WO2017130993A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2017130993A1
WO2017130993A1 PCT/JP2017/002426 JP2017002426W WO2017130993A1 WO 2017130993 A1 WO2017130993 A1 WO 2017130993A1 JP 2017002426 W JP2017002426 W JP 2017002426W WO 2017130993 A1 WO2017130993 A1 WO 2017130993A1
Authority
WO
WIPO (PCT)
Prior art keywords
tti
symbols
shortened
shortened tti
symbol
Prior art date
Application number
PCT/JP2017/002426
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2017564285A priority Critical patent/JP6865502B2/ja
Priority to US16/071,951 priority patent/US11101911B2/en
Priority to EP23168692.4A priority patent/EP4221115A1/en
Priority to EP17744223.3A priority patent/EP3410662A4/en
Priority to CN201780008930.3A priority patent/CN108605030B/zh
Publication of WO2017130993A1 publication Critical patent/WO2017130993A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J2013/165Joint allocation of code together with frequency or time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11 or 12
  • LTE Long Term Evolution
  • Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), LTE Rel. 14, etc.
  • FRA Full Radio Access
  • 5G 5th generation mobile communication system
  • CA Carrier Aggregation
  • CC Component Carrier
  • UE User Equipment
  • DC Dual Connectivity
  • CG Cell Group
  • CC Cell Center
  • frequency division duplex in which downlink (DL) transmission and uplink (UL: Uplink) transmission are performed in different frequency bands, and DL transmission and UL transmission are in the same frequency band.
  • Time Division Duplex which is performed by switching over time, is introduced.
  • a transmission time interval (TTI) applied to DL transmission and UL transmission between the radio base station and the user terminal is set to 1 ms and controlled.
  • the TTI in the LTE system (for example, LTE Rel. 8-13) is also called a subframe, a subframe length, or the like.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Rel In future wireless communication systems such as LTE and 5G after 13th, communication in high frequency bands such as tens of GHz, relative to IoT (Internet of Things), MTC: Machine Type Communication, M2M (Machine To Machine), etc. It is assumed that communication with a small amount of data is performed. In such a future wireless communication system, when a communication method (for example, 1 ms transmission time interval (TTI)) in an existing LTE system (for example, LTE Rel. 8-12) is applied, sufficient communication service is provided. It may not be possible.
  • TTI transmission time interval
  • a shortened TTI a TTI shorter than a 1 ms TTI (hereinafter referred to as a normal TTI).
  • PUCCH Physical Uplink Control Channel
  • the present invention has been made in view of such points, and an object of the present invention is to provide a user terminal, a radio base station, and a radio communication method capable of performing communication using an uplink control channel having a configuration suitable for shortened TTI.
  • an object of the present invention is to provide a user terminal, a radio base station, and a radio communication method capable of performing communication using an uplink control channel having a configuration suitable for shortened TTI.
  • One aspect of the user terminal is a transmitter that transmits uplink control information via an uplink control channel in a second TTI configured with a smaller number of symbols than a first transmission time interval (TTI), and the uplink control.
  • a control unit that controls transmission of information, wherein the control unit transmits the uplink control information in a resource block that performs frequency hopping between slots in the second TTI, and at least one symbol constituting the slot.
  • the reference signal for demodulation is mapped to the above.
  • communication can be performed using an uplink control channel having a configuration suitable for shortened TTI.
  • 2A and 2B are diagrams illustrating a configuration example of a shortened TTI.
  • 3A to 3C are diagrams illustrating setting examples of the shortened TTI.
  • 4A to 4D are diagrams illustrating an example of a normal TTI PF.
  • 5A-5C are diagrams illustrating an application example of the shortened TTI of PF1 / 1a / 1b.
  • 6A to 6C are diagrams illustrating application examples of the shortened TTI of PF2 / 2a / 2b.
  • 7A and 7B are diagrams illustrating a first configuration example of the new PF according to the first aspect.
  • 8A and 8B are diagrams illustrating a second configuration example of the new PF according to the first aspect.
  • 9A and 9B are diagrams illustrating a third configuration example of the new PF according to the first aspect.
  • 10A and 10B are diagrams illustrating a diffusion example in the new PF according to the first aspect.
  • 11A and 11B are diagrams illustrating an example of a PRB index according to the first aspect.
  • 12A and 12B are diagrams illustrating a first configuration example based on PF1 / 1a / 1b / 3 according to the second mode.
  • 13A and 13B are diagrams illustrating a second configuration example based on PF1 / 1a / 1b / 3 according to the second mode.
  • FIGS. 14A and 14B are diagrams illustrating a setting example of the shortened TTI in the second configuration example based on PF1 / 1a / 1b / 3.
  • 15A and 15B are diagrams illustrating another setting example of the shortened TTI in the second configuration example based on PF1 / 1a / 1b / 3.
  • FIGS. 16A to 16C are diagrams illustrating a configuration example based on PF2 / 2a / 2b / 4/5 according to the second mode.
  • FIGS. 17A to 17C are diagrams illustrating setting examples of the shortened TTI in the configuration example based on PF2 / 2a / 2b / 4/5.
  • 18A to 18C are diagrams illustrating another setting example of the shortened TTI in the configuration example based on PF2 / 2a / 2b / 4/5. It is a figure which shows an example of schematic structure of the radio
  • FIG. 1 is a diagram illustrating an example of a TTI (normal TTI) in an LTE system (for example, LTE Rel. 8-12).
  • the normal TTI has a time length of 1 ms.
  • the normal TTI is also called a subframe, and is composed of two time slots (hereinafter also referred to as normal slots in the sense of being distinguished from slots in the shortened TTI).
  • the normal TTI is a transmission time unit of one channel-coded data packet, and is a processing unit such as scheduling and link adaptation.
  • the normal TTI is configured to include 14 OFDM (Orthogonal Frequency Division Multiplexing) symbols (7 OFDM symbols per normal slot).
  • Each OFDM symbol has a time length (symbol length) of 66.7 ⁇ s, and a normal CP of 4.76 ⁇ s is added. Since the symbol length and the subcarrier interval are inverse to each other, when the symbol length is 66.7 ⁇ s, the subcarrier interval is 15 kHz.
  • the normal TTI is configured to include 14 SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols (normally 7 SC-FDMA symbols per slot).
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Each SC-FDMA symbol has a time length (symbol length) of 66.7 ⁇ s, and a normal CP of 4.76 ⁇ s is added. Since the symbol length and the subcarrier interval are inverse to each other, when the symbol length is 66.7 ⁇ s, the subcarrier interval is 15 kHz.
  • the normal TTI may be configured to include 12 OFDM symbols (or 12SC-FDMA symbols).
  • each OFDM symbol (or each SC-FDMA symbol) has a time length of 66.7 ⁇ s, and an extended CP of 16.67 ⁇ s is added.
  • OFDM symbols may be used in the UL.
  • symbols when the OFDM symbol and the SC-FDMA symbol are not distinguished, they are referred to as “symbols”.
  • wireless interfaces suitable for high frequency bands such as tens of GHz, IoT (Internet of Things), MTC: Machine Type Communication, M2M (Machine To Machine), etc.
  • IoT Internet of Things
  • MTC Machine Type Communication
  • M2M Machine To Machine
  • a time margin for processing for example, encoding, decoding, etc.
  • the number of user terminals that can be accommodated per unit time for example, 1 ms
  • FIG. 2 is a diagram illustrating a configuration example of the shortened TTI.
  • the shortened TTI has a time length (TTI length) shorter than 1 ms.
  • the shortened TTI may be, for example, one or a plurality of TTI lengths with a multiple of 1 ms, such as 0.5 ms, 0.2 ms, and 0.1 ms.
  • a normal TTI in the case of a normal CP, includes 14 symbols, so that it is one or a plurality of TTI lengths that are integer multiples of 1/14 ms, such as 7/14 ms, 4/14 ms, 3/14 ms, and 1/14 ms. May be.
  • a normal TTI since a normal TTI includes 12 symbols, it is one or a plurality of TTI lengths that are integral multiples of 1/12 ms such as 6/12 ms, 4/12 ms, 3/12 ms, and 1/12 ms. May be.
  • the normal CP or the extended CP can be configured by higher layer signaling such as broadcast information or RRC signaling. This makes it possible to introduce a shortened TTI while maintaining compatibility (synchronization) with a normal TTI of 1 ms.
  • FIG. 2A is a diagram illustrating a first configuration example of the shortened TTI.
  • the shortened TTI is composed of the same number of symbols as the normal TTI (here, 14 symbols), and each symbol has a symbol length of the normal TTI (for example, 66. A symbol length shorter than 7 ⁇ s).
  • the normal TTI physical layer signal configuration (RE arrangement or the like) can be used.
  • the same amount of information (bit amount) as that of normal TTI can be included in the shortened TTI.
  • the symbol time length is different from that of the normal TTI symbol, it is difficult to frequency multiplex the shortened TTI signal and the normal TTI signal shown in FIG. 2A in the same system band (or cell, CC). It becomes.
  • the subcarrier interval is usually wider than 15 kHz of TTI.
  • the subcarrier interval becomes wide, it is possible to effectively prevent channel-to-channel interference due to Doppler shift during movement of the user terminal and transmission quality deterioration due to phase noise of the user terminal receiver.
  • a high frequency band such as several tens of GHz, it is possible to effectively prevent deterioration in transmission quality by widening the subcarrier interval.
  • FIG. 2B is a diagram illustrating a second configuration example of the shortened TTI.
  • the shortened TTI is configured with a smaller number of symbols than the normal TTI, and each symbol has the same symbol length (for example, 66.7 ⁇ s) as the normal TTI.
  • the shortened TTI is half the time length (0.5 ms) of the normal TTI, the shortened TTI is composed of half the normal TTI symbols (here, 7 symbols).
  • the information amount (bit amount) included in the shortened TTI can be reduced as compared with the normal TTI.
  • the user terminal can perform reception processing (for example, demodulation, decoding, etc.) of information included in the shortened TTI in a time shorter than normal TTI, and the processing delay can be shortened.
  • the shortened TTI signal and the normal TTI signal shown in FIG. 2B can be frequency-multiplexed within the same system band (or cell, CC), and compatibility with the normal TTI can be maintained.
  • FIGS. 2A and 2B show an example of a shortened TTI that assumes a case of a normal CP (a case where a normal TTI is composed of 14 symbols), but the configuration of the shortened TTI is shown in FIGS. 2A and 2B. It is not limited to things.
  • the shortened TTI in FIG. 2A may be configured with 12 symbols
  • the shortened TTI in FIG. 2B may be configured with 6 symbols.
  • the shortened TTI only needs to have a shorter time length than the normal TTI, and the number of symbols, the symbol length, the CP length, and the like in the shortened TTI are arbitrary.
  • a setting example of the shortened TTI will be described with reference to FIG.
  • a future wireless communication system may be configured to be able to set both a normal TTI and a shortened TTI so as to be compatible with an existing LTE system.
  • the normal TTI and the shortened TTI may be mixed in time within the same CC (frequency domain).
  • the shortened TTI may be set in a specific subframe of the same CC (or a specific time unit such as a specific radio frame).
  • the shortened TTI is set in five consecutive subframes in the same CC, and the normal TTI is set in the other subframes. Note that the number and position of subframes in which the shortened TTI is set are not limited to those illustrated in FIG. 3A.
  • carrier aggregation (CA) or dual connectivity (DC) may be performed by integrating the normal TTI CC and the shortened TTI CC.
  • the shortened TTI may be set in a specific CC (more specifically, in the DL and / or UL of the specific CC).
  • a shortened TTI is set in the DL of a specific CC
  • a normal TTI is set in the DL and UL of another CC. Note that the number and position of CCs for which the shortened TTI is set are not limited to those shown in FIG. 3B.
  • the shortened TTI may be set to a specific CC (primary (P) cell or / and secondary (S) cell) of the same radio base station.
  • the shortened TTI may be set to a specific CC (P cell or / and S cell) in the master cell group (MCG) formed by the first radio base station, or the second radio It may be set to a specific CC (primary secondary (PS) cell or / and S cell) in the secondary cell group (SCG) formed by the base station.
  • the shortened TTI may be set to either DL or UL.
  • the normal TTI is set in the UL and the shortened TTI is set in the DL.
  • a specific DL or UL channel or signal may be assigned (set) to the shortened TTI.
  • the uplink control channel (PUCCH: Physical Uplink Control Channel) may be assigned to a normal TTI
  • the uplink shared channel (PUSCH: Physical Uplink Shared Channel) may be assigned to a shortened TTI.
  • the user terminal performs transmission of PUCCH by normal TTI and transmission of PUSCH by shortened TTI.
  • the user terminal sets (or / and detects) a shortened TTI based on an implicit or explicit notification from the radio base station.
  • an implicit notification example (2) broadcast information or RRC (Radio Resource Control) signaling, (3) MAC (Medium Access Control) signaling, (4) explicit by PHY (Physical) signaling
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • PHY Physical
  • the user terminal transmits an LBT (Listen in frequency band (for example, 5G band, unlicensed band, etc.), system bandwidth (for example, 100 MHz, etc.), LAA (License Assisted Access). Applicability of Before Talk, type of data to be transmitted (eg, control data, voice, etc.), logical channel, transport block, RLC (Radio Link Control) mode, C-RNTI (Cell-Radio Network Temporary Identifier), etc.
  • a shortened TTI may be set (for example, it is determined that a cell, a channel, a signal, or the like for communication is a shortened TTI).
  • control information (DCI) addressed to the terminal itself is detected in the PDCCH mapped to the first 1, 2, 3, or 4 symbols of the normal TTI and / or 1 ms of EPDCCH
  • 1 ms including the PDCCH / EPDCCH is normally used.
  • Control information (DCI) addressed to own terminal is detected by PDCCH / EPDCCH (eg, PDCCH mapped to other than the first 1 to 4 symbols of TTI and / or EPDCCH of less than 1 ms) that has a configuration other than that determined as TTI
  • a predetermined time interval of less than 1 ms including the PDCCH / EPDCCH may be determined as the shortened TTI.
  • the control information (DCI) addressed to the own terminal can be detected based on the CRC check result for the blind-decoded DCI.
  • the shortened TTI may be set based on setting information notified from the radio base station to the user terminal by broadcast information or RRC signaling.
  • the setting information indicates, for example, which CC or / and subframe is used as a shortened TTI, which channel or / and signal is transmitted / received by the shortened TTI, or the like.
  • the user terminal sets the shortened TTI to semi-static based on the setting information from the radio base station.
  • mode switching between the shortened TTI and the normal TTI may be performed by an RRC reconfiguration procedure, an intra-cell handover (HO) in the P cell, and a CC (S cell in the S cell. ) Removal / addition procedure.
  • the shortened TTI set based on the setting information notified by RRC signaling is activated or deactivated (activate or de-activate) by MAC signaling. May be.
  • the user terminal enables or disables the shortened TTI based on an L2 control signal (for example, a MAC control element) from the radio base station.
  • the user terminal is set in advance with a timer indicating the activation period of the shortened TTI by higher layer signaling such as RRC.
  • the UL / DL allocation of the shortened TTI for a predetermined period is performed. If not done, the shortened TTI may be invalidated.
  • Such a shortened TTI invalidation timer may count in units of normal TTI (1 ms), or may count in units of shortened TTI (for example, 0.25 ms). Note that, when switching between the shortened TTI mode and the normal TTI mode in the S cell, the S cell may be de-activated once, or it may be considered that a TA (Timing Advance) timer has expired. Thereby, the communication stop period at the time of mode switching can be provided.
  • a shortened TTI set based on setting information notified by RRC signaling may be scheduled by PHY signaling.
  • the user terminal receives and detects information included in the L1 control signal (for example, downlink control channel (PDCCH: Physical Downlink Control Channel or EPDCCH: Enhanced Physical Downlink Control Channel; hereinafter referred to as PDCCH / EPDCCH)). Based on, a shortened TTI is detected.
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • control information (DCI) for assigning transmission or reception in normal TTI and shortened TTI includes different information elements, and (4-1) the user terminal performs control including information elements for assigning transmission / reception in shortened TTI.
  • DCI control information
  • a predetermined time interval including the timing at which the PDCCH / EPDCCH is detected may be recognized as a shortened TTI.
  • the user terminal can blind-decode control information (DCI) that allocates transmission or reception of both normal TTI and shortened TTI in PDCCH / EPDCCH.
  • the user terminal detects downlink control information (DCI: Downlink) transmitted by the PDCCH / EPDCCH (when the control information (DCI) including an information element to which transmission / reception with the shortened TTI is allocated is detected)
  • DCI downlink control information
  • a predetermined time interval including the timing at which PDSCH or PUSCH scheduled by Control Information)) is transmitted / received may be recognized as a shortened TTI.
  • the PDSCH scheduled by the PDCCH / EPDCCH (DCI transmitted by the PDCCH / EPDCCH) when the control information (DCI) including the information element to which transmission / reception with the shortened TTI is allocated is detected.
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledgement
  • ACK / NACK A / N, etc.
  • the control information (DCI) instructing transmission / reception with the shortened TTI may be transmitted / received a certain time before transmitting / receiving the shortened TTI.
  • the radio base station transmits control information (DCI) instructing transmission / reception with a shortened TTI at a predetermined timing, and when the user terminal receives the control information (DCI), after a predetermined time (for example, an integer having a TTI length) After a double time or an integer time of the subframe length), the shortened TTI is transmitted / received.
  • the user terminal changes the signal processing algorithm by transmitting / receiving control information (DCI) instructing transmission / reception with a shortened TTI a predetermined time before actually performing transmission / reception with the shortened TTI. Time to do.
  • DCI receiving control information
  • a shortened TTI is set by upper layer signaling such as RRC, and a predetermined instruction is given by control information (DCI) transmitted / received by a downlink control channel, a method of switching to transmission / reception by normal TTI may be applied.
  • DCI control information
  • a shortened TTI that requires signal processing with a low delay requires a higher user processing capacity than a normal TTI. Therefore, by limiting the dynamic switching from the shortened TTI to the normal TTI, the signal processing burden on the user terminal accompanying the change in the TTI length is reduced as compared with the case where the dynamic switching from the normal TTI to the shortened TTI is allowed. be able to.
  • the user terminal may detect the shortened TTI based on the state of the user terminal (for example, Idle state or Connected state). For example, in the idle state, the user terminal may recognize all TTIs as normal TTIs and perform blind decoding only on the PDCCH included in the first 1 to 4 symbols of the 1 ms normal TTI. Further, when the user terminal is in the connected state, the user terminal may set (or / and detect) the shortened TTI based on at least one of the above notification examples (1) to (4).
  • the state of the user terminal for example, Idle state or Connected state. For example, in the idle state, the user terminal may recognize all TTIs as normal TTIs and perform blind decoding only on the PDCCH included in the first 1 to 4 symbols of the 1 ms normal TTI. Further, when the user terminal is in the connected state, the user terminal may set (or / and detect) the shortened TTI based on at least one of the above notification examples (1) to (4).
  • PUCCH format As described above, when the shortened TTI is set, there is a problem of how to configure the PUCCH transmitted by the shortened TTI.
  • PUCCH format (hereinafter referred to as PUCCH format, PF, etc.) transmitted in a normal TTI (subframe)
  • UCI Uplink Control Information
  • HARQ-ACK acknowledgment information
  • PDSCH Physical Downlink Shared Channel
  • CSI Channel State Information
  • PUSCH uplink shared channel
  • SR Scheduling Request
  • FIG. 4 is a diagram illustrating an example of a PUCCH format used in normal TTI.
  • the case where the normal CP is used will be described as an example, but the present invention is not limited to this.
  • Each PUCCH format (PF) can be appropriately changed and applied even when an extended CP is used.
  • PF1 / 1a / 1b the three symbols at the center of each normal slot are used for demodulation reference signals (DMRS: DeModulation Reference Signal), and the remaining four symbols are used for UCI.
  • UCI is modulated by BPSK (Binary Phase Shift Keying) or QPSK (Quadrature Phase Shift Keying), and spreading (CS spreading and time spreading) with a maximum spreading factor of 36 is applied.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • CS spreading and time spreading spreading
  • PF2 / 2a / 2b As shown in FIG. 4B, the second and sixth two symbols from the left of each normal slot are used for DMRS, and the remaining five symbols are used for UCI.
  • UCI is QPSK-modulated and cyclic shift (CS: Cyclic Shift) spreading with a maximum spreading factor of 12 is applied.
  • CS Cyclic Shift
  • PF3 As shown in FIG. 4B, the 2nd and 6th 2 symbols from the left of each normal slot are used for DMRS, and the remaining 5 symbols are used for UCI.
  • UCI is QPSK modulated and time spreading with a maximum spreading factor of 5 is applied. In PF3, a maximum of 48 bits are transmitted.
