げられ、好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基が挙げられる。
及びRにおけるシクロアルキル基としては、例えば炭素数3~8、好ましくは炭素数5~7の飽和又は不飽和の単環式、多環式のシクロアルキル基が挙げられる。例えばシクロプロピル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基等が挙げられ、好ましくはシクロペンチル基、シクロヘキシル基が挙げられる。
及びRは互いに結合して、置換基を有してもよい環を形成してもよい。このような環の具体例としては、ホスフェタン環、ホスホラン環等が挙げられる。
また、R及びRにおけるアルキル基及びシクロアルキル基、並びにR及びR同士が互いに結合して形成する環が有してもよい置換基としては、アルキル基、ハロゲン原子、アルケニル基、アリール基、ヘテロアリール基、アラルキル基、ハロゲノアルキル基、アルコキシ基等が挙げられ、アルキル基、ハロゲン原子、アルケニル基、アリール基、アラルキル基、及びこれらの置換基は前記一般式(1)にて詳細を説明した基と同様である。
上記一般式(3)で示されるN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体において、R又はRで表される置換基を有しても良いアルキル基、及び置換基を有しても良いシクロアルキル基、並びに隣接するR及びR同士が互いに結合して形成する置換基を有してもよい環としては、前記一般式(2)と同じ基が挙げられる。
また上記一般式(3)で示されるN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体において、R、R、R、R、R、R、R及びR10は各々独立して、水素原子及び、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基、置換基を有しても良いアルケニル基、置換基を有しても良いアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表し、好ましくは水素原子を表す。R~R10におけるアルキル基、置換基を有しても良いアルケニル基、置換基を有しても良いアリール基及び置換基を有してもよいアラルキル基は、前記一般式(1)と同じ基が挙げられる。
 尚、本発明においてボランとはBHで表される三水素化ホウ素を表し、さらに一般式(3)において、ボランは、窒素原子又はリン原子に配位しており、n=2又は3であり、n=2と3の混合物であっても良い。本明細書において、n=2~3であるとは、n=2、n=3又はそれらの混合物であることを意味する。
上記一般式(3)で表されるN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体の製造方法を詳しく説明する。
一般式(1)で表されるオキサゾリジノンは、例えば、特開2003-292798などで公知の方法に類似した方法により合成することができる。例えば、その一例を示すと、反応式(7)に示すようにN,N-ビス(2-クロロエチル)アミン塩酸塩に対して二酸化炭素を反応させることで3-(2-クロロエチル)-2-オキサゾリジノンを合成することができる。
Figure JPOXMLDOC01-appb-C000016
一般式(2)で示されるホスフィン-ボラン錯体は、例えば、Lydia McKinstry, Tom, Livinghouse, Tetrahedron, 1995年, 51, 7655.などで公知の方法に類似の方法により合成できる。例えばその一例を示すと、2級ホスフィン類とボラン-ジメチルスルフィド錯体(BH3-SMe2)やボラン-テトラヒドロフラン錯体(BH-THF)等を反応させることにより製造することができる。
上記のように製造された一般式(1)で表されるオキサゾリジノンと一般式(2)で表されるホスフィン-ボラン錯体との反応を塩基の存在下に実施することにより、一般式(3)で表されるN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体を製造することができる。一般式(2)で表されるホスフィン-ボラン錯体の使用量は特に限定されるものではないが、通常一般式(1)で表されるオキサゾリジノンに対して通常0.6~20当量、好ましくは1当量~10当量、より好ましくは2~5当量の範囲から適宜選択される。なお、一般式(2)で表されるホスフィン-ボラン錯体は、その製造工程においてカラムクロマトグラフィーや再結晶等により精製した後に使用してもよく、溶媒で抽出後、水洗した溶液を使用してもよい。
塩基としては、具体的には水酸化リチウム、水酸化ナトリウム及び水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム、水酸化ストロンチウム及び水酸化バリウム等のアルカリ土類金属水酸化物、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム、水素化ホウ素ナトリウム及び水素化アルミニウムリチウム等の金属水素化物、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウム-tert-ブトキシド及びカリウム-tert-ブトキシド等のアルカリ金属アルコキシド、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム及びフェニルリチウム等の有機リチウム化合物、リチウムアミド、ナトリウムアミド、リチウムジイソプロピルアミド及びリチウムヘキサメチルジシラジド等のアルカリ金属アミド類、及び塩化メチルマグネシウム、塩化tert-ブチルマグネシウム、塩化フェニルマグネシウム、臭化フェニルマグネシウム及びヨウ化メチルマグネシウム等のグリニャール試薬等が挙げられ、好ましくはアルキルリチウムが挙げられ、特に好ましい具体例としてはn-ブチルリチウムが挙げられる。これらの塩基は、各々単独で用いても2種以上適宜組み合わせて用いてもよい。
塩基の使用量は特に限定されるものではないが、一般式(2)で表される化合物に対して、通常0.3~10当量、好ましくは0.5~5当量、より好ましくは0.8~3当量の範囲から適宜選択される。なお、本反応において塩基の添加方法は特に限定されるものではないが、一般式(2)で表される化合物と塩基を各々単独に添加してもよく、一般式(2)で表される化合物と塩基(及び溶媒)の混合物として添加してもよく、一般式(2)で表される化合物と塩基を(溶媒中にて)反応させることによって得られるホスフィド-ボラン錯体として添加してもよい。
本反応は溶媒の存在下で実施することが望ましい。溶媒は、具体的にはn-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン、シクロヘキサン及びデカリン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン、p-シメン及び1,4-ジイソプロピルベンゼン等の芳香族炭化水素類、メタノール、エタノール、2-プロパノール、n-ブタノール、tert-ブタノール、2-メチル-2-ブタノール及び2-エトキシエタノール等の1価アルコール類、エチレングリコール、プロピレングリコール、1,2-プロパンジオール及びグリセリン等の多価アルコール類、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、ジメトキシエタン、エチレングリコールジエチルエーテル、テトラヒドロフラン及び1,4-ジオキサン等のエーテル類、及びトリエチルアミン、アニリン及び2-フェネチルアミン等のアミン類等が挙げられ、好ましい具体例としてはn-ヘキサン及びテトラヒドロフラン等が挙げられる。これらの溶媒は、各々単独で用いても2種以上適宜組み合わせて用いてもよい。
溶媒の使用量は特に限定されるものではないが、一般式(1)で表される化合物に対して通常1~200倍容量、好ましくは2~100倍容量、より好ましくは5~50倍容量の範囲から適宜選択される。
本反応は不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、具体的にはアルゴンガス及び窒素ガス等が挙げられる。反応温度は、通常-78~150℃、好ましくは-40~100℃、より好ましくは-20~80℃の範囲から適宜選択される。反応時間は、塩基、溶媒及び反応温度その他の条件によって自ずから異なるが、通常1分~48時間、好ましくは5分~24時間、より好ましくは10分~15時間の範囲から適宜選択される。
