WO2016031874A1 - N-(ホスフィノアルキル)-n-(チオアルキル)アミン誘導体及びその製造方法並びにその金属錯体 - Google Patents

N-(ホスフィノアルキル)-n-(チオアルキル)アミン誘導体及びその製造方法並びにその金属錯体 Download PDF

Info

Publication number
WO2016031874A1
WO2016031874A1 PCT/JP2015/074069 JP2015074069W WO2016031874A1 WO 2016031874 A1 WO2016031874 A1 WO 2016031874A1 JP 2015074069 W JP2015074069 W JP 2015074069W WO 2016031874 A1 WO2016031874 A1 WO 2016031874A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ion
formula
general formula
substituent
Prior art date
Application number
PCT/JP2015/074069
Other languages
English (en)
French (fr)
Inventor
裕治 中山
理 小形
Original Assignee
高砂香料工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高砂香料工業株式会社 filed Critical 高砂香料工業株式会社
Priority to US15/502,813 priority Critical patent/US10072033B2/en
Priority to JP2016545588A priority patent/JP6534223B2/ja
Publication of WO2016031874A1 publication Critical patent/WO2016031874A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5018Cycloaliphatic phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/505Preparation; Separation; Purification; Stabilisation
    • C07F9/5063Preparation; Separation; Purification; Stabilisation from compounds having the structure P-H or P-Heteroatom, in which one or more of such bonds are converted into P-C bonds
    • C07F9/5077Preparation; Separation; Purification; Stabilisation from compounds having the structure P-H or P-Heteroatom, in which one or more of such bonds are converted into P-C bonds from starting materials having the structure P-Metal, including R2P-M+
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6527Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07F9/653Five-membered rings