  • PF4 As shown in FIG. 4C, one symbol at the center of each normal slot is used for DMRS, and the remaining six symbols are used for UCI. Further, one or a plurality of resource blocks (physical resource block (PRB: Physical Resource Block) (2PRB in FIG. 4C) is used per slot. UCI is QPSK modulated and spreading is not applied. In PF4, 1 or 1 is used. A plurality of PRBs transmit a predetermined number of bits (for example, 100 bits or more).
  • PRB Physical Resource Block
  • PF5 As shown in FIG. 4D, one symbol at the center of each normal slot is used for DMRS, and the remaining six symbols are used for UCI.
  • UCI is QPSK modulated and frequency spreading with a maximum spreading factor of 2 is applied. Also, 1 PRB is normally used per slot.
  • a predetermined number of bits (for example, 50 bits or more) are transmitted.
  • each PF of the normal TTI as described above cannot be directly applied to a shortened TTI (see FIG. 2B) configured with a smaller number of symbols than the normal TTI.
  • FIG. 5 is a diagram illustrating an application example of the shortened TTI of PF1 / 1a / 1b.
  • the same bit string is copied to each symbol for UCI (hereinafter also referred to as an information symbol) in each normal slot, and a plurality of user terminals have mutually different orthogonal spreading codes ( For example, it is multiplexed by an orthogonal sequence having a sequence length of 4).
  • the shortened TTI is configured with a number of symbols smaller than one slot (for example, 4 symbols)
  • spreading codes in the time (symbol) direction are not orthogonal (for example, an orthogonal sequence with a sequence length of 4). Therefore, a plurality of user terminals cannot be multiplexed appropriately.
  • FIG. 5C when the shortened TTI is composed of the same number of symbols as the normal slot (7 symbols in the normal CP), the orthogonality of the spreading code in the time direction can be maintained (for example, the sequence length 4 Therefore, a plurality of user terminals can be appropriately multiplexed.
  • FIG. 5 shows an example of PF1 / 1a / 1b, but the same applies to PF3.
  • FIG. 6 is a diagram illustrating an application example of the shortened TTI of PF2 / 2a / 2b. As shown in FIG. 6A, in PF2 / 2a / 2b, different information bits (for example, 2 encoded bits) are mapped to each information symbol.
  • a shortened TTI when a shortened TTI is applied to PF2 / 2a / 2b, only a number of encoded bits proportional to the number of information symbols in the shortened TTI can be mapped.
  • FIG. 5 shows an example of PF2 / 2a / 2b, but the same applies to PF4 / 5.
  • each PUCCH format of normal TTI does not conform to a shortened TTI (see FIG. 2B) configured with a smaller number of symbols than normal TTI.
  • a shortened TTI see FIG. 2B
  • the effect of latency reduction hereinafter referred to as delay reduction effect
  • delay reduction effect by applying shortened TTI to other physical channels is limited. .
  • the present inventors have studied that it is desirable to apply the shortened TTI to the PUCCH in order to efficiently obtain the delay reduction effect, and examined a PUCCH format suitable for the shortened TTI.
  • the shortened TTI (second TTI) is configured with a smaller number of symbols than the normal TTI (first TTI), and each symbol has the same symbol length as the normal TTI (FIG. 2B). reference).
  • the number of shortened TTIs included in the normal TTI is, for example, 2, 4, but is not limited thereto.
  • the shortened TTI may be called a partial TTI (short TTI), a short TTI, an sTTI, a shortened subframe, a short subframe, or the like.
  • the normal TTI is also called TTI, long TTI, lTTI, normal TTI, normal subframe, long subframe, normal subframe, or simply subframe.
  • a slot that is a unit of frequency hopping in the shortened TTI is also referred to as a shortened slot, a partial slot, a short slot, or the like.
  • a slot that is a unit of frequency hopping in normal TTI is also called a normal slot, a long slot, a normal slot, or simply a slot.
  • slots serving as units of frequency hopping for each of the shortened TTI and the normal TTI are referred to as a shortened slot and a normal slot.
  • a reference signal used for PUCCH demodulation (channel estimation) is referred to as a demodulation reference signal (DMRS), but the name of the reference signal is not limited thereto.
  • the user terminal which concerns on a 1st aspect transmits UCI via PUCCH in shortened TTI comprised with a symbol number smaller than normal TTI. Specifically, the user terminal transmits UCI by PRB that performs frequency hopping between the shortened slots in the shortened TTI, and maps the DMRS to at least one symbol constituting the shortened slot.
  • PF new PUCCH format
  • FIG. 7 is a diagram illustrating a first configuration example of the new PF according to the first aspect.
  • FIG. 7A shows a case with two shortened TTIs per regular TTI (one shortened TTI per regular slot), and
  • FIG. 7B shows a case with four shortened TTIs per regular TTI (two shortened TTIs per regular slot). .
  • the allocated PRB is changed from a PRB at one end of a frequency band (for example, a system band) supported by the user terminal (hereinafter referred to as a support band) to a PRB at the other end.
  • Changed frequency hopping is applied.
  • at least one DMRS symbol is provided in a predetermined number of symbols (shortened slots) to which the same PRB is assigned.
  • a spread code may be applied between the information symbols.
  • the PRB at one end of the support band is allocated in the first shortened slot (symbol # 0- # 2) of each shortened TTI, In the second half of the shortened slot (symbol # 3- # 6), the PRB at the other end is assigned.
  • DMRS is mapped to the central symbol # 1.
  • DMRS is mapped to symbol # 4.
  • the UCI can be transmitted with two information symbols excluding the DMRS symbol in the shortened slot including the final symbol.
  • CS spreading with a predetermined spreading factor (for example, maximum spreading factor 12) is applied to each information symbol in the shortened slot, and a plurality of information symbols (for example, symbols # 0 and # 2 in the shortened slot) are applied.
  • a predetermined spreading factor for example, a spreading factor equal to the number of information symbols in the shortened slot.
  • CS spreading with a maximum spreading factor of 12 may be applied to each of the symbols # 0 and # 2
  • block spreading with a maximum spreading factor of 2 may be applied between the symbols # 0 and # 2.
  • each shortened TTI when each shortened TTI is composed of four symbols, at least one symbol may be shared between adjacent shortened TTIs.
  • the central symbol (symbol # 3) in the normal slot is shared between two shortened TTIs in the normal slot.
  • each shortened TTI is composed of first half and second half shortened slots, and frequency hopping is applied between the shortened slots.
  • the frequency hopping pattern may be reversed between the two shortened TTIs sharing the symbol # 3.
  • each shortened slot is provided with at least one DMRS symbol.
  • DMRS symbol # 3 is shared between two shortened TTIs in the normal slot.
  • the DMRSs of the plurality of shortened TTIs may be multiplexed by cyclic shift and / or comb-shaped subcarrier arrangement (Comb).
  • the same information symbol may be shared among a plurality of shortened TTIs.
  • the plurality of shortened TTI UCIs may be multiplexed by Comb.
  • 7A and 7B are merely examples, and are not limited thereto.
  • the number of shortened TTIs included in a normal TTI is not limited to this.
  • frequency hopping within the shortened TTI is not limited to that performed in the first half and second half shortened slots, and for example, frequency hopping may be applied for each symbol.
  • FIGS. 7A and 7B in different shortened TTIs, different user terminals may transmit PUCCH, or the same user terminal may transmit PUCCH.
  • the configuration examples shown in FIGS. 7A and 7B may be combined.
  • one shortened TTI may be set as shown in FIG. 7A
  • two shortened TTIs may be set as shown in FIG. 7B, or vice versa. May be set.
  • FIG. 8 is a diagram illustrating a second configuration example of the new PF according to the first aspect.
  • FIG. 8A shows a case where each shortened TTI is composed of 7 symbols
  • FIG. 8B shows a case where each shortened TTI is composed of 4 symbols. Note that FIG. 8 will be described with a focus on differences from FIG.
  • the new PF may be composed of one or more PRBs per shortened slot.
  • the new PF is configured with 2 PRBs per shortened slot.
  • the new PF has a smaller number of information symbols than the normal TTI PF, and thus the payload is reduced (or the coding gain and spreading processing gain due to coding and spreading are reduced).
  • FIGS. 8A and 8B by extending the new PF in the frequency direction, it is possible to compensate for a decrease in payload due to a decrease in information symbols (or an improvement in coding gain or spreading processing gain due to coding or spreading).
  • FIG. 9 is a diagram illustrating a third configuration example of the new PF according to the first aspect.
  • FIG. 9A shows a case where each shortened TTI is composed of 7 symbols
  • FIG. 9B shows a case where each shortened TTI is composed of 4 symbols. Note that FIG. 9 will be described focusing on the differences from FIGS.
  • a shortened format (Shortened format) that omits the final symbol may be applied to the shortened TTI.
  • a format that does not omit the final symbol may be referred to as a normal format.
  • the number of symbols of the shortened TTI of the shortened format may be a value obtained by subtracting 1 from the number of symbols of the shortened TTI of the normal format.
  • FIG. 10 is a diagram illustrating a diffusion example in the new PF according to the first aspect.
  • FIG. 10A shows an example of block spreading (orthogonal spreading) in a shortened slot.
  • an orthogonal spreading code having a sequence length (spreading rate, code length) equal to the number of the plurality of information symbols is used between the plurality of information symbols. Diffusion may be performed.
  • the user terminal copies the same UCI (modulation symbol) between a plurality of information symbols in the shortened TTI, and has a length equal to the number (N) of information symbols in the shortened slot for the copied UCI.
  • spreading may be performed using orthogonal spreading codes [W 0 ,..., W N ⁇ 1 ].
  • the first half of the shortened slot in the shortened TTI contains 2 information symbols, and the latter half of the shortened slot contains 3 information symbols.
  • the same UCI is copied to symbols # 0 and # 2
  • the UCI of symbol # 0 is multiplied by an orthogonal spreading code [W 0 , W 1 ] having a code length of 2
  • symbol # 2 W 1 may be multiplied by the UCI.
  • the same UCI is copied to symbols # 3, # 5, and # 6, and the WCI of code length 3 orthogonal spreading code [W 0 , W 1 , W 2 ] is copied to the UCI of symbol # 3.
  • 0 is multiplied, is multiplied by W 1 to UCI symbol # 5, it may be W 2 is multiplied by UCI symbols # 6.
  • diffusion can also be performed in a frequency (subcarrier) direction.
  • 12 ⁇ M subcarriers are used per symbol. Therefore, 12 ⁇ M subcarriers can be divided into N groups, 12 ⁇ M / N symbols can be mapped to each group, and can be spread with a spreading code of length N.
  • FIG. 10B shows an example of CS spreading (phase rotation) in each information symbol.
  • the user terminal maps different UCI (modulation symbols) to each information symbol in the shortened TTI, and uses CS of a predetermined length (spreading factor) for each UCI of each information symbol. May be performed.
  • different UCIs may be mapped to symbols # 0 and # 2, respectively, and multiplied by a length 12 CS sequence.
  • different UCIs are mapped to symbols # 3, # 5, and # 6, respectively, and multiplied by a CS sequence having a sequence length of 12.
  • the payload of the UCI can be increased in proportion to the number of information symbols in the shortened TTI.
  • each shortened TTI is composed of 7 symbols (see FIG. 7A), but is not limited thereto.
  • the spreading examples shown in FIGS. 10 and 10B are also applicable as appropriate when each shortened TTI is composed of 4 symbols (see FIG. 7B). Also, as described with reference to FIG. 7A, the diffusion examples shown in FIGS. 10A and 10B may be combined.
  • FIG. 11 is a diagram illustrating an example of the PRB index used in the first mode.
  • FIG. 11A shows a case where each shortened TTI is composed of 7 symbols
  • FIG. 11B shows a case where each shortened TTI is composed of 4 symbols.
  • the numbers given in FIGS. 11A and 11B indicate the PRB index (PRB index).
  • 11A and 11B show the support band of the user terminal, and the upper part of the frequency band is low and the lower part is high, but this may be reversed.
  • the same PRB index has a frequency position that is symmetric about the center frequency of the user terminal in the first and second shortened slots. It is attached to PRB.
  • PRB index # 1 is assigned to the PRB having the lowest frequency in the support band in the first half of the shortened slot, and to the PRB having the highest frequency in the second half of the shortened slot.
  • the PRB index is assigned in ascending order from the outside of the support band of the user terminal.
  • the same PRB index is symmetrical about the center frequency of the user terminal in the first and second shortened slots. Is attached to the PRB at the frequency position.
  • the PRB index of each of the plurality of shortened TTIs may be attached to the PRB of the shared symbol.
  • the PRB index # 2 for the first shortened TTI and the PRB index # 1 for the second shortened TTI are attached to the PRB having the lowest frequency of the shared symbol.
  • the PRB index n PRB as described above may be given based on the following formula (1), for example.
  • the parameter m is a value determined from the PUCCH resource
  • parameter n x is a number of shorter slots for shortening TTI (index).
  • N UL RB indicates the uplink support band of the user terminal. Note that the PRB index assignment method is not limited to this.
  • the frequency hopping is applied within the shortened TTI by the new PF for the shortened TTI, it is possible to prevent the performance degradation of the PUCCH while obtaining the delay reduction effect accompanying the introduction of the shortened TTI.
  • the user terminal which concerns on a 2nd aspect transmits UCI via PUCCH in shortened TTI comprised with a symbol number smaller than normal TTI. Specifically, the user terminal transmits a UCI of a shortened TTI using a part of a normal TTI PF, and maps the DMRS to at least one symbol constituting the shortened TTI.
  • FIG. 12 is a diagram illustrating a first configuration example based on PF1 / 1a / 1b according to the second aspect.
  • a shortened TTI having the same number of symbols as that of a normal slot that is, a shortened TTI of 0.5 ms
  • a shortened TTI having a number of symbols different from that of the normal slot is allowed.
  • the PF1 / 1a / 1b / 3 configuration of the normal slot in the first half (or the second half) of the normal TTI of 1 ms is applied to the 0.5 ms shortened TTI.
  • FIG. 12A shows an application example of PF1 / 1a / 1b for a shortened TTI of 0.5 ms.
  • CS spreading phase rotation
  • orthogonal spreading time spreading
  • an orthogonal sequence having a sequence length of 4 are applied to 4 information symbols in a shortened TTI ( That is, a spreading code with a spreading factor of 48 is applied).
  • a CAZAC Constant Amplitude Zero Auto-Correlation
  • phase rotation determined as a function of the PUCCH resource index of PF1 / 1a / 1b and orthogonal spreading of sequence length 3 A sign is applied.
  • an orthogonal spreading code having a sequence length of 3 determined by a function of a PUCCH resource index can be applied to improve orthogonality between users multiplexed in the same PRB.
  • FIG. 12B shows an application example of PF3 for a shortened TTI of 0.5 ms.
  • orthogonal spreading time spreading
  • an orthogonal sequence with a sequence length of 5 is applied to 5 information symbols in the shortened TTI (that is, a spreading code with a spreading factor of 5 is applied).
  • an orthogonal spreading code having a sequence length of 2 determined by a function of the PUCCH resource index can be applied to improve orthogonality between users multiplexed on the same PRB.
  • the existing PF1 / 1a / 1b / 3 is used without introducing a new PF.
  • the existing PF generation circuit can be used. For this reason, the delay reduction effect accompanying the introduction of the 0.5 ms shortened TTI can be obtained without applying a new design load.
  • FIG. 13 is a diagram illustrating a second configuration example based on PF1 / 1a / 1b according to the second aspect. As shown in FIG. 13, in the second configuration example, a shortened TTI having a number of symbols different from that of the normal slot is allowed.
  • FIG. 13A shows an application example of PF1 / 1a / 1b to a shortened TTI composed of four symbols.
  • CS spreading phase rotation
  • orthogonal spreading time spreading
  • an orthogonal sequence having a sequence length of 2 are applied to two information symbols in the shortened TTI ( That is, a spreading code with a spreading factor of 24 is applied).
  • a spreading code with a spreading factor of 24 is applied.
  • a CAZAC sequence defined for 1PRB is used, and phase rotation determined as a function of the PUCCH resource index of PF1 / 1a / 1b is applied.
  • an orthogonal spreading code having a sequence length of 2 determined by a function of a PUCCH resource index can be applied to improve orthogonality between users multiplexed in the same PRB.
  • FIG. 13B shows an application example of PF3 to a shortened TTI composed of 4 symbols.
  • orthogonal spreading time spreading
  • 3 information symbols in the shortened TTI that is, a spreading code with a spreading factor of 3 is applied.
  • FIG. 13 shows an application example of PF1 / 1a / 1b / 3 to a shortened TTI composed of four symbols, but the number of symbols constituting the shortened TTI is not limited to this, and can be applied by changing as appropriate. is there.
  • the number of symbols constituting the shortened TTI only needs to be different from the number of symbols constituting the normal slot, and may be small or large.
  • FIG. 13A when the shortened TTI is composed of 3 symbols, only CS spreading by a CS sequence having a sequence length of 12 may be applied to 1 DMRS symbol (ie, a spreading code having a spreading factor of 12). May apply).
  • FIG. 13B when the shortened TTI is composed of 3 symbols, orthogonal spreading (time spreading) by an orthogonal sequence having a sequence length of 2 may be applied to 2 information symbols (that is, spreading factor 2). May be applied).
  • FIG. 14 is a diagram illustrating a setting example of the shortened TTI in the second configuration example based on PF1 / 1a / 1b / 3. As shown in FIGS. 14A and 14B, all the shortened TTIs in the normal TTI may be composed of 4 symbols. 14A shows an example of setting a shortened TTI based on PF1 / 1a / 1b, and FIG. 14B shows an example of setting a shortened TTI based on PF3.
  • the DMRS symbol (symbol # 3) is shared between the first half and the second half of the shortened TTI in the normal slot. Specifically, the user terminal transmits the DMRS using the symbol # 3 when transmitting the PUCCH in either the first half or the second half of the normal slot in the shortened TTI.
  • the first half and the second half of the shortened TTI DMRS may be multiplexed by cyclic shift (CS) or Comb. Specifically, the first half and the second half of the shortened TTI DMRS may be multiplied by CS sequences of different CS indexes. Alternatively, different combs may be allocated to the DMRS of the shortened TTI in the first half and the second half.
  • CS cyclic shift
  • Comb Comb
  • the information symbol (symbol # 3) is shared between the first half and the second half of the shortened TTI in the normal slot. Specifically, the user terminal transmits the UCI using the symbol # 3 when transmitting the PUCCH in either the first half or the second half of the normal slot.
  • the UCIs of the first half and the second half of the shortened TTI may be multiplexed by Comb.
  • FIG. 15 is a diagram illustrating another setting example of the shortened TTI in the second configuration example based on PF1 / 1a / 1b / 3.
  • the shortened TTI in the normal TTI may be configured with 3 or 4 symbols.
  • FIG. 15A shows a setting example of a shortened TTI based on PF1 / 1a / 1b
  • FIG. 15B shows a setting example of a shortened TTI based on PF3.
  • the first half of the shortened TTI in the normal slot includes two information symbols and two DMRS symbols.
  • the second half of the shortened TTI includes two information symbols and one DMRS symbol.
  • spreading codes having different sequence lengths may be applied to the first half and the second half of the shortened TTI.
  • CS spreading with a CS sequence with a sequence length of 12 and orthogonal spreading with an orthogonal sequence with a sequence length of 2 are applied to DMRS (that is, a spreading code with a spreading factor of 24). Apply).
  • DMRS that is, a spreading code with a spreading factor of 24.
  • the first half of the shortened TTI in the normal slot includes 3 information symbols and 1 DMRS symbol.
  • the second half of the shortened TTI includes two information symbols and one DMRS symbol.
  • spreading codes having different sequence lengths may be applied to the UCI of the first half and the second half of the shortened TTI.
  • orthogonal spreading with an orthogonal sequence having a sequence length of 3 is applied to UCI (that is, a spreading code with a spreading factor of 3 is applied).
  • orthogonal spreading with an orthogonal sequence having a sequence length of 2 is applied to UCI (that is, a spreading code with a spreading factor of 2 is applied).
  • the first half of the shortened TTI in the normal slot is composed of 4 symbols, and the latter half of the shortened TTI is composed of 3 symbols.
  • the TTI may be composed of 4 symbols.
  • PF2 / 2a / 2b / 4/5 ⁇ Configuration example based on PF2 / 2a / 2b / 4/5>
  • the payload is changed according to the number of information symbols in the shortened TTI.
  • PF2 / 2a / 2b / 4/5 since the problem of orthogonality in the time direction does not occur unlike PF1 / 1a / 1b / 3, PF2 / 2a / 2b / 4/5 has a shortened TTI with the same number of symbols as a normal slot and a normal slot. Can be applied to both shortened TTIs with different numbers of symbols.
  • FIG. 16 is a diagram illustrating a configuration example based on PF2 / 2a / 2b / 4/5 according to the second aspect.
  • a shortened TTI configured with a smaller number of symbols than a normal slot is shown, but this configuration example is also applicable to a shortened TTI having the same number of symbols as a normal slot.
  • FIG. 16A shows an application example of PF2 / 2a / 2b to a shortened TTI composed of 4 symbols.
  • different UCIs are mapped to the three information symbols in the shortened TTI, and CS spreading (phase rotation) by a CS sequence having a sequence length of 12 is applied in the same information symbol (that is, A spreading code with a spreading factor of 12 is applied).
