WO2017142031A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2017142031A1
WO2017142031A1 PCT/JP2017/005751 JP2017005751W WO2017142031A1 WO 2017142031 A1 WO2017142031 A1 WO 2017142031A1 JP 2017005751 W JP2017005751 W JP 2017005751W WO 2017142031 A1 WO2017142031 A1 WO 2017142031A1
Authority
WO
WIPO (PCT)
Prior art keywords
tti
transmission
control information
user terminal
transmitted
Prior art date
Application number
PCT/JP2017/005751
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2018500200A priority Critical patent/JPWO2017142031A1/ja
Priority to EP17753286.8A priority patent/EP3419359A4/en
Priority to US16/077,699 priority patent/US20190053256A1/en
Publication of WO2017142031A1 publication Critical patent/WO2017142031A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE Advanced also referred to as LTE Rel.10, 11 or 12
  • LTE Rel.8 the successor system
  • LTE Rel.13 or later the successor system
  • CA Carrier Aggregation
  • CC Component Carrier
  • UE User Equipment
  • DC Dual Connectivity
  • CG Cell Group
  • CC Cell Center
  • FDD frequency division duplex
  • DL downlink
  • UL uplink
  • TDD Time division duplex
  • a transmission time interval (TTI: Transmission Time Interval) applied to DL transmission and UL transmission between the radio base station and the user terminal is set to 1 ms and controlled.
  • the transmission time interval is also called a transmission time interval, and the TTI in the LTE system (Rel. 8-12) is also called a subframe length.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • LTE Rel In wireless communication systems after 13 (for example, 5G), communication in high frequency bands such as tens of GHz, IoT (Internet of Things), MTC (Machine Type Communication), M2M (Machine To Machine), etc. It is assumed that communication with a small amount of data is performed. There is also an increasing demand for D2D (Device To Device) and V2V (Vehicular To Vehicular) communications that require low-latency communication.
  • D2D Device To Device
  • V2V Vehicle To Vehicular
  • TTI Transmission Time Interval
  • LTE Rel. 8-12 LTE Rel. 8-12
  • the present invention has been made in view of such a point, and an object thereof is to provide a user terminal, a radio base station, and a radio communication method capable of appropriately performing communication even when a shortened TTI is applied. One of them.
  • One aspect of the user terminal of the present invention is a user terminal that performs communication using a second TTI having a TTI length shorter than a first transmission time interval (TTI).
  • a receiving unit that receives first downlink control information transmitted every one TTI and second downlink control information transmitted by a second TTI, the first control information, and the second A control unit that controls UL transmission in the second TTI based on the control information, and the control unit receives first downlink control information received from the second TTI that performs UL transmission a predetermined period before The UL transmission is controlled using the second downlink control information included in the first TTI in which the first downlink control information is transmitted.
  • TTI transmission time interval
  • communication can be performed appropriately even when a shortened TTI is applied.
  • TTI transmission time interval
  • 3A and 3B are diagrams illustrating a configuration example of the shortened TTI.
  • FIG. 4A to FIG. 4C are diagrams showing examples of setting the normal TTI and the shortened TTI.
  • UL transmission using shortened TTI in this Embodiment is a figure which shows an example of the transmission time interval (TTI) in the existing LTE system (Rel.8-12).
  • 3A and 3B are diagrams illustrating a configuration example of the shortened TTI.
  • FIG. 4A to FIG. 4C are diagrams showing examples of setting the normal TTI and the shortened TTI.
  • FIG. 1 is an explanatory diagram of an example of a transmission time interval (TTI) in the existing system (LTE Rel. 8-12).
  • TTI transmission time interval
  • LTE Rel. 8-12 LTE Rel.
  • the TTI in 8-12 (hereinafter referred to as “normal TTI”) has a time length of 1 ms.
  • a normal TTI is also called a subframe and is composed of two time slots.
  • TTI is a transmission time unit of one channel-coded data packet (transport block), and is a processing unit such as scheduling and link adaptation.
  • the normal TTI is configured to include 14 OFDM (Orthogonal Frequency Division Multiplexing) symbols (7 OFDM symbols per slot).
  • Each OFDM symbol has a time length (symbol length) of 66.7 ⁇ s, and a normal CP of 4.76 ⁇ s is added. Since the symbol length and the subcarrier interval are inverse to each other, when the symbol length is 66.7 ⁇ s, the subcarrier interval is 15 kHz.
  • the normal TTI is configured to include 14 SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols (7 SC-FDMA symbols per slot).
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Each SC-FDMA symbol has a time length (symbol length) of 66.7 ⁇ s, and a normal CP of 4.76 ⁇ s is added. Since the symbol length and the subcarrier interval are inverse to each other, when the symbol length is 66.7 ⁇ s, the subcarrier interval is 15 kHz.
  • the normal TTI may be configured to include 12 OFDM symbols (or 12SC-FDMA symbols).
  • each OFDM symbol or each SC-FDMA symbol
  • wireless interfaces suitable for high frequency bands such as tens of GHz, IoT (Internet of Things), MTC (Machine Type Communication), M2M (Machine To Machine) Wireless interfaces that minimize delay are desired for D2D (Device To Device) and V2V (Vehicular To Vehicular) services.
  • FIG. 2 shows a cell (CC # 1) that uses a normal TTI (1 ms) and a cell (CC # 2) that uses a shortened TTI. Further, when using a shortened TTI, it is conceivable to change the subcarrier interval from the subcarrier of the normal TTI (for example, increase the subcarrier interval).
  • shortened TTI When using a TTI having a time length shorter than a normal TTI (hereinafter referred to as “shortened TTI”), a time margin for processing (for example, encoding, decoding, etc.) in a user terminal or a radio base station increases, and therefore processing delay Can be reduced. Further, when the shortened TTI is used, the number of user terminals that can be accommodated per unit time (for example, 1 ms) can be increased.
  • the configuration of the shortened TTI will be described.
  • the shortened TTI has a time length (TTI length) smaller than 1 ms.
  • the shortened TTI may be one or a plurality of TTI lengths with a multiple of 1 ms, such as 0.5 ms, 0.25 ms, 0.2 ms, and 0.1 ms.
  • the normal TTI since the normal TTI includes 14 symbols, one of the TTI lengths that is an integral multiple of 1/14 ms such as 7/14 ms, 4/14 ms, 3/14 ms, 2/14 ms, 1/14 ms, etc. Or it may be plural.
  • a normal TTI since a normal TTI includes 12 symbols, it is one of TTI lengths that are integral multiples of 1/12 ms such as 6/12 ms, 4/12 ms, 3/12 ms, 2/12 ms, and 1/12 ms. Or it may be plural.
  • the normal CP or the extended CP can be configured by higher layer signaling such as broadcast information or RRC signaling. This makes it possible to introduce a shortened TTI while maintaining compatibility (synchronization) with a normal TTI of 1 ms.
  • the shortened TTI only needs to have a shorter time length than the normal TTI, and may have any configuration such as the number of symbols, the symbol length, and the CP length in the shortened TTI.
  • an OFDM symbol is used for DL and an SC-FDMA symbol is used for UL will be described, but the present invention is not limited to this.
  • FIG. 3A is a diagram illustrating a first configuration example of the shortened TTI.
  • the physical layer signal configuration (RE arrangement, etc.) of normal TTI can be used.
  • the same amount of information (bit amount) as that of normal TTI can be included in the shortened TTI.
  • the symbol time length is different from that of the normal TTI symbol, it is difficult to frequency multiplex the shortened TTI signal and the normal TTI signal shown in FIG. 3A in the same system band (or cell, CC). It becomes.
  • the symbol length and the subcarrier interval are inversely related to each other, when the symbol length is shortened as shown in FIG.
  • the subcarrier interval becomes wide, it is possible to effectively prevent channel-to-channel interference due to Doppler shift during movement of the user terminal and transmission quality deterioration due to phase noise of the user terminal receiver.
  • a high frequency band such as several tens of GHz, it is possible to effectively prevent deterioration in transmission quality by widening the subcarrier interval.
  • FIG. 3B is a diagram illustrating a second configuration example of the shortened TTI.
  • the shortened TTI can be configured in units of symbols in the normal TTI (a configuration in which the number of symbols is reduced).
  • a shortened TTI can be configured by using a part of 14 symbols included in one subframe.
  • the shortened TTI is composed of 7 OFDM symbols (SC-FDMA symbols), which is half of the normal TTI.
  • the information amount (bit amount) included in the shortened TTI can be reduced as compared with the normal TTI.
  • the user terminal can perform reception processing (for example, demodulation, decoding, etc.) of information included in the shortened TTI in a time shorter than normal TTI, and the processing delay can be shortened.
  • the shortened TTI signal and the normal TTI signal shown in FIG. 3B can be frequency-multiplexed within the same system band (or cell, CC), and compatibility with the normal TTI can be maintained.
  • FIG. 4 is a diagram illustrating a setting example of the normal TTI and the shortened TTI. In addition, FIG. 4 is only an illustration and is not restricted to these.
  • FIG. 4A is a diagram illustrating a first setting example of the shortened TTI.
  • the normal TTI and the shortened TTI may be mixed in time within the same component carrier (CC) (frequency domain).
  • the shortened TTI may be set in a specific subframe (or a specific radio frame) of the same CC.
  • a shortened TTI is set in five consecutive subframes in the same CC, and a normal TTI is set in other subframes.
  • the specific subframe may be a subframe in which an MBSFN subframe can be set, or a subframe including (or not including) a specific signal such as an MIB or a synchronization channel. Note that the number and position of subframes in which the shortened TTI is set are not limited to those illustrated in FIG. 4A.
  • FIG. 4B is a diagram illustrating a second setting example of the shortened TTI.
  • carrier aggregation (CA) or dual connectivity (DC) may be performed by integrating the normal TTI CC and the shortened TTI CC.
  • the shortened TTI may be set in a specific CC (more specifically, in the DL and / or UL of the specific CC).
  • a shortened TTI is set in the DL of a specific CC
  • a normal TTI is set in the DL and UL of another CC. Note that the number and position of CCs for which the shortened TTI is set are not limited to those shown in FIG. 4B.
  • the shortened TTI may be set to a specific CC (primary (P) cell or / and secondary (S) cell) of the same radio base station.
  • the shortened TTI may be set to a specific CC (P cell or / and S cell) in the master cell group (MCG) formed by the first radio base station, or the second May be set to a specific CC (primary secondary (PS) cell or / and S cell) in the secondary cell group (SCG) formed by the wireless base station.
  • MCG master cell group
  • PS primary secondary
  • SCG secondary cell group
  • FIG. 4C is a diagram illustrating a third setting example of the shortened TTI.
  • the shortened TTI may be set to either DL or UL.
  • FIG. 4C shows a case where a normal TTI is set in the UL and a shortened TTI is set in the DL in the TDD system.
  • a specific DL or UL channel or signal may be assigned (set) to the shortened TTI.
  • the uplink control channel (PUCCH: Physical Uplink Control Channel) may be assigned to a normal TTI
  • the uplink shared channel (PUSCH: Physical Uplink Shared Channel) may be assigned to a shortened TTI.
  • the user terminal performs transmission of PUCCH by normal TTI and transmission of PUSCH by shortened TTI.
  • LTE Rel A multi-access scheme different from OFDM (or SC-FDMA), which is the multi-access scheme of 8-12, may be assigned (set) to the shortened TTI.
  • shortened TTI As described above, when a cell using a shortened TTI is set for the user terminal, the user terminal sets the shortened TTI based on an implicit or explicit notification from the radio base station. Can be set (or / and detected).
  • a notification example of a shortened TTI applicable in the present embodiment (1) in the case of implicit notification, or (2) broadcast information or RRC (Radio Resource Control) signaling, The case of explicit notification by at least one of (Access Control) signaling and (4) PHY (Physical) signaling will be described.
  • the user terminal transmits an LBT (Listen in frequency band (for example, 5G band, unlicensed band, etc.), system bandwidth (for example, 100 MHz, etc.), LAA (License Assisted Access). Applicability of Before Talk, type of data to be transmitted (eg control data, voice, etc.), logical channel, transport block, RLC (Radio Link Control) mode, C-RNTI (Cell-Radio. Network Temporary Identifier) Based on the above, a shortened TTI may be set (for example, it is determined that a cell, a channel, a signal, or the like for communication is a shortened TTI).