このようにして得られた一般式(3)で表されるN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体は、必要に応じて後処理、単離及び精製を行うことができる。後処理の方法としては例えば、濃縮、溶媒置換、洗浄、抽出、逆抽出、濾過、貧溶媒の添加による晶析等が挙げられ、これらを単独で或いは併用して行うことができる。単離及び精製の方法としては例えば、吸着剤による脱色、カラムクロマトグラフィー、蒸留、再結晶、貧溶媒による結晶洗浄によって得られる塩の晶析等が挙げられ、これらを単独で或いは併用して行うことができる。
次に一般式(5)で表されるルテニウム錯体の製造方法は反応式(8)で表すことができる。すなわち、一般式(4)で表されるルテニウムカルボニル錯体と前記一般式(3)で表されるN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体を適宜溶媒中でアミン類の存在下に撹拌することで製造することができる。一般式(3)で表されるN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体の使用量は特に限定されるものではないが、通常一般式(4)で表されるルテニウムカルボニル錯体に対して通常0.5~20当量、好ましくは0.7当量~10当量、より好ましくは0.8~3当量の範囲から適宜選択される。
Figure JPOXMLDOC01-appb-C000017
一般式(4)において、Xで表されるアニオン性基としては、ヒドリドイオン(H);塩素イオン(Cl)、臭素イオン(Br)、又はヨウ素イオン(I)等のハロゲンイオン、BH、BF、BPh、PF、アセトキシ基、トリフルオロメタンスルホニルオキシ基等の複合アニオンなどが挙げられる。好ましくはハロゲンイオン、より好ましくは塩素イオン(Cl)が挙げられる。
L1、L2及びL3で表される中性単座配位子としては、アルコール、エーテル、スルフィド、スルホキシド、アミン、アミド、ニトリル、イソニトリル、ヘテロアレーン、2級ホスフィン、2級ホスフィンオキシド、3級ホスフィン、ホスファイト、ホスホロアミダイト、3級アルシン、カルベン、水素分子及び一酸化炭素が挙げられ、より好ましくは3級ホスフィン、ホスファイト及び一酸化炭素等が挙げられる。さらに好ましくは3級ホスフィン等が挙げられる。
3級ホスフィンとしては下記一般式(9)
Figure JPOXMLDOC01-appb-C000018
(式中、Pはリン原子を表す。R11、R12及びR13は各々独立して、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基又は置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R11~R13は互いに結合して、置換基を有してもよい環を形成してもよい。)
で表される化合物が挙げられる。
前記一般式(9)中、Pはリン原子を表す。R11、R12及びR13は各々独立して、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基又は置換基を有してもよいアラルキル基から構成される群より選択される基を表し、好ましくはアルキル基、置換基を有してもよいアリール基及び置換基を有してもよいヘテロアリール基から構成される群より選択される基を表す。
アルキル基としては、直鎖状でも分岐状でもよい、例えば炭素数1~30のアルキル基、好ましくは炭素数1~20のアルキル基、より好ましくは炭素数1~10のアルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、3-ペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、2-メチルブタン-3-イル基、2,2-ジメチルプロピル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、tert-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、2-メチルペンタン-3-イル基、2-メチルペンタン-4-イル基、3-メチルペンタン-2-イル基、3-メチルペンタン-3-イル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2,2-ジメチルブタン-3-イル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基及びn-デシル基等が挙げられ、好ましい具体例としてはメチル基及びエチル基が挙げられる。
 シクロアルキル基としては、例えば炭素数3~8、好ましくは炭素数5~7の飽和又は不飽和の単環式、多環式のシクロアルキル基が挙げられる。例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基等が挙げられ、好ましくはシクロペンチル基、シクロヘキシル基が挙げられる。
アルケニル基としては、直鎖状でも分岐状でも又は環状でもよい、例えば炭素数2~20のアルケニル基、好ましくは炭素数2~14のアルケニル基、より好ましくは炭素数2~8のアルケニル基が挙げられ、具体的にはビニル基、1-プロペニル基、2-プロペニル基、アリル基、1-シクロヘキセニル基、1-スチリル基及び2-スチリル基等が挙げられる。
アリール基としては、例えば炭素数6~18のアリール基、好ましくは炭素数6~14のアリール基、より好ましくは炭素数6~10のアリール基が挙げられ、具体的にはフェニル基、1-ナフチル基及び2-ナフチル基等が挙げられ、好ましい具体例としてはフェニル基が挙げられる。
ヘテロアリール基としては、窒素原子、酸素原子及び硫黄原子からなる群より選ばれるヘテロ原子を1~4個有する5~6員環の芳香族複素環及び、該芳香族複素環が前記アリール基によって縮環されることで生じる多環芳香族複素環由来のヘテロアリール基が挙げられ、具体的には2-フリル基、3-フリル基、2-チエニル基、3-チエニル基、2-ベンゾフリル基、3-ベンゾフリル基、2-ベンゾチエニル基及び3-ベンゾチエニル基等が挙げられ、好ましい具体例としては2-フリル基が挙げられる。
アラルキル基としては、前記アルキル基の少なくとも一つの水素原子が前記アリール基によって置換されたアラルキル基及び、前記環状アルキル基が前記アリール基によって縮環されることで生じる多環アラルキル基が挙げられ、具体的にはベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、2-フェニルプロピル基、3-フェニルプロピル基、1-フェニル-2-プロピル基、2-フェニル-2-プロピル基、1-インダニル基、2-インダニル基及び9-フルオレニル基等が挙げられる。
11~R13は互いに結合して、置換基を有してもよい環を形成してもよい。このような環の具体例としては、ホスホラン環、ホスホール環、ホスフィナン環及びホスフィニン環等が挙げられる。
11~R13におけるアルケニル基、アリール基、ヘテロアリール基及びアラルキル基及び、R11~R13が互いに結合して形成する環が有してもよい置換基としては、アルキル基、ハロゲノアルキル基、アルケニル基、アリール基、ヘテロアリール基、アラルキル基、水酸基、アルコキシ基、アルコキシカルボニル基、カルボキシル基、アミノ基、スルホ基及びハロゲノ基等が挙げられる。これらの置換基の内、アルキル基、アルケニル基、アリール基、ヘテロアリール基及びアラルキル基は、R11~R13の詳細な説明における基と同様である。
ハロゲノアルキル基としては、前記アルキル基の少なくとも一つの水素原子がハロゲン原子によって置換された基が挙げられ、具体的にはトリフルオロメチル基及びn-ノナフルオロブチル基等が挙げられ、好ましい具体例としてはトリフルオロメチル基が挙げられる。
アルコキシ基としては、例えば炭素数1~10のアルコキシ基、好ましくは炭素数1~4のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、1-プロポキシ基、2-プロポキシ基、1-ブトキシ基、2-ブトキシ基及びtert-ブトキシ基等が挙げられ、好ましい具体例としてはメトキシ基が挙げられる。
アルコキシカルボニル基としては、具体的にはメトキシカルボニル基等が挙げられる。
アミノ基としては、具体的にはジメチルアミノ基及び4-モルホリニル基等が挙げられる。
ハロゲノ基としては、具体的にはフルオロ基、クロロ基、ブロモ基及びヨード基が挙げられ、好ましくはフルオロ基及びクロロ基が挙げられる。
一般式(9)で表される3級ホスフィンの好ましい具体例としては、トリメチルホスフィン、トリエチルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、トリス(4-トリフルオロメチルフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン及びトリス(2-フリル)ホスフィン等が挙げられる。より好ましくはトリフェニルホスフィンが挙げられる。