Definitions

  • the present invention relates to a novel N- (phosphinoalkyl) -N- (thioalkyl) amine derivative, a production method thereof, and a metal complex having the compound as a ligand.
  • an organic compound (tridentate ligand) having three coordination groups is a metal having two chelate rings by binding to a metal species in a facial form or a meridional form. It has the feature of forming a complex.
  • Hemilabile tridentate ligands having electronically non-equivalent coordination groups can function as monodentate and bidentate ligands during the catalytic cycle in catalytic reactions. It has been known. Therefore, in the tridentate ligand, the structure, physical properties, catalytic activity, and the like of the corresponding metal complex can be arbitrarily adjusted by variously changing the structure and combination of the three coordinating groups. Therefore, tridentate ligands and metal complexes thereof occupy important positions in fields such as organic synthetic chemistry, complex chemistry, and catalytic chemistry, and are still actively researched and developed.
  • a tridentate metal complex having an imino group in the molecule as one of the coordination groups exhibits high catalytic activity in, for example, a hydrogenation reaction of a carbonyl compound or a dehydrogenation reaction of alcohols, In these catalytic organic synthesis reactions, it is known that the hydrogen atom on the imino group greatly affects the activity expression.
  • Examples of such tridentate ligands are symmetric N, N-bis (2-phosphinoethyl) amine and N, N-bis (2-thioethyl) amine, and their ruthenium complexes are It has been reported that it functions as an excellent catalyst in the hydrogenation reaction of esters (Patent Document 1 and Non-Patent Document 1).
  • these tridentate ligands having an imino group can be easily obtained by simultaneously introducing a phosphino group or a thio group as a coordinating group into the substrate N, N-bis (2-chloroethyl) amine. Can be synthesized.
  • the two chloro groups on the substrate are chemically equivalent, even if the same type of coordinating group can be introduced, the sequential and selective selection of heterogeneous coordinating groups, which is important from the viewpoint of “Hemilability” Introduction is extremely difficult.
  • the ruthenium complex easily dimerizes while forming a ruthenium-carbon bond under basic conditions. . Since this dimer is an inactive species in the catalytic reaction, there is a problem in that the application range of the reaction is narrow and the activity is poor.
  • the present invention has been made in view of the above situation. That is, in the research and development of tridentate ligands and their metal complexes, and organic synthesis reactions using the metal complexes as catalysts, the structure and combination of the three coordinating groups on the ligands, as well as the “Hemilability” Since the presence or absence is important, increasing these diversity will contribute to the efficiency of known organic synthesis reactions and the discovery of new useful reactions.
  • This novel compound behaves as an asymmetric tridentate ligand, and a metal complex having excellent catalytic activity can be obtained by coordinating with various metal species.
  • the ruthenium complex of this compound is compared with the ruthenium complexes of N, N-bis (2-phosphinoethyl) amine and N, N-bis (2-thioethyl) amine, which are conventional symmetrical tridentate ligands.
  • the present inventors have found that it has superior catalytic activity in the hydrogenation reaction of esters, and has completed the present invention based on these findings. That is, the present invention includes the following [1] to [13].
  • An alkyl group, an alkenyl group which may have a substituent, an aryl group which may have a substituent, a heteroaryl group which may have a substituent, and an aralkyl group which may have a substituent R 1 and R 2 may be bonded to each other to form a ring that may have a substituent, and Q 1 and Q 2 are each independently a group selected from the group consisting of Represents an alkanediyl group selected from the group consisting of 1,2-ethanediyl group, 1,3-propanediyl group and 1,4-butanediyl group, Q 1 and Q 2 represent an alkyl group, a substituent, An alkenyl group that may have, an aryl group that may have a substituent, and a substituent.
  • R 3 , Q 1 and Q 2 are R 3 , Q 1 and Q defined in the above [1].
  • a compound represented by the following general formula (4) In the formula, H represents a hydrogen atom and P represents a phosphorus atom. L represents a lone pair or boron trihydride.
  • R 1 and R 2 are the same as R 1 and R 2 defined in the above [1].
  • the metal species is composed of Group 5 transition metal, Group 6 transition metal, Group 7 transition metal, Group 8 transition metal, Group 9 transition metal, Group 10 transition metal and Group 11 transition metal
  • M 8 represents a divalent group 8 transition metal ion selected from the group consisting of a divalent iron ion, a divalent ruthenium ion, or a divalent osmium ion.
  • X 1 and X 2 are each independent.
  • L 1 , L 2 and L 3 each independently represents a neutral monodentate ligand, k, l and m are L 1 , L 2 and L 3 , respectively. Each independently represents an integer value of 0 or 1.
  • PNS represents the compound according to any one of [1] to [5], wherein n represents a composition formula [M 8 X 1 X 2 (L 1 ) k (L 2 ) l (L 3 ) m (PNS)] represents an integer value of 1 or 2 indicating the degree of multimerization, and the sum of k, l and m is 1 to 3 (In the case of an integer value, 1 is indicated.
  • X 1 , X 2 and X 3 Each independently represents a monovalent anionic monodentate ligand, L 1 , L 2 and L 3 each independently represent a neutral monodentate ligand, k, l and m are L 1 , L 2 , respectively. And L 3 , each independently representing an integer value of 0 or 1.
  • PNS represents the compound described in any one of [1] to [5].
  • the metal complex according to [11] which is represented by the following:
  • the compound represented by the general formula (1 A ) (hereinafter referred to as the compound of the present invention.
  • the abbreviation in the composition formula is PNS) has not been known so far, but 3- (2-chloroethyl )
  • PNS phosphino group and thio group introduction method for cyclic carbamate derivatives such as 2-oxazolidinone.
  • the compound of the present invention has three types of electronically non-equivalent coordination groups, that is, a phosphino group, an imino group, and a thio group, it is expected to behave as a “Hemilabile” tridentate ligand.
  • the compound of the present invention forms a corresponding metal complex (hereinafter referred to as the metal complex of the present invention) by coordinating to various metal species, and the metal complex of the present invention thus obtained is It was revealed that the catalyst exhibited excellent catalytic activity in the catalytic organic synthesis reaction.
  • the ruthenium complex of the compound of the present invention is a ruthenium complex of N, N-bis (2-phosphinoethyl) amine or N, N-bis (2-thioethyl) amine, which is a conventional symmetrical tridentate ligand.
  • the catalyst exhibited a superior catalytic activity in the hydrogenation reaction of esters, and this reaction made it possible to produce alcohols more efficiently.
  • 1 is a 1 H NMR chart of dichloro (triphenylphosphine) ⁇ 2-diphenylphosphino-N- [2- (methylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -1) (Example 11).
  • 1 is a 1 H NMR chart of dichloro (triphenylphosphine) ⁇ 2-diphenylphosphino-N- [2- (ethylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -2) (Example 12).
  • 1 is a 1 H NMR chart of dichloro (triphenylphosphine) ⁇ 2-diphenylphosphino-N- [2- (tert-butylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -3) (Example 13).
  • 1 is a 1 H NMR chart of dichloro (triphenylphosphine) ⁇ 2-diphenylphosphino-N- [2- (phenylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -4) (Example 14).
  • 1 is a 1 H NMR chart of dichloro (triphenylphosphine) ⁇ 2-diphenylphosphino-N- [2- (p-tolylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -5) (Example 15).
  • 1 is a 1 H NMR chart of dichloro (trimethylphosphine) ⁇ 2-diphenylphosphino-N- [2- (ethylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -6) (Example 16).
  • 1 is a 1 H NMR chart of dichloro (trimethylphosphine) ⁇ 2-diphenylphosphino-N- [2- (phenylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -7) (Example 17).
  • 1 is a 1 H NMR chart of dichloro (triethylphosphine) ⁇ 2-diphenylphosphino-N- [2- (ethylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -8) (Example 18).
  • 1 is a 1 H NMR chart of dichloro (tricyclohexylphosphine) ⁇ 2-diphenylphosphino-N- [2- (ethylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -9) (Example 19).
  • 1 is a 1 H NMR chart of carbonyl chlorohydride ⁇ 2-diphenylphosphino-N- [2- (methylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -15) (Example 25).
  • hydrido tetrahydroborate
  • triphenylphosphine triphenylphosphine
  • 2-diphenylphosphino-N- [2- (ethylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -16) is there.
  • Example 2 is a 1 H NMR chart of carbonyl hydride (tetrahydroborate) ⁇ 2-diphenylphosphino-N- [2- (methylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -17) (Example 27).
  • 1 is a 1 H NMR chart of dichloro ⁇ 2-diphenylphosphino-N- [2- (ethylthio) ethyl] ethylamine ⁇ ruthenium (II) dimer (8 U -1) (Example 28).
  • the compound represented by the general formula (2 A ), the compound represented by the general formula (3 A ), the compound represented by the general formula (3 A ), and the general formula (4) which are the compound (1 A ) of the present invention and its raw material compounds.
  • the compound represented and the compound represented by the general formula (5) will be described in detail.
  • C is a carbon atom
  • H is a hydrogen atom
  • N is a nitrogen atom
  • O is an oxygen atom
  • P is phosphorus.
  • An atom and S represent a sulfur atom.
  • L represents a lone electron pair or boron trihydride.
  • R 1 , R 2 and R 3 are each independently an alkyl group, an alkenyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent. And a group selected from the group consisting of an aralkyl group which may have a substituent, preferably a group selected from the group consisting of an alkyl group and an aryl group which may have a substituent.
  • Q 1 and Q 2 each independently represents an alkanediyl group selected from the group consisting of 1,2-ethanediyl group, 1,3-propanediyl group and 1,4-butanediyl group, preferably 1 , Represents 2-ethanediyl group.
  • Q 1 is a group selected from the group consisting of an alkyl group, an alkenyl group that may have a substituent, an aryl group that may have a substituent, and an aralkyl group that may have a substituent ( Hereinafter referred to as a group on Q 1 ).
  • Q 2 is a group selected from the group consisting of an alkyl group, an alkenyl group that may have a substituent, an aryl group that may have a substituent, and an aralkyl group that may have a substituent. (Hereinafter referred to as a group on Q 2 ).
  • the alkyl group may be linear, branched or cyclic, for example, an alkyl group having 1 to 30 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms.
  • the alkenyl group may be linear, branched or cyclic, for example, an alkenyl group having 2 to 20 carbon atoms, preferably an alkenyl group having 2 to 14 carbon atoms, more preferably an alkenyl group having 2 to 8 carbon atoms.
  • Specific examples include vinyl group, 1-propenyl group, 2-propenyl group, allyl group, 1-cyclohexenyl group, 1-styryl group and 2-styryl group.
  • aryl group for example, an aryl group having 6 to 18 carbon atoms, preferably an aryl group having 6 to 14 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms, specifically, a phenyl group, 1- A naphthyl group, a 2-naphthyl group, etc. are mentioned, A phenyl group is mentioned as a preferable specific example.
  • the heteroaryl group includes a 5- to 6-membered aromatic heterocycle having 1 to 4 heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom, and the aromatic heterocycle is represented by the aryl group.
  • Examples include heteroaryl groups derived from polycyclic aromatic heterocycles produced by condensed rings, such as 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group, and 2-benzofuryl group. , 3-benzofuryl group, 2-benzothienyl group, 3-benzothienyl group and the like.
  • aralkyl group examples include an aralkyl group in which at least one hydrogen atom of the alkyl group is substituted with the aryl group, and a polycyclic aralkyl group that is generated when the cyclic alkyl group is condensed with the aryl group, Specifically, benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylpropyl group, 2-phenylpropyl group, 3-phenylpropyl group, 1-phenyl-2-propyl group, 2-phenyl- Examples include 2-propyl group, 1-indanyl group, 2-indanyl group, and 9-fluorenyl group.
  • R 1 and R 2 may be bonded to each other to form a ring that may have a substituent.
  • a ring include a phospholane ring, a phosphole ring, a phosphinan ring, and a phosphinin ring.
  • the general formula (1 A), (2 A ) and groups to each other on Q 1 in (3 A), group, Q 2 on the group on Q 1, and groups to each other on Q 2 is bonded to each other , A ring which may have a substituent may be formed.
  • the alkenyl group, aryl group, heteroaryl group and aralkyl group in R 1 to R 3, the alkenyl group, aryl group and aralkyl group in the group on Q 1 and group on Q 2 , R 1 and R 2 are bonded to each other;
  • the substituent that the ring to be formed may have include an alkyl group, a halogenoalkyl group, an alkenyl group, an aryl group, a heteroaryl group, an aralkyl group, an alkoxy group, and a halogeno group.
  • alkyl group, alkenyl group, aryl group, heteroaryl group and aralkyl group are the same as the groups described in detail above.
  • halogenoalkyl group include groups in which at least one hydrogen atom of the alkyl group is substituted with a halogen atom, and specific examples include a trifluoromethyl group and an n-nonafluorobutyl group.
  • alkoxy group include an alkoxy group having 1 to 10 carbon atoms, preferably an alkoxy group having 1 to 4 carbon atoms.
  • the halogeno group include a fluoro group, a chloro group, a bromo group, and an iodo group, and a fluoro group and a chloro group are preferable.
  • Q 1 in the general formula (1 A ) is a 1,2-ethanediyl group
  • the following general formula (1 B ) (In the formula, H, N, P, S, L, R 1 , R 2 , R 3 and Q 2 are the same as defined in the general formula (1 A ).
  • C represents a carbon atom.
  • R 4 , R 5 , R 6 and R 7 may each independently have a hydrogen atom, an alkyl group, an alkenyl group which may have a substituent, an aryl group which may have a substituent, and a substituent.
  • R 8 , R 9 , R 10, and R 11 may each independently have a hydrogen atom, an alkyl group, an alkenyl group that may have a substituent, an aryl group that may have a substituent, and a substituent.
  • the compound represented by these is mentioned.
  • both Q 1 and Q 2 are 1,2-ethanediyl groups, and the following general formula (1 D ) (In the formula, H, N, P, S, L, R 1 , R 2 and R 3 are the same as defined in the general formula (1 A ).
  • C represents a carbon atom.
  • R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are each independently a hydrogen atom, an alkyl group, an alkenyl group which may have a substituent, or an aryl group which may have a substituent.
  • a group selected from the group consisting of optionally substituted aralkyl groups, R 4 to R 11 may be bonded to each other to form an optionally substituted ring.
  • the compound represented by these is mentioned.
  • R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are each independently a hydrogen atom.
  • an alkyl group, an alkenyl group that may have a substituent, an aryl group that may have a substituent, and a group selected from the group consisting of an aralkyl group that may have a substituent Preferably it represents a hydrogen atom.
  • the alkyl group, alkenyl group, aryl group and aralkyl group in R 4 to R 11 are the same as the group on Q 1 and the group on Q 2 .
  • an alkenyl group, an aryl group and an aralkyl group in R 4 to R 11 , a ring formed by bonding R 4 to R 7 together, and R 4 to R 7 bonded to a group on Q 2 are formed.
  • the substituent that the ring may have include an alkyl group, a halogenoalkyl group, an alkenyl group, an aryl group, a heteroaryl group, an aralkyl group, an alkoxy group, and a halogeno group. This is the same as the group described in detail.
  • a Bronsted acid such as hydrohalic acid, perchloric acid, nitric acid, sulfuric acid, sulfonic acid, carboxylic acid, phenols, phosphoric acid, hexafluorophosphoric acid, boric acid and tetrafluoroboric acid
  • hydrohalic acid include hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, and preferably hydrochloric acid.
  • sulfonic acid examples include methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, and 10-camphorsulfonic acid.
  • carboxylic acid examples include formic acid, acetic acid, trifluoroacetic acid, benzoic acid, salicylic acid, oxalic acid, and tartaric acid.
  • phenols include phenol, p-cresol, p-nitrophenol, and pentafluorophenol.
  • the Bronsted acid salt of the compound of the present invention When used for the production of the metal complex of the present invention, the Bronsted acid salt may be used for the reaction as it is, or the compound of the present invention is reacted with a base outside the reaction system. You may use for reaction after making it liberate, and you may use for reaction, making it react with a base within a reaction system and releasing the compound of this invention. Further, when L is boron trihydride in the compound of the present invention, the compound of the present invention may be used as it is for the production of the metal complex of the present invention, and may be used as a trihydride outside the reaction system.
  • boron trihydride It may be used for the reaction after dissociating boron, or may be used for the reaction while dissociating boron trihydride in the reaction system. It is preferable to use a dissociating agent in combination with the dissociation of boron trihydride.
  • the dissociating agent for boron trihydride include amines such as diethylamine, triethylamine and 1,4-diazabicyclo [2,2,2] octane. Can be mentioned.
  • Specifically preferable examples of the compound of the present invention include the following compounds (1 D -1) to (1 D -7) and their Bronsted acid salts.
  • the compound represented by the general formula (2 A ) and the compound represented by the general formula (3 A ), which are raw material compounds of the compound of the present invention, will be described in more detail.
  • the compound represented by the general formula (2 A ) is represented by the following general formula (6). (In the formula, C, N, O, Q 1 and Q 2 are the same as defined in the general formula (2). LG represents a leaving group) Can be easily obtained by reacting the compound represented by the general formula (5) under basic conditions.
  • Q 1 is a 1,2-ethanediyl group
  • the following general formula (2 B ) In the formula, C, N, O, S, R 3 and Q 2 are the same as defined in the general formula (2 A ).
  • R 4 , R 5 , R 6 and R 7 are the same as those in the general formula ( The same definition as in 1 B ).)
  • the compound represented by these is mentioned.
  • Q 1 and Q 2 in the general formula (2 A ) are both 1,2-ethanediyl groups.
  • the compound represented by the general formula (3 A ) is represented by the following general formula (7) (In the formula, C, N, O, Q 1 and Q 2 are the same as defined in the general formula (3 A ).
  • LG represents a leaving group
  • Q 2 in the general formula (3 A ) is a 1,2-ethanediyl group
  • the following general formula (3 B ) In the formula, C, N, O, P, L, R 1 , R 2 and Q 1 are the same as defined in the general formula (3 A ).
  • R 8 , R 9 , R 10 and R 11 are The same definition as in the general formula (1 C ). The compound represented by these is mentioned. Further, as a more preferable form of the compound represented by the general formula (3 A ), specifically, Q 1 and Q 2 in the general formula (3 A ) are both 1,2-ethanediyl groups.
  • General formula (3 C ) (In the formula, C, N, O, P, L, R 1 and R 2 are the same as defined in the general formula (3 A ).
  • R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are as defined in the general formula (1 D ). The compound represented by these is mentioned.
  • LG represents a leaving group, preferably a halogeno group or a pseudohalogeno group.
  • the halogeno group include a fluoro group, a chloro group, a bromo group, and an iodo group, and preferred specific examples include a chloro group.
  • the pseudohalogeno group include a methanesulfonyloxy group, a p-toluenesulfonyloxy group, a trifluoromethanesulfonyloxy group, and an n-nonafluorobutanesulfonyloxy group.
  • the compound of the present invention is a reaction between a compound represented by the general formula (2 A ) and a compound represented by the general formula (4), or a compound represented by the general formula (3 A ) and the general formula (5). It can manufacture easily by reaction with the compound represented by these.
  • the reaction between the compound represented by the general formula (2 A ) and the compound represented by the general formula (4) will be described in more detail (Eq. 2).
  • the compound represented by the general formula (4) will be described in more detail with specific examples.
  • Specific examples of the compound represented by the general formula (4) include secondary phosphines and borohydride complexes of secondary phosphines.
  • the secondary phosphine include dimethylphosphine (4-1), diethylphosphine (4-2), diisopropylphosphine (4-3), di-tert-butylphosphine (4-4), dicyclopentylphosphine (4 -5), dicyclohexylphosphine (4-6), diphenylphosphine (4-7), bis (2-methylphenyl) phosphine (4-8), bis (4-methylphenyl) phosphine (4-9), bis ( 3,5-dimethylphenyl) phosphine (4-10), bis (2,4,6-trimethylphenyl) phosphine (4-11), bis (2-methoxyphenyl) phosphine (4-12), bis (4- Methoxyphenyl) phosphine (4-13), bis (4-trifluoromethylphenyl) phosphine (4-14), bis [3 5-bis (trifluoromethyl) phenyl] phosphine (4-15), bis (3,5-
  • secondary phosphine-3 boron hydride complex examples include the boron trihydride complexes of the secondary phosphine mentioned in the above specific examples, and preferred specific examples include dicyclohexylphosphine-3 boron hydride complexes (4- 21) and the like.
  • a salt may be formed with Bronsted acid, specifically, for example, tetrafluoroboric acid for easy handling.
  • Bronsted acid specifically, for example, tetrafluoroboric acid
  • These secondary phosphine Bronsted acid salts may be used in the reaction after reacting with a base outside the reaction system to liberate the secondary phosphine, or reacting with a base inside the reaction system to liberate the secondary phosphine. May be used for the reaction.
  • secondary phosphide or a borohydride complex of secondary phosphide may be used instead of the compound represented by the general formula (4).
  • Secondary phosphides and secondary phosphide triborohydride complexes can be easily prepared by reacting the compound represented by the general formula (4) with a base. Secondary phosphides can be easily prepared by other reactions. Specifically, secondary phosphine halide and alkali metal reaction, secondary phosphine dimer and alkali metal reaction, and tertiary phosphine and Reaction with an alkali metal etc. are mentioned.
  • the amount of the compound represented by the general formula (4), the secondary phosphide, and the borohydride complex of the secondary phosphide is not particularly limited, but the compound represented by the general formula (2 A ) is usually used. On the other hand, it is appropriately selected from the range of usually 0.4 to 2 equivalents, preferably 0.6 equivalents to 1.5 equivalents, more preferably 0.8 to 1.2 equivalents.
  • this reaction can be carried out under acidic conditions or basic conditions, it is more preferred to carry out under basic conditions.
  • this reaction is preferably carried out under neutral conditions or basic conditions.
  • specific examples of preferred acids include trifluoromethanesulfonic acid.
  • preferred bases are specifically alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, calcium hydroxide, strontium hydroxide and hydroxide.
  • Alkaline earth metal hydroxides such as barium, lithium hydride, sodium hydride, potassium hydride, calcium hydride, sodium borohydride and metal hydrides such as lithium aluminum hydride, lithium methoxide, sodium methoxide, Alkali metal alkoxides such as potassium methoxide, sodium ethoxide, potassium ethoxide, sodium tert-butoxide and potassium tert-butoxide, methyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium and phenyl Organolithium compounds such as lithium, alkali metal amides such as lithium amide, sodium amide, lithium diisopropylamide and lithium hexamethyldisilazide, and methylmagnesium chloride, tert-butylmagnesium chloride, phenylmagnesium chloride, phenylmagnesium bromide and Examples include Grignard reagents such as methylmagnesium io
  • bases may be used alone or in appropriate combination of two or more.
  • the amount of the base used is not particularly limited, but is generally 0.3 to 10 equivalents, preferably 0.5 to 5 equivalents, more preferably 0.8 to the compound represented by the general formula (4). It is appropriately selected from the range of 8 to 3 equivalents.
  • the addition method of a base in this reaction is not specifically limited,
  • the compound and base which are each represented by General formula (4) may be added independently, and are represented by General formula (4).
  • the secondary phosphide or the secondary phosphide obtained by reacting the compound represented by the general formula (4) and the base (in a solvent) may be added as a mixture of the compound and the base (and solvent). It may be added as a boron hydride complex.
  • the solvent include aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, n-octane, n-decane, cyclohexane and decalin, benzene, toluene, xylene, mesitylene, p-cymene and Aromatic hydrocarbons such as 1,4-diisopropylbenzene, monohydric alcohols such as methanol, ethanol, 2-propanol, n-butanol, tert-butanol, 2-methyl-2-butanol and 2-ethoxyethanol, ethylene Polyhydric alcohols such as glycol, propylene glycol, 1,2-propanediol and glycerin, diethyl ether, diisopropyl ether, tert-butyl methyl ether, cyclopentyl methyl
  • Examples of preferred specific examples thereof include n- hexane and tetrahydrofuran. These solvents may be used alone or in appropriate combination of two or more.
  • the amount of the solvent used is not particularly limited, but is usually 1 to 200 times, preferably 2 to 100 times, more preferably 5 to 50 times the compound represented by the general formula (2 A ). It is appropriately selected from the capacity range.
  • This reaction is preferably performed in an inert gas atmosphere.
  • the inert gas include argon gas and nitrogen gas.
  • the reaction temperature is appropriately selected from the range of usually ⁇ 78 to 150 ° C., preferably ⁇ 40 to 100 ° C., more preferably 0 to 75 ° C. While the reaction time naturally varies depending on the base, solvent, reaction temperature and other conditions, it is usually selected appropriately from the range of 1 minute to 48 hours, preferably 5 minutes to 24 hours, more preferably 10 minutes to 8 hours.
  • the compound represented by the general formula (1 B ) is reacted with the compound represented by the general formula (2 B ) by reacting the compound represented by the general formula (4). Can be manufactured. Further, by reacting the compound represented by the general formula (2 C ) with the compound represented by the general formula (4), the compound represented by the general formula (1 D ) can be produced in the same manner. I can do it. (Eq. 3).
  • thiols include methanethiol (5-1), ethanethiol (5-2), 1-propanethiol (5-3), 2-propanethiol (5-4), 1-butanethiol (5- 5), 2-butanethiol (5-6), 2-methyl-1-propanethiol (5-7), 2-methyl-2-propanethiol (5-8), 1-pentanethiol (5-9) 3-methyl-1-butanethiol (5-10), cyclopentanethiol (5-11), 1-hexanethiol (5-12), cyclohexanethiol (5-13), 1-heptanethiol (5-14) ), 1-octanethiol (5-15), 1-nonanethiol (5-16), 1-decanethiol (5-17), 1-adamantanethiol (5-18), benzenethiol (5-1) ), O-toluenethiol (5-20), m-toluenethiol (5-21), p-
  • a thiol salt easily obtained by reacting the compound represented by the general formula (5) with a base may be used instead of the compound represented by the general formula (5).
  • a thiol salt easily obtained by reacting the compound represented by the general formula (5) with a base may be used instead of the compound represented by the general formula (5).
  • Specific examples of the thiolate include alkali metal salts of the thiols mentioned in the above specific examples.
  • Preferred specific examples include sodium salt of methanethiol (5-1) (sodium methanethiolate), ethanethiol (5-2 ) Sodium salt (sodium ethanethiolate), sodium salt of 2-methyl-2-propanethiol (5-8) (sodium 2-methyl-2-propanethiolate), sodium salt of benzenethiol (5-19) (sodium Benzenethiolate) and sodium salt of p-toluenethiol (5-22) (sodium p-toluenethiolate).
  • reaction can be carried out under acidic conditions or basic conditions, it is more preferred to carry out under basic conditions.
  • a thiolate instead of the compound represented by General formula (5), it is preferable to implement this reaction on neutral conditions or basic conditions.
  • preferred bases are specifically alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, and alkalis such as sodium phosphate and potassium phosphate.
  • Metal phosphates alkali metal carbonates such as lithium carbonate, sodium carbonate and potassium carbonate, alkali metal carboxylates such as sodium acetate and potassium acetate, alkaline earth metals such as calcium hydroxide, strontium hydroxide and barium hydroxide
  • Metal hydrides such as hydroxide, lithium hydride, sodium hydride, potassium hydride, calcium hydride, sodium borohydride and lithium aluminum hydride, lithium methoxide, sodium methoxide, potassium methoxide, sodium ethoxide , Potassium ethoxide, sodium Alkali metal alkoxides such as mu-tert-butoxide and potassium-tert-butoxide, organolithium compounds such as methyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium and phenyllithium, lithium amide, sodium amide, lithium Alkali metal amides such as diisopropylamide and lithium he
  • the amount of the base used is not particularly limited, but is usually 0.3 to 10 equivalents, preferably 0.5 to 5 equivalents, more preferably 0.8 to the compound represented by formula (5). It is appropriately selected from the range of 8 to 3 equivalents.
  • the addition method of a base in this reaction is not specifically limited, The compound and base which are each represented by General formula (5) may be added independently, and are represented by General formula (5). You may add as a mixture of a compound and a base (and solvent), and you may add as the said thiolate obtained by making the compound and base represented by General formula (5) react (in a solvent).
  • the solvent include aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, n-octane, n-decane, cyclohexane and decalin, benzene, toluene, xylene, mesitylene, p-cymene and Aromatic hydrocarbons such as 1,4-diisopropylbenzene, halogenated aromatic hydrocarbons such as chlorobenzene and o-dichlorobenzene, methanol, ethanol, 2-propanol, n-butanol, tert-butanol, 2-methyl- Alcohols such as 2-butanol and 2-ethoxyethanol, polyhydric alcohols such as ethylene glycol, propylene glycol, 1,2-propanediol and glycerin, diethyl ether, diisopropy
  • solvents may be used alone or in appropriate combination of two or more.
  • the amount of the solvent to be used is not particularly limited, but is usually 0.5 to 100 times, preferably 1 to 40 times, more preferably 2 to 4 times the amount of the compound represented by the general formula (3 A ). It is appropriately selected from the range of 20 times capacity.
  • This reaction is preferably performed in an inert gas atmosphere.
  • the inert gas include argon gas and nitrogen gas.
  • the reaction temperature is appropriately selected from the range of usually 25 to 200 ° C, preferably 50 to 175 ° C, more preferably 75 to 150 ° C. While the reaction time naturally varies depending on the base, solvent, reaction temperature and other conditions, it is usually selected appropriately from the range of 1 minute to 24 hours, preferably 2 minutes to 12 hours, more preferably 5 minutes to 8 hours.
  • the compound represented by the general formula (1 B ) is reacted with the compound represented by the general formula (3 B ) to react with the compound represented by the general formula (1 C ). Can be manufactured.
  • a compound represented by the general formula (1 D) I can do it.
  • the compound of the present invention thus obtained can be post-treated, isolated and purified as necessary.
  • post-treatment methods include concentration, solvent replacement, washing, extraction, back extraction, filtration, crystallization by addition of a poor solvent, and salt formation by addition of Bronsted acid. These may be used alone or in combination. Can be done.
  • isolation and purification methods include decolorization with an adsorbent, column chromatography, distillation, recrystallization, crystal washing with a poor solvent, and crystallization of a salt obtained by addition of Bronsted acid. Or in combination.
  • the metal species in the metal complex of the present invention is not particularly limited as long as the compound of the present invention can be coordinated.
  • a Group 5 transition metal or a Group 6 transition examples include metal species selected from the group consisting of metals, Group 7 transition metals, Group 8 transition metals, Group 9 transition metals, Group 10 transition metals, and Group 11 transition metals. More preferred metal species are selected from the group consisting of Group 8 transition metals, Group 9 transition metals and Group 10 transition metals, ie iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium and platinum.
  • a particularly preferred metal species is ruthenium.
  • the valence of these metal species is not particularly limited as long as the compound of the present invention can be coordinated.
  • the preferred valence of the Group 8 transition metal is +2
  • the preferred valence of the Group 9 transition metal is +3
  • a preferred valence of the Group 10 transition metal is +2.
  • the group 8 transition metal complex having the compound of the present invention as a ligand is preferably a metal complex represented by the composition formula (8 A ).
  • the group 9 transition metal complex having the compound of the present invention as a ligand is preferably a metal complex represented by the composition formula (9 A ).