  • LBT Listen in frequency band (for example, 5G band, unlicensed band, etc.), system bandwidth (for example, 100 MHz, etc.), LAA (License Assisted Access). Applicability of Before Talk, type of data to be transmitted (eg control data, voice, etc.), logical channel, transport block, RLC (Radio Link Control) mode, C-RNTI (Cell-
  • control information (DCI) addressed to the terminal itself is detected in the PDCCH mapped to the first 1, 2, 3, or 4 symbols of the normal TTI and / or 1 ms of the EPDCCH
  • 1 ms including the PDCCH / EPDCCH is normally used.
  • Control information (DCI) destined for the terminal is detected using PDCCH / EPDCCH (for example, PDCCH mapped to other than the first 1 to 4 symbols of TTI and / or EPDCCH less than 1 ms) having a configuration other than that determined as TTI
  • a predetermined time interval of less than 1 ms including the PDCCH / EPDCCH may be determined as the shortened TTI.
  • the control information (DCI) addressed to the own terminal can be detected based on the CRC check result for the blind-decoded DCI.
  • the shortened TTI may be set based on setting information notified from the radio base station (for example, the first cell) to the user terminal by the broadcast information or RRC signaling.
  • the setting information indicates, for example, information on CCs and / or subframes using the shortened TTI, information on channels or / and signals using the shortened TTI, information on the TTI length of the shortened TTI, and the like.
  • the user terminal sets the shortened TTI to semi-static based on the setting information from the radio base station. Note that mode switching between the shortened TTI and the normal TTI may be performed by an RRC reconfiguration procedure, an intra-cell handover (HO) in the P cell, and a CC (S cell in the S cell. ) Removal / addition procedure.
  • the shortened TTI set based on the setting information notified by RRC signaling may be validated or deactivated (activate or de-activate) by MAC signaling.
  • the user terminal enables or disables the shortened TTI based on the MAC control element from the radio base station.
  • the user terminal is set in advance with a timer indicating the activation period of the shortened TTI by higher layer signaling such as RRC.
  • the UL / DL allocation of the shortened TTI for a predetermined period is performed. If not done, the shortened TTI may be invalidated.
  • Such a shortened TTI invalidation timer may count in units of normal TTI (1 ms), or may count in units of shortened TTI (for example, 0.25 ms).
  • the S cell when switching the mode between the shortened TTI and the normal TTI in the S cell, the S cell may be de-activated once, or it may be considered that the TA (Timing Advance) timer has expired. Thereby, the communication stop period at the time of mode switching can be provided.
  • the shortened TTI set based on the setting information notified by RRC signaling may be scheduled by PHY signaling.
  • the user terminal performs a shortened TTI based on information contained in the received and detected downlink control channel (PDCCH: Physical Downlink Control Channel or EPDCCH: Enhanced Physical Downlink Control Channel, hereinafter referred to as PDCCH / EPDCCH).
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • control information (DCI) for assigning transmission or reception in normal TTI and shortened TTI includes different information elements, and (4-1) the user terminal performs control including information elements for assigning transmission / reception in shortened TTI.
  • DCI control information
  • a predetermined time interval including the timing at which the PDCCH / EPDCCH is detected may be recognized as a shortened TTI.
  • the user terminal can blind-decode control information (DCI) that allocates transmission or reception of both normal TTI and shortened TTI in PDCCH / EPDCCH.
  • the user terminal detects downlink control information (DCI: Downlink) transmitted by the PDCCH / EPDCCH (when the control information (DCI) including an information element to which transmission / reception with the shortened TTI is allocated is detected)
  • DCI downlink control information
  • a predetermined time interval including the timing at which PDSCH or PUSCH scheduled by Control Information)) is transmitted / received may be recognized as a shortened TTI.
  • the user terminal When a DCI including an information element to which transmission / reception with a shortened TTI is detected, the user terminal retransmits the PDSCH or PUSCH scheduled by the PDCCH / EPDCCH (DCI transmitted by the PDCCH / EPDCCH).
  • a predetermined time interval including timing for transmitting or receiving control information may be recognized as a shortened TTI.
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledgement
  • ACK / NACK A / N, etc.
  • the control information (DCI) instructing transmission / reception with the shortened TTI may be transmitted / received a certain time before transmitting / receiving the shortened TTI.
  • the radio base station transmits control information (DCI) instructing transmission / reception with a shortened TTI at a predetermined timing, and when the user terminal receives the control information (DCI), after a predetermined time (for example, an integer having a TTI length) After a double time or an integer time of the subframe length), the shortened TTI is transmitted / received.
  • the user terminal changes the signal processing algorithm by transmitting / receiving control information (DCI) instructing transmission / reception with a shortened TTI a predetermined time before actually performing transmission / reception with the shortened TTI. Time to do.
  • DCI receiving control information
  • a method of switching to normal TTI transmission / reception may be applied when a shortened TTI is set by higher layer signaling such as RRC, and when control information (DCI) transmitted / received through a downlink control channel is instructed.
  • DCI control information
  • a shortened TTI that requires signal processing with a low delay requires a higher user processing capacity than a normal TTI. Therefore, by limiting the dynamic switching from the shortened TTI to the normal TTI, the signal processing burden on the user terminal accompanying the change in the TTI length is reduced as compared with the case where the dynamic switching from the normal TTI to the shortened TTI is allowed. be able to.
  • the user terminal may detect the shortened TTI based on the state of the user terminal (for example, Idle state or Connected state). For example, in the idle state, the user terminal may recognize all TTIs as normal TTIs and perform blind decoding only on the PDCCH included in the first 1 to 4 symbols of the 1 ms normal TTI. Further, when the user terminal is in the connected state, the user terminal may set (or / and detect) the shortened TTI based on at least one of the above notification examples (1) to (4).
  • the state of the user terminal for example, Idle state or Connected state. For example, in the idle state, the user terminal may recognize all TTIs as normal TTIs and perform blind decoding only on the PDCCH included in the first 1 to 4 symbols of the 1 ms normal TTI. Further, when the user terminal is in the connected state, the user terminal may set (or / and detect) the shortened TTI based on at least one of the above notification examples (1) to (4).
  • the communication is performed by applying the shortened TTI whose transmission time interval is shorter than the normal TTI to the UL transmission and / or the DL transmission. From the viewpoint of maintaining compatibility with existing LTE systems that normally use TTI, it is effective to reduce the number of OFDM symbols in the shortened TTI, as shown in FIG. 3B. However, when the shortened TTI is realized by reducing the number of symbols, the total number of resource elements (RE: Resource Element) in the shortened TTI may decrease.
  • RE Resource Element
  • the total number of REs in a normal TTI (1 subframe) is 168 ⁇ PRB (12 subcarriers ⁇ 14 symbols ⁇ PRB).
  • the total number of REs of shortened TTIs with a reduced number of symbols is usually smaller than TTI. For example, assume that the shortened TTI is composed of 4 symbols. In this case, the total number of REs in the shortened TTI is 48 ⁇ PRB (12 subcarriers ⁇ 4 symbols ⁇ PRB).
  • the present inventors paid attention to a scheduling control method (also referred to as 2-step DCI control) using two types of downlink control information (DCI) as a method for reducing the overhead of the L1 / L2 control signal (FIG. 5). reference).
  • a scheduling control method also referred to as 2-step DCI control
  • DCI downlink control information
  • the user terminal receives DL scheduling control information as downlink control information transmitted in units of normal TTIs (subframes) and downlink control information transmitted in units of shortened TTIs.
  • downlink control information that is normally transmitted in units of TTI may be referred to as first DCI, Slow-DCI, or long period DCI.
  • the downlink control information transmitted in units of shortened TTI may be referred to as second DCI, Fast-DCI, short cycle DCI, or shortened DCI.
  • the downlink control information normally transmitted in TTI units may be configured to use downlink control information (or existing DCI allocation area and transmission timing) of an existing LTE system (before Rel. 12).
  • Slow-DCI is a control signal transmitted to a predetermined user group (common to user terminals), and can be configured to include radio resource (for example, PRB) allocation information.
  • Fast-DCI is a control signal to be transmitted to each user terminal (user terminal specific), and is provided with shortened TTI allocation information, modulation and coding scheme (MCS), HARQ information (for example, HARQ process number, etc.) ) And the like.
  • MCS modulation and coding scheme
  • HARQ information for example, HARQ process number, etc.
  • the radio base station can transmit Slow-DCI as common control information for a predetermined user terminal using the shortened TTI and Fast-DCI as control information specific to the user terminal.
  • Slow-DCI as common control information for a predetermined user terminal using the shortened TTI
  • Fast-DCI as control information specific to the user terminal.
  • information common to user groups can be aggregated into Slow-DCI, it is possible to reduce the overhead of downlink control information (Fast-DCI) transmitted with a shortened TTI.
  • Fast-DCI downlink control information
  • DCI downlink control information
  • the user terminal receives UL scheduling control information in Slow-DCI that is normally transmitted in units of TTI and Fast-DCI that is transmitted in units of shortened TTI.
  • Slow-DCI is a control signal transmitted to a predetermined user group, and can be configured to include UL subframe radio resource (for example, PRB) allocation information.
  • Fast-DCI is a control signal transmitted to an individual user, and can be configured to include individual user scheduling, modulation / coding scheme, HARQ information, and the like.
  • the radio base station can transmit Slow-DCI instructing UL transmission as common control information for a predetermined user terminal using the shortened TTI, and Fast-DCI as control information specific to the user terminal.
  • the user terminal performs DL assignment (DL assignment) and UL grant (UL grant) detection operations for Slow-DCI and Fast-DCI, respectively.
  • the DL assignment and the UL grant may be distinguished by a difference in payload, or may be configured to be distinguished according to a predetermined bit value (flag) included in the downlink control information.
  • the PRB of the uplink subframe (short TTI used for UL transmission) specified by Slow-DCI may be different from the PRB of the downlink subframe (short TTI used for DL transmission) (see FIG. 6). Thereby, flexible scheduling becomes possible.
  • the present inventors when communicating with TDD using a shortened TTI, in order to achieve both efficiency degradation and delay reduction to some extent, the number of shortened TTIs of uplink and downlink is not one-to-one, but one ratio (for example, It was noticed that it is effective to control communication by increasing the DL ratio) (see FIG. 7).
  • a downlink section (DL shortened TTI) in which DL transmission is performed over different subframes (normally TTI) is set, and an uplink section (UL shortened TTI) in which UL transmission is performed in the middle of one subframe. ) Is set.
  • the setting of DL shortening TTI and UL shortening TTI is not limited to this.
  • a UL / DL configuration for a shortened TTI in which a plurality of UL-DL ratios are defined in advance may be defined.
  • DL shortened TTI is set in the DL subframe
  • UL shortened TTI is set in the UL subframe
  • DL shortened TTI and UL shortened TTI are set in the special subframe. It is good.
  • the present inventors have Slow-DCI received a predetermined period before the UL shortened TTI and a DL included in a normal TTI (subframe) in which the Slow-DCI is transmitted.
  • the idea was to control UL transmission using Fast-DCI transmitted with a shortened TTI.
  • a TTI having a TTI length shorter than 1 ms is referred to as a shortened TTI, but may be referred to as a short TTI, a shortened subframe, or a short subframe.
  • a TTI of 1 ms is called a normal TTI, but may be called a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • the configuration shown in FIGS. 1 to 4 can be applied to the shortened TTI of the present embodiment.
  • DCI downlink control information
  • Fast-DCI downlink control information
  • Slow-DCI DCI defined in the existing system (or monitored by the user terminal of the existing system)
  • the name of each DCI is not limited to this.
  • the application of the present embodiment is not limited to downlink control information (or downlink control channel), and can be appropriately applied to other DL channels.
  • resource information for example, PRB allocation information
  • scheduling information for example, Fast-DCI is used.
  • Transmission instruction MCS
  • HARQ information HARQ information, and the like are shown, but the present embodiment is not limited to this. Any method that controls scheduling using a plurality of types of DCI can be applied as appropriate.
  • Information notified to the user terminal by each DCI can also be set as appropriate.