一般式(5)中の各置換基の記号の意味は前述と同じ意味を表す。
一般式(5)で表されるルテニウム錯体の製造に用いる際には、一般式(3)で表されるN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体のボランを解離させる必要がある。一般式(5)で表されるルテニウム錯体の製造の際に、反応系内でボランを解離させながら錯体化反応に用いてもよい。好ましくは、反応系内でボランを解離させながら錯体化反応することが好ましい。ボランの解離には解離剤を併用することが好ましく、ボランの解離剤としては、一般に使用される解離剤であれば錯体化に影響を及ぼさなければいかなる解離剤でも良いが、好ましくはアミン類が挙げられる。
アミン類としては、具体的にはジエチルアミン、トリエチルアミン、トリ-n-ブチルアミン、ジイソプロピルエチルアミン、N,N-ジメチルアニリン、4-ジメチルアミノピリジン、ピロリジン、ピペリジン、N-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)及び1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等が挙げられ、好ましくはジエチルアミンN,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)、1,4-ジアザビシクロ[2.2.2]-オクタン(DABCO)、より好ましくは1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)が挙げられる。
アミン類の使用量は特に限定されるものではないが、一般式(4)で表される化合物に対して、通常0.5~30当量、好ましくは0.7~20当量、より好ましくは0.8~10当量の範囲から適宜選択される。なお、本反応においてアミン類の添加方法は特に限定されるものではないが、一般式(3)で表される化合物と塩基を各々単独に添加してもよく、一般式(3)で表される化合物と塩基(及び溶媒)の混合物として添加してもよい。
本反応は溶媒の存在下で実施することが望ましい。溶媒は、具体的にはn-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン、シクロヘキサン及びデカリン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン、p-シメン及び1,4-ジイソプロピルベンゼン等の芳香族炭化水素類、クロロベンゼン及びo-ジクロロベンゼン等のハロゲン化芳香族炭化水素類、メタノール、エタノール、2-プロパノール、n-ブタノール、tert-ブタノール、2-メチル-2-ブタノール及び2-エトキシエタノール等のアルコール類、エチレングリコール、プロピレングリコール、1,2-プロパンジオール及びグリセリン等の多価アルコール類、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、ジメトキシエタン、エチレングリコールジエチルエーテル、テトラヒドロフラン及び1,4-ジオキサン等のエーテル類、酢酸メチル、酢酸エチル、酢酸n-ブチル及びプロピオン酸メチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノン等のケトン類、トリエチルアミン、アニリン及びフェネチルアミン等のアミン類、ホルムアミド、N,N-ジメチルホルムアミド及びN,N-ジメチルアセトアミド等のアミド類、アセトニトリル、マロノニトリル及びベンゾニトリル等のニトリル類、ジメチルスルホキシド等のスルホキシド類、及び水等が挙げられ、好ましい具体例としてはトルエン、キシレン、メシチレン等の芳香族炭化水素類、クロロベンゼン、o-ジクロロベンゼン等のハロゲン化芳香族炭化水素類が挙げられ、より好ましくはトルエン、キシレン、メシチレン等の芳香族炭化水素類、が挙げられる。これらの溶媒は、各々単独で用いても2種以上適宜組み合わせて用いてもよい。
溶媒の使用量は特に限定されるものではないが、一般式(4)で表される化合物に対して通常0.5~100倍容量、好ましくは1~50倍容量、より好ましくは2~40倍容量の範囲から適宜選択される。
本反応は不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、具体的にはアルゴンガス及び窒素ガス等が挙げられる。
反応温度は、通常0~250℃、好ましくは10~200℃、より好ましくは20~180℃の範囲から適宜選択される。
反応時間は、アミン類、溶媒及び反応温度その他の条件によって自ずから異なるが、通常1分~48時間、好ましくは5分~24時間、より好ましくは10分~15時間の範囲から適宜選択される。
このようにして得られた一般式(5)で表されるルテニウム錯体は、必要に応じて後処理、単離及び精製を行うことができる。後処理の方法としては例えば、濃縮、溶媒置換、洗浄、抽出、逆抽出、濾過、貧溶媒の添加による晶析等が挙げられ、これらを単独で或いは併用して行うことができる。
以下に実施例を示し、本発明についてさらに詳しく説明する。ただし、本発明は以下の実施例によって限定されるものではない。
1)プロトン核磁気共鳴分光法(1H NMR):Varian Mercury plus 300型装置(共鳴周波数:300MHz、バリアン社製)又は、400MR DD2型装置(共鳴周波数:400MHz、アジレント社製)
内部標準物質:テトラメチルシラン(0ppm(singletピーク))又は残留軽溶媒(、ジクロロメタン:5.32ppm(tripletピーク)、クロロホルム:7.26ppm(singletピーク))
2)炭素13核磁気共鳴分光法(13C NMR):Varian Mercury plus 300型装置(共鳴周波数:75MHz、バリアン社製)又は、400MR DD2型装置(共鳴周波数:100MHz、アジレント社製)
内部標準物質:クロロホルム(77ppm(tripletピーク))
3)リン31核磁気共鳴分光法(31P NMR):Varian Mercury plus 300型装置(共鳴周波数:121MHz、バリアン社製)又は、400MR DD2型装置(共鳴周波数:161MHz、アジレント社製)
外部標準物質:重水中リン酸(0ppm(singletピーク))
(実施例1) N,N-ビス[2-(ジシクロヘキシルホスフィノ)エチル]アミン-ビスボラン錯体の合成
Figure JPOXMLDOC01-appb-C000019
第1工程:3-(2-クロロエチル)-2-オキサゾリジノンの合成
Figure JPOXMLDOC01-appb-C000020
(仕込み・反応)500mL四つ口丸底フラスコにマグネティックススターラーバー、温度計及び三方コックを取り付け、内部を窒素置換し、N,N-ビス(クロロエチル)アミン塩酸塩(40.0g、224mmol、1.0当量)、メタノール(MeOH)(120mL)及びトリエチルアミン(EtN)(47.6g、471mmol、2.1当量)を順次仕込んだ。得られた溶液に、二酸化炭素(CO)ガスを20-30℃で30分間通気した。
(後処理・単離・精製)反応液を減圧下濃縮後、トルエン(120mL)を加えて減圧下濃縮した。さらにトルエン(120mL)を加えて減圧下濃縮を行い、メタノールを十分に除いた後、再度トルエン(120mL)を加えた。得られた白色懸濁液を吸引濾過し、残渣をトルエンで洗浄した。濾液を減圧下濃縮し、残渣を蒸留精製(沸点:145℃(5mmHg))することで、表題化合物が薄黄色液体として30.7g得られた。単離収率は91.6%であった。
1H NMR(300MHz,重クロロホルム(CDCl3)):δ=4.38(ddd,J=0.9,6.3,7.8Hz,2H),3.79-3.67(m,4H),3.66-3.59(m,2H).
13C NMR(75MHz,CDCl3):δ=158.38,62.01,46.19,45.70,42.03.
第2工程:ジシクロヘキシルホスフィン-ボラン錯体の合成
Figure JPOXMLDOC01-appb-C000021
(仕込み・反応)1L四つ口丸底フラスコにマグネティックススターラーバー、温度計及び三方コックを取り付け、内部を窒素置換し、ボラン-テトラヒドロフラン溶液(BH-THF溶液、濃度:0.9mol/L、212mL、191mmol、1.05当量)を仕込み、氷水浴にて5℃に冷却した。続いて、ジシクロヘキシルホスフィン(36.0g、182mmol、1.0当量)をシリンジにて、内温が10℃以下を維持するよう30分間かけて滴下した。