  • the group 10 transition metal complex having the compound of the present invention as a ligand is preferably a metal complex represented by the composition formula (10 A ).
  • M 8 is a divalent group 8 selected from the group consisting of divalent iron ions, divalent ruthenium ions, or divalent osmium ions. Represents a transition metal ion, preferably a divalent ruthenium ion.
  • M 9 represents a trivalent group 9 transition metal ion selected from the group consisting of a trivalent cobalt ion, a trivalent rhodium ion, or a trivalent iridium ion
  • M 10 represents a divalent nickel ion, a divalent palladium ion, or Represents a divalent group 10 transition metal ion selected from the group consisting of divalent platinum ions.
  • X 1 , X 2 and X 3 each independently represent a monovalent anionic monodentate ligand
  • L 1 , L 2 and L 3 each independently represent a neutral monodentate ligand.
  • k, l, and m represent the coordination numbers of L 1 , L 2, and L 3 , respectively, and each independently represents an integer value of 0 or 1.
  • PNS represents the compound of the present invention.
  • N in the formula (8 A) when k in the formula (8 A), the sum of l and m is an integer of 1 to 3 show a 1 if the sum is 0 1 Or 2 is shown.
  • the monovalent anionic monodentate ligand has a monovalent negative charge, a functional group capable of single-bonding to the metal in the metal complex, an anion capable of functioning as a counter ion for the metal complex, and both properties , Specifically (name as functional group / name as anion, followed by the general formula in parentheses), hydride group / hydride ion (—H / H ⁇ ), Hydroxyl group / hydroxide ion (—OH / HO ⁇ ), alkoxy group / alkoxide ion (—OR / RO ⁇ ), aryloxy group / aryl oxide ion (—OAr / ArO ⁇ ), acyloxy group / carboxylate ion (—OC ( ⁇ O) R / RCO
  • preferred monovalent anionic monodentate ligands are specifically hydride group / hydride ion, hydroxyl group / hydroxide ion, alkoxy group / alkoxide ion, aryloxy group.
  • Examples include hexafluorophosphate ions and hexafluoroantimonate ions, and more preferable examples include hydride group / hydride ions, halogeno group / halide ions, and tetrahydroborate ions.
  • alkoxy group / alkoxide ion examples include an alkoxy group / alkoxide ion having 1 to 10 carbon atoms, preferably an alkoxy group / alkoxide ion having 1 to 4 carbon atoms, specifically, a methoxy group / methoxide ion, ethoxy group Group / ethoxide ion, 1-propoxy group / 1-propoxide ion, 2-propoxy group / 2-propoxide ion, 1-butoxy group / 1-butoxide ion, 2-butoxy group / 2-butoxide ion and tert- Examples include butoxy group / tert-butoxide ion.
  • aryloxy group / aryl oxide ion examples include an aryloxy group / aryl oxide ion having 6 to 14 carbon atoms, preferably an aryloxy group / aryl oxide ion having 6 to 10 carbon atoms, specifically, a phenoxy group.
  • acyloxy group / carboxylate ion examples include an acyloxy group / carboxylate ion having 1 to 18 carbon atoms, preferably an acyloxy group / carboxylate ion having 1 to 6 carbon atoms, and specifically, formyloxy group / formic acid ion.
  • Ion acetoxy group / acetate ion, trifluoroacetoxy group / trifluoroacetate ion, propanoyloxy group / propionate ion, acryloyloxy group / acrylic acid ion, butanoyloxy group / butyrate ion, pivaloyloxy group / pivalate ion
  • Examples include pentanoyloxy group / valerate ion, hexanoyloxy group / caproate ion, benzoyloxy group / benzoate ion, and pentafluorobenzoyloxy group / pentafluorobenzoate ion.
  • Examples of the sulfonyloxy group / sulfonic acid ion include a sulfonyloxy group / sulfonic acid ion having 1 to 18 carbon atoms, preferably a sulfonyloxy group / sulfonic acid ion having 1 to 10 carbon atoms.
  • halogeno group / halide ion examples include a fluoro group / fluoride ion, a chloro group / chloride ion, a bromo group / bromide ion, and an iodo group / iodide ion.
  • Preferred examples include a chloro group. / Chloride ion.
  • Specific examples of tetraarylborate ions include tetraphenylborate ions, tetrakis (pentafluorophenyl) borate ions, and tetrakis [3,5-bis (trifluoromethyl) phenyl] borate ions.
  • the corresponding monovalent anionic monodentate ligand source that is, a monovalent anionic monodentate ligand. It is preferably used as a conjugate acid derived from a ligand or a salt derived from a monovalent anionic monodentate ligand.
  • the neutral monodentate ligand represents an organic compound having at least one nonionic functional group capable of coordinating with a metal, and specifically includes a general name followed by a general formula in parentheses.
  • preferred neutral monodentate ligands include alcohols, ethers, sulfides, sulfoxides, amines, amides, nitriles, isonitriles, heteroarenes, secondary phosphines, Secondary phosphine oxide, tertiary phosphine, phosphite, phosphoramidite, tertiary arsine, carbene, hydrogen molecule and carbon monoxide are preferable, and tertiary phosphine, phosphite and carbon monoxide are more preferable.
  • the preferred neutral monodentate ligand will be described in more detail.
  • the alcohol include methanol, ethanol, 2-propanol, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol and the like.
  • Specific examples of the ether include dimethyl ether, diethyl ether, tetrahydrofuran and 1,4-dioxane.
  • Specific examples of the sulfide include dimethyl sulfide, diethyl sulfide, diphenyl sulfide, and tetrahydrothiophene.
  • Specific examples of the sulfoxide include dimethyl sulfoxide and tetrahydrothiophene-1-oxide.
  • sulfoxides may be coordinated to the metal species by either an oxygen atom on the sulfur atom or a sulfur atom.
  • the amine include ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, isopropylamine, aniline, benzylamine, ⁇ -phenethylamine, ⁇ -phenethylamine, piperazine, piperidine and morpholine.
  • amide include N, N-dimethylformamide and N, N-dimethylacetamide.
  • nitriles include acetonitrile and benzonitrile.
  • isonitrile examples include (trimethylsilyl) methyl isocyanide, isopropyl isocyanide, 1-butyl isocyanide, tert-butyl isocyanide, 1-pentyl isocyanide, 2-pentyl isocyanide, cyclohexyl isocyanide, 1,1,3,3-tetramethyl
  • examples include butyl isocyanide, 1-adamantyl isocyanide, 2,6-dimethylphenyl isocyanide, 4-methoxyphenyl isocyanide, 2-naphthyl isocyanide, benzyl isocyanide and ⁇ -methylbenzyl isocyanide.
  • Preferred specific examples include 4-methoxyphenyl isocyanide. Etc.
  • heteroarene examples include furan, benzofuran, isobenzofuran, thiophene, thianaphthene, isothianaphthene, pyridine, quinoline, isoquinoline, 3H-pyrrole, 3H-indole, 2H-pyrrole, 1H-isoindole, oxazole, oxazoline, Examples include benzoxazole, isoxazole, isoxazoline, benzisoxazole, thiazole, thiazoline, benzothiazole, isothiazole, isothiazoline, benzisothiazole, imidazole, imidazoline, benzimidazole, pyrazole, 2-pyrazoline and indazole.
  • secondary phosphine examples include compounds similar to the secondary phosphine exemplified as specific examples of the compound represented by the general formula (4).
  • Specific examples of the secondary phosphine oxide include dimethylphosphine oxide, diethylphosphine oxide, diisopropylphosphine oxide, di-tert-butylphosphine oxide, dicyclopentylphosphine oxide, dicyclohexylphosphine oxide, diphenylphosphine oxide, bis (2-methylphenyl).
  • Phosphine oxide bis (4-methylphenyl) phosphine oxide, bis (3,5-dimethylphenyl) phosphine oxide, bis (2,4,6-trimethylphenyl) phosphine oxide, bis (2-methoxyphenyl) phosphine oxide, Bis (4-methoxyphenyl) phosphine oxide, bis (4-trifluoromethylphenyl) phosphine oxide, bis [3,5-bis (trifluoromethyl) ) Phenyl] phosphine oxide, bis (3,5-di-tert-butyl-4-methoxyphenyl) phosphine oxide, tert-butylphenylphosphine oxide, di-1-adamantylphosphine oxide, (11bS) -4,5-dihydro -3H-dinaphtho [2,1-c: 1 ′, 2′-e] phosphine-4-oxide and di-2-furyl
  • R 12 , R 13 and R 14 each independently represents an alkyl group, an alkenyl group which may have a substituent, an aryl group which may have a substituent, Represents a group selected from the group consisting of a heteroaryl group which may have a substituent or an aralkyl group which may have a substituent, wherein R 12 to R 14 are bonded to each other to have a substituent; May form a ring that may be.
  • P represents a phosphorus atom.
  • R 12 , R 13 and R 14 are each independently an alkyl group, an alkenyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent.
  • a group selected from the group consisting of an aralkyl group which may have a substituent, preferably an alkyl group, an aryl group which may have a substituent, and a heteroaryl which may have a substituent Represents a group selected from the group consisting of groups.
  • the alkyl group may be linear, branched or cyclic, for example, an alkyl group having 1 to 30 carbon atoms, preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms.
  • Preferred examples include a methyl group, an ethyl group, and a cyclohexyl group.
  • the alkenyl group may be linear, branched or cyclic, for example, an alkenyl group having 2 to 20 carbon atoms, preferably an alkenyl group having 2 to 14 carbon atoms, more preferably an alkenyl group having 2 to 8 carbon atoms.
  • Specific examples include vinyl group, 1-propenyl group, 2-propenyl group, allyl group, 1-cyclohexenyl group, 1-styryl group and 2-styryl group.
  • aryl group for example, an aryl group having 6 to 18 carbon atoms, preferably an aryl group having 6 to 14 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms, specifically, a phenyl group, 1- A naphthyl group, a 2-naphthyl group, etc. are mentioned, A phenyl group is mentioned as a preferable specific example.
  • the heteroaryl group includes a 5- to 6-membered aromatic heterocycle having 1 to 4 heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom, and the aromatic heterocycle is represented by the aryl group.
  • Examples include heteroaryl groups derived from polycyclic aromatic heterocycles produced by condensed rings, such as 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group, and 2-benzofuryl group. , 3-benzofuryl group, 2-benzothienyl group, 3-benzothienyl group and the like, and preferred specific examples include 2-furyl group.
  • aralkyl group examples include an aralkyl group in which at least one hydrogen atom of the alkyl group is substituted with the aryl group, and a polycyclic aralkyl group that is generated when the cyclic alkyl group is condensed with the aryl group, Specifically, benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylpropyl group, 2-phenylpropyl group, 3-phenylpropyl group, 1-phenyl-2-propyl group, 2-phenyl- Examples include 2-propyl group, 1-indanyl group, 2-indanyl group, and 9-fluorenyl group.
  • R 12 to R 14 may be bonded to each other to form a ring that may have a substituent.
  • a ring include a phospholane ring, a phosphole ring, a phosphinan ring, and a phosphinin ring.
  • the alkyl group, alkenyl group, aryl group, heteroaryl group and aralkyl group are the same as the groups in the detailed description of R 12 to R 14 .
  • halogenoalkyl group examples include groups in which at least one hydrogen atom of the alkyl group is substituted with a halogen atom, and specific examples include a trifluoromethyl group and an n-nonafluorobutyl group. Preferred specific examples Examples thereof include a trifluoromethyl group.
  • alkoxy group examples include an alkoxy group having 1 to 10 carbon atoms, preferably an alkoxy group having 1 to 4 carbon atoms. Specifically, a methoxy group, an ethoxy group, a 1-propoxy group, a 2-propoxy group, 1 -Butoxy group, 2-butoxy group, tert-butoxy group and the like can be mentioned, and preferred specific examples include methoxy group.
  • alkoxycarbonyl group examples include a methoxycarbonyl group.
  • amino group examples include a dimethylamino group and a 4-morpholinyl group.
  • halogeno group examples include a fluoro group, a chloro group, a bromo group, and an iodo group, and a fluoro group and a chloro group are preferable.
  • tertiary phosphine represented by the general formula (11) include trimethylphosphine (11-1), triethylphosphine (11-2), tricyclohexylphosphine (11-3), triphenylphosphine (11- 4), tris (4-trifluoromethylphenyl) phosphine (11-5), tris (4-methoxyphenyl) phosphine (11-6), and tris (2-furyl) phosphine (11-7).
  • phosphite examples include trimethyl phosphite, triethyl phosphite, tris phosphite (2,2,2-trifluoroethyl), triisopropyl phosphite, triphenyl phosphite and 4-ethyl phosphite.
  • phosphite examples include trimethyl phosphite, triethyl phosphite, tris phosphite (2,2,2-trifluoroethyl), triisopropyl phosphite, triphenyl phosphite and 4-ethyl phosphite.
  • Preferred specific examples include 4-ethyl-2,6,7-trioxa-1-phosphabicyclo [ 2,2,2] octane and the like.
  • phosphoramidites include dimethyl-N, N-diisopropyl phosphoramidite, di-tert-butyl-N, N-diethyl phosphoramidite, and dibenzyl-N, N-dimethyl phosphoramidite.
  • tertiary arsine include triphenylarsine.
  • the carbene is a singlet or triplet state organic compound having a carbene carbon, that is, a nonionic divalent carbon atom having six valence electrons in the molecule, which may be linear, branched or cyclic.
  • a preferred carbene includes a singlet carbene.
  • more preferable carbene includes a so-called N-heterocyclic carbene in which the singlet state and the carbene carbon are contained in the nitrogen-containing heterocyclic compound.
  • N-heterocyclic carbene examples include imidazol-2-ylidene, imidazol-4-ylidene, dihydroimidazol-2-ylidene, tetrahydropyrimidin-2-ylidene, hexahydro-1,3-diazepin-2-ylidene, Examples thereof include oxazole-2-ylidene, dihydrooxazole-2-ylidene, thiazole-2-ylidene, dihydrothiazol-2-ylidene, pyrazole ylidene, triazole ylidene and pyridoylidene.
  • Preferred N-heterocyclic carbenes from the viewpoint of synthesis include the following general formula (12) (In the formula, a two-point leader represents a lone pair, C represents a carbon atom, N represents a nitrogen atom.
  • R 15 and R 16 may each independently have an alkyl group or a substituent.
  • R 17 and R 18 each independently represents a hydrogen atom, and represents a group selected from the group consisting of an alkenyl group, an aryl group which may have a substituent, and an aralkyl group which may have a substituent.
  • R 15 to R 19 may be bonded to each other to form a ring which may have a substituent.
  • imidazol-2-ylidene represented by the following general formula (13) (Wherein the two-point leader represents a lone pair, C represents a carbon atom, N represents a nitrogen atom.
  • R 19 and R 20 may each independently have an alkyl group or a substituent.
  • R 21 , R 22 , R 23 and R 24 each represents a group selected from the group consisting of an alkenyl group, an aryl group which may have a substituent, and an aralkyl group which may have a substituent.
  • R 21 , R 22 , R 23 and R 24 independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group that may have a substituent, an aryl group that may have a substituent, and an aralkyl group that may have a substituent R 19 to R 24 may be bonded to each other to form a ring which may have a substituent.
  • dihydroimidazol-2-ylidene represented by the formula:
  • the two-point reader represents a lone electron pair.
  • C represents a carbon atom
  • N represents a nitrogen atom.
  • R 15 , R 16 , R 19 and R 20 each independently have an alkyl group, an alkenyl group which may have a substituent, an aryl group which may have a substituent, and a substituent.
  • R 17 , R 18 , R 21 , R 22 , R 23 and R 24 are each independently a hydrogen atom, an alkyl group, an alkenyl group which may have a substituent, or an aryl which may have a substituent.
  • R 15 to R 18 and R 19 to R 24 may be bonded to each other to form an optionally substituted ring.
  • the alkyl group, alkenyl group, aryl group and aralkyl group in R 15 to R 24 are the same as the groups in the detailed description of R 12 to R 14 in the general formula (11).
  • Alkenyl group for R 15 ⁇ R 24, aryl and aralkyl groups, ring and R 15 ⁇ R 18 is formed by bonding with may have the rings R 19 ⁇ R 24 is formed by bonding
  • the substituent include an alkyl group, a halogenoalkyl group, an alkenyl group, an aryl group, a heteroaryl group, an aralkyl group, a hydroxyl group, an alkoxy group, an amino group, and a halogeno group.
  • substituents have an alkenyl group, an aryl group, a heteroaryl group, an aralkyl group in R 12 to R 14 of the general formula (11), and a ring formed by combining R 12 to R 14 with each other.
  • imidazol-2-ylidene represented by the general formula (12) include 1,3-dimethyl-2H-imidazol-2-ylidene (12-1), 1-ethyl-3-methyl-2H- Imidazole-2-ylidene (12-2), 1,3-diisopropyl-2H-imidazol-2-ylidene (12-3), 1,3-di-tert-butyl-2H-imidazol-2-ylidene (12- 4), 1,3-dicyclohexyl-2H-imidazol-2-ylidene (12-5), 1,3-bis (1-adamantyl) -2H-imidazol-2-ylidene (12-6), 1,3- Dimethyl-2H-benzimidazol-2-ylidene (12-7), 1,3-di-tert-butyl-2H-benzimidazol-2-ylidene (12-8), 1,3- Cyclohexyl-2H-benzimidazol-2-ylidene (12-9), 1, 1,3
  • dihydroimidazol-2-ylidene represented by the general formula (13) include 1,3-dimethyl-2-imidazolidineylidene (13-1), 1,3-bis (2,4,6). -Trimethylphenyl) -2-imidazolidine ylidene (13-2), 1,3-bis (2,6-diisopropylphenyl) -2-imidazolidine ylidene (13-3), 1- (2,6- Diisopropylphenyl) -3- (2,4,6-trimethylphenyl) -2-imidazolidineylidene (13-4), 1- (1-adamantyl) -3- (2,4,6-trimethylphenyl)- 2-imidazolidine ylidene (13-5), 1,3-bis (2,7-diisopropylnaphthalen-1-yl) -2-imidazolidine ylidene (13-6), 1,3-bis [(1S -2, 2 Dimethyl-1- (1- (1-
  • Bronsted acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid and tetra It is good also as a corresponding Bronsted acid salt by making it react with fluoroboric acid etc.
  • the Bronsted acid salts may be used in the reaction, and a base is allowed to act outside the reaction system to liberate N-heterocyclic carbene. It may be used after the reaction, or may be used while liberating the N-heterocyclic carbene by acting a base in the reaction system.
  • the structural composition formula is Structural formulas that do not take into account the facial / meridional isomerism unique to metal complexes with bidentate ligands, the coordination isomerism unique to metal complexes with multiple monodentate ligands, and the “hemilability” of tridentate ligands to) (8 B), (8 C), (8 D), will be described in detail by (8 E) and (8 F).
  • H, N, P, S, R 1 , R 2 , R 3 , Q 1 and Q 2 are as defined in the general formula (1 A ).
  • M 8 , X 1 , X 2 , L 1 , L 2 and L 3 are the same as defined in the composition formula (8 A ), and the broken line between the symbols represents a coordinate bond.
  • Q 1 in the structural composition formulas (8 B ) to (8 F ) is a 1,2-ethanediyl group, 8G ), ( 8H ), ( 8I ), ( 8J ) and ( 8K )
  • C, H, N, P, S, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and Q 2 are the same as defined in the general formula (1 B ).
  • M 8 , X 1 , X 2 , L 1 , L 2 and L 3 are the same as defined in the composition formula (8 A ), and the broken line between the symbols represents a coordinate bond.)
  • the metal complex represented by these is mentioned.
  • Q 1 and Q 2 are both 1,2-ethanediyl groups.
  • composition formulas ( 8Q ), ( 8R ), ( 8S ), ( 8T ) and ( 8U ) are the above-mentioned general formulas.
  • the definition is the same as in (1 D ) M 8 , X 1 , X 2 , L 1 , L 2 and L 3 are the same as in the composition formula (8 A ), and the broken lines between the symbols are arranged.
  • a metal complex represented by the structural composition formulas (8 R ), (8 S ) and (8 U ) is particularly preferable.
  • Particularly preferred specific examples of the metal complex represented by the composition formula (8 A ) include the following structural composition formulas (8 S -1) to (8 S -17), (8 U -1) to (8 U- 3) and (8 R -1).
  • composition formula (9 A ) represents a cationic complex
  • (k, l, m) (0, 0, 0)
  • the case represents a neutral complex.
  • Q 1 in the structural composition formulas (9 B ) to (9 E ) is a 1,2-ethanediyl group, 9F ), ( 9G ), ( 9H ) and ( 9I )
  • C, H, N, P, S, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and Q 2 are the same as defined in the general formula (1 B ).
  • M 9 , X 1 , X 2 , X 3 , L 1 , L 2 and L 3 are the same as defined in the composition formula (9 A ), and the broken line between the symbols represents a coordination bond.)
  • the metal complex represented by these is mentioned.
  • Q 1 and Q 2 are both 1,2-ethanediyl groups.
  • composition formulas (9 N ), (9 O ), (9 P ) and (9 Q ) (In the formula, solid lines between symbols, C, H, N, P, S, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 is the same as defined in the general formula (1 D ), and M 9 , X 1 , X 2 , X 3 , L 1 , L 2 and L 3 are the same as defined in the composition formula (9 A ). And the broken line between the symbols represents a coordination bond.).
  • the correlation between the numerical value of k and the structure of the metal complex in the metal complex represented by the composition formula (10 A ) will be described by the following structural composition formulas (10 B ) and (10 C ).
  • H, N, P, S, R 1 , R 2 , R 3 , Q 1, and Q 2 are as defined in the general formula (1 A ).
  • M 10 , X 1 , X 2 and L 1 are the same as defined in the composition formula (10 A ), and the broken line between the symbols represents a coordinate bond.
  • the composition formula (10 A ) represents a dicationic complex
  • k 0, it represents a cationic complex.
  • Q 1 is a 1,2-ethanediyl group.
  • 10D the structural composition formulas (10 B ) and (10 C )
  • Q 1 is a 1,2-ethanediyl group.
  • 10E the structural composition formulas (10 B ) and (10 C )
  • C, H, N, P, S, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and Q 2 are the same as defined in the general formula (1 B ).
  • M 10 , X 1 , X 2 and L 1 are the same as defined in the composition formula (10 A ), and the broken line between the symbols represents a coordination bond.
  • the metal complex represented by these is mentioned.
  • Q 1 and Q 2 are both 1,2-ethanediyl groups.
  • the following structural composition formulas (10 H ) and (10 I ) (In the formula, C, H, N, P, S, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are the above-mentioned general formulas.
  • the hydrogen atom on the imino group in the metal complex of the present invention has higher acidity than the hydrogen atom on the imino group in the compound of the present invention.
  • a metal complex is deprotonated by treatment with a base, and a coordinate bond between a metal atom and a nitrogen atom becomes a covalent bond.
  • the compounds of the present invention are useful as tridentate ligands in various catalytic organic synthesis reactions, and the metal complexes of the present invention are useful as catalysts in various organic synthesis reactions.
  • These organic synthesis reactions are not particularly limited, but specifically, oxidation reaction, reduction reaction, hydrogenation reaction, dehydrogenation reaction, hydrogen transfer reaction, addition reaction, conjugate addition reaction, cyclization reaction, functional group A conversion reaction, an isomerization reaction, a rearrangement reaction, a polymerization reaction, a bond formation reaction, a bond cleavage reaction and the like can be mentioned, and a hydrogenation reaction is preferable, and a hydrogenation reaction of esters is more preferable.
  • the method of adding the compound of the present invention to the reaction system is not particularly limited, but the compound of the present invention and a metal compound are reacted in the reaction system. Each of them may be added alone, or may be added to the reaction system as a mixture of the compound of the present invention and the metal compound (and solvent), and the compound of the present invention and the metal compound (and the above-mentioned if necessary). Obtained by reacting a monovalent anionic monodentate ligand source, the neutral monodentate ligand, and a neutral monodentate ligand equivalent such as Bronsted acid salt of N-heterocyclic carbene in a solvent.
  • the solution of the metal complex of the present invention may be added to the reaction system.
  • the monovalent anionic monodentate ligand source, the neutral monodentate ligand, and the neutral monodentate ligand equivalent are separately added to adjust the catalytic activity and reaction selectivity. May be.
  • the compounds of the present invention may be used alone or in appropriate combination of two or more.
  • the addition reaction of the metal complex of the present invention to the reaction system is not particularly limited, but the metal complex of the present invention alone in the reaction system.
  • the metal complex of the present invention may be added to the reaction system after being dissolved or suspended in a solvent.
  • the compound of the present invention in order to adjust catalyst activity and reaction selectivity, the compound of the present invention, the monovalent anionic monodentate ligand source, the neutral monodentate ligand, and the neutral monodentate ligand An equivalent may be added separately.
  • the metal complex of this invention may be used individually, respectively, or may be used in combination of 2 or more types as appropriate.
  • a 2 L four-necked round bottom flask was equipped with a magnetic stir bar and thermometer, and N, N-bis (chloroethyl) amine hydrochloride (200.0 g, 1.12 mol, 1.0 eq), methanol (MeOH) (600 mL) And triethylamine (Et 3 N) (328.0 mL, 2.35 mol, 2.1 equivalents) were sequentially charged.
  • Carbon dioxide (CO 2 ) gas generated from dry ice was bubbled through the resulting solution at room temperature for 1 hour.
  • Second Step Synthesis of 3- [2- (methylthio) ethyl] -2-oxazolidinone (Structural Formula (2 C -1)) (Preparation / reaction) This step was performed in air. A magnetic stirrer bar, condenser, dropping funnel and thermometer were attached to a 1 L four-necked round bottom flask, and 3- (2-chloroethyl) -2-oxazolidinone (6-1) (48.7 g) obtained in the first step was attached. 325.6 mmol, 1.0 eq) and MeOH (200 mL) were charged sequentially and the resulting solution was heated to 55 ° C.
  • a 21.3 wt% aqueous solution (128.6 g, 390.7 mmol, 1.2 equivalents) of a sodium salt of methanethiol (5-1) (NaSMe) was charged into the dropping funnel and added dropwise to the solution over 15 minutes. Later, the reaction was stirred at 60 ° C. for 1 hour. (Post-treatment / isolation / purification) 190 mL of MeOH was recovered from the reaction solution under reduced pressure, and then ethyl acetate (500 mL) was added to separate the organic layer. The aqueous layer was extracted once with ethyl acetate, and then the organic layers were combined and concentrated under reduced pressure.
  • a sodium salt of methanethiol (5-1) NaSMe
  • n-butyllithium (n-BuLi) solution in n-hexane (concentration: 1.60 mol / L, 33.1 mL, 52.9 mmol, 1.1 equivalents) is charged into the dropping funnel, and the internal temperature is kept below 10 ° C After dropwise addition to the solution at a rate of 20 minutes, the ice-water bath was removed, and the mixture was stirred at room temperature for 20 minutes, whereby a THF / n-hexane solution (52.9 mmol, 1.1) of lithium diphenylphosphide (Ph 2 PLi) was stirred. Equivalent) was prepared as a red-orange liquid.
  • Second step Synthesis of 2-diphenylphosphino-N- [2- (methylthio) ethyl] ethylamine (1 D -1) (preparation and reaction)
  • a magnetic stirrer bar, condenser, A thermometer and a three-way cock were attached to replace the interior with nitrogen, and 3- [2- (diphenylphosphino) ethyl] -2-oxazolidinone (3 C -1) (6.0 g, 20.
  • a magnetic stirrer bar, a condenser and a thermometer were attached to a 200 mL four-necked round bottom flask, and 3- (2-chloroethyl) -2-oxazolidinone (6-1) (16.3 g) obtained in the first step of Example 1 was attached. , 109.1 mmol, 1.0 equiv), MeOH (55 mL) and sodium salt of ethanethiol (5-2) (NaSEt) (purity: 96.4%, 10.0 g, 114.6 mmol, 1.05 equiv) Were sequentially added, and the resulting suspension was stirred under reflux for 1 hour.
  • Second Step Synthesis of 2-diphenylphosphino-N- [2- (ethylthio) ethyl] ethylamine (Structural Formula (1 D -2)) (Preparation / Reaction)
  • a 200 mL four-necked round bottom flask a magnetic stirrer bar, a dropping funnel, a thermometer and a three-way cock
  • Ph 2 PLi in THF / n-hexane solution 52.9 mmol, 1.1 eq
  • a magnetic stirrer bar, a condenser tube and a thermometer were attached to a 200 mL four-necked round bottom flask, and 3- (2-chloroethyl) -2-oxazolidinone (6-1) (12.5 g) obtained in the first step of Example 1 was attached. , 83.8 mmol, 1.0 eq), MeOH (80 mL) and 2-methyl-2-propanethiol (5-8) sodium salt (NaS t Bu) (Purity: 98.7%, 10.0 g, 88 0.0 mmol, 1.05 equivalents) were sequentially added, and the resulting suspension was stirred under reflux for 3 hours.
  • Second step Synthesis of 2-diphenylphosphino-N- [2- (tert-butylthio) ethyl] ethylamine (structural formula (1 D -3)) (Preparation and reaction)
  • Example 1 In the same manner as in the third step, using a 200 mL four-necked round bottom flask, a magnetic stirrer bar, a dropping funnel, a thermometer and a three-way cock, Ph 2 PLi in THF / n-hexane solution ( 52.9 mmol, 1.1 eq) was prepared.
  • Second step Synthesis of 2-dicyclohexylphosphino-N- [2- (methylthio) ethyl] ethylamine-3 borohydride complex (Structural Formula (1 D -7)) (Preparation and reaction)
  • a 100 mL four-necked round bottom flask was equipped with a magnetic stirrer bar, dropping funnel, thermometer and three-way cock, and the inside was purged with nitrogen, and the dicyclohexylphosphine-3-borohydride complex obtained in the first step (4-21) (4.7 g, 22.0 mmol, 1.1 eq) and dehydrated THF (22 mL) were charged, and the resulting solution was cooled to 5 ° C.
  • the dropping funnel was then charged with 3- [2- (methylthio) ethyl] -2-oxazolidinone (2 C -1) (3.2 g, 20.0 mmol, 1.0 equivalent) obtained in the second step of Example 1 and Dehydrated THF (3 mL) was sequentially charged into the dropping funnel and dropped into the Cy 2 PLi-BH 3 suspension over 10 minutes at a rate that kept the internal temperature at 10 ° C. or lower, and then the reaction solution was warmed to room temperature. Stir for 1 hour.
  • Example 13 Synthesis of dichloro (triphenylphosphine) ⁇ 2-diphenylphosphino-N- [2- (tert-butylthio) ethyl] ethylamine ⁇ ruthenium (II) (structure composition formula (8 S -3)) Eq. 19)
  • RuCl 2 (PPh 3 ) 3 (2.52 g, 2.63 mmol, 1.0 equivalent)
  • dehydrated toluene (30 mL)
  • 2-diphenylphosphino- obtained in Example 6 were used.
  • Example 14 Synthesis of dichloro (triphenylphosphine) ⁇ 2-diphenylphosphino-N- [2- (phenylthio) ethyl] ethylamine ⁇ ruthenium (II) (structure composition formula (8 S -4)) (Eq. 20)
  • RuCl 2 (PPh 3 ) 3 1.0 g, 1.04 mmol, 1.0 equivalent
  • dehydrated toluene (20 mL) and 2-diphenylphosphino- obtained in Example 8 were used.
  • Example 15 Synthesis of dichloro (triphenylphosphine) ⁇ 2-diphenylphosphino-N- [2- (p-tolylthio) ethyl] ethylamine ⁇ ruthenium (II) (structure composition formula (8 S -5)) Eq. 21)
  • RuCl 2 (PPh 3 ) 3 (2.30 g, 2.40 mmol, 1.0 equivalent)
  • dehydrated toluene 23 mL
  • 2-diphenylphosphino- obtained in Example 9 were used.
  • Example 25 Synthesis of Carbonyl Chlorohydrido ⁇ 2-Diphenylphosphino-N- [2- (methylthio) ethyl] ethylamine ⁇ ruthenium (II) (Structural Formula (8 S -15)) (Eq. 31) (Preparation / reaction)
  • a 2-mL diphenylphosphine obtained in Example 1 / Example 2 was prepared by attaching a magnetic stirrer bar, a condenser, a thermometer, and a three-way cock to a 50 mL four-necked round-bottom flask and replacing the interior with nitrogen.
  • Example 28 Synthesis of dichloro ⁇ 2-diphenylphosphino-N- [2- (ethylthio) ethyl] ethylamine ⁇ ruthenium (II) dimer (structure composition formula (8 U -1)) (Eq.34) (Preparation / reaction)
  • a 2-mL diphenylphosphine obtained in Example 3 / Example 4 was prepared by attaching a magnetic stirrer bar, a condenser, a thermometer, and a three-way cock to a 50 mL four-necked round bottom flask and replacing the inside with nitrogen.
  • Example 29 Synthesis of dichloro ⁇ 2-diphenylphosphino-N- [2- (phenylthio) ethyl] ethylamine ⁇ ruthenium (II) dimer (structure composition formula (8 U -2)) (Eq.35)
  • Example 32 Hydrogen of methyl benzoate catalyzed by dichloro (triphenylphosphine) ⁇ 2-diphenylphosphino-N- [2- (ethylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -2) Synthesis of benzyl alcohol by addition reaction (Eq.38) (Preparation / Reaction) Into a stainless steel 100 mL autoclave apparatus, the dichloro (triphenylphosphine) ⁇ 2-diphenylphosphino-N- [2- (ethylthio) ethyl] ethylamine ⁇ ruthenium (II) (8) obtained in Example 12 was used.
  • Second Step Synthesis of benzyl alcohol
  • dichloro (triphenylphosphine) ⁇ N, N-bis [2- (diphenylphosphino) ethyl] amine ⁇ ruthenium (II) (14-1) obtained in the first step was used.
  • benzyl alcohol was synthesized by a hydrogenation reaction of methyl benzoate in the same manner as in Example 32. Conversion: 7.9%, selectivity: 79.8% (according to GC analysis).
  • Example 33 Hydrogenation of methyl lactate using dichloro (triphenylphosphine) ⁇ 2-diphenylphosphino-N- [2- (ethylthio) ethyl] ethylamine ⁇ ruthenium (II) (8 S -2) as a catalyst Synthesis of 1,2-propanediol by reaction (Eq. 41) (Preparation / Reaction) Into a stainless steel 100 mL autoclave apparatus, the dichloro (triphenylphosphine) ⁇ 2-diphenylphosphino-N- [2- (ethylthio) ethyl] ethylamine ⁇ ruthenium (II) (8) obtained in Example 12 was used.
  • Example 32 and Example 33 and Comparative Examples 1 to 4 are summarized in Table 1 below.
  • the ruthenium complex having the compound of the present invention as a tridentate ligand is a conventional N, N-bis (2-phosphinoethyl) amine or N, N-bis (2-thioethyl) amine.
  • the catalytic activity, reaction selectivity and substrate generality in the hydrogenation reaction of esters are clearly superior. From both methyl benzoate and methyl lactate, It was found that the product was obtained at full conversion and selectivity. See FIGS. 1-19 for 1 H NMR charts of Examples 11 to 28 and 31 of the complexes of the present invention.
  • the compound of the present invention is a reaction of a compound represented by the general formula (2 A ) with a compound represented by the general formula (4), or a compound represented by the general formula (3 A ) and the general formula (5). It can manufacture easily by reaction with the compound represented by these. Furthermore, the compound of the present invention behaves as an asymmetric tridentate ligand, and the metal complex of the present invention can be easily produced by coordinating with various metal species. This metal complex exhibits excellent catalytic activity in a catalytic organic synthesis reaction.
  • a ruthenium complex having the compound of the present invention as a ligand is a conventional symmetrical tridentate ligand, N, N-bis (2- Compared with ruthenium complexes of phosphinoethyl) amine and N, N-bis (2-thioethyl) amine, it exhibits superior catalytic activity in the hydrogenation reaction of esters, which makes alcohols more efficient It became possible to manufacture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

