WO2017131164A1 - 充電回路 - Google Patents

充電回路 Download PDF

Info

Publication number
WO2017131164A1
WO2017131164A1 PCT/JP2017/002956 JP2017002956W WO2017131164A1 WO 2017131164 A1 WO2017131164 A1 WO 2017131164A1 JP 2017002956 W JP2017002956 W JP 2017002956W WO 2017131164 A1 WO2017131164 A1 WO 2017131164A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
secondary batteries
timer
control device
secondary battery
Prior art date
Application number
PCT/JP2017/002956
Other languages
English (en)
French (fr)
Inventor
康成 溝口
和太 武野
邦久 関口
謙治 北村
貴史 狩野
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Priority to EP17744394.2A priority Critical patent/EP3410559B1/en
Priority to CA3011503A priority patent/CA3011503C/en
Priority to US16/073,316 priority patent/US10951048B2/en
Priority to ES17744394T priority patent/ES2858564T3/es
Publication of WO2017131164A1 publication Critical patent/WO2017131164A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charging circuit for charging a secondary battery.
  • the charging system that charges each secondary battery in series reduces the power supply system that supplies current to each secondary battery compared to the charging system that charges in parallel. be able to. For this reason, the series charging is often employed in a low-cost charging circuit.
  • series charging is inevitably performed in an electronic device including secondary batteries connected in series.
  • series charging if you try to charge all the secondary batteries that have different charging amounts before charging until they are fully charged, the secondary battery with a large amount of charging before charging lasts for a longer time. Deterioration will be promoted.
  • a charging device in which the charge amounts of a plurality of secondary batteries are made uniform before performing serial charging.
  • the prior art disclosed in Patent Document 1 is configured such that three switches are provided in a charging circuit that charges two secondary batteries, and individual charging and series charging of each secondary battery can be switched.
  • the prior art disclosed in Patent Document 1 measures the voltage of two secondary batteries while charging only the secondary battery having the lower voltage individually until the voltage difference becomes substantially the same. Before performing the series charging, the charge amounts of the two secondary batteries can be made uniform. That is, the prior art disclosed in Patent Document 1 starts serial charging of two secondary batteries after aligning the charge amounts of the two secondary batteries by individual charging. Can be suppressed.
  • the present invention has been made in view of such a situation, and the object of the present invention is to prevent deterioration due to overcharging even when charging a plurality of secondary batteries having different charge amounts in series. It is in providing the charging circuit which suppresses at low cost.
  • a first aspect of the present invention includes a power supply circuit that supplies charging power to a plurality of secondary batteries, a switch that controls power supply from the power supply circuit to the plurality of secondary batteries, and the plurality of secondary batteries.
  • a control device that performs switching control of the switch based on each voltage value, and the control device detects a voltage difference between the plurality of secondary batteries before starting charging and sets an upper limit of the charging time. Start a timer to start serial charging of the plurality of secondary batteries, and before the timer ends on condition that the voltage difference before charging the plurality of secondary batteries is equal to or greater than a first threshold value.
  • the remaining time of the timer is shortened at that time, and all of the plurality of secondary batteries are fully charged. Or when the timer expires, whichever comes first It ends the series charging of the plurality of secondary batteries at the time of a charging circuit.
  • the control device first detects a voltage difference between the secondary batteries before charging, and then activates a timer for setting an upper limit of the charging time, and a switch for controlling power supply from the power supply circuit to the plurality of secondary batteries. By turning on, serial charging of a plurality of secondary batteries is started.
  • the control device determines that the voltage difference between the secondary batteries detected before charging is the first when the voltage values of all the secondary batteries are equal to or greater than the second threshold before the timer expires. The remaining time of the timer is shortened at that time on condition that it is equal to or greater than the threshold.
  • the first threshold value is a threshold value set in advance to determine whether or not a difference is recognized in the charge amount before charging each secondary battery.
  • the second threshold value is a threshold value for determining whether or not each secondary battery has reached a charge amount that should be ensured by charging, and is previously set as a voltage value of the secondary battery when the charge amount is reached. Is set. Then, when all the secondary batteries are fully charged or when the timer ends, whichever is earlier, the control device turns off the switch for controlling the power supply and ends the charging.
  • the control device charges all the secondary batteries to the minimum charge amount unless the timer first expires, and if there is a certain difference in charge amount of each secondary battery before charging (a plurality of secondary batteries). If the voltage difference before charging the secondary battery is greater than or equal to the first threshold), the remaining time of the timer is shortened at that time.
  • the charging circuit only needs to have one switch for controlling power supply to the plurality of secondary batteries, and the circuit configuration can be simplified thereby reducing the manufacturing cost.
  • the first aspect of the present invention it is possible to provide, at low cost, a charging circuit that suppresses deterioration due to overcharging even when a plurality of secondary batteries having different charge amounts are charged in series. The effect of being able to be obtained is obtained.
  • the control device reduces the remaining time of the timer based on a voltage difference before charging the plurality of secondary batteries.
  • the difference in the charge amount before charging a plurality of secondary batteries can be estimated from the voltage difference of each secondary battery.
  • the control device sets so that the reduction width of the remaining time of the timer increases as the difference between the charge amounts of the plurality of secondary batteries before charging increases.
  • the control device reduces the remaining time of the timer within a range between a preset upper limit value and lower limit value.