  • the feedback method of uplink control information (for example, HARQ-ACK) in each shortened TTI in this embodiment is also a scheduling method using one type (for example, Fast-DCI) regardless of the two-step DCI control. Can be applied.
  • this embodiment can be applied to users who can communicate using at least a shortened TTI.
  • the present invention can also be applied to a user terminal that can communicate using a normal TTI.
  • an LTE system is taken as an example, but the present embodiment is not limited to this, and any system that uses a shortened TTI can be applied.
  • a plurality of modes described below may be implemented alone or in combination as appropriate.
  • the scheduling control information of the uplink shortened TTI includes Slow-DCI (long-period DCI) closest to the scheduled shortened TTI and Fast-DCI (short-time) included in the same normal TTI as the Slow-DCI.
  • Slow-DCI long-period DCI
  • Fast-DCI short-time
  • TDD for example, TDD having a different DL ratio from UL
  • FDD UL transmission and / or DL transmission
  • scheduling can be controlled by the same method.
  • FDD it is preferable to set it as the structure which applies the same shortened TTI length by UL and DL.
  • FIG. 8 shows a case where communication is performed by setting a downlink section in which DL transmission is performed and an uplink section in which UL transmission is performed in two subframes (normally TTI).
  • a case is shown where seven TTIs are included in the normal TTI, and Fast-DCI is transmitted in each DL shortened TTI in the downlink section.
  • Slow-DCI is transmitted for each subframe.
  • Slow-DCI may use downlink control information (or existing DCI allocation area and transmission timing) of an existing LTE system (before Rel. 12).
  • a downlink section (DL shortened TTI # 1- # 10) in which DL transmission is performed over different subframes is set, and an uplink section (UL shortened in which UL transmission is performed in the middle of one subframe).
  • TTI # 12- # 14 is set.
  • the shortened TTI # 11 indicates a case where the gap section is used.
  • the ratio of UL shortened TTI and DL shortened TTI of this Embodiment is not restricted to this.
  • the present invention is not limited to this.
  • the shortened TTI located at the head of the subframe it is possible to transmit only the Slow-DCI without transmitting the Fast-DCI.
  • the radio base station notifies the user terminal of scheduling control information of DL and / or UL shortened TTI using Slow-DCI and Fast-DCI.
  • the DL short TTI scheduling control information may be all or part of the information included in the downlink control information (DL assignment) of the existing system. Further, newly defined information may be added to Slow-DCI and / or Fast-DCI in addition to the existing system information.
  • the UL shortened TTI scheduling control information may be all or a part of information included in downlink control information (UL grant (eg, DCI format 0/4)) of the existing system. Further, newly defined information may be added to Slow-DCI and / or Fast-DCI in addition to the existing system information.
  • DL signal allocation resources for example, PRBs
  • DL signal allocation resources for example, PRBs
  • PRBs for example, PRBs
  • the user terminal with respect to the shortened TTI belonging to each subframe, the Slow-DCI transmitted in each subframe and the Fast-DCI transmitted in each shortened TTI. Is used to control the reception of the DL signal.
  • the user terminal may determine the resource by receiving Slow-DCI for each subframe, and the Slow-DCI of each subframe is the same.
  • the reception process may be performed assuming that a resource is specified.
  • the radio base station includes radio resource (for example, PRB) allocation information used for UL transmission of the shortened TTI in Slow-DCI and notifies a predetermined user group. Further, the radio base station notifies each user terminal of UL allocation information (for example, UL transmission instruction, etc.), MCS, HARQ information, etc. in the shortened TTI included in the Fast-DCI.
  • radio resource for example, PRB
  • PRB radio resource allocation information used for UL transmission of the shortened TTI in Slow-DCI and notifies a predetermined user group. Further, the radio base station notifies each user terminal of UL allocation information (for example, UL transmission instruction, etc.), MCS, HARQ information, etc. in the shortened TTI included in the Fast-DCI.
  • the radio base station includes the UL scheduling control information in the user terminal including the Slow-DCI closest to the shortened TTI in which UL transmission is performed and the Fast-DCI included in the same subframe as the Slow-DCI. Notice.
  • the Slow-DCI closest to the shortened TTI in which the UL transmission is performed is the Slow-DCI transmitted last before the UL shortened TTI (the latest Slow-DCI received). Point to.
  • UL scheduling control information for UL shortened TTI # 12- # 14 in the uplink section is transmitted in the same subframe, and DL shortened TTI (here, DL shortened TTI) belonging to the subframe. It is included in the Fast-DCI transmitted in # 8- # 10) and notified to the user terminal.
  • the user terminal can control UL transmission (for example, uplink data / PUSCH) based on Slow-DCI closest to the UL shortened TTI and Fast-DCI included in the same subframe as the Slow-DCI.
  • UL transmission for example, uplink data / PUSCH
  • UL transmission delay is controlled by controlling UL transmission based on Slow-DCI closest to the shortened TTI in which UL transmission is performed and Fast-DCI included in the same subframe as the Slow-DCI. Is possible.
  • the user terminal can receive UL grants only in an area to which Slow-DCI to which UL scheduling control information is transmitted (Slow-DCI area) and an area to which Fast-DCI is assigned (Fast-DCI area). Can try.
  • the subframe (normal TTI) and / or shortened TTI in which the UL scheduling control information is transmitted may be defined in advance, or may be configured to be notified from the radio base station to the user terminal by higher layer signaling or the like.
  • the user terminal detects Slow-DCI in each subframe, and the UL grant (Fast-DCI) transmitted with the shortened TTI only when the Slow-DCI includes UL resource allocation information. It is good also as a structure which tries to receive.
  • a / N for DL data (for example, PDSCH) transmitted by DL shortened TTI in the downlink section is fed back at the first timing when uplink data (for example, PUSCH) of shortened TTI is scheduled.
  • the user terminal transmits an A / N for DL transmission before the DL shortened TTI that transmits the UL grant (Fast-DCI) of the first UL shortened TTI using the first UL shortened TTI of the uplink section. Control is performed (see FIG. 9).
  • the user terminal performs DL transmission of DL shortened TTI # 1- # 8 (corresponding to shortened TTI before DL shortened TTI # 8 that transmits UL grant) in the first UL shortened TTI # 12 in the uplink section.
  • a / N with respect to is fed back.
  • the user terminal feeds back an A / N for DL transmission of DL shortened TTI # 9 using UL shortened TTI # 13, and feeds back an A / N for DL transmission of DL shortened TTI # 10 using UL shortened TTI # 14.
  • a delay (Latency) reduction effect can be obtained. it can.
  • the user terminal can transmit the uplink control information (UCI) such as A / N in the PUSCH.
  • uplink control information such as A / N on the uplink control channel (for example, PUCCH).
  • FIG. 9 shows the case where the A / N corresponding to the DL shortened TTI before the predetermined period is fed back at the first timing of the uplink section (UL shortened TTI # 12), the present invention is not limited to this.
  • uplink control information (for example, A / N) may be fed back using the earliest UL shortened TTI for which an UL transmission instruction is actually given among the UL shortened TTIs included in the uplink section.
  • the user terminal aggregates the A / N for DL transmission of each DL shortened TTI for each subframe and performs a predetermined UL shortened TTI (for example, Feedback may be provided with a different UL shortened TTI).
  • the user terminal bundles A / Ns corresponding to a plurality of DL shortened TTIs in a predetermined unit (for example, for each subframe), and performs a predetermined UL shortened TTI (for example, the first UL shortened uplink section). TTI) may be aggregated and fed back. As a result, even when the downlink section continues for a long time, the overhead of HARQ-ACK transmitted simultaneously can be suppressed.
  • the feedback method of uplink control information (for example, A / N) in each UL shortened TTI is applicable to a scheduling method that uses only one type (for example, Fast-DCI) regardless of the two-step DCI control. Can do.
  • the scheduling control information of the UL shortened TTI is obtained by using Slow-DCI a predetermined period before the scheduled UL shortened TTI and Fast-DCI included in the same subframe as the Slow-DCI.
  • the radio base station can designate UL resources in each UL shortened TTI by using a plurality of Slow-DCIs.
  • the radio base station can notify the user terminal of UL scheduling control information included in Slow-DCI a predetermined period before the UL shortened TTI and Fast-DCI included in the same subframe as the Slow-DCI. (See FIG. 10).
  • some UL shortened TTIs for example, the leading UL shortened TTI # 12
  • the uplink section are included in the Slow-DCI closest to the UL shortened TTI and the same subframe as the Slow-DCI.
  • the user terminal Based on Slow-DCI transmitted by DL shortened TTI # 1 and Fast-DCI transmitted by DL shortened TTI # 7 included in the same subframe as the Slow-DCI, the user terminal performs UL shortened TTI # 12. Controls uplink data / PUSCH transmission. Also, the user terminal is based on Slow-DCI transmitted in DL shortened TTI # 8 and Fast-DCI transmitted in DL shortened TTI # 8 (# 10) included in the same subframe as the Slow-DCI. The uplink data / PUSCH transmission of UL shortened TTI # 13 (# 14) is controlled.
  • the user terminal can limit UL grants only to an area to which Slow-DCI to which UL scheduling control information is transmitted (Slow-DCI area) and an area to which Fast-DCI is assigned (Fast-DCI area). It is good also as a structure which tries reception.
  • FIG. 10 shows an example in which the uplink section and the downlink section belong to the same subframe, but the present invention can be similarly applied even when they belong to different subframes.
  • the case where seven shortened TTIs are set in a subframe for example, the shortened TTI is configured by two symbols
  • the number of shortened TTIs set can be changed as appropriate.
  • UL transmission is performed with different Slow-DCI (or Fast-DCI of shortened TTI belonging to different subframes) for UL shortened TTI included in the uplink section (or the same subframe).
  • the user terminal performs A / N transmission at a predetermined timing. For example, the user terminal uses the first shortened TTI # 12 of the uplink section to perform A / D for DL transmission before the shortened TTI # 7 that can transmit the UL grant (Fast-DCI) of the UL shortened TTI # 12. Control to transmit N (see FIG. 11).
  • the user terminal feeds back an A / N for DL transmission of DL shortened TTI # 1- # 7 at the first UL shortened TTI # 12 in the uplink section. Also, the user terminal feeds back the A / N for DL transmission of DL shortened TTI # 8- # 9 in UL shortened TTI # 13, and the A / N for DL transmission of DL shortened TTI # 10 in UL shortened TTI # 14. N is fed back.
  • a delay (Latency) reduction effect can be obtained. it can.
  • a / N corresponding to the shortened TTIs # 1 to # 7 belonging to the first subframe is transmitted using the UL shortened TTI # 12, and the UL shortened TTIs # 13 and # 14 are used.
  • a / Ns corresponding to the shortened TTIs # 8 to # 9 belonging to the second subframe are transmitted.
  • the first subframe is composed of DL shortened TTI
  • the second subframe is composed of DL shortened TTI and UL shortened TTI.
  • the feedback method of uplink control information (for example, A / N) in each UL shortened TTI is applicable to a scheduling method that uses only one type (for example, Fast-DCI) regardless of the two-step DCI control. Can do.
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied.
  • the wireless communication system 1 may be referred to as SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), or the like.
  • the radio communication system 1 shown in FIG. 12 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, six or more CCs). Further, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells. In addition, it can be set as the structure by which the TDD carrier which applies shortening TTI is contained in either of several cells.
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the uplink.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include downlink control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. Including. Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH. The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH.
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel shared by each user terminal 20
  • an uplink control channel PUCCH: Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of delivery confirmation information (ACK / NACK) and radio quality information (CQI) is transmitted by PUSCH or PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • FIG. 13 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception unit 103 includes a transmission unit and a reception unit.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the transmission / reception unit (transmission unit) 103 transmits the first downlink control information (for example, Slow-DCI) for each first TTI (for example, normal TTI), and the second TTI (for example, shortened TTI) for the first. 2 downlink control information (for example, Fast-DCI) is transmitted.
  • the transmission / reception unit (reception unit) 103 receives a UL signal transmitted by the user terminal using the second TTI based on the first control information and the second control information.