 本発明は、触媒的有機合成反応における有用な配位子及びその製法並びに有機合成反応における触媒として有用な金属錯体を提供することを目的とする。 本発明は、一般式(1A)で表されることを特徴とする化合物及びその製法並びに該化合物を配位子として有する金属錯体を提供する。(式中、H、N、P、S、L、R1、R2、R3、Q1及びQ2は明細書中にて定義された意味を有する)

Description

N-(ホスフィノアルキル)-N-(チオアルキル)アミン誘導体及びその製造方法並びにその金属錯体
 本発明は、新規なN-(ホスフィノアルキル)-N-(チオアルキル)アミン誘導体及びその製造方法並びに該化合物を配位子として有する金属錯体に関する。
 今日、金属種と配位子から構成される種々の金属錯体が、有機合成反応における触媒として用いられている。このような触媒の性能及び活性を発現させる因子として、金属錯体における金属種のみならず配位子、すなわち金属種に配位しうる孤立電子対を持つ基(配位基)を有する有機化合物が、極めて重要な役割を果たすことが知られている。これらの配位子の中でも、配位基を三つ有する有機化合物(三座配位子)は、金属種に対してfacial形式又はmeridional形式にて結合することで、2つのキレート環を有する金属錯体を形成するといった特徴を有する。更に、電子的に非等価な配位基を有する“Hemilabile”な三座配位子については、触媒反応における触媒サイクル中にて、単座配位子や二座配位子としても機能しうることが知られている。それゆえ三座配位子においては、三つの配位基の構造や組み合わせを様々に変化させることで、対応する金属錯体の構造、物性及び触媒活性等が任意に調整可能となる。従って三座配位子及びその金属錯体は、有機合成化学、錯体化学及び触媒化学等の分野において重要な位置を占め、現在でもなお盛んな研究開発が行われている。中でも、配位基の一つとしてイミノ基を分子内に持つ三座配位子の金属錯体は、例えばカルボニル化合物の水素添加反応やアルコール類の脱水素反応等において高い触媒活性を示すことや、これらの触媒的有機合成反応において、イミノ基上の水素原子が活性発現に大きく影響することが知られている。このような三座配位子の例として、対称なN,N-ビス(2-ホスフィノエチル)アミン及びN,N-ビス(2-チオエチル)アミンが知られており、それらのルテニウム錯体がエステル類の水素添加反応において優れた触媒として機能することが報告されている(特許文献1及び非特許文献1)。ところで、イミノ基を有するこれらの三座配位子は、基質であるN,N-ビス(2-クロロエチル)アミンに対して、配位基であるホスフィノ基又はチオ基を同時に導入することで容易に合成可能である。しかしながら、基質上の二つのクロロ基が化学的に等価であるため、同種の配位基は導入可能であっても、“Hemilability”の観点から重要となる、異種配位基の逐次的かつ選択的な導入は極めて困難である。従って、ホスフィノ基とチオ基の逐次的導入が成功すれば得られるであろう、N-(2-ホスフィノエチル)-N-(2-チオエチル)アミンの合成例はこれまでに報告されていない。一方、ホスフィノ基及びチオ基を有し、イミノ基の代わりにピリジル基を有する、非対称な三座配位子である2-ホスフィノメチル-6-チオメチルピリジン誘導体及びそのルテニウム錯体は既に知られているものの(非特許文献2)、窒素原子がイミノ基ではなくピリジン環に含まれているため、そのルテニウム錯体は塩基性条件にてルテニウム-炭素結合を形成しつつ容易に二量化してしまう。この二量体は触媒反応における不活性種であるため、反応の適用範囲も狭く活性にも乏しい点が問題となっていた。
国際公開公報第2011/048727号
Denys Spasyuk, Samantha Smith, and Dmitry G. Gusev, Angew. Chem. Int. Ed. Ingl., 2013, 52, 2538. Moti Gargir, Yehosyua Ben-David, Gregory Leitus, Yael Diskin-Posner, Linda J. W. Shimon, and David Milstein, Organometallics, 2012, 31, 6207.
 本発明は前記の状況に鑑み為されたものである。即ち、三座配位子及びその金属錯体、並びに該金属錯体を触媒として用いる有機合成反応の研究開発においては、配位子上の三つの配位基の構造や組み合わせ、更には“Hemilability”の有無が重要であるため、これらの多様性を高めることが、既知の有機合成反応の効率化や、新規な有用反応の発見に寄与することとなる。このような観点から、イミノ基を有する母骨格に対する異種の配位基、例えばホスフィノ基及びチオ基の逐次的導入による非対称な三座配位子の簡便な製造法や、この手法によって得られる新規な非対称三座配位子及びその金属錯体、並びに該金属錯体を用いた触媒的有機合成反応を提供することが、本発明の課題である。本発明者らは、前記の課題を解決するために鋭意検討を重ねた結果、従来の対称な三座配位子の原料である、N,N-ビス(2-クロロエチル)アミンに対して二酸化炭素を反応させることで3-(2-クロロエチル)-2-オキサゾリジノンへ誘導し、この化合物に対して逐次的にホスフィノ基及びチオ基を導入することで、これまで報告例のなかった非対称なN-(2-ホスフィノエチル)-N-(2-チオエチル)アミン誘導体を合成することに成功した(以下、Eq.1にて簡略化した概略を示すが、本発明はこの概略によって何ら限定されるものではない)。
Figure JPOXMLDOC01-appb-C000006
 この新規な化合物は非対称な三座配位子として振る舞い、種々の金属種に配位させることで優れた触媒活性を有する金属錯体が得られる。例えば本化合物のルテニウム錯体は、従来の対称な三座配位子であるN,N-ビス(2-ホスフィノエチル)アミンやN,N-ビス(2-チオエチル)アミンのルテニウム錯体と比較して、エステル類の水素添加反応においてより優れた触媒活性を有することを見出し、これらの知見を元にして本発明を完成するに至った。
 即ち本発明は、以下の[1]~[13]を含むものである。
[1]下記一般式(1A
Figure JPOXMLDOC01-appb-C000007
(式中、Hは水素原子、Nは窒素原子、Pはリン原子、Sは硫黄原子を表す。Lは孤立電子対又は三水素化ホウ素を表す。R1、R2及びR3は各々独立して、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R1及びR2は互いに結合して、置換基を有してもよい環を形成してもよい。Q1及びQ2は各々独立して、1,2-エタンジイル基、1,3-プロパンジイル基及び1,4-ブタンジイル基から構成される群より選択されるアルカンジイル基を表す。Q1及びQ2は、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基によって置換されていてもよく、これらの基は互いに結合して、置換基を有してもよい環を形成してもよい。)
で表されることを特徴とする化合物。
[2]Q1が1,2-エタンジイル基であることを特徴とする、前記[1]に記載の化合物。
[3]Q2が1,2-エタンジイル基であることを特徴とする、前記[1]に記載の化合物。
[4]Q1及びQ2がいずれも1,2-エタンジイル基であることを特徴とする、前記[1]に記載の化合物。
[5]光学活性体であることを特徴とする、前記[1]~[4]のいずれか1つに記載の化合物。
[6]前記[1]~[5]のいずれか1つに記載の化合物と、ハロゲン化水素酸、過塩素酸、硝酸、硫酸、スルホン酸、カルボン酸、フェノール類、リン酸、ヘキサフルオロリン酸、ホウ酸及びテトラフルオロホウ酸から構成される群より選択されるブレンステッド酸から形成されることを特徴とする、前記[1]~[5]のいずれか1つに記載の化合物のブレンステッド酸塩。
[7]下記一般式(2A
Figure JPOXMLDOC01-appb-C000008
(式中、Cは炭素原子、Nは窒素原子、Oは酸素原子、Sは硫黄原子を表す。R3、Q1及びQ2は、前記[1]において定義したR3、Q1及びQ2と同様の基を表す。)
で表される化合物と、下記一般式(4)
Figure JPOXMLDOC01-appb-C000009
(式中、Hは水素原子、Pはリン原子を表す。Lは孤立電子対又は三水素化ホウ素を表す。R1及びR2は、前記[1]において定義したR1及びR2と同様の基を表す。)
で表される化合物を反応させることを特徴とする、前記[1]~[6]のいずれか1つに記載の化合物の製造方法。
[8]下記一般式(3A
Figure JPOXMLDOC01-appb-C000010
(式中、Cは炭素原子、Nは窒素原子、Oは酸素原子、Pはリン原子を表す。Lは孤立電子対又は三水素化ホウ素を表す。R1、R2、Q1及びQ2は、前記[1]において定義したR1、R2、Q1及びQ2と同様の基を表す。)
で表される化合物と、下記一般式(5)
Figure JPOXMLDOC01-appb-C000011
(式中、Hは水素原子、Sは硫黄原子を表す。R3は、前記[1]において定義したR3と同様の基を表す。)
で表される化合物を反応させることを特徴とする、前記[1]~[6]のいずれか1つに記載の化合物の製造方法。
[9]前記[1]~[5]のいずれか1つに記載の化合物を配位子として有する金属錯体。
[10]金属種が、第5族遷移金属、第6族遷移金属、第7族遷移金属、第8族遷移金属、第9族遷移金属、第10族遷移金属及び第11族遷移金属から構成される群より選択される金属種であることを特徴とする、前記[9]に記載の金属錯体。
[11]金属種が、第8族遷移金属、第9族遷移金属及び第10族遷移金属から構成される群より選択される金属種であることを特徴とする、前記[10]に記載の金属錯体。
[12]組成式(8A):[M812(L1k(L2l(L3m(PNS)]n
(式中、M8は2価鉄イオン、2価ルテニウムイオン又は2価オスミウムイオンから構成される群より選択される、2価第8族遷移金属イオンを表す。X1及びX2は各々独立して1価アニオン性単座配位子を表し、L1、L2及びL3は各々独立して中性単座配位子を表す。k、l及びmはそれぞれL1、L2及びL3の配位数を表し、各々独立して0又は1の整数値を示す。PNSは、前記[1]~[5]のいずれか1つに記載の化合物を表す。nは組成式[M812(L1k(L2l(L3m(PNS)]の多量化度を示す1又は2の整数値を表し、k、l及びmの総和が1~3の整数値である場合は1を、この総和が0である場合は1又は2を示す。)
で表されることを特徴とする、前記[11]に記載の金属錯体。
[13]組成式(9A):M9123(L1k(L2l(L3m(PNS)
(式中、M9は3価コバルトイオン、3価ロジウムイオン又は3価イリジウムイオンから構成される群より選択される、3価第9族遷移金属イオンを表す。X1、X2及びX3は各々独立して1価アニオン性単座配位子を表し、L1、L2及びL3は各々独立して中性単座配位子を表す。k、l及びmはそれぞれL1、L2及びL3の配位数を表し、各々独立して0又は1の整数値を示す。PNSは、前記[1]~[5]のいずれか1つに記載の化合物を表す。)
で表されることを特徴とする、前記[11]に記載の金属錯体。
[14]組成式(10A):M1012(L1k(PNS)
(式中、M10は2価ニッケルイオン、2価パラジウムイオン又は2価白金イオンから構成される群より選択される、2価第10族遷移金属イオンを表す。X1及びX2は各々独立して1価アニオン性単座配位子を表し、L1は中性単座配位子を表す。kはL1の配位数を表し、0又は1の整数値を示す。PNSは、前記[1]~[5]のいずれか1つに記載の化合物を表す。)
で表されることを特徴とする、前記[11]に記載の金属錯体。
 前記一般式(1A)で表される化合物(以下、本発明の化合物と称す。なお、組成式中における略号はPNSとする)はこれまで知られていなかったが、3-(2-クロロエチル)-2-オキサゾリジノン等の環状カルバメート誘導体に対する逐次的なホスフィノ基とチオ基の導入法を確立することで、初の合成に成功した。本発明の化合物は、電子的に非等価な三種類の配位基、すなわちホスフィノ基、イミノ基及びチオ基を有するため、“Hemilabile”な三座配位子としての挙動を示すことが期待される。実際に、本発明の化合物は種々の金属種に配位することで対応する金属錯体(以下、本発明の金属錯体と称す)を形成し、このようにして得られた本発明の金属錯体は、触媒的有機合成反応において優れた触媒活性を示すことが明らかとなった。例えば本発明の化合物のルテニウム錯体は、従来の対称な三座配位子であるN,N-ビス(2-ホスフィノエチル)アミンやN,N-ビス(2-チオエチル)アミンのルテニウム錯体と比較して、エステル類の水素添加反応においてより優れた触媒活性を示し、この反応によってアルコール類をより効率的に製造することが可能となった。
ジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-1)(実施例11)の1H NMRチャートである。 ジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-2)(実施例12)の1H NMRチャートである。 ジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(tert-ブチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-3)(実施例13)の1H NMRチャートである。 ジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(フェニルチオ)エチル]エチルアミン}ルテニウム(II)(8S-4)(実施例14)の1H NMRチャートである。 ジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(p-トリルチオ)エチル]エチルアミン}ルテニウム(II)(8S-5)(実施例15)の1H NMRチャートである。 ジクロロ(トリメチルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-6)(実施例16)の1H NMRチャートである。 ジクロロ(トリメチルホスフィン){2-ジフェニルホスフィノ-N-[2-(フェニルチオ)エチル]エチルアミン}ルテニウム(II)(8S-7)(実施例17)の1H NMRチャートである。 ジクロロ(トリエチルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-8)(実施例18)の1H NMRチャートである。 ジクロロ(トリシクロヘキシルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-9)(実施例19)の1H NMRチャートである。 ジクロロ[トリス(4-メトキシフェニル)ホスフィン]{2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-10)(実施例20)の1H NMRチャートである。 ジクロロ[トリス(4-メトキシフェニル)ホスフィン]{2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-11)(実施例21)の1H NMRチャートである。 ジクロロ[トリス(4-トリフルオロメチルフェニル)ホスフィン]{2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-12)(実施例22)の1H NMRチャートである。 ジクロロ[トリス(2-フリル)ホスフィン]{2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-13)(実施例23)の1H NMRチャートである。 ジクロロ{4-エチル-2,6,7-トリオキサ-1-ホスファビシクロ[2,2,2]オクタン}{2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-14)(実施例24)の1H NMRチャートである。 カルボニルクロロヒドリド{2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-15)(実施例25)の1H NMRチャートである。 ヒドリド(テトラヒドロボレート)(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-16)(実施例26)の1H NMRチャートである。 カルボニルヒドリド(テトラヒドロボレート){2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-17)(実施例27)の1H NMRチャートである。 ジクロロ{2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)ダイマー(8U-1)(実施例28)の1H NMRチャートである。 [クロロビス(4-メトキシフェニルイソシアニド){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)]クロライド(8R-1)(実施例31)の1H NMRチャートである。
 以下、本発明の化合物(1A)及びその原料化合物である、前記一般式(2A)で表される化合物、前記一般式(3A)で表される化合物、前記一般式(4)で表される化合物及び前記一般式(5)で表される化合物について詳細に説明する。
 前記一般式(1A)、(2A)、(3A)、(4)及び(5)中、Cは炭素原子、Hは水素原子、Nは窒素原子、Oは酸素原子、Pはリン原子、Sは硫黄原子を表す。Lは孤立電子対又は三水素化ホウ素を表す。R1、R2及びR3は各々独立して、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表し、好ましくはアルキル基及び置換基を有してもよいアリール基から構成される群より選択される基を表す。Q1及びQ2は各々独立して、1,2-エタンジイル基、1,3-プロパンジイル基及び1,4-ブタンジイル基から構成される群より選択されるアルカンジイル基を表し、好ましくは1,2-エタンジイル基を表す。Q1は、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基(以下、Q1上の基と称す)によって置換されていてもよい。またQ2は、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基(以下、Q2上の基と称す)によって置換されていてもよい。
 アルキル基としては、直鎖状でも分岐状でも又は環状でもよい、例えば炭素数1~30のアルキル基、好ましくは炭素数1~20のアルキル基、より好ましくは炭素数1~10のアルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、2-プロピル基、シクロプロピル基、n-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、シクロブチル基、n―ペンチル基、2-ペンチル基、3-ペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、2-メチルブタン-3-イル基、2,2-ジメチルプロピル基、シクロペンチル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、tert-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、2-メチルペンタン-3-イル基、2-メチルペンタン-4-イル基、3-メチルペンタン-2-イル基、3-メチルペンタン-3-イル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2,2-ジメチルブタン-3-イル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、1-アダマンチル基及び2-アダマンチル基等が挙げられ、好ましい具体例としてはメチル基、エチル基、tert-ブチル基、シクロヘキシル基及び1-アダマンチル基が挙げられる。
 アルケニル基としては、直鎖状でも分岐状でも又は環状でもよい、例えば炭素数2~20のアルケニル基、好ましくは炭素数2~14のアルケニル基、より好ましくは炭素数2~8のアルケニル基が挙げられ、具体的にはビニル基、1-プロペニル基、2-プロペニル基、アリル基、1-シクロヘキセニル基、1-スチリル基及び2-スチリル基等が挙げられる。
 アリール基としては、例えば炭素数6~18のアリール基、好ましくは炭素数6~14のアリール基、より好ましくは炭素数6~10のアリール基が挙げられ、具体的にはフェニル基、1-ナフチル基及び2-ナフチル基等が挙げられ、好ましい具体例としてはフェニル基が挙げられる。
 ヘテロアリール基としては、窒素原子、酸素原子及び硫黄原子からなる群より選ばれるヘテロ原子を1~4個有する5~6員環の芳香族複素環及び、該芳香族複素環が前記アリール基によって縮環されることで生じる多環芳香族複素環由来のヘテロアリール基が挙げられ、具体的には2-フリル基、3-フリル基、2-チエニル基、3-チエニル基、2-ベンゾフリル基、3-ベンゾフリル基、2-ベンゾチエニル基及び3-ベンゾチエニル基等が挙げられる。
 アラルキル基としては、前記アルキル基の少なくとも一つの水素原子が前記アリール基によって置換されたアラルキル基及び、前記環状アルキル基が前記アリール基によって縮環されることで生じる多環アラルキル基が挙げられ、具体的にはベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、2-フェニルプロピル基、3-フェニルプロピル基、1-フェニル-2-プロピル基、2-フェニル-2-プロピル基、1-インダニル基、2-インダニル基及び9-フルオレニル基等が挙げられる。
 R1及びR2は互いに結合して、置換基を有してもよい環を形成してもよい。このような環の具体例としては、ホスホラン環、ホスホール環、ホスフィナン環及びホスフィニン環等が挙げられる。更に、一般式(1A)、(2A)及び(3A)におけるQ1上の基同士、Q1上の基とQ2上の基、及びQ2上の基同士は互いに結合して、置換基を有してもよい環を形成してもよい。
 R1~R3におけるアルケニル基、アリール基、ヘテロアリール基及びアラルキル基、Q1上の基及びQ2上の基におけるアルケニル基、アリール基及びアラルキル基、R1及びR2が互いに結合して形成する環、Q1上の基同士が互いに結合して形成する環、Q1上の基とQ2上の基が互いに結合して形成する環、及びQ2上の基が互いに結合して形成する環が有してもよい置換基としては、アルキル基、ハロゲノアルキル基、アルケニル基、アリール基、ヘテロアリール基、アラルキル基、アルコキシ基及びハロゲノ基等が挙げられる。これらの置換基の内、アルキル基、アルケニル基、アリール基、ヘテロアリール基及びアラルキル基は、前記にて詳細を説明した基と同様である。
 ハロゲノアルキル基としては、前記アルキル基の少なくとも一つの水素原子がハロゲン原子によって置換された基が挙げられ、具体的にはトリフルオロメチル基及びn-ノナフルオロブチル基等が挙げられる。
 アルコキシ基としては、例えば炭素数1~10のアルコキシ基、好ましくは炭素数1~4のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、1-プロポキシ基、2-プロポキシ基、1-ブトキシ基、2-ブトキシ基及びtert-ブトキシ基等が挙げられる。
 ハロゲノ基としては、具体的にはフルオロ基、クロロ基、ブロモ基及びヨード基が挙げられ、好ましくはフルオロ基及びクロロ基が挙げられる。
 本発明の化合物の好ましい形態としては、具体的には前記一般式(1A)におけるQ1が1,2-エタンジイル基である、下記一般式(1B
Figure JPOXMLDOC01-appb-C000012
(式中、H、N、P、S、L、R1、R2、R3及びQ2は前記一般式(1A)における定義と同様である。Cは炭素原子を表す。R4、R5、R6及びR7は各々独立して水素原子及び、アルキル基、置換基を有してもよいアルケニル基、置換基を有しても良いアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R4~R7は互いに結合して、置換基を有してもよい環を形成してもよく、Q2上の基と互いに結合して、置換基を有してもよい環を形成してもよい)
で表される化合物及び、前記一般式(1A)におけるQ2が1,2-エタンジイル基である、下記一般式(1C
Figure JPOXMLDOC01-appb-C000013
(式中、H、N、P、S、L、R1、R2、R3及びQ1は前記一般式(1A)における定義と同様である。Cは炭素原子を表す。R8、R9、R10及びR11は各々独立して水素原子及び、アルキル基、置換基を有してもよいアルケニル基、置換基を有しても良いアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R8~R11は互いに結合して、置換基を有してもよい環を形成してもよく、Q1上の基と互いに結合して、置換基を有してもよい環を形成してもよい)
で表される化合物が挙げられる。また、本発明の化合物のより好ましい形態としては、具体的には前記一般式(1A)におけるQ1及びQ2のいずれも1,2-エタンジイル基である、下記一般式(1D
Figure JPOXMLDOC01-appb-C000014
(式中、H、N、P、S、L、R1、R2及びR3は前記一般式(1A)における定義と同様である。Cは炭素原子を表す。R4、R5、R6、R7、R8、R9、R10及びR11は各々独立して水素原子及び、アルキル基、置換基を有してもよいアルケニル基、置換基を有しても良いアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R4~R11は互いに結合して、置換基を有してもよい環を形成してもよい)
で表される化合物が挙げられる。
 前記一般式(1B)、(1C)及び(1D)中、R4、R5、R6、R7、R8、R9、R10及びR11は各々独立して、水素原子及び、アルキル基、置換基を有してもよいアルケニル基、置換基を有しても良いアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表し、好ましくは水素原子を表す。R4~R11におけるアルキル基、アルケニル基、アリール基及びアラルキル基は、前記Q1上の基及び、前記Q2上の基における基と同様である。
 また、R4~R11におけるアルケニル基、アリール基及びアラルキル基、R4~R7同士が互いに結合して形成する環、R4~R7がQ2上の基と互いに結合して形成する環、R8~R11同士が互いに結合して形成する環、R8~R11がQ1上の基と互いに結合して形成する環、並びにR4~R11同士が互いに結合して形成する環が有してもよい置換基としては、アルキル基、ハロゲノアルキル基、アルケニル基、アリール基、ヘテロアリール基、アラルキル基、アルコキシ基及びハロゲノ基等が挙げられ、これらの置換基は前記にて詳細を説明した基と同様である。
 化合物(1A)~(1D)の中には、空気に対して不安定な化合物や、高粘度液状物質となるため精製や計量が困難な化合物もあることから、取り扱いを容易にするため、ブレンステッド酸、例えばハロゲン化水素酸、過塩素酸、硝酸、硫酸、スルホン酸、カルボン酸、フェノール類、リン酸、ヘキサフルオロリン酸、ホウ酸及びテトラフルオロホウ酸等と反応させることで、対応するブレンステッド酸塩を形成させてもよい。ハロゲン化水素酸としては、具体的にはフッ化水素酸、塩酸、臭化水素酸及びヨウ化水素酸等が挙げられ、好ましくは塩酸が挙げられる。スルホン酸としては、具体的にはメタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸及び10-カンファースルホン酸などが挙げられる。カルボン酸としては、具体的にはギ酸、酢酸、トリフルオロ酢酸、安息香酸、サリチル酸、シュウ酸及び酒石酸等が挙げられる。フェノール類としては、具体的にはフェノール、p-クレゾール、p-ニトロフェノール及びペンタフルオロフェノール等が挙げられる。
 本発明の化合物のブレンステッド酸塩を本発明の金属錯体の製造に用いる際には、ブレンステッド酸塩のまま反応に用いてもよく、反応系外で塩基と作用させて本発明の化合物を遊離させた後に反応に用いてもよく、反応系内で塩基と作用させて本発明の化合物を遊離させながら反応に用いてもよい。
 更に、本発明の化合物においてLが三水素化ホウ素である場合、本発明の化合物を本発明の金属錯体の製造に用いる際には、そのまま反応に用いてもよく、反応系外で三水素化ホウ素を解離させた後に反応に用いてもよく、反応系内で三水素化ホウ素を解離させながら反応に用いてもよい。三水素化ホウ素の解離には解離剤を併用することが好ましく、三水素化ホウ素の解離剤としては、例えばジエチルアミン、トリエチルアミン及び1,4-ジアザビシクロ[2,2,2]オクタン等のアミン類が挙げられる。
 本発明の化合物の特に好ましい形態としては、具体的には例えば以下に示す化合物(1D-1)~(1D-7)及びこれらのブレンステッド酸塩が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 次に、本発明の化合物の原料化合物となる、一般式(2A)で表される化合物及び一般式(3A)で表される化合物について更に詳細に説明する。まず、一般式(2A)で表される化合物は、下記一般式(6)
Figure JPOXMLDOC01-appb-C000016
(式中、C、N、O、Q1及びQ2は、前記一般式(2)における定義と同様である。LGは脱離基を表す)
で表される化合物と、一般式(5)で表される化合物を塩基性条件で反応させることにより容易に得ることが出来る。なお、一般式(2A)で表される化合物の好ましい形態としては、具体的には前記一般式(2A)におけるQ1が1,2-エタンジイル基である、下記一般式(2B
Figure JPOXMLDOC01-appb-C000017
(式中、C、N、O、S、R3及びQ2は、前記一般式(2A)における定義と同様である。R4、R5、R6及びR7は、前記一般式(1B)における定義と同様である。)
で表される化合物が挙げられる。また、一般式(2A)で表される化合物のより好ましい形態としては、具体的には前記一般式(2A)におけるQ1及びQ2がいずれも1,2-エタンジイル基である、下記一般式(2C
Figure JPOXMLDOC01-appb-C000018
(式中、C、N、O、S、R3及びQ2は、前記一般式(2A)における定義と同様である。R4、R5、R6、R7、R8、R9、R10及びR11は、前記一般式(1D)における定義と同様である。)
で表される化合物が挙げられる。
 また、一般式(3A)で表される化合物は、下記一般式(7)
Figure JPOXMLDOC01-appb-C000019
(式中、C、N、O、Q1及びQ2は、前記一般式(3A)における定義と同様である。LGは脱離基を表す)
で表される化合物と、一般式(4)で表される化合物を塩基性条件で反応させることにより容易に得ることが出来る。なお、一般式(3A)で表される化合物の好ましい形態としては、具体的には前記一般式(3A)におけるQ2が1,2-エタンジイル基である、下記一般式(3B
Figure JPOXMLDOC01-appb-C000020
(式中、C、N、O、P、L、R1、R2及びQ1は、前記一般式(3A)における定義と同様である。R8、R9、R10及びR11は、前記一般式(1C)における定義と同様である。)
で表される化合物が挙げられる。また、一般式(3A)で表される化合物のより好ましい形態としては、具体的には前記一般式(3A)におけるQ1及びQ2がいずれも1,2-エタンジイル基である、下記一般式(3C
Figure JPOXMLDOC01-appb-C000021
(式中、C、N、O、P、L、R1及びR2は、前記一般式(3A)における定義と同様である。R4、R5、R6、R7、R8、R9、R10及びR11は、前記一般式(1D)における定義と同様である。)
で表される化合物が挙げられる。
 一般式(6)及び一般式(7)中、LGは脱離基を表し、好ましくはハロゲノ基及び擬ハロゲノ基を表す。ハロゲノ基としては、具体的にはフルオロ基、クロロ基、ブロモ基及びヨード基が挙げられ、好ましい具体例としてはクロロ基が挙げられる。擬ハロゲノ基としては、具体的にはメタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基及びn-ノナフルオロブタンスルホニルオキシ基等が挙げられる。
 次に、本発明の化合物の製造方法について詳細に説明する。本発明の化合物は、一般式(2A)で表される化合物と一般式(4)で表される化合物との反応又は、一般式(3A)で表される化合物と一般式(5)で表される化合物との反応によって容易に製造することが出来る。まず、一般式(2A)で表される化合物と一般式(4)で表される化合物との反応について、更に詳細に説明する(Eq.2)。
Figure JPOXMLDOC01-appb-C000022
 一般式(4)で表される化合物について、具体例を挙げて更に詳細に説明する。一般式(4)で表される化合物としては、具体的には2級ホスフィン及び2級ホスフィンの3水素化ホウ素錯体が挙げられる。2級ホスフィンの具体例としては、ジメチルホスフィン(4-1)、ジエチルホスフィン(4-2)、ジイソプロピルホスフィン(4-3)、ジ-tert-ブチルホスフィン(4-4)、ジシクロペンチルホスフィン(4-5)、ジシクロヘキシルホスフィン(4-6)、ジフェニルホスフィン(4-7)、ビス(2-メチルフェニル)ホスフィン(4-8)、ビス(4-メチルフェニル)ホスフィン(4-9)、ビス(3,5-ジメチルフェニル)ホスフィン(4-10)、ビス(2,4,6-トリメチルフェニル)ホスフィン(4-11)、ビス(2-メトキシフェニル)ホスフィン(4-12)、ビス(4-メトキシフェニル)ホスフィン(4-13)、ビス(4-トリフルオロメチルフェニル)ホスフィン(4-14)、ビス[3,5-ビス(トリフルオロメチル)フェニル]ホスフィン(4-15)、ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィン(4-16)、tert-ブチルフェニルホスフィン(4-17)、ジ-1-アダマンチルホスフィン(4-18)、(11bS)-4,5-ジヒドロ-3H-ジナフト[2,1-c:1’,2’-e]ホスフェピン(4-19)及びジ-2-フリルホスフィン(4-20)等が挙げられ、好ましい具体例としてはジフェニルホスフィン(4-7)が挙げられる。2級ホスフィン-3水素化ホウ素錯体の具体例としては、前記具体例として挙げた2級ホスフィンの3水素化ホウ素錯体が挙げられ、好ましい具体例としてはジシクロヘキシルホスフィン-3水素化ホウ素錯体(4-21)等が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 これらの2級ホスフィンの中には空気に不安定な化合物もあることから、取り扱いを容易にするため、ブレンステッド酸、具体的には例えばテトラフルオロホウ酸と塩を形成させてもよい。これらの2級ホスフィンのブレンステッド酸塩は、反応系外で塩基と作用させて2級ホスフィンを遊離させた後に反応に用いてもよく、反応系内で塩基と作用させて2級ホスフィンを遊離させながら反応に用いてもよい。また本反応においては、一般式(4)で表される化合物の代わりに、2級ホスフィド又は2級ホスフィドの3水素化ホウ素錯体を用いてもよい。これらの2級ホスフィド及び2級ホスフィドの3水素化ホウ素錯体は、一般式(4)で表される化合物と塩基を反応させることによって容易に調製可能である。2級ホスフィドはこれ以外の反応によっても容易に調製可能であり、具体的には2級ホスフィンハロゲン化物とアルカリ金属との反応、2級ホスフィン2量体とアルカリ金属との反応及び3級ホスフィンとアルカリ金属との反応等が挙げられる。
 一般式(4)で表される化合物、2級ホスフィド及び2級ホスフィドの3水素化ホウ素錯体の使用量は特に限定されるものではないが、通常一般式(2A)で表される化合物に対して通常0.4~2当量、好ましくは0.6当量~1.5当量、より好ましくは0.8~1.2当量の範囲から適宜選択される。
 本反応は酸性条件又は塩基性条件にて実施可能であるが、塩基性条件で実施することがより好ましい。一般式(4)で表される化合物の代わりに、2級ホスフィド又は2級ホスフィドの3水素化ホウ素錯体を用いる場合には、本反応は中性条件又は塩基性条件で実施することが好ましい。
 本反応を酸性条件で実施する場合、好ましい酸としては、具体的にはトリフルオロメタンスルホン酸等が挙げられる。
 本反応を塩基性条件にて実施する場合、好ましい塩基としては、具体的には水酸化リチウム、水酸化ナトリウム及び水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム、水酸化ストロンチウム及び水酸化バリウム等のアルカリ土類金属水酸化物、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム、水素化ホウ素ナトリウム及び水素化アルミニウムリチウム等の金属水素化物、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウム-tert-ブトキシド及びカリウム-tert-ブトキシド等のアルカリ金属アルコキシド、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム及びフェニルリチウム等の有機リチウム化合物、リチウムアミド、ナトリウムアミド、リチウムジイソプロピルアミド及びリチウムヘキサメチルジシラジド等のアルカリ金属アミド類、及び塩化メチルマグネシウム、塩化tert-ブチルマグネシウム、塩化フェニルマグネシウム、臭化フェニルマグネシウム及びヨウ化メチルマグネシウム等のグリニャール試薬等が挙げられ、特に好ましい具体例としてはn-ブチルリチウムが挙げられる。これらの塩基は、各々単独で用いても2種以上適宜組み合わせて用いてもよい。
 塩基の使用量は特に限定されるものではないが、一般式(4)で表される化合物に対して、通常0.3~10当量、好ましくは0.5~5当量、より好ましくは0.8~3当量の範囲から適宜選択される。なお、本反応において塩基の添加方法は特に限定されるものではないが、一般式(4)で表される化合物と塩基を各々単独に添加してもよく、一般式(4)で表される化合物と塩基(及び溶媒)の混合物として添加してもよく、一般式(4)で表される化合物と塩基を(溶媒中にて)反応させることによって得られる前記2級ホスフィド又は前記2級ホスフィドの3水素化ホウ素錯体として添加してもよい。
 本反応は溶媒の存在下で実施することが望ましい。溶媒は、具体的にはn-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン、シクロヘキサン及びデカリン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン、p-シメン及び1,4-ジイソプロピルベンゼン等の芳香族炭化水素類、メタノール、エタノール、2-プロパノール、n-ブタノール、tert-ブタノール、2-メチル-2-ブタノール及び2-エトキシエタノール等の1価アルコール類、エチレングリコール、プロピレングリコール、1,2-プロパンジオール及びグリセリン等の多価アルコール類、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、ジメトキシエタン、エチレングリコールジエチルエーテル、テトラヒドロフラン及び1,4-ジオキサン等のエーテル類、及びトリエチルアミン、アニリン及び2-フェネチルアミン等のアミン類等が挙げられ、好ましい具体例としてはn-ヘキサン及びテトラヒドロフラン等が挙げられる。これらの溶媒は、各々単独で用いても2種以上適宜組み合わせて用いてもよい。