  • the control device sets a reduction range of the remaining time of the timer within the range of the preset upper limit value and lower limit value, so that all the secondary batteries can be charged to the fully charged state, and more effective. In particular, deterioration of the secondary battery can be suppressed.
  • FIG. 1 is a configuration diagram of a charging circuit 1 according to the present invention.
  • the charging circuit 1 may be, for example, a charger as a device for charging a plurality of secondary batteries.
  • the charging circuit 1 may be an electronic device for charging a plurality of secondary batteries built in or attached to the electronic device. It may be a circuit incorporated inside.
  • the charging circuit 1 is connected to the external power source 2 to receive power necessary for charging from the external power source 2.
  • the power output from the external power source 2 may be DC power or AC power.
  • the charging circuit 1 includes a first power supply circuit 11, a second power supply circuit 12, a control device 13, a display device 14, a switch SW, a resistor R, and two secondary batteries B1 and B2.
  • the first power supply circuit 11 as a “power supply circuit” is, for example, a DC-DC converter, and converts the power received from the external power supply 2 into a voltage suitable for charging the secondary batteries B1 and B2. Further, when the external power supply 2 is an AC power supply, the first power supply circuit 11 may be configured by an AC-DC converter that converts received AC power into DC power and outputs it. Further, the first power supply circuit 11 is connected to the second power supply circuit 12 and outputs DC power to the second power supply circuit 12.
  • the second power supply circuit 12 is, for example, a three-terminal regulator, and converts DC power received from the first power supply circuit 11 into a voltage suitable for the power supply of the control device 13 and outputs it to the power supply terminal Vcc of the control device 13.
  • the control device 13 is a known microcomputer control circuit, and is connected to the first power supply circuit 11, the display device 14, and the switch SW. As will be described later in detail, the control device 13 detects the voltage values of the secondary batteries B1 and B2, and controls the switch SW based on the detected voltage values of the secondary batteries B1 and B2.
  • the display device 14 is, for example, an LED, and displays whether or not the secondary batteries B1 and B2 are being charged.
  • the switch SW is a switching element provided between the secondary batteries B1 and B2 connected in series and the first power supply circuit 11, and is turned on / off by a control signal output from the C terminal of the control device 13. By switching, the power supply to the secondary batteries B1 and B2 is ON / OFF controlled.
  • the resistor R is connected in parallel to the switch SW, and is provided to detect that the secondary batteries B1 and B2 are attached to the charging circuit 1.
  • Secondary batteries B1 and B2 are alkaline storage batteries that are charged in series by the charging circuit 1.
  • the secondary battery B1 has one end connected to the switch SW and the resistor R, and the other end connected to one end of the secondary battery B1.
  • the other end of the secondary battery B2 is connected to the ground line.
  • the control device 13 detects the voltage value V2 at the connection point between the secondary batteries B1 and B2 as the voltage value VB2 of the secondary battery B2, and the voltage value V1 and the voltage value V2 at one end of the secondary battery B1. From this difference, the voltage value VB1 of the secondary battery B1 is detected.
  • FIG. 2 is a flowchart showing the control of the charging circuit according to the present invention.
  • the control device 13 starts to operate when the charging circuit 1 is connected to the external power source 2 and power is supplied. At the start of the operation, the control device 13 controls the charging power not to be supplied from the first power supply circuit 11 by setting the control signal output from the EN terminal to OFF. At the start of operation, the control device 13 controls the switch SW to be in the OFF state by setting the control signal output from the C terminal to OFF.
  • the control device 13 determines whether or not the secondary batteries B1 and B2 are both attached to the charging circuit 1 (step S1). More specifically, the control device 13 first outputs the charging power from the first power supply circuit 11 by setting the control signal output from the EN terminal to ON. At this time, if the secondary batteries B1 and B2 are not attached to the charging circuit 1, the voltage value detected as the voltage value V1 is the no-load voltage applied via the resistor R. On the other hand, if the secondary batteries B1 and B2 are attached to the charging circuit 1, the voltage value detected as the voltage value V1 is the voltage (VB1 + VB2) of the secondary batteries B1 and B2. Therefore, the control device 13 can determine whether or not the secondary batteries B1 and B2 are mounted from the voltage value detected as the voltage value V1.
  • step S1 When it is determined that the secondary batteries B1 and B2 are not attached to the charging circuit 1 (No in step S1), the control device 13 once sets the control signal output from the EN terminal to OFF and waits for a certain period of time. After (step S2), the process returns to step S1 again to determine whether to install the battery. That is, the control device 13 repeats Step S1 and Step S2 until the secondary batteries B1 and B2 are attached to the charging circuit 1.
  • the control device 13 determines whether or not there is a difference in the amount of charge before the secondary batteries B1 and B2 are charged. That is, it is determined whether or not it is unbalanced charging (step S3). More specifically, the control device 13 compares the voltage value VB1 of the secondary battery B1 with the voltage value VB2 of the secondary battery B2, and determines that the battery is unbalanced when the difference is equal to or greater than the first threshold value. To do.
  • the first threshold value is a threshold value of a voltage difference that is set in advance in order to determine whether or not there is a voltage difference of a certain level or more in the charge amount before charging the secondary batteries B1 and B2.
  • the control device 13 holds the determination result of unbalanced charging.
  • control device 13 starts a timer for setting the upper limit of the charging time (step S4). Moreover, the control apparatus 13 performs control which switches switch SW from OFF to ON by setting the control signal output from C terminal to ON, and starts the serial charge of the secondary batteries B1 and B2 (step S5). At this time, the display device 14 displays that the secondary batteries B ⁇ b> 1 and B ⁇ b> 2 are being charged based on a signal output from the D terminal of the control device 13 by, for example, turning on an LED.
  • the control device 13 determines whether or not both the voltage value VB1 of the secondary battery B1 and the voltage value VB2 of the secondary battery B2 are equal to or greater than the second threshold value (step S6).