(後処理・単離・精製)反応液に水(0.7mL、0.2当量)を加えてクエンチし、減圧下濃縮した。続いてトルエン(288mL)及び水(216mL)を加え、撹拌した後に静置して、水層を分離した。有機層を減圧下濃縮後、脱水テトラヒドロフラン(144mL)を加え、表題化合物のテトラヒドロフラン溶液が得られた。
31P NMR(161MHz,テトラヒドロフラン):δ=18.6-17.8(m)
第3工程:N,N-ビス[2-(ジシクロヘキシルホスフィノ)エチル]アミン-ビスボラン錯体の合成
Figure JPOXMLDOC01-appb-C000022
(仕込み・反応)1L四つ口丸底フラスコにマグネティックススターラーバー、温度計、滴下漏斗及び三方コックを取り付け、内部を窒素置換し、ジシクロヘキシルホスフィン-ボラン錯体のテトラヒドロフラン溶液(182mmol、1.0当量)を仕込み、氷水浴にて5℃に冷却した。続いて、n-ブチルリチウム(n-BuLi)のn-ヘキサン溶液(濃度:1.60mol/L、108mL、173mmol、0.95当量)を滴下漏斗に仕込み、内温が10℃以下を保つ速度で30分かけて溶液に滴下した。氷水浴を取り去って20℃まで戻した後、3-(2-クロロエチル)-2-オキサゾリジノン(12.2g、81.7mmol、0.45当量)及び脱水テトラヒドロフラン(36.0mL)を滴下漏斗に仕込み、内温が25℃以下を保つ速度で30分かけて滴下し、室温で2時間撹拌した。
(後処理・単離・精製)反応液を減圧下濃縮後、トルエン(288mL)及び水(360mL)を加え、撹拌した後に静置して水層を分離した。有機層を水(108mL)で再度洗浄し、減圧下濃縮した。得られた粗製物をNMRにて分析したところ、BHが2つの錯体(ビスボラン錯体)とBHが3つの錯体(トリスボラン錯体)の85/15の混合物であった。得られた粗製物をトルエンから再結晶することで、表題化合物が白色粉末として14.1g得られた。単離収率:69.8%。
H NMR(400MHz,重クロロホルム(CDCl3)):δ=2.87-2.81(m,4H),1.90-1.68(m,28H),1.38-1.21(m,20H).
31P NMR(161MHz,重クロロホルム(CDCl3)):δ=22.5(d,J=64.2Hz,2P)
(参考例1)N,N-ビス[2-(ジシクロヘキシルホスフィノ)エチル]アミン-トリスボラン錯体の合成
Figure JPOXMLDOC01-appb-C000023
(仕込み・反応)100mL四つ口丸底フラスコにマグネティックススターラーバー、温度計及び三方コックを取り付け、内部を窒素置換し、N,N-ビス[2-(ジシクロヘキシルホスフィノ)エチル]アミン-ビスボラン錯体(10.0g、20.3mmol、1.0当量)及びテトラヒドロフラン(20mL)を仕込み、氷水浴にて5℃に冷却した。続いて、ボラン-テトラヒドロフラン溶液(BH-THF溶液、濃度:0.9mol/L、24.8mL、22.3mmol、1.1当量)をシリンジにて、内温が10℃以下を維持するよう30分間かけて滴下した。
(後処理・単離・精製)反応液を減圧下濃縮し、トルエン(50mL)及び水(25mL)を加え、撹拌した後に静置して、水層を分離した。有機層を水(20mL)で再度洗浄し、減圧下濃縮した。得られた残渣をトルエンから再結晶することで、表題化合物が白色粉末として6.1g得られた。単離収率:58.8%
H NMR(400MHz,重クロロホルム(CDCl3)):δ=4.49(br s,1H),2.99-2.90(m,4H),2.36-2.04(m,4H),1.86-1.70(m,24H),1.43-1.24(m,20H).
31P NMR(161MHz,重クロロホルム(CDCl3)):δ=22.8(d,J=49.6Hz,2P)
(実施例2) カルボニルクロロヒドリド{ビス[2-(ジシクロヘキシルホスフィノ)エチル]アミン}ルテニウム(II)の合成
Figure JPOXMLDOC01-appb-C000024
(仕込み・反応)50mL四つ口丸底フラスコにマグネティックススターラーバー、温度計、冷却管及び三方コックを取り付け、内部を窒素置換し、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)(RuHCl(CO)(PPh)(2.00g、2.10mmol、1.0当量)、N,N-ビス[2-(ジシクロヘキシルホスフィノ)エチル]アミン-ビスボラン錯体(1.14g、2.31mmol、1.1当量)及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(705mg、6.29mmol、3.0当量)及びトルエン(20mL)を順次仕込み、還流下で1時間撹拌した。
(後処理・単離・精製)反応後に得られた懸濁液を吸引濾過した後、濾取した結晶をトルエン(20mL)で洗浄し、減圧下加熱乾燥することで、表題化合物が淡黄色粉末として1.40g得られた。単離収率:100%。
H NMR(400MHz,重塩化メチレン(CD2Cl2)):図1を参照 
31P NMR(161MHz,重塩化メチレン(CD2Cl2)):δ=65.5-65.0(m,2P)
(実施例3) カルボニルクロロヒドリド{ビス[2-(ジシクロヘキシルホスフィノ)エチル]アミン}ルテニウム(II)の合成
Figure JPOXMLDOC01-appb-C000025
上記実施例2と同様にして、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)(RuHCl(CO)(PPh33)(2.00g、2.10mmol、1.0当量)、N,N-ビス[2-(ジシクロヘキシルホスフィノ)エチル]アミン-ビスボラン錯体(0.85g、1.72mmol、0.82当量)とN,N-ビス[2-(ジシクロヘキシルホスフィノ)エチル]アミン-トリスボラン錯体(0.29g、0.57mmol、0.27当量)の混合物及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(705mg、6.29mmol、3.0当量)から、表題化合物が淡黄色粉末として1.40g得られた。単離収率:100%
(実施例4) N,N-ビス[2-(ビスtert-ブチルホスフィノ)エチル]アミン-ジボラン錯体の合成
Figure JPOXMLDOC01-appb-C000026
第4-1工程:ビスtert-ブチルホスフィン-ボラン錯体の合成
Figure JPOXMLDOC01-appb-C000027
(仕込み・反応)100L四つ口丸底フラスコにマグネティックススターラーバー、温度計及び三方コックを取り付け、内部を窒素置換し、ボラン-テトラヒドロフラン溶液(BH-THF溶液、濃度:0.9mol/L、21.2mL、19.1mmol、1.05当量)を仕込み、氷水浴にて5℃に冷却した。続いて、ビスtert-ブチルホスフィン(2.66g、18.2mmol、1.0当量)をシリンジにて、内温が10℃以下を維持するよう30分間かけて滴下した。
(後処理・単離・精製)反応液に水(0.2mL)を加えてクエンチし、反応液を減圧下濃縮後、酢酸エチル(30mL)及び水(10mL)を加え、撹拌した後に静置して水層を分離した。水層を酢酸エチル(10mL×2回)で再度抽出し、合わせた有機相をMgSOを用いて乾燥したのちにろ過し、ろ液を減圧下濃縮した。得られた粗製物をシリカゲルカラムにより精製することで、表題化合物が白色粉末として2.62g得られた。単離収率:90.0%。
第4-2,3工程:N,N-ビス[2-(ビスtert-ブチルホスフィノ)エチル]アミン-ジボラン錯体の合成
Figure JPOXMLDOC01-appb-C000028
(仕込み・反応)100mL四つ口丸底フラスコにマグネティックススターラーバー、温度計、滴下漏斗及び三方コックを取り付け、内部を窒素置換し、ビスtert-ブチルホスフィン-ボラン錯体1.95g(12.18mmol、1.0当量)、脱水テトラヒドロフラン(10.0mL)を仕込み、氷水浴にて5℃に冷却した。続いて、n-ブチルリチウム(n-BuLi)のn-ヘキサン溶液(濃度:1.64mol/L、7.06mL、11.57mmol、0.95当量)を滴下漏斗に仕込み、内温が10℃以下を保つ速度で30分かけて溶液に滴下した。氷水浴を取り去って20℃まで戻した後、3-(2-クロロエチル)-2-オキサゾリジノン(0.82g、5.48mmol、0.45当量)及び脱水テトラヒドロフラン(2.5mL)を滴下漏斗に仕込み、内温が25℃以下を保つ速度で30分かけて滴下し、室温で2時間撹拌した。
(後処理・単離・精製)反応液を減圧下濃縮後、酢酸エチル(50mL)及び水(30mL)を加え、撹拌した後に静置して水層を分離した。水層を酢酸エチル(10mL×2回)で再度抽出し、合わせた有機相をMgSOを用いて乾燥したのちにろ過し、ろ液を減圧下濃縮した。得られた粗製物をシリカゲルカラムにより精製することで、表題化合物が白色粉末として1.64g得られた。単離収率:77.0%。