  • the transmission / reception unit (transmission unit) 103 also includes information on the shortened TTI set for UL transmission and the shortened TTI set for DL transmission (for example, UL / DL configuration for shortened TTI, or UL shortened TTI and DL shortened TTI). Ratio etc.) may be transmitted to the user terminal.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device that is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives (backhaul signaling) signals to and from the adjacent radio base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). Also good.
  • CPRI Common Public Radio Interface
  • X2 interface also good.
  • FIG. 14 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 14 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 14, the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, and a reception signal processing unit 304. .
  • the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, and a reception signal processing unit 304.
  • the control unit (scheduler) 301 controls scheduling (for example, resource allocation) of downlink data signals transmitted on PDSCH and downlink control signals transmitted on PDCCH and / or EPDCCH. It also controls scheduling of system information, synchronization signals, paging information, CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information Reference Signal), and the like. Further, scheduling of uplink reference signals, uplink data signals transmitted on PUSCH, uplink control signals transmitted on PUCCH and / or PUSCH, and the like is controlled.
  • the control unit 301 can control transmission / reception of the transmission / reception unit 103.
  • the control unit 301 transmits the first downlink control information to be transmitted a predetermined period before the UL shortened TTI to which the UL signal is transmitted, and the second downlink included in the subframe to which the first downlink control information is transmitted.
  • the UL signal scheduling is controlled using the control information (see FIGS. 8 and 10).
  • the control unit 301 may be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a DL signal (including a downlink data signal and a downlink control signal) based on an instruction from the control unit 301, and outputs the DL signal to the mapping unit 303.
  • transmission signal generation section 302 generates a downlink data signal (PDSCH) including user data and outputs it to mapping section 303.
  • the transmission signal generation unit 302 generates a downlink control signal (PDCCH / EPDCCH) including Slow-DCI and / or Fast-DCI (UL grant), and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 generates downlink reference signals such as CRS and CSI-RS, and outputs them to the mapping unit 303.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 can be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the UL signal (HARQ-ACK, PUSCH, etc.) transmitted from the user terminal 20.
  • the processing result is output to the control unit 301.
  • the reception signal processing unit 304 may be configured by a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device, which are described based on common recognition in the technical field according to the present invention. it can.
  • FIG. 15 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception unit 203 may include a transmission unit and a reception unit.
  • the user terminal 20 only needs to have at least the ability to perform communication using a shortened TTI, and may be a user terminal that performs communication using both a normal TTI and a shortened TTI.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit (reception unit) 203 includes first downlink control information (for example, Slow-DCI) transmitted from the radio base station for each first TTI (for example, normal TTI), and a second TTI (for example, for example). Second downlink control information (for example, Fast-TTI) transmitted in a shortened TTI) is received. Further, the transmission / reception unit (transmission unit) 203 controls UL transmission (for example, PUSCH transmission) in the second TTI based on the first control information and the second control information. Also, the transmission / reception unit (transmission unit) 203 transmits HARQ-ACK for DL transmission of DL shortened TTI.
  • first downlink control information for example, Slow-DCI
  • Second downlink control information for example, Fast-TTI
  • UL transmission for example, PUSCH transmission
  • the transmission / reception unit (transmission unit) 203 transmits HARQ-ACK for DL transmission of DL shortened TTI.
  • the transmission / reception unit (reception unit) 203 also includes information on the shortened TTI set for UL transmission and the shortened TTI set for DL transmission (for example, UL / DL configuration for shortened TTI, or UL shortened TTI and DL shortened TTI). Ratio etc.) may be received.
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the data is transferred to the transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • FIG. 16 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • FIG. 16 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a determination unit 405. I have.
  • the control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10.
  • the control unit 401 generates an uplink control signal (for example, an acknowledgment signal (HARQ-ACK)) or an uplink data signal based on a downlink control signal, a result of determining whether retransmission control is necessary for the downlink data signal, or the like.
  • HARQ-ACK acknowledgment signal
  • the control unit 401 can control the transmission signal generation unit 402, the mapping unit 403, and the reception signal processing unit 404.
  • the control unit 401 controls UL transmission in the second TTI based on the first control information and the second control information transmitted from the radio base station. For example, the control unit 401 includes the first downlink control information received a predetermined period before the second TTI that performs UL transmission, and the second TTI included in the first TTI to which the first downlink control information is transmitted. The UL transmission is controlled using the downlink control information (see FIGS. 8 and 10).
  • control unit 401 can control the UL transmission based on the first control information transmitted last among the first control information transmitted before the second TTI performing the UL transmission ( (See FIG. 8).
  • the second TTI that performs UL transmission may be included in the first TTI in which the first control information that instructs UL transmission of the second TTI is transmitted.
  • the control unit 401 when performing UL transmission using a plurality of second TTIs included in the first TTI (or uplink section), the control unit 401 is based on at least two different first downlink control information. Thus, the UL allocation resource for each second TTI can be determined (see FIG. 10).
  • control unit 401 selectively selects UL grants for the first control information allocation area and / or the second control information allocation area in which scheduling control information for UL transmission in the second TTI is transmitted. It can be controlled to receive.
  • control unit 401 transmits at least a part of the plurality of HARQ-ACKs respectively corresponding to the DL transmissions of the plurality of second TTIs included in the DL transmission section using the second TTI at the head of the UL transmission section. (See FIGS. 9 and 11).