  • the second threshold value is a threshold value for determining whether or not each of the secondary batteries B1 and B2 has reached a minimum charge amount that should be ensured by charging, and the secondary battery when the charge amount has been reached.
  • the voltage values of B1 and B2 are set in advance.
  • the control device 13 determines whether or not the timer has expired. Is determined (step S7). When determining that the timer has expired (Yes in step S7), the control device 13 terminates the charging in step S13 described later. When the control device 13 determines that the timer has not expired (No in step S7), the control device 13 returns to step S6 again, and the voltage value VB1 of the secondary battery B1 and the voltage value VB2 of the secondary battery B2 are both second. It is determined whether or not the threshold value is exceeded. That is, the control device 13 continues charging until the secondary batteries B1 and B2 both reach a charge amount that should be secured at least, unless the timer ends first.
  • an alkaline storage battery has a voltage value that increases as charging progresses, and exhibits a voltage peak when it is fully charged. Therefore, the alkaline storage battery can be determined to have reached full charge by detecting the voltage drop immediately after this peak (- ⁇ V detection).
  • the control device 13 determines that both the secondary batteries B1 and B2 are equal to or greater than the second threshold value (Yes in step S6).
  • control device 13 confirms the determination result of unbalanced charging in step S3 before starting charging (step S9). Then, in the case of unbalanced charging (Yes in Step S9), the control device 13 shortens the remaining timer time at this time (Step S10).
  • Various methods can be used for the method of setting the reduction range of the timer time in step S10. For example, it may be set to a fixed shortening range, or may be set at a ratio to the remaining timer time such that the remaining timer time is shortened to 50%. Moreover, it is preferable to set the shortening range of the timer time based on the voltage difference between the secondary batteries B1 and B2 before charging.
  • the difference between the charge amounts of the secondary batteries B1 and B2 before charging can be estimated by the magnitude of the voltage difference between the secondary batteries B1 and B2 before charging.
  • the shortening range of the timer time is set within a range between a preset upper limit value and lower limit value. In other words, by setting an upper limit value for the shortening range of the timer time, it is possible to prevent the remaining time of the timer from becoming too short, thereby avoiding the timer from being terminated without the secondary battery being fully charged. be able to.
  • step S9 when it is confirmed in step S9 that it is not unbalanced charging (No in step S9), the control device 13 continues charging without changing the timer time.
  • control device 13 determines whether ⁇ V is detected in the voltage value VB1 of the secondary battery B1 and the voltage value VB2 of the secondary battery B2, that is, both the secondary battery B1 and the secondary battery B2 are fully charged. It is determined whether or not (step S11). If the control device 13 determines that both the secondary battery B1 and the secondary battery B2 have been fully charged (Yes in step S11), the control device 13 proceeds to step S13 at that time and ends the charging.
  • step S11 when at least one of the secondary battery B1 or the secondary battery B2 has not been fully charged (No in step S11), the control device 13 determines whether or not the timer has expired (step S12). If the control device 13 determines that the timer has expired (Yes in step S12), the control device 13 proceeds to step S13 at that time and ends the charging. If it is determined that the timer has not expired (No in step S12), the control device 13 returns to step S11 again and determines whether both the secondary battery B1 and the secondary battery B2 have been fully charged. To do. That is, the control device 13 ends the charging when the secondary batteries B1 and B2 are both fully charged or the timer ends, whichever comes first.
  • the control device 13 ends the series charging of the secondary batteries B1 and B2 by the following control (step S13).
  • the control device 13 switches the switch SW from ON to OFF by setting the control signal output from the C terminal to OFF, and sets the control signal output from the EN terminal to OFF from the first power supply circuit 11.
  • the charging power output to the secondary batteries B1 and B2 is stopped.
  • the display device 14 stops the display indicating that the secondary batteries B1 and B2 are being charged based on the signal output from the D terminal of the control device 13 (for example, the LED is turned off).
  • the charging circuit 1 completes a series of charging operations.
  • the control device 13 determines whether or not the battery is unbalanced by detecting the voltage difference between the secondary batteries B1 and B2 before the charging by the control device 13 of the charging circuit 1, and first determines the timer.
  • the secondary batteries B1 and B2 are charged until the charge amount that should be secured at least is reached unless the operation ends. And as a condition that it is unbalanced charge, the control apparatus 13 shortens the remaining timer time when the secondary batteries B1 and B2 reach the charge amount. In this case, before the secondary batteries B1 and B2 are fully charged, the series charging of the secondary batteries B1 and B2 is terminated by the timer.
  • the secondary battery B1 or the secondary battery B2 As a result, of the secondary battery B1 or the secondary battery B2, the secondary battery with the smaller amount of charge before charging will not be charged until fully charged, but the amount of charge before charging will be higher.
  • the secondary battery, which is larger, is suppressed from being deteriorated because the duration of the overcharged state after the overcharged state is shortened.
  • the charging circuit 1 only needs to have one switch as a configuration for charging the secondary batteries B1 and B2 in series, thereby simplifying the circuit configuration and reducing the manufacturing cost. Can do.
  • a charging circuit that suppresses deterioration due to overcharging can be provided at low cost even when a plurality of secondary batteries having different charge amounts are charged in series.
  • step S3 determines whether or not it is unbalanced charging (step S3), the voltage values of the secondary batteries B1 and B2 before charging or the voltage difference between them is extremely large. As a condition, it is also possible to stop the charging and display the fact on the display device 14. Thus, for example, an intention that may occur if all the installed secondary batteries are already fully charged before charging, or if only one secondary battery is already fully charged before charging. It is possible to prevent malfunctions that do not occur.