H NMR(400MHz,重クロロホルム(CDCl3)):δ=2.98-2.92(m,4H),1.86-1.79(m,4H),1.26(d,36H).
31P NMR(161MHz,重クロロホルム(CDCl3)):δ=40.7(d,J=67.1Hz,2P)
第4-4工程:カルボニルクロロヒドリド{ビス[2-(ビスtert-ブチルホスフィノ)エチル]アミン}ルテニウム(II)の合成
Figure JPOXMLDOC01-appb-C000029
(仕込み・反応)50mLシュレンク管にマグネティックススターラーバー、冷却管を取り付け、内部を窒素置換し、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)(RuHCl(CO)(PPh)(1.67g、1.75mmol、1.0当量)、N,N-ビス[2-(ビスtert-ブチルホスフィノ)エチル]アミン-ジボラン錯体(0.75g、1.93mmol、1.1当量)及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(590mg、5.25mmol、3.0当量)及びトルエン(15mL)を順次仕込み、還流下で1時間撹拌した。
(後処理・単離・精製)反応後に得られた懸濁液を吸引濾過した後、濾取した結晶をトルエン(15mL)で洗浄し、減圧下加熱乾燥することで、表題化合物が灰色粉末として0.74g得られた。単離収率:80.4%。
H NMR(400MHz,重塩化メチレン(CD2Cl2)):図2を参照 
31P NMR(161MHz,重塩化メチレン(CD2Cl2)):δ=86.6-86.2(m,2P)
(実施例5) N,N-ビス[2-(ビスイソプロピルホスフィノ)エチル]アミン-ジボラン錯体の合成
Figure JPOXMLDOC01-appb-C000030
第5-1工程:ビスイソプロピルホスフィンの合成
Figure JPOXMLDOC01-appb-C000031
(仕込み・反応)
300mL四つ口丸底フラスコにマグネティックススターラーバー、温度計及び三方コックを取り付け、内部を窒素置換し、ビスイソプロピルホスフィンクロリド(5.0g、32.8mmol、1.0当量)、ジエチルエーテル(25mL)を仕込み氷水浴にて5℃に冷却した。続いて、LiAlHエーテル溶液(濃度:1.0mol/L、32.8mL、32.8mmol、1.0当量)を内温が10℃以下を維持するよう30分間かけて滴下した。
(後処理・単離・精製)反応液に水(6.0mL)を加えてクエンチし、MgSOを用いて反応液を乾燥したのちにろ過し、ろ液を減圧下濃縮することにより、ビスイソプロピルホスフィンが3.0g得られた。(収率77.5%)
第5-2工程:ビスイソプロピルホスフィン-ボラン錯体の合成
Figure JPOXMLDOC01-appb-C000032
(仕込み・反応)
300mL四つ口丸底フラスコにマグネティックススターラーバー、温度計及び三方コックを取り付け、内部を窒素置換し、ボラン-テトラヒドロフラン溶液(BH-THF溶液、濃度:0.9mol/L、100mL、90mmol、3.5当量)を仕込み、氷水浴にて5℃に冷却した。続いて、ビスイソプロピルホスフィン(3.0g、25.4mmol、1.0当量)をシリンジにて、内温が10℃以下を維持するよう30分間かけて滴下した。
(後処理・単離・精製)反応液に水(0.2mL)を加えてクエンチし、反応液を減圧下濃縮後、酢酸エチル(50mL)及び水(10mL)を加え、撹拌した後に静置して水層を分離した。水層を酢酸エチル(20mL×2回)で再度抽出し、合わせた有機相をMgSOを用いて乾燥したのちにろ過し、ろ液を減圧下濃縮した。得られた粗製物をシリカゲルカラムにより精製することで、表題化合物が無色液体として1.0g得られた。単離収率:24.6%。
31P NMR(161MHz,重クロロホルム):δ=27.4-26.5(m)
第5-3,4工程:N,N-ビス[2-(ビスイソプロピルホスフィノ)エチル]アミン-ジボラン錯体の合成
Figure JPOXMLDOC01-appb-C000033
(仕込み・反応)100mL四つ口丸底フラスコにマグネティックススターラーバー、温度計、滴下漏斗及び三方コックを取り付け、内部を窒素置換し、ビスイソプロピルビスイソプロピルホスフィン-ボラン錯体(1.2g、9.1mmol、1.0当量)、脱水テトラヒドロフラン(10mL)を仕込み、氷水浴にて5℃に冷却した。続いて、n-ブチルリチウム(n-BuLi)のn-ヘキサン溶液(濃度:1.64mol/L、5.27mL、8.64mmol、0.95当量)を滴下漏斗に仕込み、内温が10℃以下を保つ速度で30分かけて溶液に滴下した。氷水浴を取り去って20℃まで戻した後、3-(2-クロロエチル)-2-オキサゾリジノン(0.61g、4.09mmol、0.45当量)及び脱水テトラヒドロフラン(2.5mL)を滴下漏斗に仕込み、内温が25℃以下を保つ速度で30分かけて滴下し、室温で2時間撹拌した。
(後処理・単離・精製)反応液を減圧下濃縮後、酢酸エチル(50mL)及び水(30mL)を加え、撹拌した後に静置して水層を分離した。水層を酢酸エチル(10mL×2回)で再度抽出し、合わせた有機相をMgSOを用いて乾燥したのちにろ過し、ろ液を減圧下濃縮した。得られた粗製物をシリカゲルカラムにより精製することで、表題化合物が白色粉末として0.1g得られた。単離収率:8.0%。
H NMR(400MHz,重クロロホルム(CDCl3)):δ=3.50-3.40(m,4H),2.10-2.00(m,4H),1.90-1.92(m,4H),1.28-1.18(m,24H).
31P NMR(161MHz,重クロロホルム(CDCl3)):δ=30.2(d,J=68.6Hz,2P)
第5-5工程:カルボニルクロロヒドリド{ビス[2-(ビスイソプロピルホスフィノ)エチル]アミン}ルテニウム(II)の合成
Figure JPOXMLDOC01-appb-C000034
(仕込み・反応)50mLシュレンク管にマグネティックススターラーバー、冷却管を取り付け、内部を窒素置換し、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)(RuHCl(CO)(PPh)(0.285g、0.30mmol、1.0当量)、N,N-ビス[2-(ジシクロヘキシルホスフィノ)エチル]アミン-ジボラン錯体(0.1g、0.30mmol、1.0当量)及び1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(168mg、1.50mmol、5.0当量)及びトルエン(3mL)を順次仕込み、還流下で1時間撹拌した。
(後処理・単離・精製)反応後に得られた懸濁液を吸引濾過した後、濾取した結晶をトルエン(20mL)で洗浄し、減圧下加熱乾燥することで、表題化合物が淡黄色粉末として21mg得られた。単離収率:15%。
H NMR(400MHz,重塩化メチレン(CD2Cl2)):δ=3.42(br,1H),3.33-3.15(m,2H),2.70-2.62(m,2H),2.36-2.20(m,4H),1.84-1.72(m,4H),1.49-1.01(m,24H),-16.30(t,J=18.0Hz,1H)
31P NMR(161MHz,重塩化メチレン(CD2Cl2)):75.1(s,2P)
本発明は、カルボニル化合物の水素添加反応やアルコール類の脱水素反応等において、触媒活性など優れた性能を有するN,N-ビス(2-ジアルキルホスフィノエチル)アミン類を配位子とするルテニウム金属錯体を、簡便かつ高収量で製造することができる製造方法を提供するものである。さらには、配位子原料として有用なN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体、及び、それらを新規で安全かつ実用的な製造方法を提供するものである。N,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体は空気に安定で、カラムクロマトグラフィーや再結晶等で容易に精製することが可能であり、ルテニウム前駆体とアミン類の存在下に反応せしめることにより、容易にルテニウム金属錯体を短工程で安全かつ収率良く製造でき、工業的な使用に適したものである。
したがって、本発明のN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造方法、並びにN,N-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体を用いたルテニウム錯体の製造方法は、有機工業化学の分野において有用である。