  • CS spreading phase rotation
  • a phase rotation determined as a function of a PUCCH resource index of PF2 or a function of multiplexed HARQ-ACK is applied to a CAZAC sequence for 1 PRB.
  • FIG. 16B shows an application example of PF4 to a shortened TTI composed of 4 symbols.
  • different UCIs are mapped to the three information symbols in the shortened TTI of each PRB, and spreading is not applied. Also, no spreading is applied to one DMRS symbol in the shortened TTI.
  • FIG. 16C shows an application example of PF5 to a shortened TTI composed of 4 symbols.
  • different UCIs are mapped to the three information symbols in the shortened TTI, and CS spreading (phase rotation) by a CS sequence having a sequence length of 12 is applied in the same information symbol (maximum spreading).
  • the rate is 2).
  • a phase rotation determined as a function of the PUCCH resource index of PF5 is applied to a CAZAC sequence for 1 PRB.
  • PF2 / 2a / 2b / 5 when PF2 / 2a / 2b / 5 is applied to a shortened TTI, spreading and user multiplexing can be performed as in the case of applying to a normal TTI.
  • FIG. 16B when PF4 is applied to a shortened TTI, a plurality of PRBs can be used as in the case of applying to a normal TTI.
  • FIG. 17 is a diagram illustrating a setting example of the shortened TTI in the configuration example based on PF2 / 2a / 2b / 4/5. As shown in FIGS. 17A to 17C, all the shortened TTIs in the normal TTI may be composed of 4 symbols. 17A shows a configuration example based on PF2 / 2a / 2b, FIG. 17B shows a configuration example based on PF4, and FIG. 17C shows a configuration example based on PF5.
  • the information symbol (symbol # 3) is shared between the first half and the second half of the shortened TTI in the normal slot. Specifically, the user terminal transmits the UCI using the symbol # 3 when transmitting the PUCCH in either the first half or the second half of the normal slot.
  • symbol # 3 of FIG. 17A the UCIs of the first half and the second half of the shortened TTI may be multiplexed by Comb.
  • the DMRS symbol (symbol # 3) is shared between the first half and the second half of the shortened TTI in the normal slot. Specifically, the user terminal transmits the DMRS using the symbol # 3 when transmitting the PUCCH in either the first half or the second half of the normal slot in the shortened TTI.
  • the first half and the second half of the shortened TTI DMRS may be multiplexed by cyclic shift (CS) or Comb. Specifically, the first half and the second half of the shortened TTI DMRS may be multiplied by CS sequences of different CS indexes. Alternatively, different combs may be allocated to the DMRS of the shortened TTI in the first half and the second half.
  • CS cyclic shift
  • Comb Comb
  • the first half and the second half of the shortened TTI DMRS may be multiplied by CS sequences of different CS indexes.
  • different combs may be allocated to the DMRS of the shortened TTI in the first half and the second half.
  • FIG. 18 is a diagram illustrating another setting example of the shortened TTI in the configuration example based on PF2 / 2a / 2b / 4/5.
  • the shortened TTI in the normal TTI may be composed of 3 or 4 symbols.
  • 18A shows a configuration example based on PF2 / 2a / 2b
  • FIG. 18B shows a configuration example based on PF4
  • FIG. 18C shows a configuration example based on PF5.
  • the first half TTI in the normal slot includes 3 information symbols and 1 DMRS symbol.
  • the second half of the shortened TTI includes two information symbols and one DMRS symbol.
  • the UCI payload is different between the first half and the second half of the shortened TTI.
  • the first half of the shortened TTI in the normal slot includes 3 information symbols and 1 DMRS symbol.
  • the symbol # 4 may be changed from the information symbol to the DMRS symbol. Accordingly, since the DMRS symbol is also included in the second half of the shortened TTI, UCI demodulation (channel estimation) of the second half of the shortened TTI can be appropriately performed.
  • the first half shortened TTI in the normal slot is composed of four symbols
  • the second half shortened TTI is composed of three symbols.
  • the first half shortened TTI is composed of three symbols
  • the second half shortened TTI is It may be composed of 4 symbols.
  • the existing PUCCH format is applied to the shortened TTI, it is possible to reduce the design load for obtaining the delay reduction effect accompanying the introduction of the shortened TTI.
  • a shortened TTI having the same number of symbols as the normal slot for example, 7 symbols for normal CP and 6 symbols for extended CP.
  • a shortened TTI having a smaller number of symbols (for example, 3 or 4 symbols) than a normal slot may be allowed.
  • a user terminal in which a shortened TTI is set transmits a shortened TTI having the same number of symbols as the normal slot, and transmits a PF2 / 2a / 2b / 4/5 transmission.
  • a shortened TTI having a smaller number of symbols than a normal slot may be transmitted.
  • a user terminal that transmits a shortened TTI having a smaller number of symbols than that of a normal slot transmits the PF2 / 2a / 2b / 4/5 regardless of the contents of UCI (SR, HSRQ-ACK, CQI, etc.). It is good also as what to do.
  • the predetermined PF is used regardless of the contents of the UCI. Also good.
  • the third aspect a condition for transmitting PUCCH with a shortened TTI will be described. Note that the third aspect may be combined with any of the first and second aspects.
  • the user terminal may determine to perform PUCCH transmission with a shortened TTI, for example, under any of the following conditions (1) to (3).
  • the user terminal may always transmit the PUCCH with the shortened TTI. In this case, since the PUCCH transmission is performed with the shortened TTI regardless of the conditions, the delay reduction effect can be maximized.
  • the user terminal may transmit the PUCCH with the shortened TTI. Good.
  • fallback Fallback to normal TTI PUCCH can be performed, thereby preventing connection quality degradation.
  • the terminal may transmit the PUCCH with a shortened TTI.
  • an L1 / L2 control signal such as PDCCH
  • the terminal may transmit the PUCCH with a shortened TTI.
  • it is possible to prevent deterioration of connection quality, and it is possible to easily perform control in which carriers for transmitting and receiving the control channel and the data channel are separated when cross carrier scheduling is applied.
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 19 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied.
  • the wireless communication system 1 may be referred to as SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), or the like.
  • the radio communication system 1 shown in FIG. 19 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. . Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, six or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the uplink.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include downlink control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. Including. Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH. The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH.
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel shared by each user terminal 20
  • an uplink control channel PUCCH: Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of delivery confirmation information (ACK / NACK) and radio quality information (CQI) is transmitted by PUSCH or PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • FIG. 20 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that each of the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmitter / receiver, the transmission / reception circuit, or the transmission / reception device can be configured based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the transmission / reception unit 103 receives the UCI via the PUCCH in a shortened TTI (second TTI) configured with a smaller number of symbols than the normal TTI (first TTI). Further, the transmission / reception unit 103 receives a DMRS used for demodulation of the UCI.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives (backhaul signaling) signals to and from the adjacent radio base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). Also good.
  • CPRI Common Public Radio Interface
  • X2 interface also good.
  • FIG. 21 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment.
  • FIG. 21 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, and a reception signal processing unit 304.
  • the control unit 301 controls the entire radio base station 10.
  • the control unit 301 controls, for example, generation of a downlink signal by the transmission signal generation unit 302, signal mapping by the mapping unit 303, and reception processing (for example, demodulation) of the uplink signal by the reception signal processing unit 304.
  • control unit 301 performs downlink (DL) signal transmission control (for example, modulation scheme, coding rate, resource allocation (scheduling)) based on channel state information (CSI) reported from the user terminal 20. Control).
  • DL downlink
  • CSI channel state information
  • control unit 301 controls a transmission time interval (TTI) used for receiving a downlink signal and / or transmitting an uplink signal.
  • TTI transmission time interval
  • the control unit 301 sets a normal TTI of 1 ms or / and a shortened TTI shorter than the normal TTI.
  • the configuration example and setting example of the shortened TTI are as described with reference to FIGS.
  • the control unit 301 provides the user terminal 20 with an explicit notification by at least one of (1) implicit notification, or (2) RRC signaling, (3) MAC signaling, and (4) PHY signaling.
  • the setting of the shortened TTI may be instructed.
  • control unit 301 may set a shortened TTI composed of the same number of symbols as the normal slot (for example, 7 symbols in the case of normal CP), or a different number of symbols (for example, different from the normal slot) (4 symbols or 3 symbols) may be set.
  • control unit 301 may set a plurality of shortened TTIs having the same number of symbols (for example, 7 or 4 symbols) in the normal TTI, or different numbers of symbols (for example, 7, 3 and A plurality of shortened TTIs (such as a combination of 4 symbols) may be set.
  • the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a downlink signal (including a downlink data signal and a downlink control signal) based on an instruction from the control unit 301 and outputs it to the mapping unit 303. Specifically, the transmission signal generation unit 302 generates a downlink data signal (PDSCH) including notification information (control information) by the above-described higher layer signaling and user data, and outputs it to the mapping unit 303. Also, the transmission signal generation unit 302 generates a downlink control signal (PDCCH / EPDCCH) including the above-described DCI, and outputs it to the mapping unit 303. Also, the transmission signal generation unit 302 generates downlink reference signals such as CRS and CSI-RS, and outputs them to the mapping unit 303.
  • PDSCH downlink data signal
  • PDCCH / EPDCCH downlink control signal
  • the transmission signal generation unit 302 generates downlink reference signals such as CRS and CSI-RS, and outputs them to the mapping unit 303.
  • the transmission signal generation unit 302 can be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the uplink signal transmitted from the user terminal 20. Specifically, the received signal processing unit 304 demodulates the UCI received via the PUCCH at each shortened TTI (or each shortened slot) using the DMRS received at each shortened TTI (or each shortened slot). To do. The processing result is output to the control unit 301.
  • reception processing for example, demapping, demodulation, decoding, etc.
  • the reception signal processing unit 304 may be configured by a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device, which are described based on common recognition in the technical field according to the present invention. it can.
  • FIG. 22 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • Downlink data (user data) is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • the uplink data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Are transferred to each transmitting / receiving unit 203. Also for UCI, channel coding, rate matching, puncturing, DFT processing, IFFT processing, and the like are performed and transferred to each transmitting / receiving section 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 transmits UCI via the PUCCH in a shortened TTI (second TTI) configured with a smaller number of symbols than the normal TTI (first TTI). Further, the transmission / reception unit 203 transmits DMRS used for demodulation of the UCI.
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention. Further, the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • FIG. 23 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • FIG. 23 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. I have.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402, signal mapping by the mapping unit 403, and signal reception processing by the reception signal processing unit 404.
  • control unit 401 controls a transmission time interval (TTI) used for receiving a downlink (DL) signal and / or transmitting an uplink (UL) signal.
  • TTI transmission time interval
  • the control unit 301 sets a normal TTI of 1 ms or / and a shortened TTI shorter than the normal TTI.
  • the configuration example and setting example of the shortened TTI are as described with reference to FIGS.
  • the control unit 401 is based on an explicit notification from the radio base station 10 (1) an implicit notification or at least one of (2) RRC signaling, (3) MAC signaling, and (4) PHY signaling.
  • the shortened TTI may be set (detected).
  • control unit 401 may set a shortened TTI composed of the same number of symbols as the normal slot (for example, 7 symbols in the case of normal CP), or a different number of symbols (for example, different from the normal slot) (4 symbols or 3 symbols) may be set. Further, the control unit 401 may set a plurality of shortened TTIs having the same number of symbols in the normal TTI (for example, 7 or 4 symbols), or different numbers of symbols (for example, 7, 3 and A plurality of shortened TTIs (such as a combination of 4 symbols) may be set.
  • control unit 401 controls UCI transmission using PUCCH in the shortened TTI set as described above. Specifically, the control unit 401 transmits UCI by PRB that performs frequency hopping between the shortened slots in the shortened TTI, and maps the DMRS to at least one symbol that constitutes the shortened slot.
  • the mapping unit 403 and the transmission / reception unit 203 may be controlled (first mode). Further, the control unit 401 may determine a PRB to be frequency hopped between the shortened slots in the shortened TTI based on the number of the shortened slot (first mode).
  • control unit 401 transmits the UCI of the shortened TTI using a part of the normal TTI PUCCH format (PF1 / 1a / 1b / 2 / 2a / 2b / 3/4/5), and the shortened TTI is transmitted.
  • the transmission signal generation unit 402, the mapping unit 403, and the transmission / reception unit 203 may be controlled so as to map the DMRS to at least one symbol that constitutes (second mode).
  • control unit 401 may apply orthogonal spreading (time and / or frequency spreading) using orthogonal spreading codes within the shortened TTI. Specifically, the control unit 401 may apply time spreading using orthogonal spreading codes having a length equal to the number of the plurality of symbols between the plurality of symbols in the shortened slot to which UCI is mapped (for example, FIG. 10A). In addition, the control unit 401 divides 12 ⁇ M subcarriers into N groups in a PF using PRB of M (M ⁇ 1) or more (for example, new PF, PF4, etc.), and has a sequence length of N. Frequency spreading may be applied with an orthogonal spreading code.
  • control unit 401 may apply phase rotation at each symbol in the shortened TTI. Specifically, the control unit 401 may apply spreading (phase rotation) by cyclic shift (CS) between subcarriers of symbols mapping UCI or DMRS (for example, FIG. 10B).
  • CS cyclic shift
  • the control unit 401 may multiplex DMRSs of the plurality of shortened TTIs to the same symbols using Comb or cyclic shift ( For example, FIG. 7B, 14A, 17B, 17C). Further, when the same symbol is shared by a plurality of shortened TTIs, the control unit 401 may multiplex the UCI of each of the plurality of shortened TTIs to the same symbol using Comb (for example, FIG. 14B, 17A).
  • control unit 401 may transmit UCI using a plurality of resource blocks per slot (for example, FIGS. 8A, 8B, 16B, 17B, and 18B).
  • control unit 401 may apply a format in which the final symbol is omitted to the shortened TTI including the final symbol (for example, FIG. 9A, 9B).
  • control unit 401 (1) always transmits the PUCCH with the shortened TTI when the shortened TTI PUCCH transmission and the TTI length are configured by the higher layer signaling (in the first or second mode) It may be controlled (using PF) (third mode).
  • control unit 401 (2) transmits the PUCCH with the shortened TTI when the shortened TTI PUCCH transmission and the TTII length thereof are set by higher layer signaling and when the shortened TTI PDSCH is scheduled. You may control (it uses the PF of the 1st or 2nd aspect) (3rd aspect).
  • the control unit 401 detects (3) an L1 / L2 control signal (such as a PDCCH) that schedules the shortened TTI PDSCH when the PUCCH transmission of the shortened TTI and the TTI length thereof are set by higher layer signaling.
  • an L1 / L2 control signal such as a PDCCH
  • the PUCCH may be transmitted using the shortened TTI (the PF of the first or second aspect is used) (third aspect).
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 Based on an instruction from the control unit 401, the transmission signal generation unit 402 generates an uplink signal (including an uplink data signal and an uplink control signal) (for example, encoding, rate matching, puncturing, modulation, etc.) and performs mapping. Output to the unit 403.
  • an uplink signal including an uplink data signal and an uplink control signal
  • an uplink control signal for example, encoding, rate matching, puncturing, modulation, etc.
  • the transmission signal generation unit 402 encodes UCI, modulates it with a predetermined modulation scheme (for example, BPSK, QPSK), and spreads it according to an instruction from the control unit 401. Also, transmission signal generation section 402 generates a DMRS used for UCI demodulation (channel estimation), spreads it according to an instruction from control section 401, and outputs it to mapping section 403.
  • the transmission signal generation unit 402 may be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 403 Based on an instruction from the control unit 401, the mapping unit 403 maps the UL signal (uplink control signal and / or uplink data signal) generated by the transmission signal generation unit 402 to a radio resource and outputs the radio signal to the transmission / reception unit 203. To do.
  • the mapping unit 403 may be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on downlink signals (including downlink control signals and downlink data signals).
  • the reception signal processing unit 404 outputs information received from the radio base station 10 to the control unit 401.
  • the received signal processing unit 404 outputs, for example, broadcast information, system information, control information by higher layer signaling such as RRC signaling, DCI, and the like to the control unit 401.
  • the received signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the measurement unit 405 measures the channel state based on a reference signal (for example, CSI-RS) from the radio base station 10 and outputs the measurement result to the control unit 401. Note that the channel state measurement may be performed for each CC.
  • a reference signal for example, CSI-RS
  • the measuring unit 405 can be composed of a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device which are explained based on common recognition in the technical field according to the present invention.
  • each functional block is realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • the radio base station, user terminal, and the like in this embodiment may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 24 is a diagram illustrating an example of the hardware configuration of the radio base station and the user terminal according to the present embodiment.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • Each function in the radio base station 10 and the user terminal 20 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation, and communication by the communication device 1004, This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, and may be configured by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), RAM (Random Access Memory), and the like, for example.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the present embodiment.
  • the storage 1003 is a computer-readable recording medium, and may be composed of at least one of an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk, and a flash memory, for example. .
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, etc.) that accepts external input.
  • the output device 1006 is an output device (for example, a display, a speaker, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 may include hardware such as a microprocessor, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). A part or all of each functional block may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a slot may be composed of one or more symbols (OFDM symbols, SC-FDMA symbols, etc.) in the time domain.
  • the radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal.
  • Different names may be used for the radio frame, the subframe, the slot, and the symbol.
  • one subframe may be referred to as a transmission time interval (TTI)
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot may be referred to as a TTI.
  • the subframe or TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. Also good.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of one slot, one subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • the RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, symbol, and the like is merely an example.
  • the configuration such as the cyclic prefix (CP) length can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology (coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, by not performing notification of the predetermined information). May be.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, broadcast information (MIB (Master Information Block)). ), SIB (System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • MAC CE Control Element
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) ), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), systems using other appropriate systems and / or extended based on these It may be applied to the next generation system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • communication system 5G (5th generation mobile communication system