Abstract

充電回路1は、二次電池B1、B2に充電電力を供給する第1電源回路11と、その電力供給を制御するスイッチSWと、スイッチSWの切り替え制御を行う制御装置13と、を備え、制御装置13は、充電開始前に二次電池B1、B2の電圧差を検出し、タイマーを起動して二次電池B1、B2の直列充電を開始し、充電前の電圧差が第1閾値以上であったことを条件として、タイマーが終了する前に二次電池B1、B2の各電圧値が共に第2閾値以上になった場合には、その時点でタイマーの残り時間を短縮し、二次電池B1、B2が共に満充電になったとき、又はタイマーが終了したときのいずれか早い方の時点で二次電池B1、B2の直列充電を終了する。

Description

充電回路
 本発明は、二次電池を充電するための充電回路に関する。
 複数の二次電池を同時に充電する充電回路において、各二次電池を直列に充電する充電方式は、並列に充電する充電方式と比較して各二次電池に電流を供給する電源系統を少なくすることができる。そのため直列充電は、特に低コストの充電回路に採用される場合が多い。また例えば直列に接続された二次電池を内蔵する電子機器において、それらの二次電池を取り出すことなく充電する場合、必然的に直列充電を行うことになる。しかし直列充電は、充電前における充電量に差がある複数の二次電池を全て満充電に至るまで充電しようとすると、充電前における充電量が多い二次電池ほど過充電状態が長時間持続して劣化が促進されることになる。
 このような課題を解決することを目的とした従来技術としては、直列充電を行う前に複数の二次電池の充電量を揃える充電装置が公知である。例えば特許文献1に開示された先行技術は、2つの二次電池を充電する充電回路に3つのスイッチを設け、各二次電池の個別充電と直列充電とを切り替え可能に構成されている。そして特許文献1に開示された先行技術は、2つの二次電池の電圧を測定しながら、その電圧差がほぼ同一になるまで電圧の低い方の二次電池だけを個別に充電することにより、直列充電を行う前に2つ二次電池の充電量を揃えることができる。つまり特許文献1に開示された先行技術は、個別充電により2つ二次電池の充電量を揃えた後に2つの二次電池の直列充電を開始するため、上述のような二次電池の劣化を抑制することができる。
特開2007-250364号公報
 しかしながら各二次電池の個別充電と直列充電とを切り替える構成は、特許文献1に開示された先行技術のように少なくとも3つのスイッチが必要であり、またその回路構成が複雑になるため、充電回路の製造コストの上昇を招来することになってしまう。
 本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、充電量に差がある複数の二次電池を直列に充電する場合であっても過充電による劣化を抑制する充電回路を低コストで提供することにある。
<本発明の第1の態様>
 本発明の第1の態様は、複数の二次電池に充電電力を供給する電源回路と、前記電源回路から前記複数の二次電池への電力供給を制御するスイッチと、前記複数の二次電池の各電圧値に基づいて前記スイッチの切り替え制御を行う制御装置と、を備え、前記制御装置は、充電開始前に前記複数の二次電池の電圧差を検出し、充電時間の上限を設定するタイマーを起動して前記複数の二次電池の直列充電を開始し、前記複数の二次電池の充電前の電圧差が第1閾値以上であったことを条件として、前記タイマーが終了する前に前記複数の二次電池の各電圧値が全て第2閾値以上になった場合には、その時点で前記タイマーの残り時間を短縮し、前記複数の二次電池の全てが満充電になったとき、又は前記タイマーが終了したときのいずれか早い方の時点で前記複数の二次電池の直列充電を終了する、充電回路である。
 制御装置は、まず充電前の各二次電池の電圧差を検出した後、充電時間の上限を設定するタイマーを起動するとともに、電源回路から複数の二次電池への電力供給を制御するスイッチをONにすることにより複数の二次電池の直列充電を開始する。二次電池の充電中において制御装置は、タイマーが終了する前に全ての二次電池の電圧値が第2閾値以上になった場合、充電前に検出した各二次電池の電圧差が第1閾値以上であったことを条件として、その時点でタイマーの残り時間を短縮する。ここで第1閾値は、各二次電池の充電前の充電量に差が認められるかどうかを判定するために予め設定される閾値である。また第2閾値は、各二次電池が充電によって最低限確保されるべき充電量に至ったかどうかを判定するための閾値であり、その充電量に至った場合の二次電池の電圧値として予め設定される。そして制御装置は、全ての二次電池が満充電になったとき、又はタイマーが終了したときのいずれか早い方の時点で、電力供給を制御するスイッチをOFFにして充電を終了する。
 充電前の各二次電池の充電量に一定以上の差がある場合には、直列充電で全ての二次電池を満充電に至るまで充電してしまうと、先に満充電になった二次電池(充電開始前に他の二次電池より充電量が多かった二次電池)の過充電状態が長時間持続することになり、その二次電池が劣化する虞が生ずる。そこで制御装置は、先にタイマーが終了しない限り全ての二次電池を最低限の充電量まで充電し、充電前の各二次電池の充電量に一定以上の差があった場合(複数の二次電池の充電前の電圧差が第1閾値以上であった場合)には、その時点でタイマーの残り時間を短縮する。それによって充電前における充電量が多い二次電池が満充電に至った後に過充電状態が長時間持続しないよう早期に充電を終了させることができる。また充電回路は、複数の二次電池への電力供給を制御するスイッチが1つあればよく、それによって回路構成を簡略化することができるため製造コストを削減することができる。
 これにより本発明の第1の態様によれば、充電量に差がある複数の二次電池を直列に充電する場合であっても過充電による劣化を抑制する充電回路を低コストで提供することができるという作用効果が得られる。
<本発明の第2の態様>
 本発明の第2の態様は、前述した本発明の第1の態様において、前記制御装置は、前記複数の二次電池の充電前の電圧差に基づいて、前記タイマーの残り時間の短縮幅を設定する、充電回路である。
 複数の二次電池の充電前における充電量の差は、各二次電池の電圧差から推測することができる。また充電前における複数の二次電池の充電量の差が大きい程、充電前における充電量が多い二次電池が満充電に至った後に過充電状態が長時間持続する可能性が高まることになる。そのため制御装置は、充電前における複数の二次電池の充電量の差が大きいほどタイマーの残り時間の短縮幅が大きくなるよう設定する。これにより本発明の第2の態様によれば、前述した本発明の第1の態様による作用効果に加え、過充電による二次電池の劣化がより的確に抑制される充電回路を提供することができるという作用効果が得られる。
<本発明の第3の態様>
 本発明の第3の態様は、前述した本発明の第1又は2の態様において、前記制御装置は、予め設定されている上限値と下限値の範囲内で前記タイマーの残り時間の短縮幅を設定する、充電回路である。