 溶媒の使用量は特に限定されるものではないが、一般式(2A)で表される化合物に対して通常1~200倍容量、好ましくは2~100倍容量、より好ましくは5~50倍容量の範囲から適宜選択される。
 本反応は不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、具体的にはアルゴンガス及び窒素ガス等が挙げられる。反応温度は、通常-78~150℃、好ましくは-40~100℃、より好ましくは0~75℃の範囲から適宜選択される。反応時間は、塩基、溶媒及び反応温度その他の条件によって自ずから異なるが、通常1分~48時間、好ましくは5分~24時間、より好ましくは10分~8時間の範囲から適宜選択される。
 この製造方法を用いて、前記一般式(2B)で表される化合物と一般式(4)で表される化合物を反応させることにより、前記一般式(1B)で表される化合物を同様に製造することが出来る。また、前記一般式(2C)で表される化合物と一般式(4)で表される化合物を反応させることにより、前記一般式(1D)で表される化合物を同様に製造することが出来る。(Eq.3)。
Figure JPOXMLDOC01-appb-C000024
 次に、一般式(3A)で表される化合物と一般式(5)で表される化合物との反応について詳細に説明する(Eq.4)。
Figure JPOXMLDOC01-appb-C000025
 一般式(5)で表される化合物について、具体例を挙げて更に詳細に説明する。一般式(5)で表される化合物としては、具体的にはチオールが挙げられる。チオールの具体例としては、メタンチオール(5-1)、エタンチオール(5-2)、1-プロパンチオール(5-3)、2-プロパンチオール(5-4)、1-ブタンチオール(5-5)、2-ブタンチオール(5-6)、2-メチル-1-プロパンチオール(5-7)、2-メチル-2-プロパンチオール(5-8)、1-ペンタンチオール(5-9)、3-メチル-1-ブタンチオール(5-10)、シクロペンタンチオール(5-11)、1-ヘキサンチオール(5-12)、シクロヘキサンチオール(5-13)、1-ヘプタンチオール(5-14)、1-オクタンチオール(5-15)、1-ノナンチオール(5-16)、1-デカンチオール(5-17)、1-アダマンタンチオール(5-18)、ベンゼンチオール(5-19)、o-トルエンチオール(5-20)、m-トルエンチオール(5-21)、p-トルエンチオール(5-22)、2,4-ジメチルベンゼンチオール(5-23)、2,5-ジメチルベンゼンチオール(5-24)、3,4-ジメチルベンゼンチオール(5-25)、3,5-ジメチルベンゼンチオール(5-26)、4-イソプロピルベンゼンチオール(5-27)、4-tert-ブチルベンゼンチオール(5-28)、2-メトキシベンゼンチオール(5-29)、4-メトキシベンゼンチオール(5-30)、2,5-ジメトキシベンゼンチオール(5-31)、3,4-ジメトキシベンゼンチオール(5-32)、2-フルオロベンゼンチオール(5-33)、3-フルオロベンゼンチオール(5-34)、4-フルオロベンゼンチオール(5-35)、2-クロロベンゼンチオール(5-36)、4-クロロベンゼンチオール(5-37)、ビフェニル-4-チオール(5-38)、1-ナフタレンチオール(5-39)、ベンジルメルカプタン(5-40)、(2,4,6-トリメチルフェニル)メタンチオール(5-41)、(4-メトキシフェニル)メタンチオール(5-42)、(4-フルオロフェニル)メタンチオール(5-43)、(2-クロロフェニル)メタンチオール(5-44)、(4-クロロフェニル)メタンチオール(5-45)、トリフェニルメタンチオール(5-46)及び9-メルカプトフルオレン(5-47)等が挙げられ、好ましい具体例としては1-アダマンタンチオール(5-18)等が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 本反応においては、一般式(5)で表される化合物の代わりに、一般式(5)で表される化合物を塩基と反応させることで容易に得られるチオールの塩(チオラート)を用いてもよい。チオラートの具体例としては、前記具体例として挙げたチオールのアルカリ金属塩等が挙げられ、好ましい具体例としてはメタンチオール(5-1)のナトリウム塩(ナトリウム メタンチオラート)、エタンチオール(5-2)のナトリウム塩(ナトリウム エタンチオラート)、2-メチル-2-プロパンチオール(5-8)のナトリウム塩(ナトリウム 2-メチル-2-プロパンチオラート)、ベンゼンチオール(5-19)のナトリウム塩(ナトリウム ベンゼンチオラート)及びp-トルエンチオール(5-22)のナトリウム塩(ナトリウム p-トルエンチオラート)等が挙げられる。
 本反応は酸性条件又は塩基性条件で実施可能であるが、塩基性条件で実施するのがより好ましい。また、一般式(5)で表される化合物の代わりにチオラートを用いる場合には、本反応は中性条件又は塩基性条件で実施することが好ましい。本反応を塩基性条件にて実施する場合、好ましい塩基としては、具体的には水酸化リチウム、水酸化ナトリウム及び水酸化カリウム等のアルカリ金属水酸化物、リン酸ナトリウム及びリン酸カリウム等のアルカリ金属リン酸塩、炭酸リチウム、炭酸ナトリウム及び炭酸カリウム等のアルカリ金属炭酸塩、酢酸ナトリウム及び酢酸カリウム等のアルカリ金属カルボン酸塩、水酸化カルシウム、水酸化ストロンチウム及び水酸化バリウム等のアルカリ土類金属水酸化物、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム、水素化ホウ素ナトリウム及び水素化アルミニウムリチウム等の金属水素化物、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウム-tert-ブトキシド及びカリウム-tert-ブトキシド等のアルカリ金属アルコキシド、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム及びフェニルリチウム等の有機リチウム化合物、リチウムアミド、ナトリウムアミド、リチウムジイソプロピルアミド及びリチウムヘキサメチルジシラジド等のアルカリ金属アミド類、塩化メチルマグネシウム、塩化tert-ブチルマグネシウム、塩化フェニルマグネシウム、臭化フェニルマグネシウム及びヨウ化メチルマグネシウム等のグリニャール試薬、及びトリエチルアミン、トリ-n-ブチルアミン、ジイソプロピルエチルアミン、N,N-ジメチルアニリン、4-ジメチルアミノピリジン、ピロリジン、ピペリジン、N-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン及び1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン等のアミン類等が挙げられ、好ましい具体例としてはナトリウム-tert-ブトキシドが挙げられる。これらの塩基は、各々単独で用いても2種以上適宜組み合わせて用いてもよい。
 塩基の使用量は特に限定されるものではないが、一般式(5)で表される化合物に対して、通常0.3~10当量、好ましくは0.5~5当量、より好ましくは0.8~3当量の範囲から適宜選択される。なお、本反応において塩基の添加方法は特に限定されるものではないが、一般式(5)で表される化合物と塩基を各々単独に添加してもよく、一般式(5)で表される化合物と塩基(及び溶媒)の混合物として添加してもよく、一般式(5)で表される化合物と塩基を(溶媒中にて)反応させることによって得られる前記チオラートとして添加してもよい。
 本反応は溶媒の存在下で実施することが望ましい。溶媒は、具体的にはn-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン、シクロヘキサン及びデカリン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン、p-シメン及び1,4-ジイソプロピルベンゼン等の芳香族炭化水素類、クロロベンゼン及びo-ジクロロベンゼン等のハロゲン化芳香族炭化水素類、メタノール、エタノール、2-プロパノール、n-ブタノール、tert-ブタノール、2-メチル-2-ブタノール及び2-エトキシエタノール等のアルコール類、エチレングリコール、プロピレングリコール、1,2-プロパンジオール及びグリセリン等の多価アルコール類、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、ジメトキシエタン、エチレングリコールジエチルエーテル、テトラヒドロフラン及び1,4-ジオキサン等のエーテル類、酢酸メチル、酢酸エチル、酢酸n-ブチル及びプロピオン酸メチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノン等のケトン類、トリエチルアミン、アニリン及びフェネチルアミン等のアミン類、ホルムアミド、N,N-ジメチルホルムアミド及びN,N-ジメチルアセトアミド等のアミド類、アセトニトリル、マロノニトリル及びベンゾニトリル等のニトリル類、ジメチルスルホキシド等のスルホキシド類、及び水等が挙げられ、好ましい具体例としては2-メチル-2-ブタノールが挙げられる。これらの溶媒は、各々単独で用いても2種以上適宜組み合わせて用いてもよい。
 溶媒の使用量は特に限定されるものではないが、一般式(3A)で表される化合物に対して通常0.5~100倍容量、好ましくは1~40倍容量、より好ましくは2~20倍容量の範囲から適宜選択される。
 本反応は不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、具体的にはアルゴンガス及び窒素ガス等が挙げられる。反応温度は、通常25~200℃、好ましくは50~175℃、より好ましくは75~150℃の範囲から適宜選択される。反応時間は、塩基、溶媒及び反応温度その他の条件によって自ずから異なるが、通常1分~24時間、好ましくは2分~12時間、より好ましくは5分~8時間の範囲から適宜選択される。
 この製造方法を用いて、前記一般式(3B)で表される化合物と一般式(5)で表される化合物を反応させることにより、前記一般式(1C)で表される化合物を同様に製造することが出来る。また、前記一般式(3C)で表される化合物と一般式(5)で表される化合物を反応させることにより、前記一般式(1D)で表される化合物を同様に製造することが出来る。(Eq.5)。
Figure JPOXMLDOC01-appb-C000027
 このようにして得られた本発明の化合物は、必要に応じて後処理、単離及び精製を行うことができる。後処理の方法としては例えば、濃縮、溶媒置換、洗浄、抽出、逆抽出、濾過、貧溶媒の添加による晶析及びブレンステッド酸の添加による塩の形成等が挙げられ、これらを単独で或いは併用して行うことができる。単離及び精製の方法としては例えば、吸着剤による脱色、カラムクロマトグラフィー、蒸留、再結晶、貧溶媒による結晶洗浄及びブレンステッド酸の添加によって得られる塩の晶析等が挙げられ、これらを単独で或いは併用して行うことができる。
 次に、本発明の金属錯体について更に詳細に説明する。本発明の金属錯体における金属種としては、本発明の化合物が配位可能であれば特に制限はないが、有機合成反応における触媒活性の観点から、好ましくは第5族遷移金属、第6族遷移金属、第7族遷移金属、第8族遷移金属、第9族遷移金属、第10族遷移金属及び第11族遷移金属から構成される群より選択される金属種が挙げられる。より好ましい金属種としては、第8族遷移金属、第9族遷移金属及び第10族遷移金属、すなわち鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム及び白金から構成される群から選択される金属種が挙げられ、特に好ましい金属種としてはルテニウムが挙げられる。これらの金属種の価数もまた、本発明の化合物が配位可能であれば特に制限はないが、例えば第8族遷移金属の好ましい価数としては+2、第9族遷移金属の好ましい価数としては+3、第10族遷移金属の好ましい価数としては+2が挙げられる。
 本発明の化合物を配位子として有する第8族遷移金属錯体としては、好ましくは前記組成式(8A)で表される金属錯体が挙げられる。また、本発明の化合物を配位子として有する第9族遷移金属錯体としては、好ましくは前記組成式(9A)で表される金属錯体が挙げられる。更に、本発明の化合物を配位子として有する第10族遷移金属錯体としては、好ましくは前記組成式(10A)で表される金属錯体が挙げられる。
 前記組成式(8A)、(9A)及び(10A)中、M8は2価鉄イオン、2価ルテニウムイオン又は2価オスミウムイオンから構成される群より選択される2価第8族遷移金属イオンを表し、好ましくは2価ルテニウムイオンを表す。M9は3価コバルトイオン、3価ロジウムイオン又は3価イリジウムイオンから構成される群より選択される3価第9族遷移金属イオンを表し、M10は2価ニッケルイオン、2価パラジウムイオン又は2価白金イオンから構成される群より選択される2価第10族遷移金属イオンを表す。X1、X2及びX3は各々独立して1価アニオン性単座配位子を表し、L1、L2及びL3は各々独立して中性単座配位子を表す。k、l及びmはそれぞれL1、L2及びL3の配位数を表し、各々独立して0又は1の整数値を示す。PNSは本発明の化合物を表す。前記組成式(8A)におけるnは、前記組成式(8A)におけるk、l及びmの総和が1~3の整数値である場合は1を示し、この総和が0である場合は1又は2を示す。
 次に、前記組成式(8A)、(9A)及び(10A)におけるX1、X2及びX3、すなわち1価アニオン性単座配位子について詳細に説明する。1価アニオン性単座配位子とは、1価の負電荷を有し、金属錯体中の金属に対して単結合しうる官能基及び金属錯体に対する対イオンとして機能しうる陰イオン並びに双方の性質を同時に有する基を表し、具体的には(官能基としての名称/陰イオンとしての名称に続いて、括弧内にそれぞれの一般式を示す)、ヒドリド基/水素化物イオン(-H/H-)、水酸基/水酸化物イオン(-OH/HO-)、アルコキシ基/アルコキシドイオン(-OR/RO-)、アリールオキシ基/アリールオキシドイオン(-OAr/ArO-)、アシルオキシ基/カルボン酸イオン(-OC(=O)R/RCO2 -)、炭酸水素イオン(HCO3 -)、メルカプト基/硫化水素イオン(-SH/HS-)、アルキルチオ基/アルキルチオラートイオン(-SR/RS-)、アリールチオ基/アリールチオラートイオン(-SAr/ArS-)、スルホニルオキシ基/スルホン酸イオン(-OSO2R/RSO3 -)、チオシアン酸イオン(NCS-)、ハロゲノ基/ハロゲン化物イオン(-X/X-)、次亜塩素酸イオン(ClO-)、亜塩素酸イオン(ClO2 -)、塩素酸イオン(ClO3 -)、過塩素酸イオン(ClO4 -)、テトラヒドロホウ酸イオン(BH4 -)、テトラフルオロホウ酸イオン(BF4 -)、テトラアリールホウ酸イオン(BAr4 -)、リン酸二水素イオン(H2PO4 -)、ヘキサフルオロリン酸イオン(PF6 -)、ヘキサフルオロアンチモン酸イオン(SbF6 -)、アジ基/アジ化物イオン(-N3/N3 -)、シアノ基/シアン化物イオン(-CN/CN-)、ニトロ基/ニトリト基/亜硝酸イオン(-NO2/-ONO/NO2 -)、硝酸イオン(NO3 -)、硫酸水素イオン(HSO4 -)、テトラヒドロキソアルミン酸イオン([Al(OH)4-)、テトラヒドロキソクロム酸イオン([Cr(OH)4-)、ジシアノ銀酸イオン([Ag(CN)2-)及び塩化金酸イオン([AuCl4-)等が挙げられる。
 本発明の金属錯体における触媒活性の観点から、好ましい1価アニオン性単座配位子としては、具体的にはヒドリド基/水素化物イオン、水酸基/水酸化物イオン、アルコキシ基/アルコキシドイオン、アリールオキシ基/アリールオキシドイオン、アシルオキシ基/カルボン酸イオン、スルホニルオキシ基/スルホン酸イオン、ハロゲノ基/ハロゲン化物イオン、過塩素酸イオン、テトラヒドロホウ酸イオン、テトラフルオロホウ酸イオン、テトラアリールホウ酸イオン、ヘキサフルオロリン酸イオン及びヘキサフルオロアンチモン酸イオン等が挙げられ、より好ましくはヒドリド基/水素化物イオン、ハロゲノ基/ハロゲン化物イオン及びテトラヒドロホウ酸イオン等が挙げられる。
 好ましい1価アニオン性単座配位子について更に詳細に説明する。アルコキシ基/アルコキシドイオンとしては、例えば炭素数1~10のアルコキシ基/アルコキシドイオン、好ましくは炭素数1~4のアルコキシ基/アルコキシドイオンが挙げられ、具体的にはメトキシ基/メトキシドイオン、エトキシ基/エトキシドイオン、1-プロポキシ基/1-プロポキシドイオン、2-プロポキシ基/2-プロポキシドイオン、1-ブトキシ基/1-ブトキシドイオン、2-ブトキシ基/2-ブトキシドイオン及びtert-ブトキシ基/tert-ブトキシドイオン等が挙げられる。
 アリールオキシ基/アリールオキシドイオンとしては、例えば炭素数6~14のアリールオキシ基/アリールオキシドイオン、好ましくは炭素数6~10のアリールオキシ基/アリールオキシドイオンが挙げられ、具体的にはフェノキシ基/フェノキシドイオン、p-メチルフェノキシ基/p-メチルフェノキシドイオン、2,4,6-トリメチルフェノキシ基/2,4,6-トリメチルフェノキシドイオン、p-ニトロフェノキシ基/p-ニトロフェノキシドイオン、ペンタフルオロフェノキシ基/ペンタフルオロフェノキシドイオン、1-ナフチルオキシ基/1-ナフチルオキシドイオン及び2-ナフチルオキシ基/2-ナフチルオキシドイオン等が挙げられる。
 アシルオキシ基/カルボン酸イオンとしては、例えば炭素数1~18のアシルオキシ基/カルボン酸イオン、好ましくは炭素数1~6のアシルオキシ基/カルボン酸イオンが挙げられ、具体的にはホルミルオキシ基/ギ酸イオン、アセトキシ基/酢酸イオン、トリフルオロアセトキシ基/トリフルオロ酢酸イオン、プロパノイルオキシ基/プロピオン酸イオン、アクリロイルオキシ基/アクリル酸イオン、ブタノイルオキシ基/酪酸イオン、ピバロイルオキシ基/ピバリン酸イオン、ペンタノイルオキシ基/吉草酸イオン、ヘキサノイルオキシ基/カプロン酸イオン、ベンゾイルオキシ基/安息香酸イオン及びペンタフルオロベンゾイルオキシ基/ペンタフルオロ安息香酸イオン等が挙げられる。
 スルホニルオキシ基/スルホン酸イオンとしては、例えば炭素数1~18のスルホニルオキシ基/スルホン酸イオン、好ましくは炭素数1~10のスルホニルオキシ基/スルホン酸イオンが挙げられ、具体的にはメタンスルホニルオキシ基/メタンスルホン酸イオン、トリフルオロメタンスルホニルオキシ基/トリフルオロメタンスルホン酸イオン、n-ノナフルオロブタンスルホニルオキシ基/n-ノナフルオロブタンスルホン酸イオン、p-トルエンスルホニルオキシ基/p-トルエンスルホン酸イオン及び10-カンファースルホニルオキシ基/10-カンファースルホン酸イオン等が挙げられる。
 ハロゲノ基/ハロゲン化物イオンとしては、具体的にはフルオロ基/フッ化物イオン、クロロ基/塩化物イオン、ブロモ基/臭化物イオン及びヨード基/ヨウ化物イオンが挙げられ、好ましい具体例としてはクロロ基/塩化物イオンが挙げられる。
 テトラアリールホウ酸イオンとしては、具体的にはテトラフェニルホウ酸イオン、テトラキス(ペンタフルオロフェニル)ホウ酸イオン及びテトラキス[3,5-ビス(トリフルオロメチル)フェニル]ホウ酸イオン等が挙げられる。
 また、これらの1価アニオン性単座配位子は単体としては存在しないため、本発明の金属錯体を製造する際には、対応する1価アニオン性単座配位子源、すなわち1価アニオン性単座配位子由来の共役酸又は一価アニオン性単座配位子由来の塩として用いることが好ましい。
 次に、前記組成式(8A)、(9A)及び(10A)におけるL1、L2及びL3、すなわち中性単座配位子について詳細に説明する。中性単座配位子とは、金属に配位しうる非イオン性の官能基を少なくとも一つ有する有機化合物を表し、具体的には(一般名称に続いて、括弧内に一般式を示す)、水(H2O)、アルコール(ROH)、エーテル(ROR’)、ケトン(RC(=O)R’)、エステル(RC(=O)OR’)、チオール(RSH)、スルフィド(RSR’)、スルホキシド(RS(=O)R’)、アミン(RR’R”N)、アミド(RR’NC(=O)R”)、ニトリル(RCN)、イソニトリル(RNC)、ヘテロアレーン(HetArH)、2級ホスフィン(RR’PH)、2級ホスフィンオキシド(RR’P(=O)H)、3級ホスフィン(RR’R”P)、ホスファイト((RO)(R’O)(R”O)P)、ホスホロアミダイト((RO)(R’O)PNR”R’’’)、3級アルシン(RR’R”As)、カルベン(RR’C:)、ナイトレン(RN::)、シリレン(RR’Si:)、水素分子(H2)、窒素分子(N2)、一酸化炭素(CO)及び一酸化窒素(NO)等が挙げられる。
 有機合成反応における、本発明の金属錯体の触媒活性の観点から、好ましい中性単座配位子としては、アルコール、エーテル、スルフィド、スルホキシド、アミン、アミド、ニトリル、イソニトリル、ヘテロアレーン、2級ホスフィン、2級ホスフィンオキシド、3級ホスフィン、ホスファイト、ホスホロアミダイト、3級アルシン、カルベン、水素分子及び一酸化炭素が挙げられ、より好ましくは3級ホスフィン、ホスファイト及び一酸化炭素等が挙げられる。
 好ましい中性単座配位子について更に詳細に説明する。アルコールとしては、具体的にはメタノール、エタノール、2-プロパノール、2,2,2-トリフルオロエタノール及び1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール等が挙げられる。
 エーテルとしては、具体的にはジメチルエーテル、ジエチルエーテル、テトラヒドロフラン及び1,4-ジオキサン等が挙げられる。
 スルフィドとしては、具体的にはジメチルスルフィド、ジエチルスルフィド、ジフェニルスルフィド及びテトラヒドロチオフェン等が挙げられる。
 スルホキシドとしては、具体的にはジメチルスルホキシド及びテトラヒドロチオフェン-1-オキシド等が挙げられる。なお、これらのスルホキシドは、金属種に対して硫黄原子上の酸素原子又は硫黄原子のいずれで配位してもよい。
 アミンとしては、具体的にはアンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、イソプロピルアミン、アニリン、ベンジルアミン、α-フェネチルアミン、β-フェネチルアミン、ピペラジン、ピペリジン及びモルホリン等が挙げられる。
 アミドとしては、具体的にはN,N-ジメチルホルムアミド及びN,N-ジメチルアセトアミド等が挙げられる。
 ニトリルとしては、具体的にはアセトニトリル及びベンゾニトリル等が挙げられる。
 イソニトリルとしては、具体的には(トリメチルシリル)メチルイソシアニド、イソプロピルイソシアニド、1-ブチルイソシアニド、tert-ブチルイソシアニド、1-ペンチルイソシアニド、2-ペンチルイソシアニド、シクロヘキシルイソシアニド、1,1,3,3-テトラメチルブチルイソシアニド、1-アダマンチルイソシアニド、2,6-ジメチルフェニルイソシアニド、4-メトキシフェニルイソシアニド、2-ナフチルイソシアニド、ベンジルイソシアニド及びα-メチルベンジルイソシアニド等が挙げられ、好ましい具体例としては4-メトキシフェニルイソシアニド等が挙げられる。
 ヘテロアレーンとしては、具体的にはフラン、ベンゾフラン、イソベンゾフラン、チオフェン、チアナフテン、イソチアナフテン、ピリジン、キノリン、イソキノリン、3H-ピロール、3H-インドール、2H-ピロール、1H-イソインゾール、オキサゾール、オキサゾリン、ベンゾオキサゾール、イソオキサゾール、イソオキサゾリン、ベンゾイソオキサゾール、チアゾール、チアゾリン、ベンゾチアゾール、イソチアゾール、イソチアゾリン、ベンゾイソチアゾール、イミダゾール、イミダゾリン、ベンズイミダゾール、ピラゾール、2-ピラゾリン及びインダゾール等が挙げられる。
 2級ホスフィンとしては、具体的には一般式(4)で表される化合物の具体例として例示した2級ホスフィンと同様の化合物が挙げられる。
 2級ホスフィンオキシドとしては、具体的にはジメチルホスフィンオキシド、ジエチルホスフィンオキシド、ジイソプロピルホスフィンオキシド、ジ-tert-ブチルホスフィンオキシド、ジシクロペンチルホスフィンオキシド、ジシクロヘキシルホスフィンオキシド、ジフェニルホスフィンオキシド、ビス(2-メチルフェニル)ホスフィンオキシド、ビス(4-メチルフェニル)ホスフィンオキシド、ビス(3,5-ジメチルフェニル)ホスフィンオキシド、ビス(2,4,6-トリメチルフェニル)ホスフィンオキシド、ビス(2-メトキシフェニル)ホスフィンオキシド、ビス(4-メトキシフェニル)ホスフィンオキシド、ビス(4-トリフルオロメチルフェニル)ホスフィンオキシド、ビス[3,5-ビス(トリフルオロメチル)フェニル]ホスフィンオキシド、ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィンオキシド、tert-ブチルフェニルホスフィンオキシド、ジ-1-アダマンチルホスフィンオキシド、(11bS)-4,5-ジヒドロ-3H-ジナフト[2,1-c:1’,2’-e]ホスフェピン―4-オキシド及びジ-2-フリルホスフィンオキシド等が挙げられる。なお、これらの2級ホスフィンオキシドは、金属種に対してリン原子上の酸素原子又はリン原子のいずれで配位してもよい。
 3級ホスフィンとしては、下記一般式(11)
Figure JPOXMLDOC01-appb-C000028
(式中、Pはリン原子を表す。R12、R13及びR14は各々独立して、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基又は置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R12~R14は互いに結合して、置換基を有してもよい環を形成してもよい。)
で表される化合物が挙げられる。
 前記一般式(11)中、Pはリン原子を表す。R12、R13及びR14は各々独立して、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基又は置換基を有してもよいアラルキル基から構成される群より選択される基を表し、好ましくはアルキル基、置換基を有してもよいアリール基及び置換基を有してもよいヘテロアリール基から構成される群より選択される基を表す。
 アルキル基としては、直鎖状でも分岐状でも又は環状でもよい、例えば炭素数1~30のアルキル基、好ましくは炭素数1~20のアルキル基、より好ましくは炭素数1~10のアルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、2-プロピル基、シクロプロピル基、n-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、シクロブチル基、n―ペンチル基、2-ペンチル基、3-ペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、2-メチルブタン-3-イル基、2,2-ジメチルプロピル基、シクロペンチル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、tert-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、2-メチルペンタン-3-イル基、2-メチルペンタン-4-イル基、3-メチルペンタン-2-イル基、3-メチルペンタン-3-イル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2,2-ジメチルブタン-3-イル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、1-アダマンチル基及び2-アダマンチル基等が挙げられ、好ましい具体例としてはメチル基、エチル基及びシクロヘキシル基が挙げられる。
 アルケニル基としては、直鎖状でも分岐状でも又は環状でもよい、例えば炭素数2~20のアルケニル基、好ましくは炭素数2~14のアルケニル基、より好ましくは炭素数2~8のアルケニル基が挙げられ、具体的にはビニル基、1-プロペニル基、2-プロペニル基、アリル基、1-シクロヘキセニル基、1-スチリル基及び2-スチリル基等が挙げられる。
 アリール基としては、例えば炭素数6~18のアリール基、好ましくは炭素数6~14のアリール基、より好ましくは炭素数6~10のアリール基が挙げられ、具体的にはフェニル基、1-ナフチル基及び2-ナフチル基等が挙げられ、好ましい具体例としてはフェニル基が挙げられる。
 ヘテロアリール基としては、窒素原子、酸素原子及び硫黄原子からなる群より選ばれるヘテロ原子を1~4個有する5~6員環の芳香族複素環及び、該芳香族複素環が前記アリール基によって縮環されることで生じる多環芳香族複素環由来のヘテロアリール基が挙げられ、具体的には2-フリル基、3-フリル基、2-チエニル基、3-チエニル基、2-ベンゾフリル基、3-ベンゾフリル基、2-ベンゾチエニル基及び3-ベンゾチエニル基等が挙げられ、好ましい具体例としては2-フリル基が挙げられる。
  アラルキル基としては、前記アルキル基の少なくとも一つの水素原子が前記アリール基によって置換されたアラルキル基及び、前記環状アルキル基が前記アリール基によって縮環されることで生じる多環アラルキル基が挙げられ、具体的にはベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、2-フェニルプロピル基、3-フェニルプロピル基、1-フェニル-2-プロピル基、2-フェニル-2-プロピル基、1-インダニル基、2-インダニル基及び9-フルオレニル基等が挙げられる。
 R12~R14は互いに結合して、置換基を有してもよい環を形成してもよい。このような環の具体例としては、ホスホラン環、ホスホール環、ホスフィナン環及びホスフィニン環等が挙げられる。
 R12~R14におけるアルケニル基、アリール基、ヘテロアリール基及びアラルキル基及び、R12~R14が互いに結合して形成する環が有してもよい置換基としては、アルキル基、ハロゲノアルキル基、アルケニル基、アリール基、ヘテロアリール基、アラルキル基、水酸基、アルコキシ基、アルコキシカルボニル基、カルボキシル基、アミノ基、スルホ基及びハロゲノ基等が挙げられる。これらの置換基の内、アルキル基、アルケニル基、アリール基、ヘテロアリール基及びアラルキル基は、R12~R14の詳細な説明における基と同様である。
 ハロゲノアルキル基としては、前記アルキル基の少なくとも一つの水素原子がハロゲン原子によって置換された基が挙げられ、具体的にはトリフルオロメチル基及びn-ノナフルオロブチル基等が挙げられ、好ましい具体例としてはトリフルオロメチル基が挙げられる。
 アルコキシ基としては、例えば炭素数1~10のアルコキシ基、好ましくは炭素数1~4のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、1-プロポキシ基、2-プロポキシ基、1-ブトキシ基、2-ブトキシ基及びtert-ブトキシ基等が挙げられ、好ましい具体例としてはメトキシ基が挙げられる。
 アルコキシカルボニル基としては、具体的にはメトキシカルボニル基等が挙げられる。
 アミノ基としては、具体的にはジメチルアミノ基及び4-モルホリニル基等が挙げられる。
 ハロゲノ基としては、具体的にはフルオロ基、クロロ基、ブロモ基及びヨード基が挙げられ、好ましくはフルオロ基及びクロロ基が挙げられる。
 一般式(11)で表される3級ホスフィンの好ましい具体例としては、トリメチルホスフィン(11-1)、トリエチルホスフィン(11-2)、トリシクロヘキシルホスフィン(11-3)、トリフェニルホスフィン(11-4)、トリス(4-トリフルオロメチルフェニル)ホスフィン(11-5)、トリス(4-メトキシフェニル)ホスフィン(11-6)及びトリス(2-フリル)ホスフィン(11-7)等が挙げられる。
Figure JPOXMLDOC01-appb-C000029
 ホスファイトとしては、具体的には亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリス(2,2,2-トリフルオロエチル)、亜リン酸トリイソプロピル、亜リン酸トリフェニル及び4-エチル-2,6,7-トリオキサ-1-ホスファビシクロ[2,2,2]オクタン等が挙げられ、好ましい具体例としては4-エチル-2,6,7-トリオキサ-1-ホスファビシクロ[2,2,2]オクタン等が挙げられる。
 ホスホロアミダイトとしては、具体的にはジメチル-N,N-ジイソプロピルホスホロアミダイト、ジ-tert-ブチル-N,N-ジエチルホスホロアミダイト及びジベンジル-N,N-ジメチルホスホロアミダイト等が挙げられる。
 3級アルシンとしては、具体的にはトリフェニルアルシン等が挙げられる。
 カルベンとしては、カルベン炭素、すなわち6個の価電子を有する非イオン性の2価炭素原子を分子内に有する、直鎖状でも分岐状でも又は環状でもよい、一重項状態又は三重項状態の有機化合物が挙げられる。有機合成反応における、本発明の金属錯体の触媒活性の観点から、好ましいカルベンとしては一重項状態のカルベンが挙げられる。更に、該カルベンの化学的安定性の観点から、より好ましいカルベンとしては、一重項状態かつカルベン炭素が含窒素複素環式化合物に含まれる、いわゆるN-ヘテロ環状カルベンが挙げられる。
 N-ヘテロ環状カルベンとしては、具体的にはイミダゾール-2-イリデン、イミダゾール-4-イリデン、ジヒドロイミダゾール-2-イリデン、テトラヒドロピリミジン-2-イリデン、ヘキサヒドロ-1,3-ジアゼピン-2-イリデン、オキサゾール-2-イリデン、ジヒドロオキサゾール-2-イリデン、チアゾール-2-イリデン、ジヒドロチアゾール-2-イリデン、ピラゾールイリデン、トリアゾールイリデン及びピリドイリデン等が挙げられる。
 合成上の観点から好ましいN-ヘテロ環状カルベンとしては、下記一般式(12)
Figure JPOXMLDOC01-appb-C000030
(式中、二点リーダは孤立電子対を表す。Cは炭素原子を表し、Nは窒素原子を表す。R15及びR16は各々独立して、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R17及びR18は各々独立して、水素原子及び、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R15~R19は互いに結合して、置換基を有してもよい環を形成してもよい。)
で表されるイミダゾール-2-イリデン及び、下記一般式(13)
Figure JPOXMLDOC01-appb-C000031
(式中、二点リーダは孤立電子対を表す。Cは炭素原子を表し、Nは窒素原子を表す。R19及びR20は各々独立して、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R21、R22、R23及びR24は各々独立して、水素原子及び、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R19~R24は互いに結合して、置換基を有してもよい環を形成してもよい。)
で表されるジヒドロイミダゾール-2-イリデンが挙げられる。
 前記一般式(12)及び(13)中、二点リーダは孤立電子対を表す。Cは炭素原子を表し、Nは窒素原子を表す。R15、R16、R19及びR20は各々独立して、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R17、R18、R21、R22、R23及びR24は各々独立して、水素原子及び、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R15~R18、R19~R24は互いに結合して、置換基を有してもよい環を形成してもよい。
 R15~R24におけるアルキル基、アルケニル基、アリール基及びアラルキル基は、前記一般式(11)におけるR12~R14の詳細な説明における基と同様である。R15~R24におけるアルケニル基、アリール基及びアラルキル基、R15~R18が互いに結合して形成する環及び、R19~R24が互いに結合して形成する環が有していてもよい置換基としては、アルキル基、ハロゲノアルキル基、アルケニル基、アリール基、ヘテロアリール基、アラルキル基、水酸基、アルコキシ基、アミノ基及びハロゲノ基等が挙げられる。これらの置換基は、前記一般式(11)のR12~R14におけるアルケニル基、アリール基、ヘテロアリール基及びアラルキル基並びに、R12~R14が互いに結合して形成する環が有してもよい置換基の詳細な説明における基と同様である。
 一般式(12)で表されるイミダゾール-2-イリデンの具体例としては、例えば1,3-ジメチル-2H-イミダゾール-2-イリデン(12-1)、1-エチル-3-メチル-2H-イミダゾール-2-イリデン(12-2)、1,3-ジイソプロピルー2H-イミダゾール-2-イリデン(12-3)、1,3-ジ-tert-ブチル-2H-イミダゾール-2-イリデン(12-4)、1,3-ジシクロヘキシル-2H-イミダゾール-2-イリデン(12-5)、1,3-ビス(1-アダマンチル)-2H-イミダゾール-2-イリデン(12-6)、1,3-ジメチル-2H-ベンズイミダゾール-2-イリデン(12-7)、1,3-ジ-tert-ブチル-2H-ベンズイミダゾール-2-イリデン(12-8)、1,3-ジシクロヘキシル-2H-ベンズイミダゾール-2-イリデン(12-9)、1,3-ビス(1-アダマンチル)-2H-ベンズイミダゾール-2-イリデン(12-10)、1-メチル-3-(2,4,6-トリメチルフェニル)-2H-ベンズイミダゾール-2-イリデン(12-11)1,3-ビス(2,6-ジイソプロピルフェニル)-2H-イミダゾール-2-イリデン(12-12)、1,3-ビス(2,4,6-トリメチルフェニル)-2H-イミダゾール-2-イリデン(12-13)、1,3-ビス[(1S)-2,2-ジメチル-1-(1-ナフチル)プロピル]-2H-イミダゾール-2-イリデン(12-14)、2-(2,6-ジイソプロピルフェニル)-5-メチルイミダゾ[1,5-a]ピリジン-1(2H)-イリデン(12-15)、2-(2,4,6-トリメチルフェニル)-5-メチルイミダゾ[1,5-a]ピリジン-1(2H)-イリデン(12-16)及び2-ベンジルイミダゾ[1,5-a]キノリン-1(2H)-イリデン(12-17)等が挙げられる。
Figure JPOXMLDOC01-appb-C000032
 一般式(13)で表されるジヒドロイミダゾール-2-イリデンの具体例としては、1,3-ジメチル-2-イミダゾリジンイリデン(13-1)、1,3-ビス(2,4,6-トリメチルフェニル)-2-イミダゾリジンイリデン(13-2)、1,3-ビス(2,6-ジイソプロピルフェニル)-2-イミダゾリジンイリデン(13-3)、1-(2,6-ジイソプロピルフェニル)-3-(2,4,6-トリメチルフェニル)-2-イミダゾリジンイリデン(13-4)、1-(1-アダマンチル)-3-(2,4,6-トリメチルフェニル)-2-イミダゾリジンイリデン(13-5)、1,3-ビス(2,7-ジイソプロピルナフタレン-1-イル)-2-イミダゾリジンイリデン(13-6)、1,3-ビス[(1S)-2,2-ジメチル-1-(1-ナフチル)プロピル]-2-イミダゾリジンイリデン(13-7)及び1,3-ビス[(1S)-2,2-ジメチル-1-(2-トリル)プロピル]-2-イミダゾリジンイリデン(13-8)等が挙げられる。
Figure JPOXMLDOC01-appb-C000033
 前記N-ヘテロ環状カルベンの中には空気に不安定な化合物もあることから、取り扱いを容易にするため、ブレンステッド酸、具体的には例えば塩酸、臭化水素酸、ヨウ化水素酸及びテトラフルオロホウ酸等と反応させることで対応するブレンステッド酸塩としてもよい。これらのブレンステッド酸塩を本発明の金属錯体の製造に用いる際には、ブレンステッド酸塩のまま反応に用いてもよく、反応系外で塩基を作用させてN-ヘテロ環状カルベンを遊離させた後に用いてもよく、反応系内で塩基を作用させてN-ヘテロ環状カルベンを遊離させながら用いてもよい。