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

短縮TTIに適する構成の上り制御チャネルを用いて通信を行うこと。本発明のユーザ端末は、通常TTIよりも少ないシンボル数で構成される短縮TTIにおいて、上り制御チャネルを介して上り制御情報を送信する送信部と、前記上り制御情報の送信を制御する制御部と、を具備する。当該制御部は、当該短縮TTI内のスロット間で周波数ホッピングするリソースブロックで当該上り制御情報を送信し、当該短縮スロットを構成する少なくとも一つのシンボルに復調用参照信号をマッピングする。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、LTE Rel.14などともいう)も検討されている。
 LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の無線基地局(eNB:eNodeB)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 一方、LTE Rel.12では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がユーザ端末に設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。異なる無線基地局の複数のCCが統合されるため、DCは、Inter-eNB CAなどとも呼ばれる。
 また、LTE Rel.8-12では、下り(DL:Downlink)送信と上り(UL:Uplink)送信とを異なる周波数帯で行う周波数分割複信(FDD:Frequency Division Duplex)と、DL送信とUL送信とを同じ周波数帯で時間的に切り替えて行う時分割複信(TDD:Time Division Duplex)とが導入されている。
 以上のようなLTE Rel.8-12では、無線基地局とユーザ端末間のDL送信及びUL送信に適用される伝送時間間隔(TTI:Transmission Time Interval)は1msに設定されて制御される。LTEシステム(例えば、LTE Rel.8-13)におけるTTIは、サブフレーム、サブフレーム長などとも呼ばれる。
 一方、Rel.13以降のLTEや5Gなどの将来の無線通信システムでは、数十GHzなどの高周波数帯での通信や、IoT(Internet of Things)、MTC:Machine Type Communication、M2M(Machine To Machine)など相対的にデータ量が小さい通信を行うことが想定される。このような将来の無線通信システムにおいて、既存のLTEシステム(例えば、LTE Rel.8-12)における通信方法(例えば、1msの伝送時間間隔(TTI))を適用する場合、十分な通信サービスを提供できないおそれがある。
 そこで、将来の無線通信システムでは、1msのTTI(以下、通常TTIという)より短いTTI(以下、短縮TTIという)を利用して通信を行うことが考えられる。短縮TTIを利用する場合、当該短縮TTIで送信される上り制御チャネル(PUCCH:Physical Uplink Control Channel)をどのように構成するかが問題となる。
 本発明はかかる点に鑑みてなされたものであり、短縮TTIに適する構成の上り制御チャネルを用いて通信を行うことが可能なユーザ端末、無線基地局及び無線通信方法を提供することを目的の一とする。
 本発明のユーザ端末の一態様は、第1伝送時間間隔(TTI)よりも少ないシンボル数で構成される第2TTIにおいて、上り制御チャネルを介して上り制御情報を送信する送信部と、前記上り制御情報の送信を制御する制御部と、を具備し、前記制御部は、前記第2TTI内のスロット間で周波数ホッピングするリソースブロックで前記上り制御情報を送信し、前記スロットを構成する少なくとも一つのシンボルに復調用参照信号をマッピングすることを特徴とする。
 本発明によれば、短縮TTIに適する構成の上り制御チャネルを用いて通信を行うことができる。
通常TTIの構成例を示す図である。 図2A及び2Bは、短縮TTIの構成例を示す図である。 図3A-3Cは、短縮TTIの設定例を示す図である。 図4A-4Dは、通常TTIのPFの一例を示す図である。 図5A-5Cは、PF1/1a/1bの短縮TTIの適用例を示す図である。 図6A-6Cは、PF2/2a/2bの短縮TTIの適用例を示す図である。 図7A及び7Bは、第1の態様に係る新規PFの第1の構成例を示す図である。 図8A及び8Bは、第1の態様に係る新規PFの第2の構成例を示す図である。 図9A及び9Bは、第1の態様に係る新規PFの第3の構成例を示す図である。 図10A及び10Bは、第1の態様に係る新規PFにおける拡散例を示す図である。 図11A及び11Bは、第1の態様に係るPRBインデックスの一例を示す図である。 図12A及び12Bは、第2の態様に係るPF1/1a/1b/3に基づく第1の構成例を示す図である。 図13A及び13Bは、第2の態様に係るPF1/1a/1b/3に基づく第2の構成例を示す図である。 図14A及び14Bは、PF1/1a/1b/3に基づく第2の構成例における短縮TTIの設定例を示す図である。 図15A及び15Bは、PF1/1a/1b/3に基づく第2の構成例における短縮TTIの他の設定例を示す図である。 図16A-16Cは、第2の態様に係るPF2/2a/2b/4/5に基づく構成例を示す図である。 図17A-17Cは、PF2/2a/2b/4/5に基づく構成例における短縮TTIの設定例を示す図である。 図18A-18Cは、PF2/2a/2b/4/5に基づく構成例における短縮TTIの他の設定例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 図1は、LTEシステム(例えば、LTE Rel.8-12)におけるTTI(通常TTI)の一例を示す図である。図1に示すように、通常TTIは、1msの時間長を有する。通常TTIは、サブフレームとも呼ばれ、2つの時間スロット(以下、短縮TTI内のスロットと区別する意味で、通常スロットともいう)で構成される。なお、LTEシステムにおいて、通常TTIは、チャネル符号化された1データ・パケットの送信時間単位であり、スケジューリング、リンクアダプテーションなどの処理単位となる。
 図1に示すように、下りリンク(DL)において通常サイクリックプリフィクス(CP)の場合、通常TTIは、14OFDM(Orthogonal Frequency Division Multiplexing)シンボル(通常スロットあたり7OFDMシンボル)を含んで構成される。各OFDMシンボルは、66.7μsの時間長(シンボル長)を有し、4.76μsの通常CPが付加される。シンボル長とサブキャリア間隔は互いに逆数の関係にあるため、シンボル長66.7μsの場合、サブキャリア間隔は、15kHzである。
 また、上りリンク(UL)において通常サイクリックプリフィクス(CP)の場合、通常TTIは、14SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル(通常スロットあたり7SC-FDMAシンボル)を含んで構成される。各SC-FDMAシンボルは、66.7μsの時間長(シンボル長)を有し、4.76μsの通常CPが付加される。シンボル長とサブキャリア間隔は互いに逆数の関係にあるため、シンボル長66.7μsの場合、サブキャリア間隔は、15kHzである。
 なお、図示しないが、拡張CPの場合、通常TTIは、12OFDMシンボル(又は12SC-FDMAシンボル)を含んで構成されてもよい。この場合、各OFDMシンボル(又は各SC-FDMAシンボル)は、66.7μsの時間長を有し、16.67μsの拡張CPが付加される。また、ULにおいてOFDMシンボルが用いられてもよい。以下、OFDMシンボル、SC-FDMAシンボルを区別しない場合、「シンボル」という。
 一方、Rel.14以降のLTEや5Gなどの将来の無線通信システムでは、数十GHzなどの高周波数帯に適した無線インターフェースや、IoT(Internet of Things)、MTC:Machine Type Communication、M2M(Machine To Machine)など相対的にデータ量が小さい通信に適するように、パケットサイズは小さいが遅延を最小化する無線インターフェースが望まれている。
 通常TTIよりも短い時間長の短縮TTIを用いる場合、ユーザ端末や無線基地局における処理(例えば、符号化、復号など)に対する時間的マージンが増加するため、処理遅延を低減できる。また、短縮TTIを用いる場合、単位時間(例えば、1ms)当たりに収容可能なユーザ端末数を増加させることができる。このため、将来の無線通信システムでは、チャネル符号化された1データ・パケットの送信時間単位、スケジューリング、リンクアダプテーションなどの処理単位として、通常TTIよりも短い短縮TTIを用いることが検討されている。
 図2及び3を参照し、短縮TTIについて説明する。図2は、短縮TTIの構成例を示す図である。図2A及び図2Bに示すように、短縮TTIは、1msより短い時間長(TTI長)を有する。短縮TTIは、例えば、0.5ms、0.2ms、0.1msなど、倍数が1msとなるTTI長の1つまたは複数であってもよい。あるいは、通常CPの場合に通常TTIは14シンボルを含むことから、7/14ms、4/14ms、3/14ms、1/14msなど1/14msの整数倍となるTTI長の1つまたは複数であってもよい。また、拡張CPの場合に通常TTIは12シンボルを含むことから、6/12ms、4/12ms、3/12ms、1/12msなど1/12msの整数倍となるTTI長の1つまたは複数であってもよい。なお、短縮TTIにおいても、従前のLTEと同様に、通常CPか拡張CPかは報知情報やRRCシグナリング等の上位レイヤシグナリングでConfigureすることができる。これにより、1msである通常TTIとの互換性(同期)を保ちながら、短縮TTIを導入できる。
 図2Aは、短縮TTIの第1の構成例を示す図である。図2Aに示すように、第1の構成例では、短縮TTIは、通常TTIと同一数のシンボル(ここでは、14シンボル)で構成され、各シンボルは、通常TTIのシンボル長(例えば、66.7μs)よりも短いシンボル長を有する。
 図2Aに示すように、通常TTIのシンボル数を維持してシンボル長を短くする場合、通常TTIの物理レイヤ信号構成(RE配置等)を流用することができる。また、通常TTIのシンボル数を維持する場合、短縮TTIにおいても通常TTIと同一の情報量(ビット量)を含めることができる。一方で、通常TTIのシンボルとはシンボル時間長が異なることから、図2Aに示す短縮TTIの信号と通常TTIの信号とを同一システム帯域(または、セル、CC)内に周波数多重することが困難となる。
 また、シンボル長とサブキャリア間隔とは互いに逆数の関係にあるため、図2Aに示すようにシンボル長を短くする場合、サブキャリア間隔は、通常TTIの15kHzよりも広くなる。サブキャリア間隔が広くなると、ユーザ端末の移動時のドップラー・シフトによるチャネル間干渉や、ユーザ端末の受信機の位相雑音による伝送品質劣化を効果的に防止できる。特に、数十GHzなどの高周波数帯においては、サブキャリア間隔を広げることにより、伝送品質の劣化を効果的に防止できる。
 図2Bは、短縮TTIの第2の構成例を示す図である。図2Bに示すように、第2の構成例では、短縮TTIは、通常TTIよりも少ない数のシンボルで構成され、各シンボルは、通常TTIと同一のシンボル長(例えば、66.7μs)を有する。例えば、図2Bにおいて、短縮TTIが通常TTIの半分の時間長(0.5ms)であるとすると、短縮TTIは、通常TTIの半分のシンボル(ここでは、7シンボル)で構成される。
 図2Bに示すように、シンボル長を維持してシンボル数を削減する場合、短縮TTIに含める情報量(ビット量)を通常TTIよりも削減できる。このため、ユーザ端末は、通常TTIよりも短い時間で、短縮TTIに含まれる情報の受信処理(例えば、復調、復号など)を行うことができ、処理遅延を短縮できる。また、図2Bに示す短縮TTIの信号と通常TTIの信号とを同一システム帯域(またはセル、CC)内で周波数多重でき、通常TTIとの互換性を維持できる。
 なお、図2A及び図2Bでは、通常CPの場合(通常TTIが14シンボルで構成される場合)を想定した短縮TTIの例を示しているが、短縮TTIの構成は、図2A及び2Bに示すものに限られない。例えば、拡張CPの場合、図2Aの短縮TTIは、12シンボルで構成されてもよいし、図2Bの短縮TTIは、6シンボルで構成されてもよい。このように、短縮TTIは、通常TTIよりも短い時間長であればよく、短縮TTI内のシンボル数、シンボル長、CP長などはどのようなものであってもよい。
 図3を参照し、短縮TTIの設定例を説明する。将来の無線通信システムは、既存のLTEシステムとの互換性を有するように、通常TTI及び短縮TTIの双方を設定可能に構成されてもよい。
 例えば、図3Aに示すように、通常TTIと短縮TTIとは、同一のCC(周波数領域)内で時間的に混在してもよい。具体的には、短縮TTIは、同一のCCの特定のサブフレーム(或いは、特定の無線フレームなどの特定の時間単位)に設定されてもよい。例えば、図3Aでは、同一のCC内の連続する5サブフレームにおいて短縮TTIが設定され、その他のサブフレームにおいて通常TTIが設定される。なお、短縮TTIが設定されるサブフレームの数や位置は、図3Aに示すものに限られない。
 また、図3Bに示すように、通常TTIのCCと短縮TTIのCCとを統合して、キャリアアグリゲーション(CA)又はデュアルコネクティビティ(DC)が行われてもよい。具体的には、短縮TTIは、特定のCCに(より具体的には、特定のCCのDL及び/又はULに)、設定されてもよい。例えば、図3Bでは、特定のCCのDLにおいて短縮TTIが設定され、他のCCのDL及びULにおいて通常TTIが設定される。なお、短縮TTIが設定されるCCの数や位置は、図3Bに示すものに限られない。
 また、CAの場合、短縮TTIは、同一の無線基地局の特定のCC(プライマリ(P)セル又は/及びセカンダリ(S)セル)に設定されてもよい。一方、DCの場合、短縮TTIは、第1無線基地局によって形成されるマスターセルグループ(MCG)内の特定のCC(Pセル又は/及びSセル)に設定されてもよいし、第2無線基地局によって形成されるセカンダリセルグループ(SCG)内の特定のCC(プライマリセカンダリ(PS)セル又は/及びSセル)に設定されてもよい。
 また、図3Cに示すように、短縮TTIは、DL又はULのいずれかに設定されてもよい。例えば、図3Cでは、TDDシステムにおいて、ULに通常TTIが設定され、DLに短縮TTIが設定される。
 また、DL又はULの特定のチャネルや信号が短縮TTIに割り当てられ(設定され)てもよい。例えば、上り制御チャネル(PUCCH:Physical Uplink Control Channel)は、通常TTIに割り当てられ、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)は、短縮TTIに割り当てられてもよい。例えばこの場合、ユーザ端末は、PUCCHの送信は通常TTIで行い、PUSCHの送信は短縮TTIで行う。
 図3において、ユーザ端末は、無線基地局からの黙示的(implicit)又は明示的(explicit)な通知に基づいて、短縮TTIを設定(又は/及び検出)する。以下では、(1)黙示的な通知例と、(2)報知情報またはRRC(Radio Resource Control)シグナリング、(3)MAC(Medium Access Control)シグナリング、(4)PHY(Physical)シグナリングによる明示的な通知例を説明する。
 (1)黙示的な通知の場合、ユーザ端末は、周波数帯(例えば、5G向けのバンド、アンライセンスドバンドなど)、システム帯域幅(例えば、100MHzなど)、LAA(License Assisted Access)におけるLBT(Listen Before Talk)の適用有無、送信されるデータの種類(例えば、制御データ、音声など)、論理チャネル、トランスポートブロック、RLC(Radio Link Control)モード、C-RNTI(Cell-Radio Network Temporary Identifier)などに基づいて、短縮TTIを設定(例えば、通信を行うセル、チャネル、信号などが短縮TTIであることを判断)してもよい。また、通常TTIの先頭1、2、3、または4シンボルにマッピングされるPDCCHおよび/または1msのEPDCCHで自端末宛の制御情報(DCI)を検出した場合、当該PDCCH/EPDCCHを含む1msを通常TTIと判断し、それ以外の構成を取るPDCCH/EPDCCH(例えば通常TTIの先頭1~4シンボル以外にマッピングされるPDCCHおよび/または1ms未満のEPDCCH)で自端末宛の制御情報(DCI)を検出した場合、当該PDCCH/EPDCCHを含む1ms未満の所定の時間区間を短縮TTIと判断してもよい。ここで、自端末宛の制御情報(DCI)の検出は、ブラインド復号したDCIに対するCRCのチェック結果に基づいて行うことができる。
 (2)報知情報またはRRCシグナリング(上位レイヤシグナリング)の場合、報知情報またはRRCシグナリングにより無線基地局からユーザ端末に通知される設定情報に基づいて、短縮TTIが設定されてもよい。当該設定情報は、例えば、どのCC又は/及びサブフレームを短縮TTIとして利用するか、どのチャネル又は/及び信号を短縮TTIで送受信するかなどを示す。ユーザ端末は、無線基地局からの設定情報に基づいて、短縮TTIを準静的(semi-static)に設定する。なお、短縮TTIと通常TTIとのモード切り替えは、RRCの再構成(RRC Reconfiguration)手順で行われてもよいし、Pセルでは、Intra-cellハンドオーバ(HO)、Sセルでは、CC(Sセル)のremoval/addition手順により行われてもよい。
 (3)MACシグナリング(L2(Layer 2)シグナリング)の場合、RRCシグナリングにより通知される設定情報に基づいて設定される短縮TTIが、MACシグナリングにより有効化又は無効化(activate又はde-activate)されてもよい。具体的には、ユーザ端末は、無線基地局からのL2制御信号(例えば、MAC制御要素)に基づいて、短縮TTIを有効化又は無効化する。ユーザ端末は、RRC等の上位レイヤシグナリングによりあらかじめ短縮TTIの有効化期間を示すタイマを設定されていて、L2制御信号で短縮TTIが有効化されたのち所定の期間短縮TTIのUL/DL割当がなされなかった場合、短縮TTIを無効化するものとしてもよい。このような短縮TTI無効化タイマは、通常TTI(1ms)を単位としてカウントするものとしてもよいし、短縮TTI(例えば0.25ms)を単位としてカウントするものとしてもよい。なお、Sセルにおいて短縮TTIと通常TTIとのモードを切り替える場合、Sセルは、一旦de-activateされるものとしてもよいし、TA(Timing Advance)タイマが満了したものとみなされてもよい。これにより、モード切り替え時の通信停止期間を設けることができる。
 (4)PHYシグナリング(L1(Layer 1)シグナリング)の場合、RRCシグナリングにより通知される設定情報に基づいて設定される短縮TTIが、PHYシグナリングによりスケジューリングされてもよい。具体的には、ユーザ端末は、受信及び検出したL1制御信号(例えば、下り制御チャネル(PDCCH:Physical Downlink Control Channel又はEPDCCH:Enhanced Physical Downlink Control Channel、以下、PDCCH/EPDCCHという))に含まれる情報に基づいて、短縮TTIを検出する。