 タイマーの残り時間の短縮幅が短すぎると、先に満充電に至った二次電池が過充電状態となる時間が十分に短縮されないことになるため、その二次電池の劣化を抑制する効果が低減することになる。一方、タイマーの残り時間の短縮幅が長すぎると、全ての二次電池の電圧値が第2閾値以上になった後の充電時間が短くなり過ぎて、複数の二次電池がいずれも満充電まで充電されないまま充電が終了してしまう可能性が高まることになる。そのため制御装置は、予め設定された上限値と下限値の範囲内でタイマーの残り時間の短縮幅を設定することにより、複数の二次電池を全て満充電状態まで充電できるようにしつつ、より効果的に二次電池の劣化を抑制することができる。これにより本発明の第3の態様によれば、前述した本発明の第1又は2の態様による作用効果に加え、出来るだけ二次電池の充電量を確保しつつ二次電池の劣化を抑制する効果を維持する充電回路を提供することができるという作用効果が得られる。
本発明に係る充電回路の構成図である。 本発明に係る充電回路の制御を示すフローチャートである。
 以下、本発明の実施形態について図面を参照しながら説明する。
 図1は、本発明に係る充電回路1の構成図である。
 充電回路1は、例えば複数の二次電池を充電するための機器としての充電器であってもよいし、例えば電子機器に内蔵又は装着される複数の二次電池を充電するために電子機器の内部に組み込まれる回路であってもよい。充電回路1は、外部電源2に接続されることにより、充電に必要な電力を外部電源2から受電する。ここで外部電源2が出力する電力は、直流電力であってもよいし交流電力であってもよい。
 充電回路1は、第1電源回路11、第2電源回路12、制御装置13、表示装置14、スイッチSW、抵抗R、2つの二次電池B1、B2、を備える。
 「電源回路」としての第1電源回路11は、例えばDC‐DCコンバータであり、外部電源2から受電した電力を二次電池B1、B2の充電に適した電圧に変換する。また第1電源回路11は、外部電源2が交流電源である場合には、受電した交流電力を直流電力に変換して出力するAC‐DCコンバータで構成すればよい。さらに第1電源回路11は、第2電源回路12に接続され、第2電源回路12に対しても直流電力を出力する。
 第2電源回路12は、例えば3端子レギュレータであり、第1電源回路11から受電した直流電力を制御装置13の電源に適した電圧に変換して制御装置13の電源端子Vccに出力する。
 制御装置13は、公知のマイコン制御回路であり、第1電源回路11、表示装置14、及びスイッチSWにそれぞれ接続されている。制御装置13は、詳細を後述するように、二次電池B1、B2の各電圧値を検出し、検出した二次電池B1、B2の各電圧値に基づいてスイッチSWを制御する。
 表示装置14は、例えばLEDであり、二次電池B1、B2が充電中であるかどうかを表示する。
 スイッチSWは、直列に接続された二次電池B1、B2と第1電源回路11との間に設けられたスイッチング素子であり、制御装置13のC端子から出力される制御信号によってON/OFFが切り替えられることにより二次電池B1、B2への電力供給をON/OFF制御する。
 抵抗Rは、スイッチSWに対して並列に接続され、二次電池B1、B2が充電回路1に装着されていることを検出するために設けられている。
 二次電池B1、B2は、充電回路1によって直列充電されるアルカリ蓄電池である。二次電池B1は、一端がスイッチSW及び抵抗Rに接続され、他端が二次電池B1の一端に接続されている。また二次電池B2は、他端が接地ラインに接続されている。ここで制御装置13は、二次電池B1とB2との接続点の電圧値V2を二次電池B2の電圧値VB2として検出し、また二次電池B1の一端の電圧値V1と電圧値V2との差から二次電池B1の電圧値VB1を検出する。
 つづいて制御装置13の動作について図2を参照しながら説明する。
 図2は、本発明に係る充電回路の制御を示すフローチャートである。
 制御装置13は、充電回路1が外部電源2と接続されて電力が供給されることにより動作がスタートする。動作のスタート時点では制御装置13は、EN端子から出力する制御信号をOFFに設定することで第1電源回路11から充電電力を供給しないように制御している。また動作のスタート時点では制御装置13は、C端子から出力する制御信号をOFFに設定することでスイッチSWがOFF状態になるように制御している。
 制御装置13は、動作がスタートすると、充電回路1に二次電池B1、B2が共に装着されているか否かを判定する(ステップS1)。より具体的には制御装置13は、まずEN端子から出力する制御信号をONに設定することで第1電源回路11から充電電力を出力させる。このとき充電回路1に二次電池B1、B2が装着されていなければ、電圧値V1として検出される電圧値は、抵抗Rを介して印加された無負荷電圧になる。一方、充電回路1に二次電池B1、B2が装着されていれば、電圧値V1として検出される電圧値は、二次電池B1、B2の電圧(VB1+VB2)になる。そのため制御装置13は、電圧値V1として検出される電圧値から二次電池B1、B2が装着されているか否かを判定することができる。
 充電回路1に二次電池B1、B2が装着されていないと判定された場合(ステップS1でNo)、制御装置13は、一旦EN端子から出力する制御信号をOFFに設定し、一定時間待機した後(ステップS2)、再度ステップS1に戻って電池装着の判定を行う。すなわち制御装置13は、充電回路1に二次電池B1、B2が装着されるまでステップS1及びステップS2を繰り返す。
 充電回路1に二次電池B1、B2が装着されていると判定された場合(ステップS1でYes)、制御装置13は、二次電池B1、B2の充電前における充電量に差があるか否か、すなわちアンバランス充電であるか否かを判定する(ステップS3)。より具体的には制御装置13は、二次電池B1の電圧値VB1と二次電池B2の電圧値VB2とを比較し、その差が第1閾値以上である場合にアンバランス充電であると判定する。ここで第1閾値は、二次電池B1、B2の充電前の充電量に一定以上の電圧差があるか否かを判定するために予め設定される電圧差の閾値である。ステップS3の時点では制御装置13は、アンバランス充電の判定結果を保持する。
 次に制御装置13は、充電時間の上限を設定するタイマーを起動する(ステップS4)。また制御装置13は、C端子から出力する制御信号をONに設定することでスイッチSWをOFFからONに切り替える制御を行い、二次電池B1、B2の直列充電を開始する(ステップS5)。このとき表示装置14は、制御装置13のD端子から出力される信号に基づいて、例えばLEDを点灯させる等によって二次電池B1、B2が充電中であることを表示する。
 続いて制御装置13は、二次電池B1の電圧値VB1と二次電池B2の電圧値VB2とが共に第2閾値以上になっているか否かを判定する(ステップS6)。ここで第2閾値は、二次電池B1、B2のそれぞれが充電によって最低限確保されるべき充電量に至ったかどうかを判定するための閾値であり、その充電量に至った場合の二次電池B1、B2の電圧値として予め設定される。