 次に、前記組成式(8A)で表される金属錯体における、k、l、m及びnが示す数値と金属錯体の構造との相関について、下記構造組成式(構造組成式とは、三座配位子を有する金属錯体に特有のfacial/meridional異性、複数の単座配位子を有する金属錯体に特有の配位異性、及び三座配位子の“Hemilability”を考慮しない構造式と定義する)(8B)、(8C)、(8D)、(8E)及び(8F)によって詳細に説明する。なお、下記構造組成式(8B)~(8F)中、H、N、P、S、R1、R2、R3、Q1及びQ2は前記一般式(1A)における定義と同様であり、M8、X1、X2、L1、L2及びL3は前記組成式(8A)における定義と同様であり、各記号間の破線は配位結合を表す。
Figure JPOXMLDOC01-appb-C000034
 k、l、m及びnが示す数値の組み合わせについて、(k,l,m,n)=((kの数値),(lの数値),(mの数値),(nの数値))という形式で記載する。前記構造組成式(8B)~(8F)からわかるように、(k,l,m,n)=(1,1,1,1)の場合、前記組成式(8A)はジカチオン性錯体を表し、(k,l,m,n)=(1,1,1,0)の場合はカチオン性錯体を表し、(k,l,m,n)=(1,0,0,1)の場合、前記組成式(8A)は中性錯体を表す。更に、(k,l,m,n)=(0,0,0,1)の場合、前記組成式(8A)は中性5配位錯体を表し、(k,l,m,n)=(0,0,0,2)の場合は中性二核錯体を表す。
 前記組成式(8A)で表される金属錯体の好ましい形態としては、前記構造組成式(8B)~(8F)においてQ1が1,2-エタンジイル基である、下記構造組成式(8G)、(8H)、(8I)、(8J)及び(8K
Figure JPOXMLDOC01-appb-C000035
(式中、C、H、N、P、S、R1、R2、R3、R4、R5、R6、R7及びQ2は前記一般式(1B)における定義と同様である。M8、X1、X2、L1、L2及びL3は前記組成式(8A)における定義と同様であり、各記号間の破線は配位結合を表す。)
で表される金属錯体及び、前記構造組成式(8B)~(8F)においてQ2が1,2-エタンジイル基である、下記構造組成式(8L)、(8M)、(8N)、(8O)及び(8P
Figure JPOXMLDOC01-appb-C000036
(式中、C、H、N、P、S、R1、R2、R3、R8、R9、R10、R11及びQ1は前記一般式(1C)における定義と同様である。M8、X1、X2、L1、L2及びL3は前記組成式(8A)における定義と同様であり、各記号間の破線は配位結合を表す。)
で表される金属錯体が挙げられる。前記組成式(8A)で表される金属錯体のより好ましい形態としては、前記構造組成式(8B)~(8F)においてQ1及びQ2がいずれも1,2-エタンジイル基である、下記構造組成式(8Q)、(8R)、(8S)、(8T)及び(8U
Figure JPOXMLDOC01-appb-C000037
(式中、C、H、N、P、S、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11は前記一般式(1D)における定義と同様である。M8、X1、X2、L1、L2及びL3は前記組成式(8A)における定義と同様であり、各記号間の破線は配位結合を表す。)
で表される金属錯体が挙げられ、特に好ましい形態としては前記構造組成式(8R)、(8S)及び(8U)で表される金属錯体が挙げられる。前記組成式(8A)で表される金属錯体の特に好ましい具体例としては、下記構造組成式(8S-1)~(8S-17)、(8U-1)~(8U-3)及び(8R-1)が挙げられる。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 次に、前記組成式(9A)で表される金属錯体における、k、l及びmの数値と金属錯体の構造との相関について、下記構造組成式(9B)、(9C)、(9D)及び(9E)によって説明する。なお、下記構造組成式(9B)~(9E)中、H、N、P、S、R1、R2、R3、Q1及びQ2は前記一般式(1A)における定義と同様であり、M9、X1、X2、X3、L1、L2及びL3は前記組成式(9A)における定義と同様であり、各記号間の破線は配位結合を表す。
Figure JPOXMLDOC01-appb-C000040
 k、l及びmが示す数値の組み合わせについて、(k,l,m)=((kの数値),(lの数値),(mの数値))という形式で記載する。前記構造組成式(9B)~(9E)からわかるように、(k,l,m)=(1,1,1)の場合、前記組成式(9A)はトリカチオン性錯体を表し、(k,l,m)=(1,1,0)の場合はジカチオン性錯体を表す。また、(k,l,m)=(1,0,0)の場合、前記組成式(9A)はカチオン性錯体を表し、(k,l,m)=(0,0,0)の場合は中性錯体を表す。
 前記組成式(9A)で表される金属錯体の好ましい形態としては、前記構造組成式(9B)~(9E)においてQ1が1,2-エタンジイル基である、下記構造組成式(9F)、(9G)、(9H)及び(9I
Figure JPOXMLDOC01-appb-C000041
(式中、C、H、N、P、S、R1、R2、R3、R4、R5、R6、R7及びQ2は前記一般式(1B)における定義と同様である。M9、X1、X2、X3、L1、L2及びL3は前記組成式(9A)における定義と同様であり、各記号間の破線は配位結合を表す。)
で表される金属錯体及び、前記構造組成式(9B)~(9E)においてQ2が1,2-エタンジイル基である、下記構造組成式(9J)、(9K)、(9L)及び(9M
Figure JPOXMLDOC01-appb-C000042
(式中、C、H、N、P、S、R1、R2、R3、R8、R9、R10、R11及びQ1は前記一般式(1C)における定義と同様である。M9、X1、X2、X3、L1、L2及びL3は前記組成式(9A)における定義と同様であり、各記号間の破線は配位結合を表す。)
で表される金属錯体が挙げられる。前記組成式(9A)で表される金属錯体のより好ましい形態としては、前記構造組成式(9B)~(9E)においてQ1及びQ2がいずれも1,2-エタンジイル基である、下記構造組成式(9N)、(9O)、(9P)及び(9Q) 
Figure JPOXMLDOC01-appb-C000043
(式中、各記号間の実線、C、H、N、P、S、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11は前記一般式(1D)における定義と同様である。M9、X1、X2、X3、L1、L2及びL3は前記組成式(9A)における定義と同様であり、各記号間の破線は配位結合を表す。)で表される金属錯体が挙げられる。
 更に、前記組成式(10A)で表される金属錯体における、kの数値と金属錯体の構造との相関について、下記構造組成式(10B)及び(10C)によって説明する。なお、下記構造組成式(10B)及び(10C)中、H、N、P、S、R1、R2、R3、Q1及びQ2は前記一般式(1A)における定義と同様であり、M10、X1、X2及びL1は前記組成式(10A)における定義と同様であり、各記号間の破線は配位結合を表す。
Figure JPOXMLDOC01-appb-C000044
 kが示す数値について、k=(kの数値)という形式で記載する。前記構造組成式(10B)及び(10C)からわかるように、k=1の場合、前記組成式(10A)はジカチオン性錯体を表し、k=0の場合はカチオン性錯体を表す。
 前記組成式(10A)で表される金属錯体の好ましい形態としては、前記構造組成式(10B)及び(10C)においてQ1が1,2-エタンジイル基である、下記構造組成式(10D)及び(10E
Figure JPOXMLDOC01-appb-C000045
(式中、C、H、N、P、S、R1、R2、R3、R4、R5、R6、R7及びQ2は前記一般式(1B)における定義と同様である。M10、X1、X2及びL1は前記組成式(10A)における定義と同様であり、各記号間の破線は配位結合を表す。)
で表される金属錯体及び、前記構造組成式(10B)及び(10C)においてQ2が1,2-エタンジイル基である、下記構造組成式(10F)及び(10G
Figure JPOXMLDOC01-appb-C000046
(式中、C、H、N、P、S、R1、R2、R3、R8、R9、R10、R11及びQ1は前記一般式(1C)における定義と同様である。M10、X1、X2及びL1は前記組成式(10A)における定義と同様であり、各記号間の破線は配位結合を表す。)
で表される金属錯体が挙げられる。前記組成式(10A)で表される金属錯体のより好ましい形態としては、前記構造組成式(10B)及び(10C)においてQ1及びQ2がいずれも1,2-エタンジイル基である、下記構造組成式(10H)及び(10I
Figure JPOXMLDOC01-appb-C000047
(式中、C、H、N、P、S、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11は前記一般式(1D)における定義と同様である。M10、X1、X2及びL1は前記組成式(10A)における定義と同様であり、各記号間の破線は配位結合を表す。)
で表される金属錯体が挙げられる。
 なお、金属種の配位効果により、本発明の金属錯体におけるイミノ基上の水素原子は、本発明の化合物におけるイミノ基上の水素原子よりも酸性度が増大していることから、本発明の金属錯体を塩基にて処理することで脱プロトン化され、金属原子-窒素原子間の配位結合が共有結合となる場合がある。具体的に、本発明の金属錯体(8D)の脱プロトン化による下記構造組成式(8D’)(式中、各記号間の破線、N、P、S、R1、R2、R3、Q1、Q2、M8、X1及びL1は前記構造組成式(8D)における定義と同様である。)で表される金属錯体の形成を例にとって説明する(Eq.6)。このような脱プロトン化された本発明の金属錯体は、触媒的有機合成反応における活性中間体としても重要である。
Figure JPOXMLDOC01-appb-C000048
 本発明の化合物は、種々の触媒的有機合成反応における三座配位子として有用であり、また本発明の金属錯体は、種々の有機合成反応における触媒として有用である。これらの有機合成反応は特に限定されるものではないが、具体的には酸化反応、還元反応、水素添加反応、脱水素反応、水素移動反応、付加反応、共役付加反応、環化反応、官能基変換反応、異性化反応、転位反応、重合反応、結合形成反応及び結合切断反応等が挙げられ、好ましくは水素添加反応、より好ましくはエステル類の水素添加反応等が挙げられる。
 触媒的有機合成反応における配位子として本発明の化合物を用いる場合、該反応系への本発明の化合物の添加方法は特に限定されるものではないが、本発明の化合物と金属化合物を反応系内に各々単独に添加してもよく、本発明の化合物と金属化合物(及び溶媒)の混合物として反応系内に添加してもよく、本発明の化合物及び金属化合物(並びに、必要に応じて前記1価アニオン性単座配位子源、前記中性単座配位子、及びN-ヘテロ環状カルベンのブレンステッド酸塩等の中性単座配位子等価体)を溶媒中で反応させることによって得られる、本発明の金属錯体の溶液として反応系内に添加してもよい。これらの添加方法においては、触媒活性及び反応選択性を調整するために、前記1価アニオン性単座配位子源、前記中性単座配位子及び前記中性単座配位子等価体を別途添加してもよい。また、本発明の化合物は、各々単独で用いても2種以上適宜組み合わせて用いてもよい。
 有機合成反応における触媒として本発明の金属錯体を用いる場合、該反応系への本発明の金属錯体の添加反応は特に限定されるものではないが、本発明の金属錯体を反応系内に単独で添加してもよく、本発明の金属錯体を溶媒に溶解又は懸濁させた後に反応系内に添加してもよい。これらの添加方法においては、触媒活性及び反応選択性を調整するために、本発明の化合物、前記1価アニオン性単座配位子源、前記中性単座配位子及び前記中性単座配位子等価体を別途添加してもよい。また、本発明の金属錯体は、各々単独で用いても2種以上適宜組み合わせて用いてもよい。
 以下に、本発明の化合物及び本発明の金属錯体並びに本発明の金属錯体を用いた触媒反応について、実施例及び比較例を挙げて詳細に説明するが、本発明はこれらの実施例及び比較例によって何ら限定されるものではない。実施例及び比較例中において、物性の測定に用いた装置及び条件は次の通りである。
1)プロトン核磁気共鳴分光法(1H NMR):Varian Marcury plus 300型装置(共鳴周波数:300MHz、バリアン社製)又は、400MR DD2型装置(共鳴周波数:400MHz、アジレント社製)
内部標準物質:テトラメチルシラン(0ppm(singletピーク))又は残留軽溶媒(メタノール:3.31ppm(quintetピーク)、ジクロロメタン:5.32ppm(tripletピーク)、クロロホルム:7.26ppm(singletピーク))
2)炭素13核磁気共鳴分光法(13C NMR):Varian Marcury plus 300型装置(共鳴周波数:75MHz、バリアン社製)又は、400MR DD2型装置(共鳴周波数:100MHz、アジレント社製)
内部標準物質:クロロホルム(77ppm(tripletピーク))
3)リン31核磁気共鳴分光法(31P NMR):Varian Marcury plus 300型装置(共鳴周波数:121MHz、バリアン社製)又は、400MR DD2型装置(共鳴周波数:161MHz、アジレント社製)
外部標準物質:重水中リン酸(0ppm(singletピーク))
4)フッ素19核磁気共鳴分光法(19F NMR):400MR DD2型装置(共鳴周波数:376MHz、アジレント社製)
外部標準物質:α,α,α-トリフルオロ-p-キシレン(-64ppm(singletピーク))
5)ガスクロマトグラフィー(GC):GC-4000型装置(ジーエルサイエンス社製)
カラム:InertCap PureWax(ジーエルサイエンス社製)、試料導入部:200℃、試料検出部:250℃、初期温度:50℃、昇温速度1:5℃/分、到達温度1:150℃、到達温度1保持時間:0分、昇温温度2:10℃/分、到達温度2:250℃、到達温度2保持時間:5分。
6)精密質量分析(HRMS):LCMS-IT-TOF型装置(島津製作所社製)
 実施例1~10は本発明の化合物の製造、実施例11~31は本発明の金属錯体の製造、実施例32及び実施例33並びに比較例1~4は本発明の金属錯体を触媒として用いた有機合成反応に関する。なお、特に但し書きの無い限り、基質及び溶媒等の仕込みは窒素気流下、反応は窒素雰囲気下、反応液の後処理及び粗生成物の精製は空気中で実施した。
(実施例1)2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン(構造式(1D-1))の合成、経路1(Eq.7)
Figure JPOXMLDOC01-appb-C000049
第1工程:3-(2-クロロエチル)-2-オキサゾリジノン(構造式(6-1))の合成
Figure JPOXMLDOC01-appb-C000050
(仕込み・反応)本工程は空気中で行った。2L四つ口丸底フラスコにマグネティックスターラーバー及び温度計を取り付け、N,N-ビス(クロロエチル)アミン塩酸塩(200.0g、1.12mol、1.0当量)、メタノール(MeOH)(600mL)及びトリエチルアミン(Et3N)(328.0mL、2.35mol、2.1当量)を順次仕込んだ。得られた溶液に、ドライアイスから発生させた二酸化炭素(CO2)ガスを室温で1時間通気した。
(後処理・単離・精製)反応液を減圧下濃縮後にトルエン(1.0L)を加え、得られた白色懸濁液を吸引濾過した後に、残渣をトルエンで洗浄した。濾液をまとめて減圧下濃縮することで、表題化合物(6-1)が薄黄色液体として165.7g得られた。単離収率:98.9%。なお本化合物は蒸留精製にて脱色可能であったが(沸点:135℃(3mmHg))、NMR分析の結果ほぼ純粋だったため、これ以上の精製を行うことなく以降の工程に使用した。
1H NMR(300MHz,重クロロホルム(CDCl3)):δ=4.38(ddd,J=0.9,6.3,7.8Hz,2H),3.79-3.67(m,4H),3.66-3.59(m,2H).
13C NMR(75MHz,CDCl3):δ=158.38,62.01,46.19,45.70,42.03.
第2工程:3-[2-(メチルチオ)エチル]-2-オキサゾリジノン(構造式(2C-1))の合成
Figure JPOXMLDOC01-appb-C000051
(仕込み・反応)本工程は空気中で行った。1L四つ口丸底フラスコにマグネティックスターラーバー、冷却管、滴下漏斗及び温度計を取り付け、第1工程で得られた3-(2-クロロエチル)-2-オキサゾリジノン(6-1)(48.7g、325.6mmol、1.0当量)及びMeOH(200mL)を順次仕込み、得られた溶液を55℃に加熱した。次いで、メタンチオール(5-1)のナトリウム塩(NaSMe)の21.3重量%水溶液(128.6g、390.7mmol、1.2当量)を滴下漏斗に仕込み、15分かけて溶液に滴下した後に、反応液を60℃で1時間攪拌した。
(後処理・単離・精製)減圧下、反応液からMeOHを190mL回収した後に、酢酸エチル(500mL)を加えて有機層を分液した。水層を酢酸エチルで1回抽出した後、有機層をまとめて減圧下濃縮した。得られた残渣を蒸留精製(沸点:137℃(0.4mmHg))にて精製することで、表題化合物(2C-1)が無色液体として43.9g得られた。単離収率:83.6%。
1H NMR(400MHz,CDCl3):δ=4.38-4.32(m,2H),3.67-3.62(m,2H),3.49(t,J=6.8Hz,2H),2.70(t,J=6.8Hz,2H),2.15(s,3H).
13C NMR(100MHz,CDCl3):δ=158.38,61.77,44.80,42.87,31.77,15.18.
第3工程:2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン(構造式(1D-1))の合成
Figure JPOXMLDOC01-appb-C000052
(仕込み・反応)200mL四つ口丸底フラスコに、マグネティックスターラーバー、滴下漏斗、温度計及び三方コックを取り付けて内部を窒素置換し、ジフェニルホスフィン(4-7)(純度:98.5%、10.0g、52.9mmol、1.1当量)及び脱水テトラヒドロフラン(THF)(50mL)を順次仕込み、得られた溶液を氷水浴にて5℃に冷却した。n-ブチルリチウム(n-BuLi)のn-ヘキサン溶液(濃度:1.60mol/L、33.1mL、52.9mmol、1.1当量)を滴下漏斗に仕込み、内温が10℃以下を保つ速度で20分かけて溶液に滴下した後、氷水浴を取り去って室温で20分攪拌することで、リチウムジフェニルホスフィド(Ph2PLi)のTHF/n-ヘキサン溶液(52.9mmol、1.1当量)を赤橙色液体として調製した。次いで、第2工程で得られた3-[2-(メチルチオ)エチル]-2-オキサゾリジノン(2C-1)(7.8g、48.1mmol、1.0当量)及び脱水THF(10mL)を滴下漏斗に順次仕込み、内温が30℃以下を保つ速度で30分かけてPh2PLi溶液に滴下した。
(後処理・単離・精製)反応液を減圧下濃縮し、水(100mL)及び酢酸エチル(200mL)を加え、攪拌した後に静置して水層を分液した。有機層を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:トルエン/酢酸エチル/トリエチルアミン=2/1/0.03~1/2/0.03)にて精製することで、表題化合物(1D-1)が薄黄色粘性液体として12.5g得られた。単離収率:77.9%。
1H NMR(400MHz,CDCl3):δ=7.46-7.39(m,4H),7.36-7.30(m,6H),2.82-2.72(m,4H),2.61(t,J=6.4Hz,2H),2.31-2.25(m,2H),2.07(s,3H),1.53*(br s,1H).(*但し水由来のピークを含む)
31P NMR(161MHz,CDCl3):δ=-20.7.
(実施例2)2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン(構造式(1D-1))の合成、経路2(Eq.8)
Figure JPOXMLDOC01-appb-C000053
第1工程:3-[2-(ジフェニルホスフィノ)エチル]-2-オキサゾリジノン(構造式(3C-1))の合成
Figure JPOXMLDOC01-appb-C000054
(仕込み・反応)500mL四つ口丸底フラスコに、マグネティックスターラーバー、滴下漏斗、温度計及び三方コックを取り付けて内部を窒素置換し、実施例1第1工程で得られた3-(2-クロロエチル)-2-オキサゾリジノン(6-1)(16.1g、107.4mmol、1.0当量)及び脱水THF(80mL)を仕込み、得られた溶液をドライアイス/アセトン浴を用いて-30℃に冷却した。次いで、実施例1第3工程と同様にして調製した、Ph2PLiのTHF/n-ヘキサン溶液(107.4mmol、1.0当量)を滴下漏斗に仕込み、内温が-20℃以下を保つ速度で2時間半かけて溶液に滴下した後、得られた反応液を室温まで昇温させた。
(後処理・単離・精製)反応液を減圧下濃縮後に得られた残渣にトルエン(300mL)及び水(100mL)を加え、攪拌した後に静置して水層を分液した。有機層を水(50mL)で3回洗浄した後に減圧下濃縮し、得られた残渣を2-メチル-2-ブタノール(tAmOH)から再結晶することで、表題化合物(3C-1)が白色粉末として18.7g得られた。単離収率:58.2%。
1H NMR(300MHz,CDCl3):δ=7.49-7.31(m,10H),4.21-4.13(m,2H),3.54-3.37(m,4H),2.37-2.31(m,2H).
31P NMR(121MHz,CDCl3):δ=-21.3.
第2工程:2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン(1D-1)の合成
(仕込み・反応)100mL四つ口丸底フラスコに、マグネティックスターラーバー、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、第1工程で得られた3-[2-(ジフェニルホスフィノ)エチル]-2-オキサゾリジノン(3C-1)(6.0g、20.0mmol)、tAmOH(40mL)及びNaSMe(純度:95.0%、1.77g、24.0mmol、1.2当量)を順次仕込み、得られた懸濁液を還流下1時間攪拌した。
(後処理・単離・精製)反応液を減圧下濃縮し、得られた残渣を直接シリカゲルカラムクロマトグラフィー(溶離液:トルエン/酢酸エチル/トリエチルアミン=2/1/0.03~1/2/0.03)にて濾過・精製することで、表題化合物(1D-1)が薄黄色粘性液体として4.9g得られた。単離収率:80.8%。本化合物のNMR分析結果は、実施例1第3工程で得られたものと完全に一致した。
(実施例3)2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(構造式(1D-2))の合成、経路1(Eq.9)
Figure JPOXMLDOC01-appb-C000055
第1工程:3-[2-(エチルチオ)エチル]-2-オキサゾリジノン(構造式(2C-2))の合成
Figure JPOXMLDOC01-appb-C000056
(仕込み・反応)本工程は空気中で行った。200mL四つ口丸底フラスコにマグネティックスターラーバー、冷却管及び温度計を取り付け、実施例1第1工程で得られた3-(2-クロロエチル)-2-オキサゾリジノン(6-1)(16.3g、109.1mmol、1.0当量)、MeOH(55mL)及びエタンチオール(5-2)のナトリウム塩(NaSEt)(純度:96.4%、10.0g、114.6mmol、1.05当量)を順次仕込み、得られた懸濁液を還流下で1時間攪拌した。
(後処理・単離・精製)反応液を減圧下濃縮し、得られた残渣を直接シリカゲルカラムクロマトグラフィー(溶離液:トルエン/酢酸エチル=1/1~1/4)にて濾過・精製することで、表題化合物(2C-2)が薄黄色液体として17.9g得られた。単離収率:93.6%。
1H NMR(300MHz,CDCl3):δ=4.38-4.30(m,2H),3.69-3.61(m,2H),3.47(t,J=6.9Hz,2H),2.73(t,J=6.9Hz,2H),2.59(q,J=7.2Hz,2H),1.27(t,J=7.2Hz,3H).
第2工程:2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(構造式(1D-2))の合成
Figure JPOXMLDOC01-appb-C000057
(仕込み・反応)実施例1第3工程と同様に、200mL四つ口丸底フラスコ、マグネティックスターラーバー、滴下漏斗、温度計及び三方コックを用いて、Ph2PLiのTHF/n-ヘキサン溶液(52.9mmol、1.1当量)を調製した。次いで、第1工程で得られた3-[2-(エチルチオ)エチル]-2-オキサゾリジノン(2C-2)(8.4g、48.1mmol、1.0当量)及び脱水THF(10mL)を滴下漏斗に順次仕込み、内温が30℃以下を保つ速度で30分かけてPh2PLi溶液に滴下した。
(後処理・単離・精製)反応液を減圧下濃縮し、水(100mL)及び酢酸エチル(200mL)を加え、攪拌した後に静置して分液した。有機層を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:トルエン/酢酸エチル/トリエチルアミン=2/1/0.03~1/2/0.03)にて精製することで、表題化合物(1D-2)が薄黄色粘性液体として13.8g得られた。単離収率:90.4%。
1H NMR(300MHz,CDCl3):δ=7.47-7.29(m,10H),2.82-2.71(m,4H),2.63(t,J=6.3Hz,2H),2.51(q,J=7.5Hz,2H),2.28(dd,J=7.5,8.1Hz,2H),1.64*(br s,1H),1.24(t,J=7.5Hz,3H).(*但し水由来のピークを含む)
31P NMR(121MHz,CDCl3):δ=-20.6.
(実施例4)2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(構造式(1D-2))の合成、経路2(Eq.10)
Figure JPOXMLDOC01-appb-C000058
(仕込み・反応)100mL四つ口丸底フラスコに、マグネティックスターラーバー、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、実施例2第1工程で得られた3-[2-(ジフェニルホスフィノ)エチル]-2-オキサゾリジノン(3C-1)(5.0g、16.7mmol、1.0当量)、tAmOH(33mL)及びNaSEt(純度:96.4%、1.75g、20.0mmol、1.2当量)を順次仕込み、得られた懸濁液を還流下で1時間攪拌した。
(後処理・単離・精製)反応液を室温にまで冷却し、水(20mL)を加えて攪拌した後に静置して水層を分液した。有機層を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:トルエン/酢酸エチル/トリエチルアミン=2/1/0.03~1/2/0.03)にて精製することで、表題化合物(1D-2)が薄黄色粘性液体として4.4g得られた。単離収率:83.0%。本化合物のNMR分析結果は、実施例3第2工程にて得られたものと完全に一致した。
 実施例1~4からわかるように、本発明の化合物は、一般式(2)で表される化合物及び一般式(3)で表される化合物のいずれからも容易に製造可能である。
(実施例5)2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアンモニウムクロライド(構造式(1D-2・塩酸塩))の合成(Eq.11)
Figure JPOXMLDOC01-appb-C000059
(仕込み・反応)本工程は空気中で行った。100mL丸底フラスコにマグネティックスターラーバーを取り付け、実施例3/実施例4で得られた2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(1D-2)(3.17g、10.0mmol、1.0当量)及びトルエン(40mL)を順次仕込んだ。得られた溶液に塩酸(HCl)の4規定水溶液(5.0mL、20.0mmol、2.0当量)をピペットにて滴下し、得られた白色懸濁液を室温で10分攪拌した。
(後処理・単離・精製)反応後に得られた懸濁液を吸引濾過した後、濾取した結晶をトルエンで洗浄し、減圧下加熱乾燥することで、表題化合物(1D-2・塩酸塩)が白色粉末として3.40g得られた。単離収率:96.1%。
1H NMR(400MHz,重メタノール(CD3OD)):δ=7.50-7.43(m,4H),7.42-7.36(m,6H),4.85(s,2H),3.20(t,J=6.8Hz,2H),3.14-3.06(m,2H),2.81(t,J=7.2Hz,2H),2.58(d,J=7.2Hz,2H),2.51-2.45(m,2H),1.25(t,J=7.2Hz,3H).
31P NMR(161MHz,CD3OD):δ=-20.9.
 実施例5からわかるように、本発明の化合物はブレンステッド酸で処理することで、取り扱いが容易な結晶性の塩に誘導することも可能である。
(実施例6)2-ジフェニルホスフィノ-N-[2-(tert-ブチルチオ)エチル]エチルアミン(構造式(1D-3))の合成(Eq.12)
Figure JPOXMLDOC01-appb-C000060
第1工程:3-[2-(tert-ブチルチオ)エチル]-2-オキサゾリジノン(構造式(2C-3))の合成
Figure JPOXMLDOC01-appb-C000061
(仕込み・反応)本反応は空気中で行った。200mL四つ口丸底フラスコにマグネティックスターラーバー、冷却管及び温度計を取り付け、実施例1第1工程で得られた3-(2-クロロエチル)-2-オキサゾリジノン(6-1)(12.5g、83.8mmol、1.0当量)、MeOH(80mL)及び2-メチル-2-プロパンチオール(5-8)のナトリウム塩(NaStBu)(純度:98.7%、10.0g、88.0mmol、1.05当量)を順次仕込み、得られた懸濁液を還流下で3時間攪拌した。
(後処理・単離・精製)反応液を減圧下濃縮し、得られた残渣を直接シリカゲルカラムクロマトグラフィー(溶離液:トルエン/酢酸エチル=2/1~1/2)にて濾過・精製することで、表題化合物(2C-3)が無色液体として15.6g得られた。単離収率:91.6%。
1H NMR(400MHz,CDCl3):δ=4.36-4.28(m,2H),3.68-3.62(m,2H),3.44(t,J=6.8Hz,2H),2.72(t,J=6.8Hz,2H),1.31(s,9H).
13C NMR(100MHz,CDCl3):δ=158.26,61.76,45.31,44.58,42.50,30.91,26.58.
第2工程:2-ジフェニルホスフィノ-N-[2-(tert-ブチルチオ)エチル]エチルアミン(構造式(1D-3))の合成
Figure JPOXMLDOC01-appb-C000062
(仕込み・反応)実施例1第3工程と同様にして、200mL四つ口丸底フラスコ、マグネティックスターラーバー、滴下漏斗、温度計及び三方コックを用い、Ph2PLiのTHF/n-ヘキサン溶液(52.9mmol、1.1当量)を調製した。次いで、第1工程で得られた3-[2-(tert-ブチルチオ)エチル]-2-オキサゾリジノン(2C-3)(9.8g、48.1mmol、1.0当量)及び脱水THF(10mL)を滴下漏斗に順次仕込み、内温が30℃以下を保つ速度で30分かけてPh2PLi溶液に滴下した。
(後処理・単離・精製)反応液を減圧下濃縮し、水(100mL)及び酢酸エチル(200mL)を加え、攪拌した後に静置して分液した。有機層を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:トルエン/酢酸エチル/トリエチルアミン=4/1/0.05~1/1/0.02)にて精製することで、表題化合物(1D-3)が薄黄色粘性液体として13.6g得られた。単離収率:81.8%。
1H NMR(400MHz,CDCl3):δ=7.45-7.39(m,4H),7.36-7.30(m,6H),2.82-2.71(m,4H),2.65(t,J=6.4Hz,2H),2.30-2.24(m,2H),1.63*(br s,1H),1.31(s,9H).(但し水由来のピークを含む)
31P NMR(161MHz,CDCl3):δ=-20.6.
(実施例7)2-ジフェニルホスフィノ-N-[2-(1-アダマンチルチオ)エチル]エチルアミン(構造式(1D-4))の合成(Eq.13)
Figure JPOXMLDOC01-appb-C000063
(仕込み・反応)100mL四つ口丸底フラスコにマグネティックスターラーバー、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、実施例2第1工程で得られた3-[2-(ジフェニルホスフィノ)エチル]-2-オキサゾリジノン(3C-1)(4.2g、14.0mmol、1.0当量)、tAmOH(28mL)、1-アダマンタンチオール(5-18)(2.5g、14.9mmol、1.05当量)及びナトリウム tert-ブトキシド(NaOtBu)(1.5g、15.4mmol、1.1当量)を順次加え、得られた懸濁液を還流下1時間攪拌した。
(後処理・単離・精製)反応液を室温にまで冷却した後、水(25mL)及び酢酸エチル(50mL)を順次加え、攪拌した後に静置して水層を分液した。有機層を減圧下濃縮した後に、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:トルエン/酢酸エチル/トリエチルアミン=4/1/0.05~1/1/0.02)にて精製することで、表題化合物(1D-4)が黄色粘性液体として4.0g得られた。単離収率:67.5%。
1H NMR(400MHz,CDCl3):δ=7.47-7.38(m,4H),7.38-7.28(m,6H),2.79-2.71(m,4H),2.63(t,J=6.0Hz,2H),2.29-2.24(m,2H),2.03(br s,3H),1.83(d,J=2.8Hz,6H),1.73-1.62(m,6H),1.52*(br s,1H).(*但し水由来ピークを含む)
31P NMR(161MHz,CDCl3):δ=-20.7.
(実施例8)2-ジフェニルホスフィノ-N-[2-(フェニルチオ)エチル]エチルアミン(構造式(1D-5))の合成(Eq.14)
Figure JPOXMLDOC01-appb-C000064
(仕込み・反応)100mL四つ口丸底フラスコに、マグネティックスターラーバー、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、実施例2第1工程で得られた3-[2-(ジフェニルホスフィノ)エチル]-2-オキサゾリジノン(3C-1)(6.0g、20.0mmol、1.0当量)、tAmOH(40mL)及びベンゼンチオール(5-19)のナトリウム塩(NaSPh)(純度:96.3%、3.0g、22.0mmol、1.2当量)を順次仕込み、得られた懸濁液を還流下で30分攪拌した。
(後処理・精製)反応液を室温にまで冷却し、水(20mL)を加えて攪拌した後に静置して分液した。有機層を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:トルエン/酢酸エチル/トリエチルアミン=1/1/0.02)にて精製することで、表題化合物(1D-5)が黄色粘性液体として6.5g得られた。単離収率:88.9%。
1H NMR(300MHz,CDCl3):δ=7.51-7.14(m,15H),3.02(t,J=6.6Hz,2H),2.80(t,J=6.3Hz,2H),2.84-2.69(m,4H),2.25(dd,J=7.2,7.8Hz,2H),1.64*(br s,1H).(*但し水由来のピークを含む)
31P NMR(121MHz,CDCl3):δ=-20.6.
(実施例9)2-ジフェニルホスフィノ-N-[2-(p-トリルチオ)エチル]エチルアミン(構造式(1D-6))の合成(Eq.15)
Figure JPOXMLDOC01-appb-C000065
(仕込み・反応)100mL四つ口丸底フラスコにマグネティックスターラーバー、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、実施例2第1工程で得られた3-[2-(ジフェニルホスフィノ)エチル]-2-オキサゾリジノン(3C-1)(6.0g、20.0mmol、1.0当量)、tAmOH(40mL)及びp-トルエンチオール(5-22)のナトリウム塩(ナトリウム p-トルエンチオラート)(純度:98.3%、3.3g、22.0mmol、1.2当量)を順次仕込み、得られた懸濁液を還流下30分攪拌した。
(後処理・精製)反応液を室温にまで冷却し、水(20mL)を加えて攪拌した後に静置して分液した。有機層を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:トルエン/酢酸エチル/トリエチルアミン=1/1/0.02)にて精製することで、表題化合物(1D-6)が黄色粘性液体として6.5g得られた。単離収率:85.6%。
1H NMR(300MHz,CDCl3):δ=7.46-7.22(m,12H),7.08(d,J=8.4Hz,2H),2.97(t,J=6.6Hz,2H),2.77(t,J=6.6Hz,2H),2.71(t,J=8.1Hz,2H),2.31(s,3H),2.24(dd,J=7.2,8.1Hz,2H),1.64*(br s,1H).(*但し水由来ピークを含む)
31P NMR(121MHz,CDCl3):δ=-20.9.
(実施例10)2-ジシクロヘキシルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン-3水素化ホウ素錯体(構造式(1D-7))の合成(Eq.16)
Figure JPOXMLDOC01-appb-C000066
第1工程:ジシクロヘキシルホスフィン-3水素化ホウ素錯体(構造式(4-21))の合成
Figure JPOXMLDOC01-appb-C000067
(仕込み・反応)200mL四つ口丸底フラスコに、マグネティックスターラーバー、滴下漏斗、温度計及び三方コックを取り付けて内部を窒素置換し、ジシクロヘキシルホスフィン(4-6)(20.0mL、91.2mmol、1.0当量)及びジエチルエーテル(Et2O)(100mL)を順次仕込み、得られた溶液を氷水浴にて5℃に冷却した。次いで、三水素化ホウ素-ジメチルスルフィド錯体(BH3-SMe2)(濃度:10.0mol/L、13.7mL、137.0mmol、1.5当量)を滴下漏斗に仕込み、内温が10℃以下を保つ速度で10分かけて溶液に滴下した後、反応液を常温まで昇温させた。
(後処理・単離・精製)反応液を減圧下濃縮した後、得られた残渣をクロロホルムで溶解させ、水を投入して常温で攪拌後に静置して水層を分液した。有機層を減圧下濃縮し、得られた固体を粉砕した後に減圧下乾燥することで、表題化合物(4-21)を白色粉末として19.3g得た。単離収率:100%。本化合物はこれ以上の精製を行うことなく以降の工程に使用した。
31P NMR(161MHz,重塩化メチレン(CD2Cl2)):δ=17.3-16.4(m).