  • at least part of the plurality of HARQ-ACKs is the DL received by the second TTI before the second TTI in which the second downlink control information instructing the UL transmission of the first second TTI is transmitted. It may be HARQ-ACK for transmission.
  • control unit 401 can control communication using TDD in which the ratio between the shortened TTI used for UL transmission and the shortened TTI used for DL transmission is different.
  • the control unit 401 may be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates a UL signal based on an instruction from the control unit 401 and outputs the UL signal to the mapping unit 403. For example, the transmission signal generation unit 402 generates an uplink control signal such as a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401.
  • HARQ-ACK delivery confirmation signal
  • CSI channel state information
  • the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • the transmission signal generation unit 402 may be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps the uplink signal (uplink control signal and / or uplink data) generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio resource to the transmission / reception unit 203.
  • the mapping unit 403 may be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the DL signal (for example, downlink control signal transmitted from the radio base station, downlink data signal transmitted by PDSCH, etc.). I do.
  • the reception signal processing unit 404 outputs information received from the radio base station 10 to the control unit 401 and the determination unit 405.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 may be configured by a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device which are described based on common recognition in the technical field according to the present invention. it can. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the determination unit 405 performs retransmission control determination (ACK / NACK) based on the decoding result of the received signal processing unit 404 and outputs the determination result to the control unit 401.
  • ACK / NACK retransmission control determination
  • ACK / NACK retransmission control determination
  • the determination part 405 can be comprised from the determination circuit or determination apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • each functional block (components) are realized by any combination of hardware and / or software.
  • the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 17 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • Each function in the radio base station 10 and the user terminal 20 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation, and communication by the communication device 1004, This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, and may be configured by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), RAM (Random Access Memory), and the like, for example.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium, and may be composed of at least one of an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk, and a flash memory, for example. .
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, etc.) that accepts external input.
  • the output device 1006 is an output device (for example, a display, a speaker, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a slot may be composed of one or more symbols (OFDM symbols, SC-FDMA symbols, etc.) in the time domain.
  • the radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal.
  • Different names may be used for the radio frame, the subframe, the slot, and the symbol.
  • one subframe may be referred to as a transmission time interval (TTI)
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot may be referred to as a TTI.
  • the subframe or TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. Also good.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of one slot, one subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • the RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, symbol, and the like is merely an example.
  • the configuration such as the cyclic prefix (CP) length can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology (coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, by not performing notification of the predetermined information). May be.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, broadcast information (MIB (Master Information Block)). ), SIB (System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • MAC CE Control Element
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) ), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), other suitable wireless communication methods and / or based on them It may be applied to an extended next generation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

短縮TTIが適用される場合であっても、通信を適切に行うこと。第1の送信時間間隔(TTI:Transmission Time Interval)よりTTI長が短い第2のTTIを利用して通信を行うユーザ端末であって、無線基地局から第1のTTI毎に送信される第1の下り制御情報と、第2のTTIで送信される第2の下り制御情報と、を受信する受信部と、前記第1の制御情報及び前記第2の制御情報に基づいて第2のTTIにおけるUL送信を制御する制御部と、を有し、前記制御部は、UL送信を行う第2のTTIから所定期間前に受信した第1の下り制御情報と、当該第1の下り制御情報が送信される第1のTTIに含まれる第2の下り制御情報と、を用いてUL送信を制御する。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunication System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。LTE(LTE Rel.8ともいう)からのさらなる広帯域化および高速化を目的として、LTEアドバンスト(LTE Rel.10、11又は12ともいう)が仕様化され、後継システム(LTE Rel.13以降)も検討されている。
 LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の無線基地局(eNB:eNodeB)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 一方、LTE Rel.12では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がユーザ端末に設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。DCでは、異なる無線基地局の複数のCCが統合されるため、DCは、Inter-eNB CAなどとも呼ばれる。
 また、既存システム(LTE Rel.8-12)では、下り(DL:Downlink)送信と上り(UL:Uplink)送信とを異なる周波数帯で行う周波数分割複信(FDD:Frequency Division Duplex)と、DL送信とUL送信とを同じ周波数帯で時間的に切り替えて行う時分割複信(TDD:Time Division Duplex)とが導入されている。例えば、TDDでは、各サブフレームを上りリンク(UL:Uplink)に用いるか下りリンク(DL:Downlink)に用いるかが、UL/DL構成(UL/DL configuration)に基づいて厳密に定められている。
 以上のような既存システムでは、無線基地局とユーザ端末間のDL送信及びUL送信に適用される送信時間間隔(TTI:Transmission Time Interval)は1msに設定されて制御される。送信時間間隔は伝送時間間隔とも呼ばれ、LTEシステム(Rel.8-12)におけるTTIはサブフレーム長とも呼ばれる。
 LTE Rel.13以降の無線通信システム(例えば、5G)では、数十GHzなどの高周波数帯での通信や、IoT(Internet of Things)、MTC(Machine Type Communication)、M2M(Machine To Machine)など相対的にデータ量が小さい通信を行うことが想定される。また、低遅延通信が要求されるD2D(Device To Device)やV2V(Vehicular To Vehicular)通信に対する需要も高まっている。
 このような将来の無線通信システムで十分な通信サービスを提供するために、通信遅延の低減(latency reduction)が検討されている。例えば、スケジューリングの最小時間単位である送信時間間隔(TTI:Transmission Time Interval)を、既存のLTEシステム(LTE Rel.8-12)の1msより短縮したTTI(例えば、短縮TTIと呼ばれてもよい)を利用して通信を行うことが検討されている。
 しかし、既存のLTEシステムでは、サブフレーム(1ms)単位で通信のタイミング制御が行われているが、短縮TTIを導入して通信を行う場合にどのように信号の送受信(例えば、送受信タイミング等)を制御するかは未だ規定されていない。そのため、短縮TTIを導入して通信を行う場合であっても、通信を適切に行うことができる制御方法が求められている。
 本発明はかかる点に鑑みてなされたものであり、短縮TTIが適用される場合であっても、通信を適切に行うことができるユーザ端末、無線基地局及び無線通信方法を提供することを目的の一とする。
 本発明のユーザ端末の一態様は、第1の送信時間間隔(TTI:Transmission Time Interval)よりTTI長が短い第2のTTIを利用して通信を行うユーザ端末であって、無線基地局から第1のTTI毎に送信される第1の下り制御情報と、第2のTTIで送信される第2の下り制御情報と、を受信する受信部と、前記第1の制御情報及び前記第2の制御情報に基づいて第2のTTIにおけるUL送信を制御する制御部と、を有し、前記制御部は、UL送信を行う第2のTTIから所定期間前に受信した第1の下り制御情報と、当該第1の下り制御情報が送信される第1のTTIに含まれる第2の下り制御情報と、を用いてUL送信を制御することを特徴とする。
 本発明によれば、短縮TTIが適用される場合であっても、通信を適切に行うことができる。
既存のLTEシステム(Rel.8-12)における送信時間間隔(TTI)の一例を示す図である。 通常TTIと短縮TTIを説明する図である。 図3A及び図3Bは、短縮TTIの構成例を示す図である。 図4A-図4Cは、通常TTIと短縮TTIの設定例を示す図である。 2種類のDCIを利用したDLスケジューリングの一例を示す図である。 2種類のDCIを利用したULスケジューリングの一例を示す図である。 TDDにおいて上下リンクTTI比率を変更する場合の一例を示す図である。 本実施の形態における短縮TTIを利用したUL送信の一例を示す図である。 本実施の形態における短縮TTIを利用したUL送信の他の例を示す図である。 本実施の形態における短縮TTIを利用したUL送信の他の例を示す図である。 本実施の形態における短縮TTIを利用したUL送信の他の例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す概略構成図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 図1は、既存システム(LTE Rel.8-12)における送信時間間隔(TTI)の一例の説明図である。図1に示すように、LTE Rel.8-12におけるTTI(以下、「通常TTI」という)は、1msの時間長を有する。通常TTIは、サブフレームとも呼ばれ、2つの時間スロットで構成される。TTIは、チャネル符号化された1データ・パケット(トランスポートブロック)の送信時間単位であり、スケジューリング、リンクアダプテーション(Link Adaptation)などの処理単位となる。