 二次電池B1の電圧値VB1、二次電池B2の電圧値VB2のいずれか一方又は両方が第2閾値未満である場合(ステップS6でNo)、制御装置13は、タイマーが終了したか否かを判定する(ステップS7)。そして制御装置13は、タイマーが終了したと判定した場合には(ステップS7でYes)、後述するステップS13により充電を終了する。制御装置13は、タイマーが終了していないと判定した場合には(ステップS7でNo)、再びステップS6に戻り二次電池B1の電圧値VB1及び二次電池B2の電圧値VB2が共に第2閾値以上になっているか否かを判定する。すなわち制御装置13は、タイマーが先に終了しない限り、二次電池B1、B2が共に最低限確保されるべき充電量に至るまで充電を継続する。
 一般的にアルカリ蓄電池は、充電が進むにつれて電圧値が上昇し、満充電に至ったときに電圧のピークを示すことが知られている。そのためアルカリ蓄電池は、このピーク直後の電圧降下を検出(-ΔV検出)することにより満充電に達したと判定することができる。本実施例では、二次電池B1、B2が共に第2閾値以上になったと判定された場合(ステップS6でYes)、制御装置13は、二次電池B1、B2に対する-ΔV検出を許可する(ステップS8)。
 次に制御装置13は、充電開始前のステップS3におけるアンバランス充電の判定結果を確認する(ステップS9)。そして制御装置13は、アンバランス充電である場合には(ステップS9でYes)、この時点で残りのタイマー時間を短縮する(ステップS10)。
 ステップS10におけるタイマー時間の短縮幅は、その設定方法に種々の態様が可能である。例えば一定の短縮幅に設定しておいてもよいし、残りのタイマー時間を50%に短縮するといったように残りのタイマー時間に対する比率で設定してもよい。またタイマー時間の短縮幅は、充電前の二次電池B1、B2の電圧差に基づいて設定するのが好ましい。ここで充電前における二次電池B1、B2の充電量の差は、充電前の二次電池B1、B2の電圧差の大きさによって推測することができる。そのため二次電池B1、B2の電圧差に応じてタイマー時間の短縮幅を設定することにより、二次電池B1又はB2が過充電状態になったとしても、それが長時間持続しないようにタイマーによって充電を終了することができる。さらにタイマー時間の短縮幅は、予め設定されている上限値と下限値の範囲内で設定されるのが好ましい。すなわちタイマー時間の短縮幅に上限値を設定することによって、タイマーの残り時間が短くなり過ぎることを防止できるため、二次電池が十分に充電されることなくタイマーが終了してしまうことを回避することができる。またタイマー時間の短縮幅に下限値を設定することによって、タイマーの残り時間が長くなり過ぎることを防止できるため、二次電池B1又はB2の過充電状態による劣化をより的確に抑制することができる。
 一方、ステップS9においてアンバランス充電でないことが確認された場合には(ステップS9でNo)、制御装置13は、タイマー時間を変更することなく充電を継続する。
 次に制御装置13は、二次電池B1の電圧値VB1及び二次電池B2の電圧値VB2において-ΔVが検出されたか否か、つまり二次電池B1及び二次電池B2が共に満充電に至ったか否かを判定する(ステップS11)。そして制御装置13は、二次電池B1及び二次電池B2が共に満充電に至ったと判定した場合(ステップS11でYes)、その時点でステップS13に進み充電を終了する。
 ステップS11において、二次電池B1又は二次電池B2の少なくとも一方が満充電に至っていない場合(ステップS11でNo)、制御装置13は、タイマーが終了したか否かを判定する(ステップS12)。そして制御装置13は、タイマーが終了したと判定した場合には(ステップS12でYes)、その時点でステップS13に進み充電を終了する。また制御装置13は、タイマーが終了していないと判定した場合には(ステップS12でNo)、再びステップS11に戻り二次電池B1及び二次電池B2が共に満充電に至ったか否かを判定する。すなわち制御装置13は、二次電池B1、B2が共に満充電になるか、又はタイマーが終了するかのいずれか早い方の時点で充電を終了する。
 制御装置13は、具体的には次の制御により二次電池B1、B2の直列充電を終了する(ステップS13)。制御装置13は、C端子から出力する制御信号をOFFに設定することでスイッチSWをONからOFFに切り替えるとともに、EN端子から出力する制御信号をOFFに設定することで第1電源回路11から二次電池B1、B2へ出力している充電電力を停止させる。またこのとき表示装置14は、制御装置13のD端子から出力される信号に基づいて、二次電池B1、B2が充電中であることを示す表示を停止(例えばLEDを消灯)する。これにより充電回路1は、一連の充電動作を完了する。
 上記説明したように制御装置13は、充電回路1の制御装置13が充電前に二次電池B1、B2の電圧差を検出することによりアンバランス充電であるか否かを判定し、先にタイマーが終了しない限り最低限確保されるべき充電量に至るまで二次電池B1、B2を充電する。そして制御装置13は、アンバランス充電であること条件として、二次電池B1、B2が共にその充電量に至った時点で残りのタイマー時間を短縮する。この場合、二次電池B1、B2が共に満充電に至る前にタイマーによって二次電池B1、B2の直列充電を終了することになる。それによって二次電池B1又は二次電池B2のいずれかのうち、充電前における充電量が少なかった方の二次電池は、満充電状態まで充電されないことになるものの、充電前における充電量がより多かった方の二次電池は、過充電状態になった後の過充電状態の継続時間が短縮されるため劣化が抑制されることになる。また先述のように充電回路1は、二次電池B1、B2を直列充電するための構成としてスイッチが1つあればよく、それによって回路構成を簡略化することができるため製造コストを削減することができる。
 このようにして本発明によれば、充電量に差がある複数の二次電池を直列に充電する場合であっても過充電による劣化を抑制する充電回路を低コストで提供することができる。
 以上で実施形態の説明を終えるが、本発明は上述した実施形態に限定されるものではない。例えば上記実施例において直列充電される二次電池は、3つ以上であってもよい。さらに上記実施例における制御装置13は、アンバランス充電か否かを判定する時点で(ステップS3)、充電前の二次電池B1、B2の各電圧値、又はそれらの電圧差が極端に大きいことを条件として、充電を中止するとともにその旨を表示装置14に表示させることも可能である。それによって例えば、装着された全ての二次電池が充電前にすでに十分な充電量である場合や、一方の二次電池だけが充電前にすでに満充電状態であるような場合に発生し得る意図しない不具合を予防することができる。
 1 充電回路
 2 外部電源
 11 第1電源回路
 12 第2電源回路
 13 制御装置
 14 表示装置
 B1、B2 二次電池
 SW スイッチ
 R 抵抗