第2工程:2-ジシクロヘキシルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン-3水素化ホウ素錯体(構造式(1D-7))の合成
Figure JPOXMLDOC01-appb-C000068
(仕込み・反応)100mL四つ口丸底フラスコに、マグネティックスターラーバー、滴下漏斗、温度計及び三方コックを取り付けて内部を窒素置換し、第1工程で得られたジシクロヘキシルホスフィン-3水素化ホウ素錯体(4-21)(4.7g、22.0mmol、1.1当量)及び脱水THF(22mL)を仕込み、得られた溶液を氷水浴にて5℃に冷却した。滴下漏斗にn-BuLiのn-ヘキサン溶液(濃度:1.60mol/L、13.1mmol、1.05当量)を仕込み、内温が10℃以下を保つ速度で15分かけて溶液に滴下した後、反応液を常温にまで昇温させて30分攪拌することで、リチウムジシクロヘキシルホスフィド-3水素化ホウ素錯体(Cy2PLi-BH3)のTHF/n-ヘキサン懸濁液を調製した。次いで滴下漏斗に、実施例1第2工程で得られた3-[2-(メチルチオ)エチル]-2-オキサゾリジノン(2C-1)(3.2g、20.0mmol、1.0当量)及び脱水THF(3mL)を滴下漏斗に順次仕込み、内温が10℃以下を保つ速度で10分かけてCy2PLi-BH3懸濁液に滴下した後、反応液を室温にまで昇温させて1時間攪拌した。
(後処理・単離・精製)反応液を減圧下濃縮した後、得られた残渣に酢酸エチル(50mL)及び水(25mL)を加えて攪拌した後に静置し、水層を分液した。有機層を10%塩化ナトリウム水溶液(25mL)及び水(25mL)で順次洗浄した後に濃縮し、得られた残渣をシリカゲルクロマトグラフィー(溶離液:酢酸エチル~酢酸エチル/MeOH=50/1)で精製することで、表題化合物(1D-7)が薄黄色粘性液体として5.4g得られた。単離収率:82.0%。
1H NMR(400MHz,CD2Cl2):δ=2.88-2.76(m,4H),2.61(t,J=6.4Hz,2H),2.08(s,3H),1.92-1.17*(m,23H),0.90-(-0.30)(br q,3H).(*但し水由来ピークを含む)
31P NMR(161MHz,CD2Cl2):δ=22.4(d,J=73.9Hz,1P).
(実施例11)ジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-1))の合成(Eq.17)
Figure JPOXMLDOC01-appb-C000069
(仕込み・反応)50mL四つ口丸底フラスコにマグネティックスターラーバー、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)(RuCl2(PPh33)(2.88g、3.00mmol、1.0当量)、脱水トルエン(30mL)及び実施例1/実施例2にて得られた2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン(1D-1)(1.0g、3.30mmol、1.1当量)を順次仕込み、得られた暗紫色懸濁液を還流下で1時間攪拌した。
(後処理・単離・精製)反応後に得られた橙色懸濁液を5℃に冷却して吸引濾過した後、濾取した結晶をトルエン及びn-ヘキサンにて順次洗浄し、減圧下加熱乾燥することで、表題化合物(8S-1)が橙色粉末として2.17g得られた。単離収率:97.9%、純度:99.8wt%(1H NMR分析による)。なお、主な不純物はトルエンであった。
1H NMR(400MHz,CD2Cl2):図1を参照のこと。
31P NMR(161MHz,CD2Cl2):δ=46.7-45.5(m,1P),44.8-43.8(m,1P).
HRMS:表題化合物の分子量イオン(以下、M+と略す)として検出;質量電荷比実測値(以下、Meas.m/zと略す)=737.0526,質量電荷比予測値(以下、Pred.m/zと略す)=737.0546,表題化合物の分子量イオン組成式(以下、Mと略す)=C35H37NP2SCl2Ru.
(実施例12)ジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-2))の合成(Eq.18)
Figure JPOXMLDOC01-appb-C000070
 実施例11と同様にして、RuCl2(PPh33(2.62g、2.73mmol、1.0当量)、脱水トルエン(27mL)及び実施例3/実施例4にて得られた2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(1D-2)(953mg、3.00mmol、1.1当量)から、表題化合物(8S-2)が明赤褐色粉末として2.06g得られた。単離収率:94.6%、純度:94.2wt%(1H NMR分析による)。なお、主な不純物はトルエンであった。
1H NMR(300MHz,CD2Cl2):図2を参照のこと。
31P NMR(121MHz,CD2Cl2):δ=47.0-43.0(m,2P).
HRMS:Meas.m/z=751.0694,Pred.m/z=751.0697,M=C36H39NP2SCl2Ru.
(実施例13)ジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(tert-ブチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-3))の合成(Eq.19)
Figure JPOXMLDOC01-appb-C000071
 実施例11と同様にして、RuCl2(PPh33(2.52g、2.63mmol、1.0当量)、脱水トルエン(30mL)及び実施例6にて得られた2-ジフェニルホスフィノ-N-[2-(tert-ブチルチオ)エチル]エチルアミン(1D-3)(1.0g、2.89mmol、1.1当量)から、表題化合物(8S-3)が薄赤色粉末として1.54g得られた。単離収率:70.3%、純度:93.6wt%(1H NMR分析による)。なお、主な不純物はトルエンであった。
1H NMR(400MHz,CD2Cl2):図3を参照のこと。
31P NMR(161MHz,CD2Cl2):δ=44.1(d,J=28.0Hz,1P),40.8(d,J=31.1Hz,1P).
HRMS:Meas.m/z=779.1002,Pred.m/z=779.1016,M=C38H43NP2SCl2Ru.
(実施例14)ジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(フェニルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-4))の合成(Eq.20)
Figure JPOXMLDOC01-appb-C000072
 実施例11と同様にして、RuCl2(PPh33(1.0g、1.04mmol、1.0当量)、脱水トルエン(20mL)及び実施例8にて得られた2-ジフェニルホスフィノ-N-[2-(フェニルチオ)エチル]エチルアミン(1D-5)(332mg、1.14mmol、1.1当量)から、表題化合物(8S-4)が明赤褐色粉末として780mg得られた。単離収率:99.3%、純度:95.8wt%(1H NMR分析による)。なお、主な不純物はトルエンであった。
1H NMR(300MHz,CD2Cl2):図4を参照のこと。
31P NMR(121MHz,CD2Cl2):溶解度が低く測定困難であった。
HRMS:M+,Meas.m/z=799.0725,Pred.m/z=799.0698,M=C40H39NP2SCl2Ru.
(実施例15)ジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(p-トリルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-5))の合成(Eq.21)
Figure JPOXMLDOC01-appb-C000073
 実施例11と同様にして、RuCl2(PPh33(2.30g、2.40mmol、1.0当量)、脱水トルエン(23mL)及び実施例9にて得られた2-ジフェニルホスフィノ-N-[2-(p-トリルチオ)エチル]エチルアミン(1D-6)(1.00g、2.64mmol、1.1当量)から、表題化合物(8S-5)が明赤褐色粉末として1.88g得られた。単離収率:96.3%。
1H NMR(300MHz,CD2Cl2):図5を参照のこと。
31P NMR(121MHz,CD2Cl2):δ=45.4(br s,1P),44.0(d,J=31.0Hz,1P).
HRMS:M+;Meas.m/z=813.0882,Pred.m/z=813.0855,M=C41H41NP2SCl2Ru.
(実施例16)ジクロロ(トリメチルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-6))の合成(Eq.22)
Figure JPOXMLDOC01-appb-C000074
(仕込み・反応)50mL四つ口丸底フラスコにマグネティックスターラーバー、クライゼン蒸留装置、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、ジクロロ(p-シメン)ルテニウム(II)ダイマー([RuCl2(p-cymene)]2)(791mg、1.29mmol、1.0当量)及び3-メトキシ-1-ブタノール(3M1B)(9mL)を順次仕込み、得られた暗赤色懸濁液を減圧下脱気した。次いで、トリメチルホスフィン(11-1)のTHF溶液(濃度:1.03mol/L、2.80mL、2.84mmol、2.2当量)を仕込み、室温で5分攪拌した。得られた橙色懸濁液に、実施例3/実施例4にて得られた2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(1D-2)(900mg、2.84mmol、2.2当量)を加え、クライゼン蒸留装置にてTHFを常圧で留去した後に、3M1Bの還流下で1時間攪拌した。
(後処理・単離・精製)反応液を5℃に冷却して得られた黄橙色懸濁液を吸引濾過した後、濾取した結晶をMeOHにて洗浄し、減圧下加熱乾燥することで、表題化合物(8S-6)が黄橙色粉末として920mg得られた。単離収率:63.1%。
1H NMR(300MHz,CD2Cl2):図6を参照のこと。
31P NMR(121MHz,CD2Cl2):δ=56.1(br s,1P),9.7(br s,1P).
HRMS:M+;Meas.m/z=565.0221,Pred.m/z=565.0223,M=C21H33NP2SCl2Ru.
(実施例17)ジクロロ(トリメチルホスフィン){2-ジフェニルホスフィノ-N-[2-(フェニルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-7))の合成(Eq.23)
Figure JPOXMLDOC01-appb-C000075
 実施例16と同様にして、[RuCl2(p-cymene)]2(762mg、1.25mmol、1.0当量)、3M1B(10mL)、トリメチルホスフィン(11-1)のTHF溶液(濃度:1.03mol/L、2.70mL、2.74mmol、2.2当量)及び実施例8にて得られた2-ジフェニルホスフィノ-N-[2-(フェニルチオ)エチル]エチルアミン(1D-5)(1.00g、2.74mmol、2.2当量)から、表題化合物(8S-7)が橙色粉末として990mg得られた。単離収率:64.5%。
1H NMR(300MHz,CD2Cl2):図7を参照のこと。
31P NMR(121MHz,CD2Cl2):δ=57.5(d,J=32.4Hz,1P),8.6(d,J=34.0Hz,1P).
HRMS:M+;Meas.m/z=613.0184,Pred.m/z=613.0224,M=C25H33NP2SCl2Ru.
(実施例18)ジクロロ(トリエチルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-8))の合成(Eq.24)
Figure JPOXMLDOC01-appb-C000076
 実施例16と同様にして、[RuCl2(p-cymene)]2(877mg、1.43mmol、1.0当量)、3M1B(15mL)トリエチルホスフィン(11-2)のTHF溶液(濃度:1.03mol/L、3.06mL、3.15mmol、2.2当量)及び実施例3/実施例4にて得られた2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(1D-2)(1.00g、3.15mmol、2.2当量)から、表題化合物(8S-6)が黄褐色粉末として1.13g得られた。単離収率:64.4%、純度:99.1wt%(1H NMRによる)。なお、主な不純物は3M1Bであった。
1H NMR(400MHz,CD2Cl2):図8を参照のこと。
31P NMR(161MHz,CD2Cl2): δ=52.7(br s,1P),29.8(br s,1P).
HRMS:表題化合物から1個の塩化物イオンが解離した分子量イオン(以下、[M-Cl]+と略す)として検出;Meas.m/z=572.1022,Pred.m/z=572.1008,表題化合物から1個の塩化物イオンが解離した分子量イオンの組成式(以下、M-Clと略す)=C24H39NP2SClRu.
(実施例19)ジクロロ(トリシクロヘキシルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-9))の合成(Eq.25)
Figure JPOXMLDOC01-appb-C000077
 THF留去を行わないこと以外は実施例16と同様にして、[RuCl2(p-cymene)]2(877mg、1.43mmol、1.0当量)、3M1B(10mL)、トリシクロヘキシルホスフィン(11-3)のトルエン溶液(濃度:1.04mol/L、3.03mL、3.15mmol、2.2当量)及び実施例3/実施例4にて得られた2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(1D-2)(1.00g、3.15mmol、2.2当量)を、トルエン/3M1B還流下で反応させることにより、表題化合物(8S-9)が明褐色粉末として1.25g得られた。単離収率:50.0%、純度:88.1wt%(1H NMRによる)。なお、主な不純物は3M1Bであった。
1H NMR(400MHz,CD2Cl2):図9を参照のこと。
31P NMR(161MHz,CD2Cl2):δ=44.0-32.0(m,2P).
HRMS:[M-Cl]+;Meas.m/z=734.244,Pred.m/z=734.242,M-Cl=C36H57NP2SClRu.
(実施例20)ジクロロ[トリス(4-メトキシフェニル)ホスフィン]{2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-10))の合成(Eq.26)
Figure JPOXMLDOC01-appb-C000078
(仕込み・反応)50mL四つ口丸底フラスコにマグネティックスターラーバー、クライゼン蒸留装置、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、[RuCl2(p-cymene)]2(459mg、0.75mmol、1.0当量)、トリス(4-メトキシフェニル)ホスフィン(11-6)(581mg、1.65mmol、2.2当量)及び脱水THF(5mL)を順次仕込み、得られた暗赤色懸濁液を室温で5分攪拌した。次いで、実施例1/実施例2にて得られた2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン(1D-1)(500mg、1.65mmol、2.2当量)及び3M1B(10mL)を加え、クライゼン蒸留装置にてTHFを常圧で留去した後に、3M1Bの還流下で1時間攪拌した。
(後処理・単離・精製)反応液を5℃に冷却して得られた黄橙色懸濁液に、MeOH(20mL)を加えて吸引濾過した後、濾取した結晶をMeOHにて洗浄し、減圧下加熱乾燥することで、表題化合物(8S-10)が黄橙色粉末として922mg得られた。単離収率:73.5%、純度99.0wt%。なお、主な不純物は3M1Bであった。
1H NMR(400MHz,CD2Cl2):図10を参照のこと。
31P NMR(161MHz,CD2Cl2):δ=47.0-45.6(m,1P),40.1-39.4(m,1P).
(実施例21)ジクロロ[トリス(4-メトキシフェニル)ホスフィン]{2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-11))の合成(Eq.27)
Figure JPOXMLDOC01-appb-C000079
 実施例20と同様にして、[RuCl2(p-cymene)]2(877mg、1.43mmol、1.0当量)、トリス(4-メトキシフェニル)ホスフィン(11-6)(1.11g、3.15mmol、2.2当量)、脱水THF(10mL)、実施例3/実施例4にて得られた2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(1D-2)(1.0g、3.15mmol、2.2当量)及び3M1B(20mL)から、表題化合物(8S-11)が薄褐色粉末として1.98g得られた。単離収率:81.1%、純度98.7wt%。なお、主な不純物は3M1Bであった。
1H NMR(400MHz,CD2Cl2):図11を参照のこと。
31P NMR(161MHz,CD2Cl2):δ=46.5-44.8(m,1P),40.4-38.8(m,1P).
HRMS:M+;Meas.m/z=841.0994,Pred.m/z=841.1015,M=C39H45NO3P2SCl2Ru.
(実施例22)ジクロロ[トリス(4-トリフルオロメチルフェニル)ホスフィン]{2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-12))の合成(Eq.28)
Figure JPOXMLDOC01-appb-C000080
 実施例20と同様にして、[RuCl2(p-cymene)]2(438mg、0.72mmol、1.0当量)、トリス(4-トリフルオロメチルフェニル)ホスフィン(11-5)(737mg、1.58mmol、2.2当量)、脱水THF(5mL)、実施例3/実施例4にて得られた2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(1D-2)(500mg、1.58mmol、2.2当量)及び3M1B(10mL)から、表題化合物(8S-12)が橙色粉末として1.09g得られた。単離収率:79.6%。
1H NMR(400MHz,CD2Cl2):図12を参照のこと。
31P NMR(161MHz,CD2Cl2):δ=48.5-45.6(m,2P).
19F NMR(376MHz,CD2Cl2):δ=64.82(s,9F).
HRMS:M+;Meas.m/z=920.0698,Pred.m/z=920.0633,M=C39H36NF9P2SCl2Ru.
(実施例23)ジクロロ[トリス(2-フリル)ホスフィン]{2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-13))の合成(Eq.29)
Figure JPOXMLDOC01-appb-C000081
 実施例20と同様にして、[RuCl2(p-cymene)]2(438mg、0.72mmol、1.0当量)、トリス(2-フリル)ホスフィン(11-7)(366mg、1.58mmol、2.2当量)、脱水THF(5mL)、実施例3/実施例4にて得られた2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(1D-2)(500mg、1.58mmol、2.2当量)及び3M1B(10mL)から、表題化合物(8S-13)が橙色粉末として750mg得られた。単離収率:72.4%。
1H NMR(400MHz,CD2Cl2):図13を参照のこと。
31P NMR(161MHz,CD2Cl2):δ=52.0-49.6(m,1P),10.3(d,J=34.0Hz,1P).
(実施例24)ジクロロ{4-エチル-2,6,7-トリオキサ-1-ホスファビシクロ[2,2,2]オクタン}{2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-14))の合成(Eq.30)
Figure JPOXMLDOC01-appb-C000082
(仕込み・反応)50mL四つ口丸底フラスコにマグネティックスターラーバー、クライゼン蒸留装置、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、[RuCl2(p-cymene)]2(438mg、0.72mmol、1.0当量)、4-エチル-2,6,7-トリオキサ-1-ホスファビシクロ[2,2,2]オクタン(256mg、1.58mmol、2.2当量)及びクロロホルム(CHCl3)(5mL)を順次仕込み、得られた深赤色溶液を室温で5分攪拌した。次いで、実施例3/実施例4にて得られた2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(1D-2)(500mg、1.58mmol、2.2当量)及びシクロヘキサノール(CyOH)(10mL)を加え、クライゼン蒸留装置にてCHCl3を常圧で留去した後に、CyOHの還流下で1時間攪拌した。
(後処理・単離・精製)反応液を5℃に冷却して得られた赤橙色懸濁液に、MeOH(20mL)を加えた後に吸引濾過し、濾取した結晶をMeOHにて洗浄し、減圧下加熱乾燥することで、表題化合物(8S-14)が黄橙色粉末として273mg得られた。単離収率:29.3%。
1H NMR(400MHz,CD2Cl2):図14を参照のこと。
31P NMR(161MHz,CD2Cl2):δ=135.1-131.8(m,1P),59.7-56.7(m,1P).
HRMS:M+;Meas.m/z=651.0217,Pred.m/z=651.0228,M=C24H35NO3P2SCl2Ru.
(実施例25)カルボニルクロロヒドリド{2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-15))の合成(Eq.31)
Figure JPOXMLDOC01-appb-C000083
(仕込み・反応)50mL四つ口丸底フラスコにマグネティックスターラーバー、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、実施例1/実施例2にて得られた2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン(1D-1)(1.0g、3.30mmol、2.2当量)、キシレン(異性体混合物、15mL)及びカルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)(RuHCl(CO)(PPh33)(2.86g、3.00mmol、1.0当量)を順次仕込み、得られた褐色懸濁液をキシレン還流下で30分攪拌した。
(後処理・単離・精製)反応後に得られた橙色懸濁液を5℃に冷却して吸引濾過した後、濾取した結晶をトルエンにて洗浄し、減圧下加熱乾燥することで、表題化合物(8S-15)が黄橙色粉末として1.32g得られた。単離収率:93.8%。
1H NMR(400MHz,CD2Cl2):図15を参照のこと。
31P NMR(161MHz,CD2Cl2):δ=66.3-64.0(m,1P).
(実施例26)ヒドリド(テトラヒドロボレート)(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-16))の合成(Eq.32)
Figure JPOXMLDOC01-appb-C000084
(仕込み・反応)50mL四つ口丸底フラスコに、マグネティックスターラーバー、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、実施例12で得られたジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-2)(99.4mg、0.132mmol、1.0当量)、トルエン(3mL)、エタノール(EtOH)(3mL)及びテトラヒドロホウ酸ナトリウム(NaBH4)(50.0mg、1.32mmol、10.0当量)を順次加え、得られた橙色懸濁液を65℃で1時間攪拌した。
(後処理・単離・精製)反応後に得られた薄黄色懸濁液を室温に冷却し、吸引濾過後に得られた結晶をトルエン及びn-ヘプタンで順次洗浄した後、減圧下乾燥することで、表題化合物(8S-16)が薄黄色粉末として108.0mg得られた。単離収率:98.5%、純度:83.9wt%(1H NMRによる)。なお、主な不純物はn-ヘプタンであった。
1H NMR(400MHz,CD2Cl2):図16を参照のこと。
31P NMR(161MHz,CD2Cl2):δ=68.4-65.0(m,2P).
(実施例27)カルボニルヒドリド(テトラヒドロボレート){2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン}ルテニウム(II)(構造組成式(8S-17))の合成(Eq.33)
Figure JPOXMLDOC01-appb-C000085
(仕込み・反応)50mL四つ口丸底フラスコに、マグネティックスターラーバー、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、実施例25で得られたカルボニルクロロヒドリド{2-ジフェニルホスフィノ-N-[2-(メチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-15)(61.9mg、0.132mmol、1.0当量)、トルエン(3mL)、EtOH(3mL)及びNaBH4(50.0mg、1.32mmol、10.0当量)を順次加え、得られた白色懸濁液を65℃で3時間攪拌した。
(後処理・単離・精製)反応後に得られた白色懸濁液を減圧下濃縮し、水及び酢酸エチルを加えて水層を分液した後、有機層を濃縮した。得られた残渣をトルエン/酢酸エチルから再結晶することで、表題化合物(8S-17)が灰色粉末として30.1mg得られた。単離収率:50.9%。
1H NMR(400MHz,CD2Cl2):図17を参照のこと。
31P NMR(161MHz,CD2Cl2):δ=67.6(s,1P).
(実施例28)ジクロロ{2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)ダイマー(構造組成式(8U-1))の合成(Eq.34)
Figure JPOXMLDOC01-appb-C000086
(仕込み・反応)50mL四つ口丸底フラスコにマグネティックスターラーバー、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、実施例3/実施例4にて得られた2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン(1D-2)(1.0g、3.15mmol、2.1当量)、3M1B(10mL)及び[RuCl2(p-cymene)]2(918mg、1.50mmol、1.0当量)を順次仕込み、得られた暗赤色懸濁液を3M1Bの還流下で3時間攪拌した。
(後処理・精製)反応後に得られた橙色懸濁液を室温にまで冷却して吸引濾過した後、濾取した結晶をMeOHにて洗浄し、減圧下加熱乾燥することで、表題化合物(8U-1)が橙色粉末として1.24g得られた。単離収率:84.5%。
1H NMR(300MHz,CD2Cl2):図18を参照のこと。
31P NMR(121MHz,CD2Cl2):δ=73.7(s,2P).
HRMS:[M-Cl]+;Meas.m/z=942.9864,Pred.m/z=942.9884,M-Cl=C36H48N2P2S2Cl3Ru2.
(実施例29)ジクロロ{2-ジフェニルホスフィノ-N-[2-(フェニルチオ)エチル]エチルアミン}ルテニウム(II)ダイマー(構造組成式(8U-2))の合成(Eq.35)
Figure JPOXMLDOC01-appb-C000087
 実施例28と同様にして、実施例8にて得られた2-ジフェニルホスフィノ-N-[2-(フェニルチオ)エチル]エチルアミン(1D-5)(1.0g、2.74mmol、2.1当量)、3M1B(10mL)及び[RuCl2(p-cymene)]2(798mg、1.30mmol、1.0当量)から、表題化合物(8U-2)が橙色粉末として1.29g得られた。単離収率:92.3%。
1H NMR(300MHz,CD2Cl2):溶解度が低く測定困難であった。
31P NMR(121MHz,CD2Cl2):溶解度が低く測定困難であった。
HRMS:[M-Cl]+;Meas.m/z=1038.986,Pred.m/z=1038.989,M-Cl=C44H48N2P2S2Cl3Ru2.
(実施例30)ジクロロ{2-ジフェニルホスフィノ-N-[2-(p-トリルチオ)エチル]エチルアミン}ルテニウム(II)ダイマー(構造組成式(8U-3))の合成(Eq.36)
Figure JPOXMLDOC01-appb-C000088
 実施例28と同様にして、実施例9にて得られた2-ジフェニルホスフィノ-N-[2-(p-トリルチオ)エチル]エチルアミン(1D-6)(2.0g、5.27mmol、2.1当量)、3M1B(15mL)及び[RuCl2(p-cymene)]2(1.54g、2.51mmol、1.0当量)から、表題化合物(8U-3)が橙色粉末として2.46g得られた。単離収率:88.9%。
1H NMR(300MHz,CD2Cl2):溶解度が低く測定困難であった。
31P NMR(121MHz,CD2Cl2):溶解度が低く測定困難であった。
HRMS:[M-Cl]+;Meas.m/z=1067.021,Pred.m/z=1067.020,M-Cl=C46H52N2P2S2Cl3Ru2.
(実施例31)[クロロビス(4-メトキシフェニルイソシアニド){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)]クロライド(構造組成式(8R-1))の合成(Eq.37)
Figure JPOXMLDOC01-appb-C000089
(仕込み・反応)50mL四つ口丸底フラスコにマグネティックスターラーバー、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、実施例28にて得られたジクロロ{2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)ダイマー(8U-1)(160.1mg、0.163mmol、1.0当量)、4-メトキシフェニルイソシアニド(87.1mg、0.650mmol、4.0当量)、CHCl3(20mL)及びMeOH(2mL)を順次仕込み、得られた緑色懸濁液を60℃で4時間攪拌した。
(後処理・精製)反応液を減圧下濃縮して得られた緑色の残渣を、MeOH、トルエン及びn-ヘプタンで順次洗浄し、減圧下加熱乾燥することで、表題化合物(8R-1)が薄黄色粉末として63.2mg得られた。単離収率:25.7%。
1H NMR(300MHz,CD2Cl2):図19を参照のこと。
31P NMR(121MHz,CD2Cl2):δ=34.0(s,1P).
HRMS:[M-Cl]+;Meas.m/z=720.1146,Pred.m/z=720.1154,M-Cl=C34H38N3O2PSClRu.
(実施例32)ジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-2)を触媒とした、安息香酸メチルの水素添加反応によるベンジルアルコールの合成(Eq.38)
Figure JPOXMLDOC01-appb-C000090
(仕込み・反応)ステンレス製100mLオートクレーブ装置に、実施例12で得られたジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-2)(純度:94.2wt%、2.0mg、0.1mol%)を仕込んで内部を窒素置換した後、トルエン(2.0mL)、カリウムtert-ブトキシド(KOtBu)のTHF溶液(濃度:1.0mol/L、250μL、0.25mmol、0.1当量)及び安息香酸メチル(312μL、2.50mmol、1.0当量)を順次仕込んだ後に内部を水素(H2)置換し、更にH2ガスによって1MPaにまで加圧した後に、80℃にて6時間攪拌することで、目的とするベンジルアルコールが得られた。転化率:100%、選択率:100%(GC分析による)。
GC保持時間;安息香酸メチル:16.77分、ベンジルアルコール:22.30分。
(比較例1)ジクロロ(トリフェニルホスフィン){N,N-ビス[2-(ジフェニルホスフィノ)エチル]アミン}ルテニウム(II)(14-1)を触媒とした、安息香酸メチルの水素添加反応による、ベンジルアルコールの合成(Eq.39)
Figure JPOXMLDOC01-appb-C000091
第1工程:ジクロロ(トリフェニルホスフィン){N,N-ビス[2-(ジフェニルホスフィノ)エチル]アミン}ルテニウム(II)の合成
(反応・仕込み)50mL四つ口丸底フラスコにマグネティックスターラーバー、冷却管、温度計及び三方コックを取り付けて内部を窒素置換し、RuCl2(PPh33(2.00g、2.09mmol、1.0当量)、脱水トルエン(20mL)及び既知のN,N-ビス[2-(ジフェニルホスフィノ)エチル]アミン(1.03g、2.34mmol、1.1当量)を順次仕込み、得られた暗紫色懸濁液をトルエンの還流下で1時間攪拌した。
(後処理・単離・精製)反応後に得られた黄土色懸濁液を5℃に冷却した後に吸引濾過し、濾取した結晶をトルエン及びn-ヘキサンにて順次洗浄し、減圧下加熱乾燥することで、表題化合物(14-1)が黄橙色粉末として2.06g得られた。単離収率:91.9%、純度:98.9wt%(1H NMR分析による)。なお、主な不純物はトルエンであった。
1H NMR(300MHz,CD2Cl2):δ=7.36-7.29(m,18H),7.16-7.00(m,11H),6.84-6.75(m,6H),4.76-4.60(m,1H),3.50-3.06(m,4H),2.82-2.48(M,4H).
31P NMR(121MHz,CD2Cl2):δ=41.4(d,J=29.5Hz,1P),29.6(d,J=28.1Hz,2P).
第2工程:ベンジルアルコールの合成
 触媒として、第1工程で得られたジクロロ(トリフェニルホスフィン){N,N-ビス[2-(ジフェニルホスフィノ)エチル]アミン}ルテニウム(II)(14-1)(純度98.9wt%、2.2mg、0.1mol%)を用いた以外は、実施例32と同様にして、安息香酸メチルの水素添加反応によるベンジルアルコールの合成を行った。転化率:7.9%、選択率:79.8%(GC分析による)。
(比較例2)ジクロロ(トリフェニルホスフィン){N,N-ビス[2-(エチルチオ)エチル]アミン}ルテニウム(II)(14-2)を触媒とした、安息香酸メチルの水素添加反応による、ベンジルアルコールの合成(Eq.40)
Figure JPOXMLDOC01-appb-C000092
 触媒として、市販のジクロロ(トリフェニルホスフィン){N,N-ビス[2-(エチルチオ)エチル]アミン}ルテニウム(II)(14-2)(1.6mg、0.1mol%)を用いた以外は、実施例32と全く同様にして、安息香酸メチルの水素添加反応によるベンジルアルコールの合成を行った。転化率:100%、選択率:93.4%(GC分析による)。
(実施例33)ジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-2)を触媒とした、乳酸メチルの水素添加反応による1,2-プロパンジオールの合成(Eq.41)
Figure JPOXMLDOC01-appb-C000093
(仕込み・反応)ステンレス製100mLオートクレーブ装置に、実施例12で得られたジクロロ(トリフェニルホスフィン){2-ジフェニルホスフィノ-N-[2-(エチルチオ)エチル]エチルアミン}ルテニウム(II)(8S-2)(純度:94.2wt%、2.0mg、0.1mol%)を仕込んで内部を窒素置換し、トルエン(2.0mL)、KOtBuのTHF溶液(濃度:1.0mol/L、250μL、0.25mmol、0.1当量)及び乳酸メチル(238μL、2.50mmol、1.0当量)を順次仕込んだ後に内部をH2置換し、更にH2ガスによって1MPaにまで加圧した後に、80℃にて6時間攪拌することで、目的とする1,2-プロパンジオールが得られた。転化率:100%、選択率:100%(GC分析による)。
GC保持時間;乳酸メチル:9.08分、1,2-プロパンジオール:15.84分。
(比較例3)ジクロロ(トリフェニルホスフィン){N,N-ビス[2-(ジフェニルホスフィノ)エチル]アミン}ルテニウム(II)(14-1)を触媒とした、乳酸メチルの水素添加反応による1,2-プロパンジオールの合成(Eq.42)
Figure JPOXMLDOC01-appb-C000094
 触媒として、比較例1第1工程で得られたジクロロ(トリフェニルホスフィン){N,N-ビス[2-(ジフェニルホスフィノ)エチル]アミン}ルテニウム(II)(14-1)(純度:98.9wt%、2.2mg、0.1mol%)を用いた以外は、実施例33と同様にして、乳酸メチルの水素添加反応による1,2-プロパンジオールの合成を行った。転化率:18.6%、選択率:64.3%(GC分析による)。
(比較例4)ジクロロ(トリフェニルホスフィン){N,N-ビス[2-(エチルチオ)エチル]アミン}ルテニウム(II)(14-2)を触媒とした、乳酸メチルの水素添加反応による1,2-プロパンジオールの合成(Eq.43)
Figure JPOXMLDOC01-appb-C000095
 触媒として、市販のジクロロ(トリフェニルホスフィン){N,N-ビス[2-(エチルチオ)エチル]アミン}ルテニウム(II)(14-2)(1.6mg、0.1mol%)を用いた以外は、実施例33と全く同様にして、乳酸メチルの水素添加反応による1,2-プロパンジオールの合成を行った。転化率:17.9%、選択率:59.4%(GC分析による)。
 実施例32及び実施例33、並びに比較例1~4の結果を以下の表1にまとめる。
Figure JPOXMLDOC01-appb-T000096
 この結果からわかるように、本発明の化合物を三座配位子として有するルテニウム錯体は、従来のN,N-ビス(2-ホスフィノエチル)アミンやN,N-ビス(2-チオエチル)アミンを三座配位子として有するルテニウム錯体と比較して、エステル類の水素添加反応における触媒活性、反応選択性及び基質一般性が明らかに優れており、安息香酸メチル及び乳酸メチルのいずれからも、完全な転化率及び選択率にて生成物を与えることが明らかとなった。
 本発明の錯体の実施例11~28及び実施例31における1H NMRチャートは、図1~19を参照のこと。
 本発明の化合物は、一般式(2A)で表される化合物と一般式(4)で表される化合物との反応、又は一般式(3A)で表される化合物と一般式(5)で表される化合物との反応によって容易に製造可能である。更に、本発明の化合物は非対称三座配位子として振舞い、種々の金属種に配位させることで本発明の金属錯体が容易に製造可能である。この金属錯体は触媒的有機合成反応において優れた触媒活性を示し、例えば本発明の化合物を配位子として有するルテニウム錯体は、従来の対称三座配位子であるN,N-ビス(2-ホスフィノエチル)アミンやN,N-ビス(2-チオエチル)アミンのルテニウム錯体と比較して、エステル類の水素添加反応においてより優れた触媒活性を示し、この触媒反応によってアルコール類を一層効率的に製造することが可能となった。