 例えば、通常TTIと短縮TTIでの送信または受信を割り当てる制御情報(DCI)は異なる情報要素を含むものとしておき、(4-1)ユーザ端末は、短縮TTIでの送受信を割り当てる情報要素を含む制御情報(DCI)が検出された場合に、そのPDCCH/EPDCCHが検出されるタイミングを含む所定の時間区間を短縮TTIと認識してもよい。ユーザ端末は、PDCCH/EPDCCHにおいて、通常TTIと短縮TTI、両方の送信または受信を割り当てる制御情報(DCI)をブラインド復号することができる。或いは、(4-2)ユーザ端末は、短縮TTIでの送受信を割り当てる情報要素を含む制御情報(DCI)が検出された場合に、そのPDCCH/EPDCCH(により伝送される下り制御情報(DCI:Downlink Control Information))によりスケジューリングされるPDSCH又はPUSCHが送信/受信されるタイミングを含む所定の時間区間を短縮TTIと認識してもよい。或いは、(4-3)ユーザ端末は、短縮TTIでの送受信を割り当てる情報要素を含む制御情報(DCI)が検出された場合に、そのPDCCH/EPDCCH(により伝送されるDCI)によりスケジューリングされるPDSCH又はPUSCHに対する再送制御情報(HARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledgement)、ACK/NACK、A/Nなどともいう)を送信又は受信するタイミングを含む所定の時間区間を短縮TTIと認識してもよい。
 下り制御チャネルに含まれる情報に基づいて短縮TTIを検出する場合、短縮TTIでの送受信を指示する制御情報(DCI)は、短縮TTIの送受信を行うよりも一定時間前に送受信されるものとしてもよい。すなわち、無線基地局は、所定のタイミングにおいて短縮TTIでの送受信を指示する制御情報(DCI)を送信し、ユーザ端末は当該制御情報(DCI)を受信したら、所定時間後(例えばTTI長の整数倍時間後またはサブフレーム長の整数時間後)に、短縮TTIの送受信を行う。短縮TTIと通常TTIとでは、適する信号処理アルゴリズム(例えばチャネル推定や誤り訂正復号)が異なる可能性がある。このように、短縮TTIでの送受信を指示する制御情報(DCI)を、実際に短縮TTIでの送受信を行うよりも所定時間前に送受信しておくことにより、ユーザ端末が前記信号処理アルゴリズムを変更する時間を確保することができる。
 RRC等の上位レイヤシグナリングで短縮TTIを設定しておき、下り制御チャネルで送受信される制御情報(DCI)で所定の指示がなされた場合に、通常TTIでの送受信に切り替える方法を適用してもよい。一般に、低遅延での信号処理が求められる短縮TTIの方が、通常TTIよりも高いユーザ処理能力を必要とする。したがって、動的な切り替えを短縮TTIから通常TTIに限定することにより、通常TTIから短縮TTIへの動的な切り替えを許容する場合に比べ、TTI長変更に伴うユーザ端末の信号処理負担を緩和することができる。
 また、ユーザ端末は、ユーザ端末の状態(例えば、Idle状態又はConnected状態)に基づいて、短縮TTIを検出してもよい。例えば、ユーザ端末は、Idle状態である場合、全てのTTIを通常TTIとして認識し、1msの通常TTIの先頭1~4シンボルに含まれるPDCCHのみをブラインド復号するものとしてもよい。また、ユーザ端末は、Connected状態である場合、上述の通知例(1)-(4)の少なくとも一つに基づいて、短縮TTIを設定(又は/及び検出)してもよい。
 以上のように、短縮TTIが設定される場合、当該短縮TTIで送信されるPUCCHをどのように構成するかが問題となる。ところで、通常TTI(サブフレーム)で送信されるPUCCHの構成(フォーマット)(以下、PUCCHフォーマット、PF等という)としては、PUCCHフォーマット1/1a/1b/2/2a/2b/3/4/5が規定されている。
 各PUCCHフォーマットでは、上り制御情報(UCI:Uplink Control Information)が送信される。ここで、UCIは、下り共有チャネル(PDSCH:Physical Downlink Shared Channel)に対する送達確認情報(HARQ-ACK)と、チャネル状態を示すチャネル状態情報(CSI:Channel State Information)と、上り共有チャネル(PUSCH)のスケジューリング要求(SR:Scheduling Request)と、の少なくとも一つを含む。
 図4は、通常TTIで用いられるPUCCHフォーマットの一例を示す図である。なお、図4では、通常CPが用いられる場合を一例として説明するが、これに限られない。各PUCCHフォーマット(PF)は、拡張CPが用いられる場合にも適宜変更して適用可能である。
 PF1/1a/1bでは、図4Aに示すように、各通常スロットの中央の3シンボルが復調用参照信号(DMRS:DeModulation Reference Signal)に用いられ、残りの4シンボルが、UCIに用いられる。UCIは、BPSK(Binary Phase Shift Keying)又はQPSK(Quadrature Phase Shift Keying)により変調され、最大拡散率36の拡散(CS拡散及び時間拡散)が適用される。PF1/1a/1bでは、最大2ビットのUCIが送信される。
 PF2/2a/2bでは、図4Bに示すように、各通常スロットの左から2番目及び6番目の2シンボルがDMRSに用いられ、残りの5シンボルがUCIに用いられる。UCIは、QPSK変調され、最大拡散率12の巡回シフト(CS:Cyclic Shift)拡散が適用される。PF2/2a/2bでは、最大20ビットが送信される。
 PF3でも、図4Bに示すように、各通常スロットの左から2番目及び6番目の2シンボルがDMRSに用いられ、残りの5シンボルがUCIに用いられる。UCIは、QPSK変調され、最大拡散率5の時間拡散が適用される。PF3では、最大48ビットが送信される。
 PF4では、図4Cに示すように、各通常スロットの中央の1シンボルがDMRSに用いられ、残りの6シンボルがUCIに用いられる。また、通常スロットあたり1又は複数のリソースブロック(物理リソースブロック(PRB:Physical Resource Block)(図4Cでは、2PRB)が用いられる。UCIは、QPSK変調され、拡散は適用されない。PF4では、1又は複数のPRBで所定数以上のビット(例えば、100ビット以上)が送信される。
 PF5では、図4Dに示すように、各通常スロットの中央の1シンボルがDMRSに用いられ、残りの6シンボルがUCIに用いられる。UCIは、QPSK変調され、最大拡散率2の周波数拡散が適用される。また、通常スロットあたり1PRBが用いられる。PF5では、所定数以上のビット(例えば、50ビット以上)が送信される。
 図4A~4Dに示す各PFでは、通常スロット間で周波数ホッピングが適用される。また、PF1/1a/1b/3では、通常スロット間で同一のビット列のコピーが送信される。
 しかしながら、以上のような通常TTIの各PFは、通常TTIよりも少ないシンボル数で構成される短縮TTI(図2B参照)にはそのまま適用できないことが想定される。
 例えば、上述のPF1/1a/1b/3を安直に短縮TTIに適用すると、ユーザ端末間の多重ができなくなる場合がある。図5は、PF1/1a/1bの短縮TTIの適用例を示す図である。図5Aに示すように、PF1/1a/1bでは、各通常スロット内のUCI用の各シンボル(以下、情報シンボルともいう)に同じビット列がコピーされ、複数のユーザ端末が互いに異なる直交拡散符号(例えば、系列長4の直交系列)により多重される。
 図5Bに示すように、短縮TTIが1スロットよりも少ないシンボル数(例えば、4シンボル)で構成される場合、時間(シンボル)方向の拡散符号が直交しなくなる(例えば、系列長4の直交系列が系列長2の部分系列となり、非直交になる)ため、複数のユーザ端末を適切に多重できなくなる。
 一方、図5Cに示すように、短縮TTIが通常スロットと同一のシンボル数(通常CPでは、7シンボル)で構成される場合、時間方向の拡散符号の直交性を維持できる(例えば、系列長4の直交系列を利用できる)ため、複数のユーザ端末を適切に多重できる。なお、図5では、PF1/1a/1bの例を示すが、PF3についても同様である。
 また、上述のPF2/2a/2b/4/5を安直に短縮TTIに適用すると、ペイロードが減少する場合がある。図6は、PF2/2a/2bの短縮TTIの適用例を示す図である。図6Aに示すように、PF2/2a/2bでは、各情報シンボルに異なる情報ビット(例えば、2ビットの符号化ビット)がマッピングされる。
 このため、PF2/2a/2bに短縮TTIを適用する場合、当該短縮TTI内の情報シンボル数に比例する数の符号化ビットしかマッピングできなくなる。例えば、図6Bに示すように、短縮TTIが、3つの情報シンボルと1つのDMRS用のシンボル(以下、DMRSシンボルともいう)を含む4シンボルで構成される場合、2×3=6ビットの符号化ビットがマッピングされる。
 また、図6Cに示すように、短縮TTIが、5つの情報シンボルと2つのDMRSシンボルを含む7シンボルで構成される場合、2×5=10ビットの符号化ビットがマッピングされる。なお、図5では、PF2/2a/2bの例を示すが、PF4/5についても同様である。
 このように、通常TTIの各PUCCHフォーマットは、通常TTIよりも少ないシンボル数で構成される短縮TTI(図2B参照)には適合しない場合も想定される。このため、他の物理チャネル(例えば、PUSCH、PDSCHなど)に対してのみ短縮TTIを適用し、PUCCHに対しては通常TTIを適用することも考えられる。しかしながら、PUCCHに対して通常TTIを適用する場合、他の物理チャネルに対して短縮TTIを適用することによる遅延削減(Latency Reduction)の効果(以下、遅延削減効果という)が限定的となってしまう。
 そこで、本発明者らは、遅延削減効果を効率的に得るためには、PUCCHに対しても短縮TTIを適用することが望ましいことに着眼し、短縮TTIに適するPUCCHフォーマットを検討した。
 以下、本発明の一実施の形態について図面を参照して詳細に説明する。なお、本実施の形態において、短縮TTI(第2TTI)は、通常TTI(第1TTI)よりも少ないシンボル数で構成され、各シンボルは、通常TTIと同一のシンボル長を有するものとする(図2B参照)。なお、通常TTI内に含まれる短縮TTIの数は、例えば、2、4などであるが、これらに限られない。
 また、短縮TTIは、部分TTI(partial TTI)、ショート(short)TTI、sTTI、短縮サブフレーム、ショートサブフレーム等とも呼ばれてもよい。通常TTIは、TTI、ロング(long)TTI、lTTI、ノーマルTTI、通常サブフレーム、ロングサブフレーム、ノーマルサブフレーム、単にサブフレーム等とも呼ばれる。
 また、短縮TTIにおける周波数ホッピングの単位となるスロットは、短縮スロット、部分スロット、ショート(short)スロット等とも呼ばれる。通常TTIにおける周波数ホッピングの単位となるスロットは、通常スロット、ロング(long)スロット、ノーマルスロット、単にスロット等とも呼ばれる。以下では、短縮TTI、通常TTIそれぞれの周波数ホッピングの単位となるスロットを、短縮スロット、通常スロットと呼ぶ。
 また、以下では、各シンボルに通常CPが適用される場合を例示するが、これに限られない。本実施の形態は、各シンボルに拡張CPが適用される場合にも適宜適用可能である。また、PUCCHの復調(チャネル推定)に用いる参照信号を、復調用参照信号(DMRS)と称するが、当該参照信号の名称はこれに限られない。
(第1の態様)
 第1の態様では、短縮TTI内で周波数ホッピングを適用するPUCCHフォーマット(新規PUCCHフォーマット(PF))を新たに規定する場合について説明する。第1の態様に係るユーザ端末は、通常TTIよりも少ないシンボル数で構成される短縮TTIにおいて、PUCCHを介してUCIを送信する。具体的には、当該ユーザ端末は、短縮TTI内の短縮スロット間で周波数ホッピングするPRBでUCIを送信し、当該短縮スロットを構成する少なくとも一つのシンボルにDMRSをマッピングする。
<新規PFの構成例>
 図7は、第1の態様に係る新規PFの第1の構成例を示す図である。図7Aでは、通常TTIあたり2つの短縮TTI(通常スロットあたり1つの短縮TTI)を含む場合、図7Bでは、通常TTIあたり4つの短縮TTI(通常スロットあたり2つの短縮TTI)を含む場合が示される。
 図7A及び7Bに示すように、各短縮TTIでは、割り当てPRBが、ユーザ端末がサポートする周波数帯域(例えば、システム帯域)(以下、サポート帯域という)の一端部のPRBから他端部のPRBに変更される周波数ホッピングが適用される。また、同一のPRBが割り当てられる所定数のシンボル(短縮スロット)内には、少なくとも一つのDMRSシンボルが設けられる。短縮スロット内に複数の情報シンボルが含まれる場合、当該情報シンボル間で拡散符号が適用されてもよい。
 例えば、図7Aに示すように、各短縮TTIが7シンボルで構成される場合、各短縮TTIの前半の短縮スロット(シンボル#0-#2)では、サポート帯域の一端部のPRBが割り当てられ、後半の短縮スロット(シンボル#3-#6)では、他端部のPRBが割り当てられる。また、前半の短縮スロットでは、中央のシンボル#1にDMRSがマッピングされる。また、後半の短縮スロットでは、シンボル#4にDMRSがマッピングされる。
 図7Aに示すように、後半の短縮スロットのシンボル数を前半の短縮スロット数よりも多くする場合、サブフレームの最終シンボルにサウンディング参照信号(SRS:Sounding Reference Signal)が配置される場合でも、当該最終シンボルを含む短縮スロット内のDMRSシンボルを除いた2情報シンボルでUCIを送信できる。
 また、図7Aでは、短縮スロット内の各情報シンボルで所定の拡散率(例えば、最大拡散率12)のCS拡散が適用され、短縮スロット内の複数の情報シンボル(例えば、シンボル#0及び#2)間で所定の拡散率(例えば、短縮スロット内の情報シンボル数と等しい拡散率)によるブロック拡散が適用されてもよい。例えば、前半の短縮スロットでは、シンボル#0及び#2の各々で最大拡散率12のCS拡散が適用され、シンボル#0及び#2間で最大拡散率2のブロック拡散が適用されてもよい。CS拡散及びブロック拡散については、図10を参照して後述する。
 一方、図7Bに示すように、各短縮TTIが4シンボルで構成される場合、隣接する短縮TTI間で少なくとも1つのシンボルが共用されてもよい。図7Bでは、通常スロット内の2つの短縮TTI間で通常スロット内の中央のシンボル(シンボル#3)が共用される。図7Bにおいて、各短縮TTIは、前半及び後半の短縮スロットで構成され、短縮スロット間で周波数ホッピングが適用される。ここで、シンボル#3を共用する2つの短縮TTI間では、周波数ホッピングのパターンが逆となってもよい。
 図7Bにおいても、各短縮スロットには少なくとも1つのDMRSシンボルが設けられる。また、図7Bでは、通常スロット内の2つの短縮TTI間でDMRSシンボル#3が共用される。このように、同一のDMRSシンボルを複数の短縮TTIで共用する場合、当該複数の短縮TTIのDMRSは、巡回シフト及び/又は櫛の歯状のサブキャリア配置(Comb)により多重されてもよい。また、図7Bでは、図示しないが、同一の情報シンボルが複数の短縮TTI間で共用されてもよい。当該複数の短縮TTIのUCIは、Combにより多重されてもよい。
 なお、図7A及び7Bは、例示にすぎず、これに限られない。例えば、通常TTI内に含まれる短縮TTIの数はこれに限られない。また、短縮TTI内での周波数ホッピングは、前半及び後半の短縮スロットで行うものに限られず、例えば、1シンボル毎に周波数ホッピング適用されてもよい。
 また、図7A及び7Bにおいて、異なる短縮TTIでは、異なるユーザ端末がPUCCHを送信してもよいし、同一のユーザ端末がPUCCHを送信してもよい。また、図示しないが、図7A及び7Bに示す構成例は組み合わせられてもよい。例えば、前半の通常スロットでは、図7Aに示すように一つの短縮TTIが設定され、後半の通常スロットでは、図7Bに示すように2つの短縮TTIが設定されてもよいし、これとは逆に設定されてもよい。
 図8は、第1の態様に係る新規PFの第2の構成例を示す図である。図8Aでは、各短縮TTIが7シンボルで構成される場合、図8Bでは、各短縮TTIが4シンボルで構成される場合が示される。なお、図8は、図7との相違点を中心に説明する。
 図8A及び8Bに示すように、新規PFは、短縮スロットあたり1以上のPRBで構成されてもよい。例えば、図8A及び8Bでは、新規PFは、短縮スロットあたり2PRBで構成される。新規PFは、通常TTIのPFと比べて、情報シンボル数が少なくなるため、ペイロードが減少(又は、符号化や拡散による符号化利得や拡散処理利得が低減)する。図8A及び8Bに示すように、新規PFを周波数方向に拡張することにより、情報シンボルの減少によるペイロードの減少(又は、符号化や拡散による符号化利得や拡散処理利得を改善)を補填できる。
 図9は、第1の態様に係る新規PFの第3の構成例を示す図である。図9Aでは、各短縮TTIが7シンボルで構成される場合、図9Bでは、各短縮TTIが4シンボルで構成される場合が示される。なお、図9は、図7及び8との相違点を中心に説明する。
 通常TTIの最終シンボルでは、セル固有又はユーザ端末固有のSRSが送信されることが想定される。このため、図9A及び9Bに示すように、SRSシンボルを含む短縮TTIでPUCCHを送信する場合、当該短縮TTIでは、最終シンボルを省く短縮フォーマット(Shortened format)が適用されてもよい。なお、最終シンボルを省かないフォーマットは、通常フォーマット(Normal format)と呼ばれてもよい。また、短縮フォーマットの短縮TTIのシンボル数は、通常フォーマットの短縮TTIのシンボル数から1を減算した値であってもよい。
<新規PFの拡散例>
 ここで、新規PFにおける拡散について詳述する。新規PFでは、所定の拡散率で直交拡散(時間及び/又は周波数拡散)を適用することにより、複数のユーザ端末が符号分割多重(CDM)されてもよい。また、新規PFでは、各シンボルで位相回転(CS拡散)が適用されてもよい。図10は、第1の態様に係る新規PFにおける拡散例を示す図である。
 図10Aでは、短縮スロット内のブロック拡散(直交拡散)例が示される。図10Aに示すように、短縮スロットに複数の情報シンボルが含まれる場合、当該複数の情報シンボル間で、当該複数の情報シンボルの数と等しい系列長(拡散率、符号長)の直交拡散符号による拡散が行われてもよい。具体的には、ユーザ端末は、短縮TTI内の複数の情報シンボル間で同じUCI(変調シンボル)をコピーし、コピーされたUCIに対して、短縮スロットの情報シンボル数(N)と等しい長さの直交拡散符号[W,…,WN-1]を用いて拡散を行ってもよい。