Claims (11)

  1. 一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、実線は単結合、二重線は二重結合を表す。Cは炭素原子、Nは窒素原子、Oは酸素原子を表す。LGは脱離基を表す。R、R、R、R、R、R、R及びR10は各々独立して水素原子及び、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基、置換基を有しても良いアルケニル基、置換基を有しても良いアリール基及び置換基を有しても良いアラルキル基から構成される群より選択される基を表す。R~R10は互いに結合して置換基を有しても良い環を形成してもよい)
    で表される化合物と、一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、実線は単結合、破線は配位結合を表す。Bはホウ素原子、Hは水素原子、Pはリン原子を表す。R及びRは各々独立して、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基を表す。R及びRは互いに結合して、置換基を有してもよい環を形成してもよい。)
    で表されるリン化合物を、塩基の存在下で反応させることを特徴とする、一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、実線は単結合を表す。Bはホウ素原子、Cは炭素原子、Hは水素原子、Nは窒素原子、Pはリン原子を表す。R及びRは各々独立して、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基を表す。隣接するR及びRは互いに結合して、置換基を有してもよい環を形成してもよい。R、R、R、R、R、R、R及びR10は各々独立して水素原子、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基、置換基を有しても良いアルケニル基、置換基を有しても良いアリール基及び置換基を有しても良いアラルキル基から構成される群より選択される基を表す。R~R10は互いに結合して置換基を有しても良い環を形成してもよい。n=2~3であり、BHは窒素原子又はリン原子に配位している)
    で表される化合物の製造方法。
  2. 、R、R、R、R、R、R及びR10が水素原子である請求項1に記載の製造方法。
  3. 及びRは各々独立して、イソプロピル基、シクロヘキシル基、及びtert-ブチル基から構成される群より選択された基である、請求項1又は2に記載の製造方法。
  4. LGがハロゲン原子、メタンスルホニルオキシ基(OMs)、p-トルエンスルホニルオキシ基(OTs)、ベンゼンスルホニルオキシ基(OSO)、及びトリフルオロメタンスルホニルオキシ基(OTf)から構成される群より選択された基である、請求項1~3のいずれかに記載の製造方法。
  5. 塩基がアルキルリチウムである請求項1~4のいずれかに記載の製造方法。
  6. 一般式(3)
    Figure JPOXMLDOC01-appb-C000004
    (式中、実線は単結合を表す。Bはホウ素原子、Cは炭素原子、Hは水素原子、Nは窒素原子、Pはリン原子を表す。R及びRは各々独立して、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基を表す。隣接するR及びRは互いに結合して、置換基を有してもよい環を形成してもよい。R、R、R、R、R、R、R及びR10は各々独立して水素原子、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基、置換基を有しても良いアルケニル基、置換基を有しても良いアリール基及び置換基を有しても良いアラルキル基から構成される群より選択される基を表す。R~R10は互いに結合して置換基を有しても良い環を形成してもよい。n=2~3であり、BHは窒素原子またはリン原子に配位している)
    で表される化合物と、一般式(4)
    Figure JPOXMLDOC01-appb-C000005
    (式中、実線は単結合、三重線は三重結合、破線は配位結合を表す。Cは炭素原子、Hは水素原子、Oは酸素原子、Ruはルテニウム原子を表す。Xはアニオン性基を表す。L、L及びLは各々独立して単座配位子を表す)
    で表されるルテニウム化合物をアミン類の存在下で反応させることを特徴とする、一般式(5)
    Figure JPOXMLDOC01-appb-C000006
    (式中、実線は単結合、三重線は三重結合、破線は配位結合を表す。Cは炭素原子、Hは水素原子、Nは窒素原子、Oは酸素原子、Pはリン原子、Ruはルテニウム原子を表す。Xはアニオン性基を表す。R及びRは各々独立して、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基を表す。隣接するR及びRは互いに結合して、置換基を有してもよい環を形成してもよい。R、R、R、R、R、R、R及びR10は各々独立して水素原子及び、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基、置換基を有しても良いアルケニル基、置換基を有しても良いアリール基及び置換基を有しても良いアラルキル基から構成される群より選択される基を表す。R~R10は互いに結合して置換基を有しても良い環を形成してもよい)
    で表されるルテニウム錯体の製造方法。
  7. 、R、R、R、R、R、R及びR10が水素原子である請求項6に記載の製造方法。
  8. 及びRは各々独立して、イソプロピル基、シクロヘキシル基、及びtert-ブチル基から構成される群より選択された基である請求項6又は7に記載の製造方法。
  9. 、L及びLが3級ホスフィンである請求項6~8のいずれかに記載の製造方法。
  10. Xがハロゲン原子である請求項6~9のいずれかに記載の製造方法。
  11. 一般式(3)
    Figure JPOXMLDOC01-appb-C000007
    (式中、実線は単結合を表す。Bはホウ素原子、Cは炭素原子、Hは水素原子、Nは窒素原子、Pはリン原子を表す。R及びRは各々独立して、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基を表す。隣接するR及びRは互いに結合して、置換基を有してもよい環を形成してもよい。R、R、R、R、R、R、R及びR10は各々独立して水素原子、置換基を有しても良いアルキル基、置換基を有しても良いシクロアルキル基、置換基を有しても良いアルケニル基、置換基を有しても良いアリール基及び置換基を有しても良いアラルキル基から構成される群より選択される基を表す。R~R10は互いに結合して置換基を有しても良い環を形成してもよい。n=2~3であり、BHは窒素原子またはリン原子に配位している)
    で表される化合物。
PCT/JP2017/003116 2016-01-29 2017-01-30 N,n-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びにn,n-ビス(2-ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の製造方法 WO2017131226A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780003545.XA CN108290910B (zh) 2016-01-29 2017-01-30 N,n-双(2-二烷基膦乙基)胺-硼烷配合物及其制造方法及以该胺为配体的钌配合物的制造方法
CA3012962A CA3012962A1 (en) 2016-01-29 2017-01-30 N,n-bis(2-dialkylphosphinoethyl)amine-borane complex and production method therefor, and method for producing ruthenium complex containing n, n-bis (2-dialkylphosphinoethyl)amine as ligand
US16/073,660 US10407448B2 (en) 2016-01-29 2017-01-30 N-N-bis(2-dialkylphosphinoethyl)amine-borane complex and production method therefor, and method for producing ruthenium complex containing N,N-bis(2-dialkylphosphinoethyl)amine as ligand
EP17744455.1A EP3409681B1 (en) 2016-01-29 2017-01-30 N,n-bis(2-dialkylphosphinoethyl)amine-borane complex and production method therefor, and method for producing ruthenium complex containing n,n-bis(2-dialkylphosphinoethyl)amine as ligand
JP2017563888A JP6913635B2 (ja) 2016-01-29 2017-01-30 N,n−ビス(2−ジアルキルホスフィノエチル)アミン−ボラン錯体及びその製造法、並びにn,n−ビス(2−ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-016455 2016-01-29
JP2016016455 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017131226A1 true WO2017131226A1 (ja) 2017-08-03