Claims (14)

  1. 一般式(1A)で表されることを特徴とする化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Hは水素原子、Nは窒素原子、Pはリン原子、Sは硫黄原子を表す。Lは孤立電子対又は三水素化ホウ素を表す。R1、R2及びR3は各々独立して、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいヘテロアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基を表す。R1及びR2は互いに結合して、置換基を有してもよい環を形成してもよい。Q1及びQ2は各々独立して、1,2-エタンジイル基、1,3-プロパンジイル基及び1,4-ブタンジイル基から構成される群より選択されるアルカンジイル基を表す。Q1及びQ2は、アルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基及び置換基を有してもよいアラルキル基から構成される群より選択される基によって置換されていてもよく、これらの基は互いに結合して、置換基を有してもよい環を形成してもよい。)
  2.  Q1が1,2-エタンジイル基であることを特徴とする、請求項1に記載の化合物。
  3.  Q2が1,2-エタンジイル基であることを特徴とする、請求項1に記載の化合物。
  4.  Q1及びQ2がいずれも1,2-エタンジイル基であることを特徴とする、請求項1に記載の化合物。
  5.  光学活性体であることを特徴とする、請求項1~4のいずれか1項に記載の化合物。
  6.  請求項1~5のいずれか1項に記載の化合物と、ハロゲン化水素酸、過塩素酸、硝酸、硫酸、スルホン酸、カルボン酸、フェノール類、リン酸、ヘキサフルオロリン酸、ホウ酸及びテトラフルオロホウ酸から構成される群より選択されるブレンステッド酸から形成されることを特徴とする、請求項1~5のいずれか1項に記載の化合物のブレンステッド酸塩。
  7.  一般式(2A
    Figure JPOXMLDOC01-appb-C000002
    (式中、Cは炭素原子、Nは窒素原子、Oは酸素原子、Sは硫黄原子を表す。R3、Q1及びQ2は、請求項1において定義したR3、Q1及びQ2と同様の基を表す。)
    で表される化合物と、一般式(4)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Hは水素原子、Pはリン原子を表す。Lは孤立電子対又は三水素化ホウ素を表す。R1及びR2は、請求項1において定義したR1及びR2と同様の基を表す。)
    で表される化合物を反応させることを特徴とする、請求項1~6のいずれか1項に記載の化合物の製造方法。
  8.  一般式(3A
    Figure JPOXMLDOC01-appb-C000004
    (式中、Cは炭素原子、Nは窒素原子、Oは酸素原子、Pはリン原子を表す。Lは孤立電子対又は三水素化ホウ素を表す。R1、R2、Q1及びQ2は、請求項1において定義したR1、R2、Q1及びQ2と同様の基を表す。)
    で表される化合物と、一般式(5)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Hは水素原子、Sは硫黄原子を表す。R3は、請求項1において定義したR3と同様の基を表す。)
    で表される化合物を反応させることを特徴とする、請求項1~6のいずれか1項に記載の化合物の製造方法。
  9.  請求項1~5のいずれか1項に記載の化合物を配位子として有する金属錯体。
  10.  金属種が、第5族遷移金属、第6族遷移金属、第7族遷移金属、第8族遷移金属、第9族遷移金属、第10族遷移金属及び第11族遷移金属から構成される群より選択される金属種であることを特徴とする、請求項9に記載の金属錯体。
  11.  金属種が、第8族遷移金属、第9族遷移金属及び第10族遷移金属から構成される群より選択される金属種であることを特徴とする、請求項10に記載の金属錯体。
  12.  組成式(8A)で表されることを特徴とする、請求項11に記載の金属錯体。
    [M812(L1k(L2l(L3m(PNS)]n (8A
    (式中、M8は2価鉄イオン、2価ルテニウムイオン又は2価オスミウムイオンから構成される群より選択される、2価第8族遷移金属イオンを表す。X1及びX2は各々独立して1価アニオン性単座配位子を表し、L1、L2及びL3は各々独立して中性単座配位子を表す。k、l及びmはそれぞれL1、L2及びL3の配位数を表し、各々独立して0又は1の整数値を示す。PNSは、請求項1~5のいずれか1項に記載の化合物を表す。nは組成式[M812(L1k(L2l(L3m(PNS)]の多量化度を示す1又は2の整数値を表し、k、l及びmの総和が1~3の整数値である場合は1を、この総和が0である場合は1又は2を示す。)
  13.  組成式(9A)で表されることを特徴とする、請求項11に記載の金属錯体。
    9123(L1k(L2l(L3m(PNS) (9A
    (式中、M9は3価コバルトイオン、3価ロジウムイオン又は3価イリジウムイオンから構成される群より選択される、3価第9族遷移金属イオンを表す。X1、X2及びX3は各々独立して1価アニオン性単座配位子を表し、L1、L2及びL3は各々独立して中性単座配位子を表す。k、l及びmはそれぞれL1、L2及びL3の配位数を表し、各々独立して0又は1の整数値を示す。PNSは、請求項1~5のいずれか1項に記載の化合物を表す。)
  14.  組成式(10A)で表されることを特徴とする、請求項11に記載の遷移金属錯体。
    1012(L1k(PNS) (10A
    (式中、M10は2価ニッケルイオン、2価パラジウムイオン又は2価白金イオンから構成される群より選択される、2価第10族遷移金属イオンを表す。X1及びX2は各々独立して1価アニオン性単座配位子を表し、L1は中性単座配位子を表す。kはL1の配位数を表し、0又は1の整数値を示す。PNSは、請求項1~5のいずれか1項に記載の化合物を表す。)
PCT/JP2015/074069 2014-08-26 2015-08-26 N-(ホスフィノアルキル)-n-(チオアルキル)アミン誘導体及びその製造方法並びにその金属錯体 WO2016031874A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/502,813 US10072033B2 (en) 2014-08-26 2015-08-26 N-(phosphinoalkyl)-N-(thioalkyl)amine derivative, method for producing same, and metal complex thereof
JP2016545588A JP6534223B2 (ja) 2014-08-26 2015-08-26 N−(ホスフィノアルキル)−n−(チオアルキル)アミン誘導体及びその製造方法並びにその金属錯体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-172100 2014-08-26
JP2014172100 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016031874A1 true WO2016031874A1 (ja) 2016-03-03

Family

ID=55399759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074069 WO2016031874A1 (ja) 2014-08-26 2015-08-26 N-(ホスフィノアルキル)-n-(チオアルキル)アミン誘導体及びその製造方法並びにその金属錯体

Country Status (3)

Country Link
US (1) US10072033B2 (ja)
JP (1) JP6534223B2 (ja)
WO (1) WO2016031874A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11370736B2 (en) 2019-04-01 2022-06-28 Triad National Security, Llc Synthesis of fluoro hemiacetals via transition metal-catalyzed fluoro ester and carboxamide hydrogenation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024010176A1 (ko) * 2022-07-04 2024-01-11 한국화학연구원 리간드 화합물을 포함하는 에틸렌 올리고머화 촉매, 이를 채용한 촉매 조성물 및 이를 이용한 에틸렌 올리고머의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015110515A1 (en) * 2014-01-24 2015-07-30 Givaudan Sa Improvements in or relating to organic compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048727A1 (ja) 2009-10-23 2011-04-28 高砂香料工業株式会社 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015110515A1 (en) * 2014-01-24 2015-07-30 Givaudan Sa Improvements in or relating to organic compounds

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOAO D. G. CORREIA ET AL.: "Synthesis and characterization of mixed-ligand oxorhenium(V) complexes with new [(PNO/S) (S)] donor atom sets", J. CHEM. SOC., DALTON TRANS., 2001, pages 2245 - 2250, XP055175741, DOI: doi:10.1039/b101278i *
SIMON R. BAYLY ET AL.: "Ruthenium complexes with tridentate PNX(X=O,S) donor ligands", DALTON TRANS., 2008, pages 2190 - 2198 *
THOMAS L. JAMES ET AL.: "Dihydrogen Evolution by Protonation Reactions of Nickel(I", INORG. CHEM., vol. 35, no. 14, 1996, pages 4148 - 4161 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11370736B2 (en) 2019-04-01 2022-06-28 Triad National Security, Llc Synthesis of fluoro hemiacetals via transition metal-catalyzed fluoro ester and carboxamide hydrogenation

Also Published As

Publication number Publication date
US10072033B2 (en) 2018-09-11
US20170233418A1 (en) 2017-08-17
JPWO2016031874A1 (ja) 2017-06-08
JP6534223B2 (ja) 2019-06-26

Similar Documents

Publication Publication Date Title
JP6391588B2 (ja) 非対称不飽和n‐ヘテロ環状ジアミノカルベンを含むルテニウム錯体
WO2016031874A1 (ja) N-(ホスフィノアルキル)-n-(チオアルキル)アミン誘導体及びその製造方法並びにその金属錯体
EP3750896B1 (en) Chiral tetradentate ligand, method for producing same and transition metal complex of said chiral tetradentate ligand
EP3438113B1 (en) Tetradentate ligand, and production method therefor, synthetic intermediate thereof, and transition metal complex thereof
EP3409681B1 (en) N,n-bis(2-dialkylphosphinoethyl)amine-borane complex and production method therefor, and method for producing ruthenium complex containing n,n-bis(2-dialkylphosphinoethyl)amine as ligand
EP2842959A1 (en) Phosphorous compound and transition metal complex thereof
JP7369700B2 (ja) 4座ジアミノジホスフィン配位子、遷移金属錯体及びそれらの製造方法並びにその用途
CN114096547B (zh) 光学活性双膦基甲烷、其制造方法以及过渡金属络合物和不对称催化剂
JP2014005214A (ja) アリールジクロロホスフィンの製造方法
CN115583975B (zh) 一种含六元氮磷杂环结构化合物的制备方法
EP2937355B1 (en) Phosphorus compound and transition metal complex of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545588

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15502813

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835479

Country of ref document: EP

Kind code of ref document: A1