Claims (3)

  1.  複数の二次電池に充電電力を供給する電源回路と、
     前記電源回路から前記複数の二次電池への電力供給を制御するスイッチと、
     前記複数の二次電池の各電圧値に基づいて前記スイッチの切り替え制御を行う制御装置と、を備え、
     前記制御装置は、充電開始前に前記複数の二次電池の電圧差を検出し、
     充電時間の上限を設定するタイマーを起動して前記複数の二次電池の直列充電を開始し、
     前記複数の二次電池の充電前の電圧差が第1閾値以上であったことを条件として、前記タイマーが終了する前に前記複数の二次電池の各電圧値が全て第2閾値以上になった場合には、その時点で前記タイマーの残り時間を短縮し、
     前記複数の二次電池の全てが満充電になったとき、又は前記タイマーが終了したときのいずれか早い方の時点で前記複数の二次電池の直列充電を終了する、充電回路。
  2.  請求項1に記載の充電回路において、前記制御装置は、前記複数の二次電池の充電前の電圧差に基づいて、前記タイマーの残り時間の短縮幅を設定する、充電回路。
  3.  請求項1又は2に記載の充電回路において、前記制御装置は、予め設定されている上限値と下限値の範囲内で前記タイマーの残り時間の短縮幅を設定する、充電回路。
PCT/JP2017/002956 2016-01-27 2017-01-27 充電回路 WO2017131164A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17744394.2A EP3410559B1 (en) 2016-01-27 2017-01-27 Charging circuit
CA3011503A CA3011503C (en) 2016-01-27 2017-01-27 Charging circuit
US16/073,316 US10951048B2 (en) 2016-01-27 2017-01-27 Charging circuit
ES17744394T ES2858564T3 (es) 2016-01-27 2017-01-27 Circuito de carga