Family

ID=59398289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003116 WO2017131226A1 (ja) 2016-01-29 2017-01-30 N,n-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びにn,n-ビス(2-ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の製造方法

Country Status (6)

Country Link
US (1) US10407448B2 (ja)
EP (1) EP3409681B1 (ja)
JP (1) JP6913635B2 (ja)
CN (1) CN108290910B (ja)
CA (1) CA3012962A1 (ja)
WO (1) WO2017131226A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230002917A1 (en) * 2019-09-05 2023-01-05 The University Of Tokyo Ammonia production method and ammonia production apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292798A (ja) 2002-04-03 2003-10-15 Mitsui Chemicals Inc 有機重合体の親水性化方法、該親水性化法により得られる親水性有機重合体及び該親水性有機重合体からなる成形体とその用途
WO2008141439A1 (en) * 2007-05-18 2008-11-27 Kanata Chemical Technologies Inc. Method for the production of hydrogen from ammonia borane
WO2011048727A1 (ja) 2009-10-23 2011-04-28 高砂香料工業株式会社 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
JP2012067021A (ja) 2010-09-21 2012-04-05 Takasago Internatl Corp アミド化合物からアルコール及び/又はアミンを製造する方法
WO2012144650A1 (en) * 2011-04-22 2012-10-26 Takasago International Corporation Method for producing compound with carbonyl group by using ruthenium carbonyl complex having tridentate ligand as dehydrogenation oxidation catalyst
JP2014114257A (ja) 2012-12-12 2014-06-26 Takasago Internatl Corp ルテニウムカルボニル錯体を用いたハロゲン置換安息香酸エステルの還元方法
WO2014136374A1 (ja) * 2013-03-04 2014-09-12 高砂香料工業株式会社 アミン類のアルキル化方法
WO2015067899A1 (fr) * 2013-11-08 2015-05-14 Pivert Procédé de synthèse d'esters et catalyseur de ladite synthèse