 例えば、図10Aにおいて、短縮TTI内の前半の短縮スロットには2情報シンボルが含まれ、後半の短縮スロットには3情報シンボルが含まれる。前半の短縮スロットでは、シンボル#0及び#2に同じUCIがコピーされ、シンボル#0のUCIに符号長2の直交拡散符号[W,W]のWが乗算され、シンボル#2のUCIにWが乗算されてもよい。同様に、後半の短縮スロットでは、シンボル#3、#5及び#6に同じUCIがコピーされ、シンボル#3のUCIに符号長3の直交拡散符号[W,W,W]のWが乗算され、シンボル#5のUCIにWが乗算され、シンボル#6のUCIにWが乗算されてもよい。
 図10Aに示すように、短縮スロット内の情報シンボル数と等しい系列長(拡散率、符号長)の直交拡散符号を用いてブロック拡散が適用される場合、当該情報シンボル数に比例する数のユーザ端末を当該短縮スロット内に多重できる。
 なお、上記拡散は、周波数(サブキャリア)方向で行うこともできる。例えば新規PFをM個の連続するPRBを用いて送信する場合、シンボルあたり12×M個のサブキャリアを用いることとなる。そこで、12×M個のサブキャリアをN個のグループに分割し、12×M/N個のシンボルを各グループにマッピングし、長さNの拡散符号で拡散することができる。
 図10Bでは、各情報シンボルでのCS拡散(位相回転)例が示される。図10Bに示すように、ユーザ端末は、短縮TTI内の各情報シンボルに異なるUCI(変調シンボル)をマッピングし、各情報シンボルのUCIに所定の長さ(拡散率)のCSを用いたCS拡散を行ってもよい。例えば、図10Bにおいて、前半の短縮スロットでは、シンボル#0及び#2に対してそれぞれ異なるUCIがマッピングされ、長さ12のCS系列が乗算されてもよい。また、後半のスロットでは、シンボル#3、#5及び#6に対してそれぞれ異なるUCIがマッピングされ、系列長12のCS系列が乗算される。
 図10Bに示すように、短縮TTI内の各情報シンボルに異なるUCIをマッピングしてCS拡散を適用する場合、短縮TTI内の情報シンボル数に比例して、UCIのペイロードを増加させることができる。
 なお、図10A及び10Bでは、各短縮TTIが7シンボルで構成される場合(図7A参照)が示されるが、これに限られない。図10及び10Bに示す拡散例は、各短縮TTIが4シンボルで構成される場合(図7B参照)にも適宜適用可能である。また、図7Aを参照して説明したように、図10A及び10Bに示す拡散例は、組み合わせられてもよい。
<新規PF用のPRBインデックス>
 図11は、第1の態様で用いられるPRBインデックスの一例を示す図である。図11Aでは、各短縮TTIが7シンボルで構成される場合、図11Bでは、各短縮TTIが4シンボルで構成される場合が示される。また、図11A及び11B内に付される番号は、PRBのインデックス(PRBインデックス)を示すものとする。また、図11A及び11Bでは、ユーザ端末のサポート帯域が示されており、当該周波数帯域の上部が低く、下部が高いものとするが、これとは逆であってもよい。
 図11Aに示すように、短縮TTIが7シンボルで構成される場合、同一のPRBインデックスが、前半の短縮スロットと後半の短縮スロットとで、ユーザ端末の中心周波数を中心として対称となる周波数位置のPRBに付される。例えば、図11Aにおいて、PRBインデックス#1は、前半の短縮スロットでは当該サポート帯域の最低周波数のPRBに付され、後半の短縮スロットでは最高周波数のPRBに付される。また、図11Aでは、PRBインデックスは、ユーザ端末のサポート帯域の外側から昇順に付される。
 同様に、図11Bに示すように、短縮TTIが4シンボルで構成される場合も、同一のPRBインデックスが、前半の短縮スロットと後半の短縮スロットとで、ユーザ端末の中心周波数を中心として対称となる周波数位置のPRBに付される。
 また、図11Bに示すように、隣接する複数の短縮TTI間で同一のシンボルが共用される場合、共用シンボルのPRBには、当該複数の短縮TTIそれぞれのPRBインデックスが付されてもよい。例えば、図11Bにおいて、共用シンボルの最低周波数のPRBには、最初の短縮TTI用のPRBインデックス#2が付されるとともに、2番目の短縮TTI用のPRBインデックス#1が付される。
 以上のようなPRBインデックスnPRBは、例えば、下記式(1)に基づいて与えられてもよい。ここで、パラメータmは、PUCCHリソースから定められる値であり、パラメータnは、短縮TTI用の短縮スロットの番号(インデックス)である。また、NUL RBは、ユーザ端末の上りのサポート帯域を示す。なお、PRBインデックスの付与方法は、これに限られない。
Figure JPOXMLDOC01-appb-M000001
 第1の態様によれば、短縮TTI用の新規PFにより短縮TTI内で周波数ホッピングが適用されるため、短縮TTIの導入に伴う遅延削減効果を得ながら、当該PUCCHの性能劣化を防止できる。
(第2の態様)
 第2の態様では、通常TTI用のPFを短縮TTIに利用する場合について説明する。第2の態様に係るユーザ端末は、通常TTIよりも少ないシンボル数で構成される短縮TTIにおいて、PUCCHを介してUCIを送信する。具体的には、当該ユーザ端末は、通常TTI用のPFの一部を用いて短縮TTIのUCIを送信し、当該短縮TTIを構成する少なくとも一つのシンボルにDMRSをマッピングする。
<PF1/1a/1b/3に基づく第1の構成例>
 図5Cを参照して説明したように、短縮TTIが通常スロットと同一のシンボル数(通常CPの場合、7シンボル)で構成される場合、既存のPF1/1a/1b/3でも時間方向の拡散符号の直交性を維持でき、複数のユーザ端末を適切に多重できる。そこで、ユーザ端末は、通常スロットと同一のシンボル数の短縮TTIを設定し、当該短縮TTIにPF1/1a/1b/3を適用する。
 図12は、第2の態様に係るPF1/1a/1bに基づく第1の構成例を示す図である。図12に示すように、第1の構成例では、通常スロットと同一のシンボル数の短縮TTI(すなわち、0.5msの短縮TTI)だけが許容され、通常スロットと異なるシンボル数の短縮TTIは許容されない。図12に示すように、0.5msの短縮TTIには、1msの通常TTIの前半(又は、後半)の通常スロットのPF1/1a/1b/3の構成が適用される。
 図12Aでは、0.5msの短縮TTIに対するPF1/1a/1bの適用例が示される。図12Aにおいて、短縮TTI内の4情報シンボルに対しては、系列長12のCS系列によるCS拡散(位相回転)と、系列長4の直交系列による直交拡散(時間拡散)とが適用される(すなわち、拡散率48の拡散符号が適用される)。また、3DMRSシンボルに対しては、1PRB用に定義されたCAZAC(Constant Amplitude Zero Auto-Correlation)系列を用い、PF1/1a/1bのPUCCHリソースインデックスの関数として定まる位相回転および系列長3の直交拡散符号が適用される。3DMRSシンボルに対しては、PUCCHリソースインデックスの関数で定まる系列長3の直交拡散符号を適用し、同一PRBに多重されるユーザ間の直交性を改善することもできる。
 図12Bでは、0.5msの短縮TTIに対するPF3の適用例が示される。図12Bにおいて、短縮TTI内の5情報シンボルに対しては、系列長5の直交系列による直交拡散(時間拡散)が適用される(すなわち、拡散率5の拡散符号が適用される)。一方、2DMRSシンボルに対しては、1PRB用に定義されたCAZAC系列に対し、PF3のPUCCHリソースインデックスの関数として定まる位相回転が適用された信号がマッピングされる。なお、2DMRSシンボルに対しては、PUCCHリソースインデックスの関数で定まる系列長2の直交拡散符号を適用し、同一PRBに多重されるユーザ間の直交性を改善することもできる。
 PF1/1a/1b/3に基づく第1の構成例によれば、0.5msの短縮TTIだけを許容することにより、新規PFを導入せずとも、既存のPF1/1a/1b/3を利用でき、既存のPFの生成回路を流用できる。このため、新たな設計負荷をかけずに、0.5msの短縮TTIの導入に伴う遅延削減効果を得ることができる。
<PF1/1a/1b/3に基づく第2の構成例>
 図5Bを参照して説明したように、短縮TTIが通常スロットよりも少ないシンボル数(例えば、4シンボル)で構成される場合、既存のPF1/1a/1b/3では、時間方向の拡散符号の直交性を維持できなくなることが想定される。一方で、短縮TTI内のシンボル数に応じた系列長の直交拡散符号を導入すれば、短縮TTIが通常スロットより少ないシンボル数で構成される場合でも、時間方向の拡散符号の直交性を維持できる。
 そこで、通常スロットとは異なるシンボル数の短縮TTIでは、当該短縮TTI内の情報シンボル数(又はDMRSシンボル数)に応じた系列長の拡散符号が導入されてもよい。図13は、第2の態様に係るPF1/1a/1bに基づく第2の構成例を示す図である。図13に示すように、第2の構成例では、通常スロットとは異なるシンボル数の短縮TTIも許容される。
 図13Aでは、4シンボルで構成される短縮TTIに対するPF1/1a/1bの適用例が示される。図13Aにおいて、短縮TTI内の2情報シンボルに対しては、系列長12のCS系列によるCS拡散(位相回転)と、系列長2の直交系列による直交拡散(時間拡散)とが適用される(すなわち、拡散率24の拡散符号が適用される)。また、2DMRSシンボルに対しては、1PRB用に定義されたCAZAC系列を用い、PF1/1a/1bのPUCCHリソースインデックスの関数として定まる位相回転が適用される。2DMRSシンボルに対しては、PUCCHリソースインデックスの関数で定まる系列長2の直交拡散符号を適用し、同一PRBに多重されるユーザ間の直交性を改善することもできる。
 図13Bでは、4シンボルで構成される短縮TTIに対するPF3の適用例が示される。図13Bにおいて、短縮TTI内の3情報シンボルに対しては、系列長3の直交系列による直交拡散(時間拡散)が適用される(すなわち、拡散率3の拡散符号が適用される)。一方、1DMRSシンボルに対しては、1PRB用に定義されたCAZAC系列に対し、PF3のPUCCHリソースインデックスの関数として定まる位相回転が適用された信号がマッピングされる。
 なお、図13では、4シンボルで構成される短縮TTIに対するPF1/1a/1b/3の適用例が示されるが、短縮TTIを構成するシンボル数はこれに限られず、適宜変更して適用可能である。短縮TTIを構成するシンボル数は、通常スロットを構成するシンボル数と異なっていればよく、少なくても多くてもよい。
 例えば、図13Aにおいて、短縮TTIが3シンボルで構成される場合、1DMRSシンボルに対しては、系列長12のCS系列によるCS拡散だけが適用されてもよい(すなわち、拡散率12の拡散符号が適用されてもよい)。また、図13Bにおいて、短縮TTIが3シンボルで構成される場合、2情報シンボルに対しては、系列長2の直交系列による直交拡散(時間拡散)が適用されてもよい(すなわち、拡散率2の拡散符号が適用されてもよい)。
 このように、PF1/1a/1b/3に基づく第2の構成例では、短縮TTI内の情報シンボル数に応じて、当該情報シンボルに乗算される拡散符号の系列長(拡散率、符号長)が変更される。このため、短縮TTIが、通常スロットと異なるシンボル数で構成される場合にも時間方向の直交性を保つことができ、複数のユーザ端末を同一のPRBに多重することができる。この結果、PUCCHによるオーバーヘッドを削減できる。
 図14は、PF1/1a/1b/3に基づく第2の構成例における短縮TTIの設定例を示す図である。図14A及び14Bに示すように、通常TTI内の全ての短縮TTIが4シンボルで構成されてもよい。図14Aでは、PF1/1a/1bに基づく短縮TTIの設定例、図14Bでは、PF3に基づく短縮TTIの設定例が示される。
 PF1/1a/1bに基づく場合、図14Aに示すように、通常スロット内の前半及び後半の短縮TTI間では、DMRSシンボル(シンボル#3)が共用される。具体的には、ユーザ端末は、通常スロット内の前半又は後半のいずれの短縮TTIでPUCCHを送信する場合にも、シンボル#3を用いて、DMRSを送信する。
 図14Aのシンボル#3において、前半及び後半の短縮TTIのDMRSは、巡回シフト(CS)又はCombにより多重されてもよい。具体的には、前半及び後半の短縮TTIのDMRSには、異なるCSインデックスのCS系列が乗算されてもよい。或いは、前半及び後半の短縮TTIのDMRSには、異なるCombが割り当てられてもよい。
 一方、PF3に基づく場合、図14Bに示すように、通常スロット内の前半及び後半の短縮TTI間では、情報シンボル(シンボル#3)が共用される。具体的には、ユーザ端末は、通常スロット内の前半又は後半のいずれの短縮TTIでPUCCHを送信する場合にも、シンボル#3を用いて、UCIを送信する。図14Bのシンボル#3において、前半及び後半の短縮TTIのUCIは、Combにより多重されてもよい。
 図15は、PF1/1a/1b/3に基づく第2の構成例における短縮TTIの他の設定例を示す図である。図15A及び15Bに示すように、通常TTI内の短縮TTIが3又は4シンボルで構成されてもよい。図15Aでは、PF1/1a/1bに基づく短縮TTIの設定例、図15Bでは、PF3に基づく短縮TTIの設定例が示される。
 PF1/1a/1bに基づく場合、図15Aに示すように、通常スロット内の前半の短縮TTIには、2情報シンボルと2DMRSシンボルが含まれる。一方、後半の短縮TTIには、2情報シンボルと1DMRSシンボルが含まれる。図15Aでは、前半及び後半の短縮TTI間でDMRSシンボル数が異なるため、前半及び後半の短縮TTIのDMRSには異なる系列長(拡散率)の拡散符号が適用されてもよい。
 例えば、図15Aにおいて、前半の短縮TTIでは、DMRSに対して、系列長12のCS系列によるCS拡散と系列長2の直交系列による直交拡散とが適用される(すなわち、拡散率24の拡散符号が適用される)。一方、後半の短縮TTIでは、DMRSに対して、系列長12のCS系列によるCS拡散だけが適用される(すなわち、拡散率12の拡散符号が適用される)。
 一方、PF3に基づく場合、図15Bに示すように、通常スロット内の前半の短縮TTIには、3情報シンボルと1DMRSシンボルが含まれる。一方、後半の短縮TTIには、2情報シンボルと1DMRSシンボルが含まれる。図15Bでは、前半及び後半の短縮TTI間で情報シンボル数が異なるため、前半及び後半の短縮TTIのUCIには異なる系列長(拡散率)の拡散符号が適用されてもよい。
 例えば、図15Bにおいて、前半の短縮TTIでは、UCIに対して、系列長3の直交系列による直交拡散が適用される(すなわち、拡散率3の拡散符号が適用される)。一方、後半の短縮TTIでは、UCIに対して、系列長2の直交系列による直交拡散が適用される(すなわち、拡散率2の拡散符号が適用される)。
 なお、図15A及び15Bでは、通常スロット内の前半の短縮TTIは4シンボルで構成され、後半の短縮TTIは3シンボルで構成されるが、前半の短縮TTIが3シンボルで構成され、後半の短縮TTIが4シンボルで構成されてもよい。
<PF2/2a/2b/4/5に基づく構成例>
 図6B及び6Cを参照して説明したように、既存のPF2/2a/2b/4/5を短縮TTIに適用する場合、短縮TTI内の情報シンボル数に応じてペイロードが変更される。一方、PF1/1a/1b/3のように時間方向の直交性の問題は生じないため、PF2/2a/2b/4/5は、通常スロットと同一のシンボル数の短縮TTIと、通常スロットとは異なるシンボル数の短縮TTIとの双方に適用可能である。
 図16は、第2の態様に係るPF2/2a/2b/4/5に基づく構成例を示す図である。図16では、一例として、通常スロットより少ないシンボル数で構成される短縮TTIが示されるが、本構成例は、通常スロットと同一のシンボル数の短縮TTIにも適用可能である。
 図16Aでは、4シンボルで構成される短縮TTIに対するPF2/2a/2bの適用例が示される。図16Aにおいて、短縮TTI内の3情報シンボルに対しては、それぞれ異なるUCIがマッピングされ、同一の情報シンボル内で、系列長12のCS系列によるCS拡散(位相回転)が適用される(すなわち、拡散率12の拡散符号が適用される)。また、短縮TTI内の1DMRSシンボルに対しては、1PRB分のCAZAC系列に対し、PF2のPUCCHリソースインデックスの関数、または多重するHARQ-ACKの関数として定まる位相回転が適用される。
 図16Bでは、4シンボルで構成される短縮TTIに対するPF4の適用例が示される。図16Bにおいて、各PRBの短縮TTI内の3情報シンボルに対しては、それぞれ異なるUCIがマッピングされ、拡散は適用されない。また、短縮TTI内の1DMRSシンボルに対しても、拡散は適用されない。
 図16Cでは、4シンボルで構成される短縮TTIに対するPF5の適用例が示される。図16Cにおいて、短縮TTI内の3情報シンボルに対しては、それぞれ異なるUCIがマッピングされ、同一の情報シンボル内で、系列長12のCS系列によるCS拡散(位相回転)が適用される(最大拡散率は2)。また、短縮TTI内の1DMRSシンボルに対しては、1PRB分のCAZAC系列に対し、PF5のPUCCHリソースインデックスの関数として定まる位相回転が適用される。
 図16A及び16Cに示すように、PF2/2a/2b/5を短縮TTIに適用する場合、通常TTIに適用する場合と同様に、拡散及びユーザ多重を行うことができる。また、図16Bに示すように、PF4を短縮TTIに適用する場合、通常TTIに適用する場合と同様に、複数のPRBを用いることができる。
 図17は、PF2/2a/2b/4/5に基づく構成例における短縮TTIの設定例を示す図である。図17A~17Cに示すように、通常TTI内の全ての短縮TTIが4シンボルで構成されてもよい。図17Aでは、PF2/2a/2bに基づく構成例、図17Bでは、PF4に基づく構成例、図17Cでは、PF5に基づく構成例が示される。
 PF2/2a/2bに基づく場合、図17Aに示すように、通常スロット内の前半及び後半の短縮TTI間では、情報シンボル(シンボル#3)が共用される。具体的には、ユーザ端末は、通常スロット内の前半又は後半のいずれの短縮TTIでPUCCHを送信する場合にも、シンボル#3を用いて、UCIを送信する。図17Aのシンボル#3において、前半及び後半の短縮TTIのUCIは、Combにより多重されてもよい。
 一方、PF4、5に基づく場合、図17B、17Cに示すように、通常スロット内の前半及び後半の短縮TTI間では、DMRSシンボル(シンボル#3)が共用される。具体的には、ユーザ端末は、通常スロット内の前半又は後半のいずれの短縮TTIでPUCCHを送信する場合にも、シンボル#3を用いて、DMRSを送信する。
 図17B及び17Cのシンボル#3において、前半及び後半の短縮TTIのDMRSは、巡回シフト(CS)又はCombにより多重されてもよい。具体的には、前半及び後半の短縮TTIのDMRSには、異なるCSインデックスのCS系列が乗算されてもよい。或いは、前半及び後半の短縮TTIのDMRSには、異なるCombが割り当てられてもよい。
 図18は、PF2/2a/2b/4/5に基づく構成例における短縮TTIの他の設定例を示す図である。図18A~18Cに示すように、通常TTI内の短縮TTIが3又は4シンボルで構成されてもよい。図18Aでは、PF2/2a/2bに基づく構成例、図18Bでは、PF4に基づく構成例、図18Cでは、PF5に基づく構成例が示される。
 PF2/2a/2bに基づく場合、図18Aに示すように、通常スロット内の前半の短縮TTIには、3情報シンボルと1DMRSシンボルが含まれる。一方、後半の短縮TTIには、2情報シンボルと1DMRSシンボルが含まれる。図18Aでは、前半及び後半の短縮TTI間で情報シンボル数が異なるため、前半及び後半の短縮TTIでは、UCIのペイロードが異なる。