 図1に示すように、下りリンク(DL)において通常サイクリックプリフィクス(CP)の場合、通常TTIは、14OFDM(Orthogonal Frequency Division Multiplexing)シンボル(スロットあたり7OFDMシンボル)を含んで構成される。各OFDMシンボルは、66.7μsの時間長(シンボル長)を有し、4.76μsの通常CPが付加される。シンボル長とサブキャリア間隔は互いに逆数の関係にあるため、シンボル長66.7μsの場合、サブキャリア間隔は、15kHzである。
 また、上りリンク(UL)において通常サイクリックプリフィクス(CP)の場合、通常TTIは、14SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル(スロットあたり7SC-FDMAシンボル)を含んで構成される。各SC-FDMAシンボルは、66.7μsの時間長(シンボル長)を有し、4.76μsの通常CPが付加される。シンボル長とサブキャリア間隔は互いに逆数の関係にあるため、シンボル長66.7μsの場合、サブキャリア間隔は、15kHzである。
 なお、拡張CPの場合、通常TTIは、12OFDMシンボル(又は12SC-FDMAシンボル)を含んで構成されてもよい。この場合、各OFDMシンボル(又は各SC-FDMAシンボル)は、66.7μsの時間長を有し、16.67μsの拡張CPが付加される。
 一方、Rel.13以降のLTEや5Gなどの将来の無線通信システムでは、数十GHzなどの高周波数帯に適した無線インターフェースや、IoT(Internet of Things)、MTC(Machine Type Communication)、M2M(Machine To Machine)、D2D(Device To Device)、V2V(Vehicular To Vehicular)サービス向けに、遅延を最小化する無線インターフェースが望まれている。
 そのため、将来の通信システムでは、TTI長を1msより短縮した短縮TTIを利用して通信を行うことが考えられる(図2参照)。図2では、通常TTI(1ms)を利用するセル(CC#1)と、短縮TTIを利用するセル(CC#2)を示している。また、短縮TTIを利用する場合、サブキャリア間隔を通常TTIのサブキャリアから変更(例えば、サブキャリア間隔を拡大)することが考えられる。
 通常TTIよりも短い時間長のTTI(以下、「短縮TTI」という)を用いる場合、ユーザ端末や無線基地局における処理(例えば、符号化、復号など)に対する時間的マージンが増加するため、処理遅延を低減できる。また、短縮TTIを用いる場合、単位時間(例えば、1ms)当たりに収容可能なユーザ端末数を増加させることができる。以下に、短縮TTIの構成等について説明する。
(短縮TTIの構成例)
 短縮TTIの構成例について図3を参照して説明する。図3A及び図3Bに示すように、短縮TTIは、1msより小さい時間長(TTI長)を有する。短縮TTIは、例えば、0.5ms、0.25ms、0.2ms、0.1msなど、倍数が1msとなるTTI長の1つ又は複数であってもよい。あるいは、通常CPの場合に通常TTIは14シンボルを含むことから、7/14ms、4/14ms、3/14ms、2/14ms、1/14msなど1/14msの整数倍となるTTI長の1つまたは複数であってもよい。また、拡張CPの場合に通常TTIは12シンボルを含むことから、6/12ms、4/12ms、3/12ms、2/12ms、1/12msなど1/12msの整数倍となるTTI長の1つまたは複数であってもよい。
 なお、短縮TTIにおいても、従前のLTEと同様に、通常CPか拡張CPかは報知情報やRRCシグナリング等の上位レイヤシグナリングでConfigureすることができる。これにより、1msである通常TTIとの互換性(同期)を保ちながら、短縮TTIを導入できる。
 なお、図3A及び図3Bでは、通常CPの場合を一例として説明するが、これに限られない。短縮TTIは、通常TTIよりも短い時間長であればよく、短縮TTI内のシンボル数、シンボル長、CP長などの構成はどのようなものであってもよい。また、以下では、DLにOFDMシンボル、ULにSC-FDMAシンボルが用いられる例を説明するが、これらに限られるものではない。
 図3Aは、短縮TTIの第1の構成例を示す図である。図3Aに示すように、第1の構成例では、短縮TTIは、通常TTIと同一数の14OFDMシンボル(又はSC-FDMAシンボル)で構成され、各OFDMシンボル(各SC-FDMAシンボル)は、通常TTIのシンボル長(=66.7μs)よりも短いシンボル長を有する。
 図3Aに示すように、通常TTIのシンボル数を維持してシンボル長を短くする場合、通常TTIの物理レイヤ信号構成(RE配置等)を流用することができる。また、通常TTIのシンボル数を維持する場合、短縮TTIにおいても通常TTIと同一の情報量(ビット量)を含めることができる。一方で、通常TTIのシンボルとはシンボル時間長が異なることから、図3Aに示す短縮TTIの信号と通常TTIの信号とを同一システム帯域(または、セル、CC)内に周波数多重することが困難となる。
 また、シンボル長とサブキャリア間隔とは互いに逆数の関係にあるため、図3Aに示すようにシンボル長を短くする場合、サブキャリア間隔は、通常TTIの15kHzよりも広くなる。サブキャリア間隔が広くなると、ユーザ端末の移動時のドップラー・シフトによるチャネル間干渉や、ユーザ端末の受信機の位相雑音による伝送品質劣化を効果的に防止できる。特に、数十GHzなどの高周波数帯においては、サブキャリア間隔を広げることにより、伝送品質の劣化を効果的に防止できる。
 図3Bは、短縮TTIの第2の構成例を示す図である。図3Bに示すように、第2の構成例では、短縮TTIは、通常TTIよりも少ない数のOFDMシンボル(又はSC-FDMAシンボル)で構成され、各OFDMシンボル(各SC-FDMAシンボル)は、通常TTIと同一のシンボル長(=66.7μs)を有する。この場合、短縮TTIは、通常TTIにおけるシンボル単位で構成する(シンボル数を減らした構成とする)ことができる。例えば、1サブフレームに含まれる14シンボルのうちの一部のシンボルを利用して短縮TTIを構成することができる。図3Bでは、短縮TTIは、通常TTIの半分の7OFDMシンボル(SC-FDMAシンボル)で構成される。
 図3Bに示すように、シンボル長を維持してシンボル数を削減する場合、短縮TTIに含める情報量(ビット量)を通常TTIよりも削減できる。このため、ユーザ端末は、通常TTIよりも短い時間で、短縮TTIに含まれる情報の受信処理(例えば、復調、復号など)を行うことができ、処理遅延を短縮できる。また、図3Bに示す短縮TTIの信号と通常TTIの信号とを同一システム帯域(またはセル、CC)内で周波数多重でき、通常TTIとの互換性を維持できる。
(短縮TTIの設定例)
 短縮TTIの設定例について説明する。短縮TTIを適用する場合、既存システム(LTE Rel.8-12)との互換性を有するように、通常TTI及び短縮TTIの双方をユーザ端末に設定する構成とすることも可能である。図4は、通常TTI及び短縮TTIの設定例を示す図である。なお、図4は、例示にすぎず、これらに限られるものではない。
 図4Aは、短縮TTIの第1の設定例を示す図である。図4Aに示すように、通常TTIと短縮TTIとは、同一のコンポーネントキャリア(CC)(周波数領域)内で時間的に混在してもよい。具体的には、短縮TTIは、同一のCCの特定のサブフレーム(或いは、特定の無線フレーム)に設定されてもよい。例えば、図4Aでは、同一のCC内の連続する5サブフレームにおいて短縮TTIが設定され、その他のサブフレームにおいて通常TTIが設定される。例えば、特定のサブフレームとして、MBSFNサブフレームの設定できるサブフレームや、MIBや同期チャネル等特定の信号を含む(あるいは含まない)サブフレームであってもよい。なお、短縮TTIが設定されるサブフレームの数や位置は、図4Aに示すものに限られない。
 図4Bは、短縮TTIの第2の設定例を示す図である。図4Bに示すように、通常TTIのCCと短縮TTIのCCとを統合して、キャリアアグリゲーション(CA)又はデュアルコネクティビティ(DC)が行われてもよい。具体的には、短縮TTIは、特定のCCに(より具体的には、特定のCCのDL及び/又はULに)、設定されてもよい。例えば、図4Bでは、特定のCCのDLにおいて短縮TTIが設定され、他のCCのDL及びULにおいて通常TTIが設定される。なお、短縮TTIが設定されるCCの数や位置は、図4Bに示すものに限られない。
 また、CAの場合、短縮TTIは、同一の無線基地局の特定のCC(プライマリ(P)セル又は/及びセカンダリ(S)セル)に設定されてもよい。一方、DCの場合、短縮TTIは、第1の無線基地局によって形成されるマスターセルグループ(MCG)内の特定のCC(Pセル又は/及びSセル)に設定されてもよいし、第2の無線基地局によって形成されるセカンダリセルグループ(SCG)内の特定のCC(プライマリセカンダリ(PS)セル又は/及びSセル)に設定されてもよい。
 図4Cは、短縮TTIの第3の設定例を示す図である。図4Cに示すように、短縮TTIは、DL又はULのいずれかに設定されてもよい。例えば、図4Cでは、TDDシステムにおいて、ULに通常TTIが設定され、DLに短縮TTIが設定される場合を示している。
 また、DL又はULの特定のチャネルや信号が短縮TTIに割り当てられ(設定され)てもよい。例えば、上り制御チャネル(PUCCH:Physical Uplink Control Channel)は、通常TTIに割り当てられ、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)は、短縮TTIに割り当てられてもよい。例えばこの場合、ユーザ端末は、PUCCHの送信は通常TTIで行い、PUSCHの送信は短縮TTIで行う。
 また、LTE Rel.8-12のマルチアクセス方式であるOFDM(あるいはSC-FDMA)とは異なるマルチアクセス方式が短縮TTIに割り当てられ(設定され)てもよい。
(短縮TTIの通知例)
 上述したように、ユーザ端末に対して短縮TTIを利用するセルを設定する場合、ユーザ端末は、無線基地局からの黙示的(implicit)又は明示的(explicit)な通知に基づいて、短縮TTIを設定(又は/及び検出)することができる。以下では、本実施の形態で適用可能な短縮TTIの通知例について、(1)黙示的な通知の場合、又は、(2)報知情報又はRRC(Radio Resource Control)シグナリング、(3)MAC(Medium Access Control)シグナリング、(4)PHY(Physical)シグナリングの少なくとも一つによる明示的な通知の場合について説明する。
 (1)黙示的な通知の場合、ユーザ端末は、周波数帯(例えば、5G向けのバンド、アンライセンスドバンドなど)、システム帯域幅(例えば、100MHzなど)、LAA(License Assisted Access)におけるLBT(Listen Before Talk)の適用有無、送信されるデータの種類(例えば、制御データ、音声など)、論理チャネル、トランスポートブロック、RLC(Radio Link Control)モード、C-RNTI(Cell-Radio. Network Temporary Identifier)などに基づいて、短縮TTIを設定(例えば、通信を行うセル、チャネル、信号などが短縮TTIであることを判断)してもよい。
 また、通常TTIの先頭1、2、3、または4シンボルにマッピングされるPDCCH及び/又は1msのEPDCCHで自端末宛の制御情報(DCI)を検出した場合、当該PDCCH/EPDCCHを含む1msを通常TTIと判断し、それ以外の構成を取るPDCCH/EPDCCH(例えば通常TTIの先頭1~4シンボル以外にマッピングされるPDCCH及び/又は1ms未満のEPDCCH)で自端末宛の制御情報(DCI)を検出した場合、当該PDCCH/EPDCCHを含む1ms未満の所定の時間区間を短縮TTIと判断してもよい。ここで、自端末宛の制御情報(DCI)の検出は、ブラインド復号したDCIに対するCRCのチェック結果に基づいて行うことができる。
 (2)報知情報又はRRCシグナリングの場合、報知情報又はRRCシグナリングにより無線基地局(例えば、第1のセル)からユーザ端末に通知される設定情報に基づいて、短縮TTIが設定されてもよい。当該設定情報は、例えば、短縮TTIを利用するCC又は/及びサブフレームに関する情報、短縮TTIを利用するチャネル又は/及び信号に関する情報、短縮TTIのTTI長に関する情報などを示す。ユーザ端末は、無線基地局からの設定情報に基づいて、短縮TTIを準静的(semi-static)に設定する。なお、短縮TTIと通常TTIとのモード切り替えは、RRCの再構成(RRC Reconfiguration)手順で行われてもよいし、Pセルでは、Intra-cellハンドオーバ(HO)、Sセルでは、CC(Sセル)のremoval/addition手順により行われてもよい。
 (3)MACシグナリングの場合、RRCシグナリングにより通知される設定情報に基づいて設定される短縮TTIが、MACシグナリングにより有効化又は無効化(activate又はde-activate)されてもよい。具体的には、ユーザ端末は、無線基地局からのMAC制御要素に基づいて、短縮TTIを有効化又は無効化する。ユーザ端末は、RRC等の上位レイヤシグナリングによりあらかじめ短縮TTIの有効化期間を示すタイマを設定されていて、L2制御信号で短縮TTIが有効化されたのち所定の期間短縮TTIのUL/DL割当がなされなかった場合、短縮TTIを無効化するものとしてもよい。このような短縮TTI無効化タイマは、通常TTI(1ms)を単位としてカウントするものとしてもよいし、短縮TTI(例えば0.25ms)を単位としてカウントするものとしてもよい。
 なお、Sセルにおいて短縮TTIと通常TTIとのモードを切り替える場合、Sセルは、一旦de-activateされるものとしてもよいし、TA(Timing Advance)タイマが満了したものとみなされてもよい。これにより、モード切り替え時の通信停止期間を設けることができる。
 (4)PHYシグナリングの場合、RRCシグナリングにより通知される設定情報に基づいて設定される短縮TTIが、PHYシグナリングによりスケジューリングされてもよい。具体的には、ユーザ端末は、受信及び検出した下り制御チャネル(PDCCH:Physical Downlink Control Channel又はEPDCCH:Enhanced Physical Downlink Control Channel、以下、PDCCH/EPDCCHという)に含まれる情報に基づいて、短縮TTIを検出する。
 例えば、通常TTIと短縮TTIでの送信または受信を割り当てる制御情報(DCI)は異なる情報要素を含むものとしておき、(4-1)ユーザ端末は、短縮TTIでの送受信を割り当てる情報要素を含む制御情報(DCI)が検出された場合に、そのPDCCH/EPDCCHが検出されるタイミングを含む所定の時間区間を短縮TTIと認識してもよい。ユーザ端末は、PDCCH/EPDCCHにおいて、通常TTIと短縮TTI、両方の送信または受信を割り当てる制御情報(DCI)をブラインド復号することができる。或いは、(4-2)ユーザ端末は、短縮TTIでの送受信を割り当てる情報要素を含む制御情報(DCI)が検出された場合に、そのPDCCH/EPDCCH(により伝送される下り制御情報(DCI:Downlink Control Information))によりスケジューリングされるPDSCH又はPUSCHが送信/受信されるタイミングを含む所定の時間区間を短縮TTIと認識してもよい。或いは、(4-3)ユーザ端末は、短縮TTIでの送受信を割り当てる情報要素を含むDCIが検出された場合に、そのPDCCH/EPDCCH(により伝送されるDCI)によりスケジューリングされるPDSCH又はPUSCHに対する再送制御情報(HARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledgement)、ACK/NACK、A/Nなどともいう)を送信又は受信するタイミングを含む所定の時間区間を短縮TTIと認識してもよい。
 下り制御チャネルに含まれる情報に基づいて短縮TTIを検出する場合、短縮TTIでの送受信を指示する制御情報(DCI)は、短縮TTIの送受信を行うよりも一定時間前に送受信されるものとしてもよい。すなわち、無線基地局は、所定のタイミングにおいて短縮TTIでの送受信を指示する制御情報(DCI)を送信し、ユーザ端末は当該制御情報(DCI)を受信したら、所定時間後(例えばTTI長の整数倍時間後またはサブフレーム長の整数時間後)に、短縮TTIの送受信を行う。短縮TTIと通常TTIとでは、適する信号処理アルゴリズム(例えばチャネル推定や誤り訂正復号)が異なる可能性がある。このように、短縮TTIでの送受信を指示する制御情報(DCI)を、実際に短縮TTIでの送受信を行うよりも所定時間前に送受信しておくことにより、ユーザ端末が前記信号処理アルゴリズムを変更する時間を確保することができる。