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201401230D0 (en) * 2014-01-24 2014-03-12 Givaudan Sa Improvements in or relating to organic compounds

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292798A (ja) 2002-04-03 2003-10-15 Mitsui Chemicals Inc 有機重合体の親水性化方法、該親水性化法により得られる親水性有機重合体及び該親水性有機重合体からなる成形体とその用途
WO2008141439A1 (en) * 2007-05-18 2008-11-27 Kanata Chemical Technologies Inc. Method for the production of hydrogen from ammonia borane
WO2011048727A1 (ja) 2009-10-23 2011-04-28 高砂香料工業株式会社 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
JP2012067021A (ja) 2010-09-21 2012-04-05 Takasago Internatl Corp アミド化合物からアルコール及び/又はアミンを製造する方法
WO2012144650A1 (en) * 2011-04-22 2012-10-26 Takasago International Corporation Method for producing compound with carbonyl group by using ruthenium carbonyl complex having tridentate ligand as dehydrogenation oxidation catalyst
JP2014519472A (ja) 2011-04-22 2014-08-14 高砂香料工業株式会社 3座配位子を有するルテニウムカルボニル錯体を脱水素酸化触媒として用いてカルボニル基を有する化合物を製造する方法
JP2014114257A (ja) 2012-12-12 2014-06-26 Takasago Internatl Corp ルテニウムカルボニル錯体を用いたハロゲン置換安息香酸エステルの還元方法
WO2014136374A1 (ja) * 2013-03-04 2014-09-12 高砂香料工業株式会社 アミン類のアルキル化方法
WO2015067899A1 (fr) * 2013-11-08 2015-05-14 Pivert Procédé de synthèse d'esters et catalyseur de ladite synthèse

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. A. DANOPOULOS; A. R. WILLS; P. G. EDWARDS, POLYHEDRON, vol. 9, 1990, pages 2413
LEI ZHANG; ZHAOBIN HAN; XIAOYU ZHAO; ZHENG WANG; KUILING DING, ANGEW. CHEM. INT. ED. INGL., vol. 54, 2015, pages 6186
LYDIA MCKINSTRY; TOM, LIVINGHOUSE, TETRAHEDRON, vol. 51, 1995, pages 7655
MARTIN NIELSEN; ANJA KAMMER; DANIELA COZZULA; HENRIK JUNGE; SERAFINO GLADIALI; MATTHIAS BELLER, ANGEW. CHEM. INT. ED. INGL., vol. 50, 2011, pages 9593
SCHNECK, FELIX ET AL.: "Selective Hydrogenation of Amides to Amines and Alcohols Catalyzed by Improved Iron Pincer Complexes", ORGANOMETALLICS, vol. 35, no. 11, 23 May 2016 (2016-05-23), pages 1931 - 1943, XP055533683 *
ZHAOBIN HAN; LIANGCE RONG; JIANG WU; LEI ZHANG; ZHENG WANG; KUILING DING, ANGEW. CHEM. INT. ED. INGL., vol. 51, 2012, pages 13041

Also Published As

Publication number Publication date
CN108290910B (zh) 2020-06-23
US10407448B2 (en) 2019-09-10
CN108290910A (zh) 2018-07-17
JPWO2017131226A1 (ja) 2018-11-22
EP3409681B1 (en) 2020-09-16
EP3409681A4 (en) 2019-07-17
JP6913635B2 (ja) 2021-08-04
EP3409681A1 (en) 2018-12-05
CA3012962A1 (en) 2017-08-03
US20190040090A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6456364B2 (ja) ルテニウム錯体及びその製造方法並びにその用途
JP6391588B2 (ja) 非対称不飽和n‐ヘテロ環状ジアミノカルベンを含むルテニウム錯体
Chen et al. Chiral cyclopalladated complex promoted asymmetric synthesis of diester-substituted P, N-ligands via stepwise hydrophosphination and hydroamination reactions
Gu et al. Iron-catalyzed asymmetric intramolecular cyclopropanation reactions using chiral tetramethyl-1, 1′-spirobiindane-based bisoxazoline (TMSI-BOX) ligands
EP0582668A1 (en) Chiral tridentate bis(phospholane) ligands
WO2017131226A1 (ja) N,n-ビス(2-ジアルキルホスフィノエチル)アミン-ボラン錯体及びその製造法、並びにn,n-ビス(2-ジアルキルホスフィノエチル)アミンを配位子とするルテニウム錯体の製造方法
Malacea et al. Combining planar and central chirality in ferrocene thiophosphine-sulfoxides
Zhang et al. Asymmetric synthesis of 1, 2-bis (diphenylphosphino)-1-phenylethane via a chiral palladium template promoted hydrophosphination reaction
JP2009235067A (ja) 軸不斉リン化合物とその製造方法
Alajarin et al. Palladium complexes derived from N, N-bidentate NH-iminophosphorane ligands: synthesis and use as catalysts in the Sonogashira reaction
WO2016031874A1 (ja) N-(ホスフィノアルキル)-n-(チオアルキル)アミン誘導体及びその製造方法並びにその金属錯体
JP2008169201A (ja) 新規光学活性ビアリールリン化合物とその製造方法
JP2015063511A (ja) リン化合物及びその遷移金属錯体
JP4444212B2 (ja) 光学活性なリン複素環二量体の製造方法
JPWO2018181865A1 (ja) カチオン型ルテニウム錯体及びその製造方法並びにその用途
JP4625741B2 (ja) 第二級ホスフィン−ボラン錯体の製造方法
JP6765378B2 (ja) ルテニウム錯体の製造方法
EP2183259B1 (en) Paracyclophane-based ligands, their preparation and use in catalysis
CN111018918B (zh) 一种金属配合物、中间体、其制备方法及应用
JP2012046441A (ja) ピロリジン誘導体及びその製造方法
JP6635639B1 (ja) 2,3−ビスホスフィノピラジン誘導体、その製造方法、遷移金属錯体及び不斉触媒並びに有機ホウ素化合物の製造方法
Kumah Carboxamide ruthenium (II) and manganese (II) complexes: structural, kinetic, and mechanistic studies in the transfer hydrogenation of ketones.
Mao Synthesis of α-chiral silanes by asymmetric conjugate addition of silicon nucleophiles to unsaturated acceptors
Brancatelli et al. Rhodium complexes with a new chiral amino-phosphinite ligand and their behavior as pre-catalysts in the hydroformylation of styrene
Yuan et al. Palladacycle mediated synthesis of cyano-functionalized chiral 1, 2-diphosphine and subsequent functional group transformations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563888

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3012962

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017744455

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744455

Country of ref document: EP

Effective date: 20180829