 一方、PF4/5に基づく場合、図18B/18Cに示すように、通常スロット内の前半の短縮TTIには、3情報シンボルと1DMRSシンボルが含まれる。一方、後半の短縮TTIには、PF4/5そのままでは、DMRSシンボルが含まれないため、シンボル#4が情報シンボルからDMRSシンボルに変更されてもよい。これにより、後半の短縮TTIにもDMRSシンボルが含まれるため、後半の短縮TTIのUCIの復調(チャネル推定)を適切に行うことができる。
 なお、図18では、通常スロット内の前半の短縮TTIは4シンボルで構成され、後半の短縮TTIは3シンボルで構成されるが、前半の短縮TTIが3シンボルで構成され、後半の短縮TTIが4シンボルで構成されてもよい。
 以上のように、第2の態様では、既存のPUCCHフォーマットが短縮TTIに適用されるので、短縮TTIの導入に伴う遅延削減効果を得るための設計負荷を軽減できる。
 なお、第2の実施の形態では、PF1/1a/1b/3に基づく場合、通常スロットと同一のシンボル数(例えば、通常CPでは7シンボル、拡張CPでは、は6シンボル)の短縮TTIだけを許容し、PF2/2a/2b/4/5に基づく場合、通常スロットよりも少ないシンボル数(例えば、3又は4シンボル)の短縮TTIを許容するものとしてもよい。この場合、短縮TTIが設定されたユーザ端末は、PF1/1a/1b/3送信を行う場合、通常スロットと同一のシンボル数の短縮TTIを送信し、PF2/2a/2b/4/5送信を行う場合、通常スロットよりも少ないシンボル数の短縮TTIを送信してもよい。
 或いは、通常スロットよりも少ないシンボル数の短縮TTIを送信するユーザ端末は、UCI(SR、HSRQ-ACK、CQIなど)の内容に関係なく、PF2/2a/2b/4/5のいずれかで送信するものとしてもよい。この場合、従前のようにUCIの内容に応じて適用するPFを変えるのではなく、所定のTTI長でPUCCHを送信する場合には、そのUCIの内容に関らず所定のPFを用いるものとしてもよい。
(第3の態様)
 第3の態様では、短縮TTIでPUCCHを送信する条件について説明する。なお、第3の態様は、第1及び第2の態様のいずれに組み合わせられてもよい。第3の態様において、ユーザ端末は、例えば、以下の条件(1)-(3)のいずれかにより、短縮TTIでのPUCCH送信を行うことを決定してもよい。
 (1)上位レイヤシグナリングで短縮TTIのPUCCH送信及びそのTTI長が設定(Configure)された場合、ユーザ端末は、常に短縮TTIでPUCCHを送信してもよい。この場合、条件に関らず短縮TTIでPUCCH送信が行われるため、遅延削減効果を最大化できる。
 或いは、(2)上位レイヤシグナリングで短縮TTIのPUCCH送信及びそのTTII長が設定された場合で、かつ、短縮TTIのPDSCHがスケジューリングされる場合、ユーザ端末は、短縮TTIでPUCCHを送信してもよい。この場合、通常TTIのPDSCHがスケジューリングされる環境では通常TTIのPUCCHにフォールバック(Fallback)できるので、接続品質劣化を防止できる。
 或いは、(3)上位レイヤシグナリングで短縮TTIのPUCCH送信及びそのTTI長が設定された場合で、かつ、短縮TTIのPDSCHをスケジューリングするL1/L2制御信号(PDCCH等)が検出される場合、ユーザ端末は、短縮TTIでPUCCHを送信してもよい。この場合、条件(2)と同様に接続品質劣化を防止できるとともに、クロスキャリアスケジューリングの適用時に、制御チャネルとデータチャネルを送受信するキャリアを分離した制御を容易に行うことができる。
(無線通信システム)
 以下、本発明の一実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図19は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)などと呼ばれても良い。
 図19に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、6個以上のCC)を用いてCA又はDCを適用することができる。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクにOFDMA(直交周波数分割多元接続)が適用され、上りリンクにSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、上りリンクでOFDMAが用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。送達確認情報(ACK/NACK)や無線品質情報(CQI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
<無線基地局>
 図20は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されてもよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 また、送受信部103は、通常TTI(第1TTI)よりも少ないシンボル数で構成される短縮TTI(第2TTI)において、PUCCHを介してUCIを受信する。また、送受信部103は、当該UCIの復調に用いられるDMRSを受信する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図21は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図21は、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図21に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、を備えている。
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、例えば、送信信号生成部302による下り信号の生成や、マッピング部303による信号のマッピング、受信信号処理部304による上り信号の受信処理(例えば、復調など)を制御する。
 具体的には、制御部301は、ユーザ端末20から報告されるチャネル状態情報(CSI)に基づいて、下り(DL)信号の送信制御(例えば、変調方式、符号化率、リソース割り当て(スケジューリング)などの制御)を行う。
 また、制御部301は、下り信号の受信及び/又は上り信号の送信に用いられる伝送時間間隔(TTI)を制御する。制御部301は、1msである通常TTI又は/及び通常TTIより短い短縮TTIを設定する。短縮TTIの構成例及び設定例については、図2及び3を参照して説明した通りである。制御部301は、ユーザ端末20に対して、(1)黙示的な通知、又は、(2)RRCシグナリング、(3)MACシグナリング、(4)PHYシグナリングの少なくとも一つによる明示的な通知により、短縮TTIの設定を指示してもよい。
 具体的には、制御部301は、通常スロットと同一のシンボル数(例えば、通常CPの場合7シンボル)で構成される短縮TTIを設定してもよいし、通常スロットとは異なるシンボル数(例えば、4シンボル又は3シンボル)で構成される短縮TTIを設定してもよい。また、制御部301は、通常TTI内の同じシンボル数(例えば、7又は4シンボルなど)の複数の短縮TTIを設定してもよいし、通常TTI内に異なるシンボル数(例えば、7、3及び4シンボルの組み合わせなど)の複数の短縮TTIを設定してもよい。
 制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下りデータ信号、下り制御信号を含む)を生成して、マッピング部303に出力する。具体的には、送信信号生成部302は、上述の上位レイヤシグナリングによる通知情報(制御情報)やユーザデータを含む下りデータ信号(PDSCH)を生成して、マッピング部303に出力する。また、送信信号生成部302は、上述のDCIを含む下り制御信号(PDCCH/EPDCCH)を生成して、マッピング部303に出力する。また、送信信号生成部302は、CRS、CSI-RSなどの下り参照信号を生成して、マッピング部303に出力する。
 送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部304は、ユーザ端末20から送信される上り信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。具体的には、受信信号処理部304は、各短縮TTI(又は各短縮スロット)で受信されたDMRSを用いて、各短縮TTI(又は各短縮スロット)でPUCCHを介して受信されるUCIを復調する。処理結果は、制御部301に出力される。
 受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ユーザ端末>
 図22は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りデータ(ユーザデータ)は、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、レートマッチング、パンクチャ、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。UCIについても、チャネル符号化、レートマッチング、パンクチャ、DFT処理、IFFT処理などが行われて各送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 また、送受信部203は、通常TTI(第1TTI)よりも少ないシンボル数で構成される短縮TTI(第2TTI)において、PUCCHを介してUCIを送信する。また、送受信部203は、当該UCIの復調に用いられるDMRSを送信する。
 送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。また、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 図23は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図23においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図23に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号のマッピング、受信信号処理部404による信号の受信処理を制御する。
 また、制御部401は、下り(DL)信号の受信及び/又は上り(UL)信号の送信に用いられる伝送時間間隔(TTI)を制御する。制御部301は、1msである通常TTI又は/及び通常TTIより短い短縮TTIを設定する。短縮TTIの構成例及び設定例については、図2及び3を参照して説明した通りである。制御部401は、無線基地局10からの(1)黙示的な通知、又は、(2)RRCシグナリング、(3)MACシグナリング、(4)PHYシグナリングの少なくとも一つによる明示的な通知に基づいて、短縮TTIを設定(検出)してもよい。
 具体的には、制御部401は、通常スロットと同一のシンボル数(例えば、通常CPの場合7シンボル)で構成される短縮TTIを設定してもよいし、通常スロットとは異なるシンボル数(例えば、4シンボル又は3シンボル)で構成される短縮TTIを設定してもよい。また、制御部401は、通常TTI内の同じシンボル数(例えば、7又は4シンボルなど)の複数の短縮TTIを設定してもよいし、通常TTI内に異なるシンボル数(例えば、7、3及び4シンボルの組み合わせなど)の複数の短縮TTIを設定してもよい。
 また、制御部401は、以上のように設定される短縮TTIにおけるPUCCHを用いたUCIの送信を制御する。具体的には、制御部401は、短縮TTI内の短縮スロット間で周波数ホッピングするPRBでUCIを送信し、短縮スロットを構成する少なくとも一つのシンボルにDMRSをマッピングするように、送信信号生成部402、マッピング部403、送受信部203を制御してもよい(第1の態様)。また、制御部401は、短縮TTI内の短縮スロット間で周波数ホッピングするPRBを、当該短縮スロットの番号に基づいて決定してもよい(第1の態様)。
 また、制御部401は、通常TTI用のPUCCHフォーマット(PF1/1a/1b/2/2a/2b/3/4/5)の一部を用いて短縮TTIのUCIを送信し、当該短縮TTIを構成する少なくとも一つのシンボルにDMRSをマッピングするように、送信信号生成部402、マッピング部403、送受信部203を制御してもよい(第2の態様)。
 また、制御部401は、短縮TTI内で直交拡散符号による直交拡散(時間及び/又は周波数拡散)を適用してもよい。具体的には、制御部401は、UCIをマッピングする短縮スロット内の複数のシンボル間において、当該複数のシンボルの数と等しい長さの直交拡散符号による時間拡散を適用してもよい(例えば、図10A)。また、制御部401は、M(M≧1)以上のPRBを用いるPF(例えば、新規PF、PF4など)において、12×M個のサブキャリアをN個のグループに分割し、系列長Nの直交拡散符号で周波数拡散を適用してもよい。
 また、制御部401は、短縮TTI内の各シンボルで位相回転を適用してもよい。具体的には、制御部401は、UCI又はDMRSをマッピングするシンボルのサブキャリア間において、巡回シフト(CS)による拡散(位相回転)を適用してもよい(例えば、図10B)。
 また、制御部401は、複数の短縮TTIで同一のシンボルが共用される場合、当該複数の短縮TTIそれぞれのDMRSを、Comb又は巡回シフトを用いて、当該同一のシンボルに多重してもよい(例えば、図7B、14A、17B、17C)。また、制御部401は、複数の短縮TTIで同一のシンボルが共用される場合、当該複数の短縮TTIそれぞれのUCIを、Combを用いて、当該同一のシンボルに多重してもよい(例えば、図14B、17A)。
 また、制御部401は、スロットあたり複数のリソースブロックを用いてUCIを送信してもよい(例えば、図8A、8B、16B、17B、18B)。
 また、制御部401は、通常TTIの最終シンボルでサウンディング参照信号(SRS)が送信される場合、当該最終シンボルを含む短縮TTIに、当該最終シンボルを省くフォーマットを適用してもよい(例えば、図9A、9B)。
 また、制御部401は、(1)上位レイヤシグナリングで短縮TTIのPUCCH送信及びそのTTI長が設定(Configure)された場合、常に短縮TTIでPUCCHを送信するよう(第1又は第2の態様のPFを用いるよう)制御してもよい(第3の態様)。
 或いは、制御部401は、(2)上位レイヤシグナリングで短縮TTIのPUCCH送信及びそのTTII長が設定された場合で、かつ、短縮TTIのPDSCHがスケジューリングされる場合、短縮TTIでPUCCHを送信するよう(第1又は第2の態様のPFを用いるよう)制御してもよい(第3の態様)。
 或いは、制御部401は、(3)上位レイヤシグナリングで短縮TTIのPUCCH送信及びそのTTI長が設定された場合で、かつ、短縮TTIのPDSCHをスケジューリングするL1/L2制御信号(PDCCH等)が検出される場合、短縮TTIでPUCCHを送信するよう(第1又は第2の態様のPFを用いるよう)制御してもよい(第3の態様)。
 制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上りデータ信号、上り制御信号を含む)を生成(例えば、符号化、レートマッチング、パンクチャ、変調など)して、マッピング部403に出力する。
 具体的には、送信信号生成部402は、UCIを符号化し、所定の変調方式(例えば、BPSK、QPSK)により変調し、制御部401の指示に従って拡散する。また、送信信号生成部402は、UCIの復調(チャネル推定)に用いられるDMRSを生成し、制御部401の指示に従って拡散し、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号(上り制御信号及び/又は上りデータ信号)を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部404は、下り信号(下り制御信号、下りデータ信号を含む)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリングなどの上位レイヤシグナリングによる制御情報、DCIなどを、制御部401に出力する。
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 測定部405は、無線基地局10からの参照信号(例えば、CSI-RS)に基づいて、チャネル状態を測定し、測定結果を制御部401に出力する。なお、チャネル状態の測定は、CC毎に行われてもよい。
 測定部405は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ハードウェア構成>
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、本実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図24は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 無線基地局10及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク、フラッシュメモリなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウスなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカーなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDMシンボル、SC-FDMAシンボルなど)で構成されてもよい。
 無線フレーム、サブフレーム、スロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームが送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットがTTIと呼ばれてもよい。つまり、サブフレームやTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅や送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、RBは、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプリフィクス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(D2D:Device-to-Device)に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」や「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的に(例えば、当該所定の情報の通知を行わないことによって)行われてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の各実施形態は単独で用いてもよいし、組み合わせて用いてもよい。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2016年1月27日出願の特願2016-013684に基づく。この内容は、全てここに含めておく。
 