 RRC等の上位レイヤシグナリングで短縮TTIを設定しておき、下り制御チャネルで送受信される制御情報(DCI)の指示がなされた場合に、通常TTIでの送受信に切り替える方法を適用してもよい。一般に、低遅延での信号処理が求められる短縮TTIの方が、通常TTIよりも高いユーザ処理能力を必要とする。したがって、動的な切り替えを短縮TTIから通常TTIに限定することにより、通常TTIから短縮TTIへの動的な切り替えを許容する場合に比べ、TTI長変更に伴うユーザ端末の信号処理負担を緩和することができる。
 また、ユーザ端末は、ユーザ端末の状態(例えば、Idle状態又はConnected状態)に基づいて、短縮TTIを検出してもよい。例えば、ユーザ端末は、Idle状態である場合、全てのTTIを通常TTIとして認識し、1msの通常TTIの先頭1~4シンボルに含まれるPDCCHのみをブラインド復号するものとしてもよい。また、ユーザ端末は、Connected状態である場合、上述の通知例(1)-(4)の少なくとも一つに基づいて、短縮TTIを設定(又は/及び検出)してもよい。
 以上のように、将来の無線通信では、通常TTIより送信時間間隔が短縮された短縮TTIをUL送信及び/又はDL送信に適用して通信を行うことが想定される。通常TTIを利用する既存のLTEシステムと互換性を維持する観点からは、図3Bに示すように、短縮TTIにおけるOFDMシンボル数を減らすことが有効となる。但し、シンボル数を減らして短縮TTIを実現する場合、短縮TTI内のリソース要素(RE:Resource Element)の総数が低下するおそれがある。
 既存のLTEシステムでは、1PRBに168個(12サブキャリア×14シンボル)のREが含まれる。このため、通常TTI(1サブフレーム)におけるREの総数は、168×PRB数(12サブキャリア×14シンボル×PRB数)となる。一方で、シンボル数を減らした短縮TTIのRE総数は通常TTIより少なくなる。例えば、短縮TTIを4シンボルで構成する場合を想定する。この場合、短縮TTIにおけるREの総数は、48×PRB数(12サブキャリア×4シンボル×PRB数)となる。
 また、短縮TTIにおいても、制御信号や参照信号をマッピングするREが必要となるため、全てのREをデータ信号に割当てることは困難となる。例えば、既存のLTEシステムにおける下り制御チャネル(PDCCH)では、下り制御情報(DCI)あたり36、72、144、288(アグリゲーションレベル1、2、4、8)のいずれかのRE数が必要となる。下り制御情報に含まれるスケジューリング情報等を削減することにより、下り制御情報に必要となるRE数をある程度減らすことは可能であるが、下り制御情報の割当てに一定数のREが必要となる。
 このように、短縮TTIを利用する場合、L1/L2制御信号(例えば、DCI)のオーバーヘッドが問題となる。そこで、本発明者等は、L1/L2制御信号のオーバーヘッドを削減する方法として、2種類の下り制御情報(DCI)を利用したスケジューリング制御方法(2ステップDCI制御とも呼ぶ)に着目した(図5参照)。
 例えば、ユーザ端末は、DLのスケジューリング制御情報を、通常TTI(サブフレーム)単位で送信される下り制御情報と、短縮TTI単位で送信される下り制御情報とでそれぞれ受信する。なお、通常TTI単位で送信される下り制御情報を、第1のDCI、Slow-DCI、又は長周期DCIと呼んでもよい。また、短縮TTI単位で送信される下り制御情報を、第2のDCI、Fast-DCI、短周期DCI、又は短縮DCIと呼んでもよい。通常TTI単位で送信される下り制御情報は、既存のLTEシステム(Rel.12以前)の下り制御情報(あるいは、既存DCIの割当て領域や送信タイミング)を利用する構成としてもよい。
 Slow-DCIは、所定のユーザグループ(ユーザ端末共通)に送信する制御信号であり、無線リソース(例えば、PRB)の割当て情報等を含んだ構成とすることができる。Fast-DCIは、各ユーザ端末(ユーザ端末固有)に送信する制御信号であり、短縮TTIの割当て情報、変調・符号化方式(MCS:Modulation and Coding Scheme)、HARQ情報(例えば、HARQプロセス番号等)等を含んだ構成とすることができる。
 このように、無線基地局は、Slow-DCIは短縮TTIを利用する所定のユーザ端末に対する共通制御情報とし、Fast-DCIはユーザ端末固有の制御情報として送信することができる。この場合、ユーザグループ共通の情報をSlow-DCIに集約することができるため、短縮TTIで送信する下り制御情報(Fast-DCI)のオーバーヘッドを削減することが可能となる。
 また、本発明者等は、上りリンクのスケジューリングに対しても2種類の下り制御情報(DCI)を利用したスケジューリング制御方法を適用することができる点に着目した(図6参照)。
 例えば、ユーザ端末は、ULのスケジューリング制御情報を、通常TTI単位で送信されるSlow-DCIと、短縮TTI単位で送信されるFast-DCIとでそれぞれ受信する。
 Slow-DCIは、所定のユーザグループに送信する制御信号であり、ULサブフレームの無線リソース(例えば、PRB)の割当て情報等を含んだ構成とすることができる。Fast-DCIは、個別ユーザに送信する制御信号であり、個別ユーザのスケジューリング、変調・符号化方式、HARQ情報等を含んだ構成とすることができる。無線基地局は、UL送信を指示するSlow-DCIは短縮TTIを利用する所定のユーザ端末に対する共通制御情報とし、Fast-DCIはユーザ端末固有の制御情報として送信することができる。
 ユーザ端末は、Slow-DCIとFast-DCIに対して、それぞれDL割当て(DL assignment)とULグラント(UL grant)の検出動作を行う。DL割当てとULグラントは、ペイロードの違いで区別してもよいし、下り制御情報に含まれる所定のビット値(フラグ)に応じて区別する構成としてもよい。
 また、Slow-DCIで指定する上りリンクサブフレーム(UL送信に利用される短縮TTI)のPRBは、下りリンクサブフレーム(DL送信に利用される短縮TTI)のPRBと異なる構成としてもよい(図6参照)。これにより、柔軟なスケジューリングが可能となる。
 このように、Slow-DCIを利用してULに利用するULリソース(例えば、PRB)の割当て情報を通知することにより、短縮TTIで送信されるFast-DCIを用いてULリソースを指定する必要がなくなる。その結果、短縮TTIで送信する下り制御情報(Fast-DCI)のオーバーヘッドを削減することが可能となる。
 ところで、ULとDLを切り替えるTDDでは、UL-DL切り替えについて効率劣化と遅延削減のトレードオフがある。例えば、UL-DLの切り替え頻度を高くする場合、ULとDL方向の通信待ち時間を低減できるため遅延削減を図ることができる。しかし、UL-DL切り替えには所定の時間(例えば、20μs)だけ通信を行わない期間(ギャップ区間)が設定されるため、UL-DL切り替え頻度が高くなると周波数利用効率が劣化してしまう。
 そのため、本発明者等は、短縮TTIを用いてTDDで通信を行う場合、効率劣化と遅延削減をある程度両立するために、上下リンクの短縮TTI数を一対一でなく、一方の比率(例えば、DL比率)を高くして通信を制御することが有効になることに着目した(図7参照)。
 図7では、異なるサブフレーム(通常TTI)に渡ってDL送信が行われる下りリンク区間(DL短縮TTI)を設定し、1つのサブフレームの途中からUL送信が行われる上りリンク区間(UL短縮TTI)を設定する場合を示している。なお、DL短縮TTIとUL短縮TTIの設定はこれに限られない。例えば、あらかじめ複数のUL-DL比率を定義した短縮TTI用のUL/DL構成を定義してもよい。あるいは、既存システムのUL/DL構成を利用し、DLサブフレームにDL短縮TTIを設定し、ULサブフレームにUL短縮TTIを設定し、特別サブフレームにDL短縮TTIとUL短縮TTIを設定する構成としてもよい。
 このように、TDDにおいてUL短縮TTIとDL短縮TTIを異なる比率で設定する場合、上りデータ及び/又は上り制御情報のUL送信(例えば、送信タイミング)をどのように制御するかが問題となる。
 そこで、本発明者等は、本実施の形態の一態様として、UL短縮TTIから所定期間前に受信したSlow-DCIと、当該Slow-DCIが送信される通常TTI(サブフレーム)に含まれるDL短縮TTIで送信されるFast-DCIと、を用いてUL送信を制御することを着想した。
 以下に本実施の形態について詳細に説明する。以下の説明では、TTI長が1msより短いTTIを短縮TTIと呼ぶが、ショートTTI、短縮サブフレーム、又はショートサブフレームと呼んでもよい。また、1msとなるTTIを通常TTIと呼ぶが、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームと呼んでもよい。また、本実施の形態の短縮TTIに対して上記図1-図4で示した構成を適用することができる。
 また、以下の説明では、短縮TTIが設定されたユーザ端末のみがモニタする下り制御情報(DCI)を、Fast-DCIと呼ぶ。また、既存システムで規定されている(あるいは、既存システムのユーザ端末がモニタする)DCIを、Slow-DCIと呼ぶ。もちろん、各DCIの呼び方はこれに限られない。また、本実施の形態の適用は、下り制御情報(又は、下り制御チャネル)に限られず他のDLチャネルに対しても適宜適用することができる。
 また、以下の説明では、2種類のDCIを利用したスケジューリング制御方法において、Fast-DCIを利用してリソース情報(例えば、PRB割当て情報)を通知し、Fast-DCIを利用してスケジューリング情報(例えば、送信指示)、MCS、HARQ情報等を通知する場合を示すが、本実施の形態はこれに限られない。複数種類のDCIを利用してスケジューリングを制御する方法であれば適宜適用することができる。また、各DCIでユーザ端末に通知する情報も適宜設定することができる。
 また、本実施の形態における各短縮TTIにおける上り制御情報(例えば、HARQ-ACK)のフィードバック方法は、2ステップDCI制御に関わらず、1種類(例えば、Fast-DCI)を利用したスケジューリング方法にも適用することができる。
 また、本実施の形態は、少なくとも短縮TTIを利用して通信可能なユーザに適用することができる。もちろん、短縮TTIに加えて通常TTIを利用して通信可能なユーザ端末に適用することもできる。また、以下の説明ではLTEシステムを例に挙げるが本実施の形態はこれに限られず、短縮TTIを利用するシステムであれば適用することができる。また、以下に説明する複数の態様はそれぞれ単独で実施してもよいし、適宜組み合わせて実施することも可能である。
(第1の態様)
 第1の態様では、上りリンク短縮TTIのスケジューリング制御情報を、スケジューリングされる短縮TTIに最も近いSlow-DCI(長周期DCI)と、当該Slow-DCIと同じ通常TTIに含まれるFast-DCI(短周期DCI)と、を利用してユーザ端末に通知する場合を説明する。
 なお、以下の説明では、短縮TTIに対してTDD(例えば、ULとDL比率が異なるTDD)を適用する場合を例に挙げて説明するが、本実施の形態はこれに限られない。FDDを適用する場合(UL伝送及び/又はDL伝送)についても同様の方法でスケジューリングを制御することができる。なお、FDDを適用する場合には、ULとDLで同じ短縮TTI長を適用する構成とすることが好ましい。
 図8は、2サブフレーム(通常TTI)において、DL送信が行われる下りリンク区間とUL送信が行われる上りリンク区間を設定して通信を行う場合を示している。ここでは、通常TTIに7個の短縮TTIが含まれ、下りリンク区間の各DL短縮TTIでFast-DCIが送信される場合を示している。また、サブフレーム毎にSlow-DCIが送信される場合を示している。Slow-DCIは、既存のLTEシステム(Rel.12以前)の下り制御情報(あるいは、既存DCIの割当て領域や送信タイミング)を利用してもよい。
 図8では、異なるサブフレームに渡ってDL送信が行われる下りリンク区間(DL短縮TTI#1-#10)を設定し、1つのサブフレームの途中からUL送信が行われる上りリンク区間(UL短縮TTI#12-#14)を設定する場合を示している。また、短縮TTI#11はギャップ区間とする場合を示している。もちろん本実施の形態のUL短縮TTIとDL短縮TTIの比率はこれに限られない。
 また、図8では、各サブフレームに含まれる先頭の短縮TTIでFast-DCIとSlow-DCIを送信する場合を示しているが、これに限れない。例えば、サブフレームの先頭に位置する短縮TTIでは、Fast-DCIを送信せず、Slow-DCIだけ送信する構成とすることも可能である。
 無線基地局は、下りリンク区間において、Slow-DCIとFast-DCIを利用してユーザ端末にDL及び/又はULの短縮TTIのスケジューリング制御情報を通知する。DLの短縮TTIのスケジューリング制御情報は、既存システムの下り制御情報(DLアサイメント)に含まれる全部又は一部の情報とすることができる。また、既存システムの情報に加えて新たに定義した情報をSlow-DCI及び/又はFast-DCIに加えてもよい。ULの短縮TTIのスケジューリング制御情報は、既存システムの下り制御情報(ULグラント(例えば、DCIフォーマット0/4等))に含まれる全部又は一部の情報とすることができる。また、既存システムの情報に加えて新たに定義した情報をSlow-DCI及び/又はFast-DCIに加えてもよい。
 ユーザ端末は、Slow-DCIとFast-DCIを利用して下りリンク区間におけるDL信号の受信を制御する。複数のサブフレームに渡って下りリンク区間が連続する場合、短縮TTIに対するDL信号の割当てリソース(例えば、PRB)は同じ領域としてもよいし(図8参照)、サブフレーム毎に異なる領域としてもよい。サブフレーム毎に異なるDLリソースが設定される場合、ユーザ端末は、各サブフレームに属する短縮TTIに対して、当該サブフレーム毎に送信されるSlow-DCIと各短縮TTIで送信されるFast-DCIを利用してDL信号の受信を制御する。一方で、サブフレームに渡って同じDLリソースが設定される場合、ユーザ端末は、サブフレーム毎にSlow-DCIを受信してリソースを決定してもよいし、各サブフレームのSlow-DCIが同じリソースを指定すると想定して受信処理を行ってもよい。
 また、無線基地局は、短縮TTIのUL送信に利用する無線リソース(例えば、PRB)割当て情報をSlow-DCIに含めて所定のユーザグループに通知する。また、無線基地局は、短縮TTIにおけるUL割当て情報(例えば、UL送信指示等)、MCS、HARQ情報等をFast-DCIに含めて各ユーザ端末に通知する。
 この場合、無線基地局は、ULのスケジューリング制御情報を、UL送信が行われる短縮TTIに最も近いSlow-DCIと、当該Slow-DCIと同じサブフレームに含まれるFast-DCIに含めてユーザ端末に通知する。UL送信が行われる短縮TTIに最も近いSlow-DCIとは、UL短縮TTI前に送信されたSlow-DCIのうち、最後に送信されたSlow-DCI(受信している最新のSlow-DCI)を指す。
 図8では、上りリンク区間のUL短縮TTI#12-#14用のULスケジューリング制御情報を、同じサブフレームで送信するSlow-DCIと、当該サブフレームに属するDL短縮TTI(ここでは、DL短縮TTI#8-#10)で送信するFast-DCIに含めてユーザ端末に通知する。
 ユーザ端末は、UL短縮TTIに最も近いSlow-DCIと、当該Slow-DCIと同じサブフレームに含まれるFast-DCIに基づいてUL送信(例えば、上りデータ/PUSCH)を制御することができる。
 このように、Slow-DCIでULリソースの割当て情報をユーザグループ共通情報として通知することにより、各短縮TTIで送信されるFast-DCIのオーバーヘッドを削減することができる。また、UL送信が行われる短縮TTIに最も近いSlow-DCIと、当該Slow-DCIと同じサブフレームに含まれるFast-DCIに基づいてUL送信を制御することにより、UL送信の遅延を抑制することが可能となる。
 ユーザ端末は、ULスケジューリング制御情報が送信されるSlow-DCIが割当てられる領域(Slow-DCI領域)と、Fast-DCIが割当てられる領域(Fast-DCI領域)に限定して、ULグラントの受信を試みることができる。ULスケジューリング制御情報が送信されるサブフレーム(通常TTI)及び/又は短縮TTIは、あらかじめ定義してもよいし、無線基地局からユーザ端末に上位レイヤシグナリング等で通知する構成としてもよい。あるいは、ユーザ端末は、各サブフレームでSlow-DCIの検出を行い、当該Slow-DCIにULリソースの割当て情報が含まれている場合に限って短縮TTIで送信されるULグラント(Fast-DCI)の受信を試みる構成としてもよい。
 なお、図8では、上りリンク区間と下りリンク区間が同じサブフレームに属する場合の例を示しているが、異なるサブフレームに属する場合であっても同様に適用することができる。また、サブフレームに7個の短縮TTIを設定(例えば、短縮TTIを2シンボルで構成)する場合を示しているが、短縮TTIの設定数は適宜変更することができる。