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-013397 2016-01-27
JP2016013397A JP6555753B2 (ja) 2016-01-27 2016-01-27 充電回路

Publications (1)

Publication Number Publication Date
WO2017131164A1 true WO2017131164A1 (ja) 2017-08-03

Family

ID=59398350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002956 WO2017131164A1 (ja) 2016-01-27 2017-01-27 充電回路

Country Status (6)

Country Link
US (1) US10951048B2 (ja)
EP (1) EP3410559B1 (ja)
JP (1) JP6555753B2 (ja)
CA (1) CA3011503C (ja)
ES (1) ES2858564T3 (ja)
WO (1) WO2017131164A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109525004A (zh) * 2017-09-19 2019-03-26 北京小米移动软件有限公司 电子设备、充电方法及装置、供电方法及装置
CN111244565A (zh) * 2020-01-19 2020-06-05 威海安屯尼智能电子科技有限公司 一种锂离子电池延长寿命防止极板堆积的充电方法及充电器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140209A (ja) * 1994-11-11 1996-05-31 Fuji Heavy Ind Ltd 電気自動車のバッテリ管理システム
JP2009254038A (ja) * 2008-04-02 2009-10-29 Toyota Motor Corp 二次電池モジュール制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW228615B (ja) 1992-08-27 1994-08-21 Sanyo Denki Kk
JP3637758B2 (ja) * 1998-01-09 2005-04-13 日立工機株式会社 電池の充電法
JP2007250364A (ja) 2006-03-16 2007-09-27 Sharp Corp 二次電池の内部充電装置及び充電方法
US8222870B2 (en) * 2007-03-07 2012-07-17 O2Micro, Inc Battery management systems with adjustable charging current
WO2009119075A1 (ja) * 2008-03-25 2009-10-01 パナソニック株式会社 充電方法、充電装置及び電池パック
US8774997B2 (en) * 2009-04-23 2014-07-08 Toyota Jidosha Kabushiki Kaisha Vehicle, charging cable, and charging system for vehicle
JP5466586B2 (ja) * 2009-10-05 2014-04-09 プライムアースEvエナジー株式会社 組電池の管理装置
US9847654B2 (en) * 2011-03-05 2017-12-19 Powin Energy Corporation Battery energy storage system and control system and applications thereof
US8692509B2 (en) * 2011-06-23 2014-04-08 Black & Decker Inc. Charge control scheme for use in power tools
US8816644B2 (en) * 2011-08-30 2014-08-26 Perumala Corporation Interrupting the charging status of a rechargeable battery
WO2013094015A1 (ja) * 2011-12-20 2013-06-27 日立ビークルエナジー株式会社 電池監視・制御用集積回路および電池システム
US9013147B2 (en) * 2012-02-08 2015-04-21 O2Micro, Inc. Circuit and method for cell balancing
JP6101039B2 (ja) * 2012-10-18 2017-03-22 矢崎総業株式会社 均等化装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140209A (ja) * 1994-11-11 1996-05-31 Fuji Heavy Ind Ltd 電気自動車のバッテリ管理システム
JP2009254038A (ja) * 2008-04-02 2009-10-29 Toyota Motor Corp 二次電池モジュール制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3410559A4 *

Also Published As

Publication number Publication date
CA3011503A1 (en) 2017-08-03
US10951048B2 (en) 2021-03-16
JP6555753B2 (ja) 2019-08-07
JP2017135845A (ja) 2017-08-03
ES2858564T3 (es) 2021-09-30
EP3410559A4 (en) 2019-10-02
CA3011503C (en) 2019-09-24
EP3410559A1 (en) 2018-12-05
EP3410559B1 (en) 2020-12-09
US20190006856A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
JP4660523B2 (ja) 電池セルの表面温度で充電制御する充電システム
JP5091473B2 (ja) 組電池制御方法、組電池制御回路、及びこれを備えた充電回路、電池パック
US9219368B2 (en) Charge controller with protection function and battery pack
US8179101B2 (en) Charging apparatus
US8368353B2 (en) Secondary battery device and vehicle
JP2008154317A5 (ja)
JP2009044946A (ja) 組電池の充電方法
US20090295338A1 (en) Systems and Methods of Battery Charging with Dynamic Float Voltage
JP2007288982A (ja) 充電回路およびその充電方法
US20160301233A1 (en) Power supply device and method for controlling power supply device
JP2010252474A (ja) 二次電池の充電方法
JP2009225632A (ja) 充電制御回路、電池パック、及び充電システム
JP2007325324A (ja) 充電システム、電池パックおよびその充電方法
JP6824295B2 (ja) 電気機器
JP2007006650A (ja) 充電器およびそれを用いる電動工具セット
WO2017131164A1 (ja) 充電回路
CN110828913B (zh) 电池充电方法及其充电系统
JP5165405B2 (ja) 充電制御回路、電池パック、及び充電システム
JP2013099060A (ja) 充放電制御機能を備えた携帯端末充電装置
JP2015029388A (ja) 充電装置、及び、充電システム
WO2015076188A1 (ja) 複数電池電源装置
JPH05219655A (ja) バッテリーチャージャ
JP2015029390A (ja) 充電装置
JP2013081295A (ja) パック電池の充電方法、充電器及びパック電池
JPWO2013008614A1 (ja) 蓄電池管理ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3011503

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017744394

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744394

Country of ref document: EP

Effective date: 20180827