 

Claims (10)

  1.  第1伝送時間間隔(TTI)よりも少ないシンボル数で構成される第2TTIにおいて、上り制御チャネルを介して上り制御情報を送信する送信部と、
     前記上り制御情報の送信を制御する制御部と、を具備し、
     前記制御部は、前記第2TTI内のスロット間で周波数ホッピングするリソースブロックで前記上り制御情報を送信し、前記スロットを構成する少なくとも一つのシンボルに復調用参照信号をマッピングすることを特徴とするユーザ端末。
  2.  前記制御部は、前記上り制御情報をマッピングするシンボルのサブキャリア間において、巡回シフト(CS)による拡散を適用することを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記上り制御情報をマッピングする前記スロット内の複数のシンボル間において、直交拡散符号による時間及び/又は周波数拡散を適用することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  複数の第2TTIで同一のシンボルが共用される場合、前記制御部は、前記複数の第2TTIそれぞれの復調用参照信号を、Comb又は巡回シフトを用いて、前記同一のシンボルに多重することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  複数の第2TTIで同一のシンボルが共用される場合、前記制御部は、前記複数の第2TTIそれぞれの上り制御情報を、Combを用いて、前記同一のシンボルに多重することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  6.  前記制御部は、スロットあたり複数のリソースブロックを用いて前記上り制御情報を送信することを特徴とする請求項1から請求項5のいずれかに記載のユーザ端末。
  7.  前記制御部は、前記第1TTIの最終シンボルでサウンディング参照信号(SRS)が送信される場合、前記最終シンボルを含む第2TTIに、前記最終シンボルを省くフォーマットを適用することを特徴とする請求項1から請求項6のいずれかに記載のユーザ端末。
  8.  前記制御部は、前記第2TTI内のスロット間で周波数ホッピングするリソースブロックを、前記スロットの番号に基づいて決定することを特徴とする請求項1から請求項7のいずれかに記載のユーザ端末。
  9.  第1伝送時間間隔(TTI)よりも少ないシンボル数で構成される第2TTIにおいて、上り制御チャネルを介して上り制御情報を受信する受信部と、
     前記上り制御情報の受信を制御する制御部と、を具備し、
     前記制御部は、前記第2TTI内のスロット間で周波数ホッピングするリソースブロックで送信される前記上り制御情報を、前記スロットを構成する少なくとも一つのシンボルにマッピングされる復調用参照信号を用いて復調することを特徴とする無線基地局。
  10.  第1伝送時間間隔(TTI)よりも少ないシンボル数で構成される第2TTIを用いた無線通信方法であって、ユーザ端末において、
     前記第2TTI内のスロット間で周波数ホッピングするリソースブロックで、上り制御チャネルを介して上り制御情報を送信する工程と、
     前記スロットを構成する少なくとも一つのシンボルに復調用参照信号をマッピングする工程と、を有することを特徴とする無線通信方法。
PCT/JP2017/002426 2016-01-27 2017-01-25 ユーザ端末、無線基地局及び無線通信方法 WO2017130993A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017564285A JP6865502B2 (ja) 2016-01-27 2017-01-25 端末及び無線通信方法
US16/071,951 US11101911B2 (en) 2016-01-27 2017-01-25 User terminal, radio base station, and radio communication method
EP23168692.4A EP4221115A1 (en) 2016-01-27 2017-01-25 User terminal, radio base station, and radio communication method
EP17744223.3A EP3410662A4 (en) 2016-01-27 2017-01-25 USER TERMINAL, WIRELESS BASE STATION, AND WIRELESS COMMUNICATION METHOD
CN201780008930.3A CN108605030B (zh) 2016-01-27 2017-01-25 用户终端、无线基站和无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016013684 2016-01-27
JP2016-013684 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017130993A1 true WO2017130993A1 (ja) 2017-08-03

Family

ID=59398408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002426 WO2017130993A1 (ja) 2016-01-27 2017-01-25 ユーザ端末、無線基地局及び無線通信方法

Country Status (5)

Country Link
US (1) US11101911B2 (ja)
EP (2) EP4221115A1 (ja)
JP (1) JP6865502B2 (ja)
CN (1) CN108605030B (ja)
WO (1) WO2017130993A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020530685A (ja) * 2017-08-11 2020-10-22 クアルコム,インコーポレイテッド 復調基準信号の設計および関連するシグナリングに関する方法と装置
CN111954984A (zh) * 2018-02-15 2020-11-17 株式会社Ntt都科摩 用户终端以及无线通信方法
CN112055943A (zh) * 2018-03-07 2020-12-08 株式会社Ntt都科摩 用户终端以及无线通信方法
JP2021523658A (ja) * 2018-05-11 2021-09-02 中興通訊股▲ふん▼有限公司Zte Corporation フレーム構造の指示方法及び装置、フレーム構造の決定方法及び装置、記憶媒体、プロセッサ
US11924838B2 (en) 2017-06-23 2024-03-05 Qualcomm Incorporated Long uplink burst channel design
US11991700B2 (en) 2017-11-16 2024-05-21 Ntt Docomo, Inc. User terminal and radio communication method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9819728B2 (en) * 2012-04-30 2017-11-14 Google Inc. System and method for facilitating deduplication of operations to be performed
US10491440B2 (en) * 2016-02-02 2019-11-26 Lg Electronics Inc. Method for transmitting uplink control channel and user equipment for performing same
JP6174735B1 (ja) * 2016-02-04 2017-08-02 株式会社Nttドコモ ユーザ装置及び通信方法
CN109076522B (zh) * 2016-04-01 2023-05-16 瑞典爱立信有限公司 资源许可方法及相应的无线设备、网络节点和介质
TWI663863B (zh) * 2016-08-10 2019-06-21 諾基亞科技公司 用於上行鏈路短傳輸時間區間傳輸之傳訊技術與相關聯方法、裝置、電腦程式産品及電腦可讀媒體
CN109792734B (zh) * 2016-09-29 2023-06-09 Lg电子株式会社 在无线通信系统中用于多个处理时间或多个传输时间间隔的方法及其装置
KR102602335B1 (ko) * 2017-03-23 2023-11-17 삼성전자 주식회사 통신 시스템에서 상향링크 제어 채널의 전송 방법 및 장치
US10880058B2 (en) 2017-04-25 2020-12-29 Qualcomm Incorporated Transmitting uplink control information (UCI)
US10554448B2 (en) * 2017-08-10 2020-02-04 Qualcomm Incorporated Dynamic scheduling of data patterns for shortened transmission time intervals
EP3667971B1 (en) * 2017-08-10 2022-10-05 LG Electronics Inc. Method for transmitting and receiving uplink control channel and device therefor
US10956224B1 (en) * 2017-08-29 2021-03-23 Wells Fargo Bank, N.A. Creating augmented hybrid infrastructure as a service
WO2019140562A1 (en) * 2018-01-17 2019-07-25 Qualcomm Incorporated Techniques and apparatuses for demodulation reference signal and phase rotation for sub-physical resource block allocation with two tone modulation
US11032812B2 (en) * 2019-03-26 2021-06-08 Qualcomm Incorporated Starting offset for new radio-unlicensed (NR-U) uplink transmission
US20220232606A1 (en) * 2019-05-15 2022-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Uplink control information (uci) coordination for distributed carrier aggregation (ca) scheduling
US11303477B2 (en) * 2019-10-04 2022-04-12 Mediatek Inc. Enhancement on sounding reference signal transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005075A (ja) * 2010-06-21 2012-01-05 Ntt Docomo Inc 移動端末装置及び無線通信方法
JP2013229770A (ja) * 2012-04-26 2013-11-07 Sharp Corp 移動局装置、基地局装置、通信方法、集積回路および無線通信システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069147B2 (ja) * 2008-02-29 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、基地局装置、ユーザ装置及び方法
US8913672B2 (en) * 2008-09-12 2014-12-16 Qualcomm Incorporated Efficiently identifying system waveform in uplink transmission
KR101328213B1 (ko) * 2010-02-12 2013-11-14 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송 방법 및 장치
CN102237963A (zh) * 2010-05-06 2011-11-09 宏达国际电子股份有限公司 处理上行链路控制信道传输的方法及其通信装置
EP2759085A1 (en) * 2011-09-21 2014-07-30 Nokia Solutions and Networks Oy Apparatus and method for communication
JP5487229B2 (ja) * 2011-11-07 2014-05-07 株式会社Nttドコモ 無線基地局装置、ユーザ端末、無線通信システム及び無線通信方法
US9131498B2 (en) * 2012-09-12 2015-09-08 Futurewei Technologies, Inc. System and method for adaptive transmission time interval (TTI) structure
JP5786901B2 (ja) * 2013-06-20 2015-09-30 株式会社デンソー 事故通報システム
JP2016013684A (ja) 2014-06-11 2016-01-28 株式会社Okiデータ・インフォテック インクジェットヘッドおよびインクジェットプリンター
US11818717B2 (en) * 2014-12-31 2023-11-14 Texas Instruments Incorporated Method and apparatus for uplink control signaling with massive Carrier Aggregation
US10244378B2 (en) * 2015-01-20 2019-03-26 Lg Electronics Inc. Method for selecting neighboring UE to perform D2D communication
WO2016163623A1 (ko) * 2015-04-08 2016-10-13 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
JP6886919B2 (ja) * 2015-09-02 2021-06-16 株式会社Nttドコモ 端末及び無線通信方法
WO2017044066A1 (en) * 2015-09-11 2017-03-16 Intel IP Corporation Transmission of uplink control information in wireless systems
WO2017099521A1 (ko) * 2015-12-10 2017-06-15 엘지전자(주) 짧은 전송 시간 간격을 지원하는 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 지원하는 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005075A (ja) * 2010-06-21 2012-01-05 Ntt Docomo Inc 移動端末装置及び無線通信方法
JP2013229770A (ja) * 2012-04-26 2013-11-07 Sharp Corp 移動局装置、基地局装置、通信方法、集積回路および無線通信システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3410662A4 *
ZTE: "L1 considerations on latency reduction", 3GPP TSG-RAN WG1#83 RL-157151, 7 November 2015 (2015-11-07), pages 1 - 6, XP051003410 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11924838B2 (en) 2017-06-23 2024-03-05 Qualcomm Incorporated Long uplink burst channel design
JP2020530685A (ja) * 2017-08-11 2020-10-22 クアルコム,インコーポレイテッド 復調基準信号の設計および関連するシグナリングに関する方法と装置
US11528110B2 (en) 2017-08-11 2022-12-13 Qualcomm Incorporated Methods and apparatus related to demodulation reference signal design and related signaling
JP7233412B2 (ja) 2017-08-11 2023-03-06 クアルコム,インコーポレイテッド 復調基準信号の設計および関連するシグナリングに関する方法と装置
US11991700B2 (en) 2017-11-16 2024-05-21 Ntt Docomo, Inc. User terminal and radio communication method
IL274544B1 (en) * 2017-11-16 2024-09-01 Ntt Docomo Inc User terminal unit and radio communication method
CN111954984A (zh) * 2018-02-15 2020-11-17 株式会社Ntt都科摩 用户终端以及无线通信方法
CN112055943A (zh) * 2018-03-07 2020-12-08 株式会社Ntt都科摩 用户终端以及无线通信方法
JP2021523658A (ja) * 2018-05-11 2021-09-02 中興通訊股▲ふん▼有限公司Zte Corporation フレーム構造の指示方法及び装置、フレーム構造の決定方法及び装置、記憶媒体、プロセッサ
JP7129557B2 (ja) 2018-05-11 2022-09-01 中興通訊股▲ふん▼有限公司 フレーム構造の指示方法及び装置、フレーム構造の決定方法及び装置、記憶媒体、プロセッサ
US11800544B2 (en) 2018-05-11 2023-10-24 Zte Corporation Frame structure indicating method and device, frame structure determining method and device, storage medium, and processor

Also Published As

Publication number Publication date
JP6865502B2 (ja) 2021-04-28
EP4221115A1 (en) 2023-08-02
EP3410662A4 (en) 2019-09-25
CN108605030B (zh) 2021-12-14
US20190081722A1 (en) 2019-03-14
JPWO2017130993A1 (ja) 2018-12-06
EP3410662A1 (en) 2018-12-05
US11101911B2 (en) 2021-08-24
CN108605030A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6865502B2 (ja) 端末及び無線通信方法
JP6954841B2 (ja) ユーザ端末及び無線基地局
CN109891974B (zh) 用户终端和无线通信方法
WO2017135345A1 (ja) ユーザ端末、無線基地局及び無線通信方法
CN107926015B (zh) 用户终端、无线基站和无线通信方法
WO2017038892A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017142029A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017130991A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017130990A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6272371B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017131065A1 (ja) ユーザ端末、無線基地局及び無線通信方法
CN110431903B (zh) 终端、无线通信方法以及系统
WO2019012669A1 (ja) 送信装置、受信装置及び無線通信方法
JP7168725B2 (ja) 端末、無線基地局、無線通信システム及び無線通信方法
WO2017142031A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JPWO2017150451A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6185096B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP2020182253A (ja) 端末及び無線通信方法
JP2022133469A (ja) 端末、無線通信方法、基地局及びシステム
JP2022111245A (ja) 端末、基地局、無線通信方法及びシステム
WO2019049280A1 (ja) ユーザ端末及び無線通信方法
JP7234139B2 (ja) 端末、無線通信方法、基地局及びシステム
OA18894A (en) User terminal, wireless base station, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017564285

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017744223

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744223

Country of ref document: EP

Effective date: 20180827