<上り制御情報フィードバック>
 短縮TTIを用いてTDD(例えば、ULとDL比率異なるTDD)を適用する場合、各短縮TTIのDL送信(例えば、下りデータ/PDSCH)に対するHARQ-ACK(A/N)の送信タイミングをどのように制御するかが問題となる。
 本実施の形態では、下りリンク区間のDL短縮TTIで送信されるDLデータ(例えば、PDSCH)に対するA/Nを、短縮TTIの上りデータ(例えば、PUSCH)がスケジューリングされる最初のタイミングでフィードバックするように制御する。例えば、ユーザ端末は、上りリンク区間の最初のUL短縮TTIを利用して、当該最初のUL短縮TTIのULグラント(Fast-DCI)を送信するDL短縮TTI以前のDL送信に対するA/Nを送信するように制御する(図9参照)。
 図9では、ユーザ端末は、上りリンク区間の最初のUL短縮TTI#12で、DL短縮TTI#1-#8(ULグラントを送信するDL短縮TTI#8以前の短縮TTIに相当)のDL送信に対するA/Nをフィードバックする。また、ユーザ端末は、UL短縮TTI#13で、DL短縮TTI#9のDL送信に対するA/Nをフィードバックし、UL短縮TTI#14で、DL短縮TTI#10のDL送信に対するA/Nをフィードバックする。
 このように、上りリンク区間の最初のUL短縮TTIを利用して、下りリンク区間の複数のDL短縮TTIのDL送信に対するA/Nをフィードバックすることにより、遅延(Latency)削減効果を得ることができる。
 また、上りリンク区間の最初のUL短縮TTIにおいて上りデータ(PUSCH送信)の送信指示がある場合、ユーザ端末は、A/N等の上り制御情報(UCI)をPUSCHに含めて送信することができる。一方で、上りリンク区間の最初のUL短縮TTIにおいて上りデータの送信指示がない場合、ユーザ端末は、A/N等の上り制御情報を上り制御チャネル(例えば、PUCCH)で送信することができる。
 なお、図9では、上りリンク区間の最初のタイミング(UL短縮TTI#12)で、所定期間前のDL短縮TTIに対応するA/Nをフィードバックする場合を示したが、これに限られない。例えば、上りリンク区間に含まれるUL短縮TTIのうち実際にUL送信指示がある最先のUL短縮TTIを用いて上り制御情報(例えば、A/N)をフィードバックしてもよい。
 あるいは、下りリンク区間が複数のサブフレームに渡って連続する場合、ユーザ端末は、各DL短縮TTIのDL送信に対するA/Nを、サブフレーム毎にそれぞれ集約して所定のUL短縮TTI(例えば、異なるUL短縮TTI)でフィードバックしてもよい。あるいは、ユーザ端末は、所定単位で(例えば、サブフレーム毎に)複数のDL短縮TTIに対応するA/Nをバンドリングして、所定のUL短縮TTI(例えば、上りリンク区間の最初のUL短縮TTI)に集約してフィードバックしてもよい。これにより、下りリンク区間が長く続く場合でも同時に送信するHARQ-ACKのオーバーヘッドを抑制することができる。
 なお、各UL短縮TTIにおける上り制御情報(例えば、A/N)のフィードバック方法は、2ステップDCI制御に関わらず、1種類(例えば、Fast-DCI)のみを利用したスケジューリング方法にも適用することができる。
(第2の態様)
 第2の態様では、UL短縮TTIのスケジューリング制御情報を、スケジューリングされるUL短縮TTIから所定期間前のSlow-DCIと、当該Slow-DCIと同じサブフレームに含まれるFast-DCIと、を用いてユーザ端末に通知する場合について説明する。この場合、無線基地局は、複数のSlow-DCIを利用して、各UL短縮TTIにおけるULリソースをそれぞれ指定することができる。
 無線基地局は、ULのスケジューリング制御情報を、UL短縮TTIから所定期間前のSlow-DCIと、当該Slow-DCIと同じサブフレームに含まれるFast-DCIに含めてユーザ端末に通知することができる(図10参照)。ここでは、上りリンク区間の一部のUL短縮TTI(例えば、先頭のUL短縮TTI#12)について、当該UL短縮TTIから2番目に近いSlow-DCIと、当該Slow-DCIと同じサブフレームに含まれるDL短縮TTI#7で送信されるFast-DCIに含めてユーザ端末に通知する。
 一方で、上りリンク区間の他のUL短縮TTI(例えば、UL短縮TTI#13、#14)について、当該UL短縮TTIに最も近いSlow-DCIと、当該Slow-DCIと同じサブフレームに含まれるFast-DCIに含めてユーザ端末に通知する。この場合、複数のSlow-DCIでそれぞれ異なるULリソース(例えば、PRB)を指定することができる。つまり、上りリンク区間に含まれる複数のUL短縮TTI間で異なるULリソース(例えば、PRB)を設定することができる。
 ユーザ端末は、DL短縮TTI#1で送信されるSlow-DCIと、当該Slow-DCIと同じサブフレームに含まれるDL短縮TTI#7で送信されるFast-DCIに基づいてUL短縮TTI#12の上りデータ/PUSCH送信を制御する。また、ユーザ端末は、DL短縮TTI#8で送信されるSlow-DCIと、当該Slow-DCIと同じサブフレームに含まれるDL短縮TTI#8(#10)で送信されるFast-DCIに基づいてUL短縮TTI#13(#14)の上りデータ/PUSCH送信を制御する。
 このように、複数のSlow-DCIを用いてULリソースを指定することにより、同じサブフレーム(又は、上りリンク区間)に含まれるUL短縮TTI間において、異なるULリソースを割当ててUL送信を行うことができる。
 また、ユーザ端末は、ULスケジューリング制御情報が送信されるSlow-DCIが割当てられる領域(Slow-DCI領域)と、Fast-DCIが割当てられる領域(Fast-DCI領域)に限定して、ULグラントの受信を試みる構成としてもよい。
 図10では、上りリンク区間と下りリンク区間が同じサブフレームに属する場合の例を示しているが、異なるサブフレームに属する場合であっても同様に適用することができる。また、サブフレームに7個の短縮TTIを設定(例えば、短縮TTIを2シンボルで構成)する場合を示しているが、短縮TTIの設定数は適宜変更することができる。
<上り制御情報フィードバック>
 図11に示すように、上りリンク区間(又は、同じサブフレーム)に含まれるUL短縮TTIに対して、異なるSlow-DCI(又は、異なるサブフレームに属する短縮TTIのFast-DCI)でUL送信を制御する場合、ユーザ端末は、所定タイミングでA/N送信を行う。例えば、ユーザ端末は、上りリンク区間の最初の短縮TTI#12を利用して、当該UL短縮TTI#12のULグラント(Fast-DCI)を送信可能な短縮TTI#7以前のDL送信に対するA/Nを送信するように制御する(図11参照)。
 図11では、ユーザ端末は、上りリンク区間の最初のUL短縮TTI#12で、DL短縮TTI#1-#7のDL送信に対するA/Nをフィードバックする。また、ユーザ端末は、UL短縮TTI#13において、DL短縮TTI#8-#9のDL送信に対するA/Nをフィードバックし、UL短縮TTI#14において、DL短縮TTI#10のDL送信に対するA/Nをフィードバックする。
 このように、上りリンク区間の最初のUL短縮TTIを利用して、下りリンク区間の複数のDL短縮TTIのDL送信に対するA/Nをフィードバックすることにより、遅延(Latency)削減効果を得ることができる。
 また、図11では、UL短縮TTI#12を利用して第1のサブフレームに属する短縮TTI#1-#7に対応するA/Nを送信し、UL短縮TTI#13、#14を利用して第2のサブフレームに属する短縮TTI#8-#9に対応するA/Nを送信する。なお、第1のサブフレームはDL短縮TTIで構成され、第2のサブフレームはDL短縮TTIとUL短縮TTIで構成される。
 このように、各サブフレームのDL短縮TTIに対応するA/Nフィードバックに利用するUL短縮TTIを分けて設定することにより、HARQ処理に要する時間を多く確保できる。これにより、ユーザ端末の負担を軽減することができる。
 なお、各UL短縮TTIにおける上り制御情報(例えば、A/N)のフィードバック方法は、2ステップDCI制御に関わらず、1種類(例えば、Fast-DCI)のみを利用したスケジューリング方法にも適用することができる。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図12は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)などと呼ばれても良い。
 図12に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、あるRATにおける信号のデザインや、RATのデザインを特徴付ける通信パラメータのセットのことをいう。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、6個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。なお、複数のセルのいずれかに短縮TTIを適用するTDDキャリアが含まれる構成とすることができる。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクにOFDMA(直交周波数分割多元接続)が適用され、上りリンクにSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、上りリンクでOFDMAが用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。送達確認情報(ACK/NACK)や無線品質情報(CQI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
<無線基地局>
 図13は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信部103は、送信部及び受信部で構成される。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 送受信部(送信部)103は、第1のTTI(例えば、通常TTI)毎に第1の下り制御情報(例えば、Slow-DCI)を送信し、第2のTTI(例えば、短縮TTI)で第2の下り制御情報(例えば、Fast-DCI)を送信する。送受信部(受信部)103は、ユーザ端末が第1の制御情報及び第2の制御情報に基づいて第2のTTIで送信するUL信号を受信する。また、送受信部(送信部)103は、UL伝送に設定される短縮TTIとDL伝送に設定される短縮TTIに関する情報(例えば、短縮TTI用UL/DL構成、又はUL短縮TTIとDL短縮TTIの比率等)をユーザ端末に送信してもよい。
 送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図14は、本実施形態に係る無線基地局の機能構成の一例を示す図である。なお、図14では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図14に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部(生成部)302と、マッピング部303と、受信信号処理部304と、を備えている。
 制御部(スケジューラ)301は、PDSCHで送信される下りデータ信号、PDCCH及び/又はEPDCCHで伝送される下り制御信号のスケジューリング(例えば、リソース割り当て)を制御する。また、システム情報、同期信号、ページング情報、CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information Reference Signal)等のスケジューリングの制御も行う。また、上り参照信号、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号等のスケジューリングを制御する。
 制御部301は、送受信部103の送受信を制御することができる。例えば、制御部301は、UL信号が送信されるUL短縮TTIから所定期間前に送信する第1の下り制御情報と、当該第1の下り制御情報を送信するサブフレームに含まれる第2の下り制御情報と、を用いてUL信号のスケジューリングを制御する(図8、図10参照)。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(下りデータ信号、下り制御信号を含む)を生成して、マッピング部303に出力する。具体的には、送信信号生成部302は、ユーザデータを含む下りデータ信号(PDSCH)を生成して、マッピング部303に出力する。また、送信信号生成部302は、Slow-DCI及び/又はFast-DCI(ULグラント)を含む下り制御信号(PDCCH/EPDCCH)を生成して、マッピング部303に出力する。また、送信信号生成部302は、CRS、CSI-RSなどの下り参照信号を生成して、マッピング部303に出力する。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部304は、ユーザ端末20から送信されるUL信号(HARQ-ACK、PUSCH等)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。処理結果は、制御部301に出力される。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ユーザ端末>
 図15は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信部203は、送信部及び受信部から構成されてもよい。また、ユーザ端末20は、少なくとも短縮TTIを利用して通信を行う能力を有していればよく、通常TTIと短縮TTIの両方を利用して通信を行うユーザ端末であってもよい。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 送受信部(受信部)203は、無線基地局から第1のTTI(例えば、通常TTI)毎に送信される第1の下り制御情報(例えば、Slow-DCI)と、第2のTTI(例えば、短縮TTI)で送信される第2の下り制御情報(例えば、Fast-TTI)と、を受信する。また、送受信部(送信部)203は、第1の制御情報及び第2の制御情報に基づいて第2のTTIにおけるUL送信(例えば、PUSCH送信)を制御する。また、送受信部(送信部)203は、DL短縮TTIのDL送信に対するHARQ-ACKを送信する。
 また、送受信部(受信部)203は、UL伝送に設定される短縮TTIとDL伝送に設定される短縮TTIに関する情報(例えば、短縮TTI用UL/DL構成、又はUL短縮TTIとDL短縮TTIの比率等)を受信してもよい。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 図16は、本実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、図16においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図16に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、判定部405と、を備えている。
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号や、下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認信号(HARQ-ACK)など)や上りデータ信号の生成を制御する。具体的には、制御部401は、送信信号生成部402、マッピング部403及び受信信号処理部404の制御を行うことができる。
 制御部401は、無線基地局から送信された第1の制御情報及び第2の制御情報に基づいて第2のTTIにおけるUL送信を制御する。例えば、制御部401は、UL送信を行う第2のTTIから所定期間前に受信した第1の下り制御情報と、当該第1の下り制御情報が送信される第1のTTIに含まれる第2の下り制御情報と、を用いてUL送信を制御する(図8、図10参照)。
 この場合、制御部401は、UL送信を行う第2のTTI前に送信された第1の制御情報のうち最後に送信された第1の制御情報に基づいてUL送信を制御することができる(図8参照)。なお、UL送信を行う第2のTTIが、当該第2のTTIのUL送信を指示する第1の制御情報が送信される第1のTTIに含まれる構成とすることができる。
 あるいは、制御部401は、第1のTTI(又は、上りリンク区間)に含まれる複数の第2のTTIを利用してUL送信を行う場合、少なくとも2以上の異なる第1の下り制御情報に基づいて、第2のTTI毎のUL割当てリソースを決定することができる(図10参照)。
 また、制御部401は、第2のTTIにおけるUL送信のスケジューリング制御情報が送信される第1の制御情報の割当て領域及び/又は第2の制御情報の割当て領域に対して選択的にULグラントの受信を行うように制御することができる。
 また、制御部401は、DL送信区間に含まれる複数の第2のTTIのDL送信にそれぞれ対応する複数のHARQ-ACKの少なくとも一部を、UL送信区間の先頭の第2のTTIで送信するように制御する(図9、図11参照)。この場合、複数のHARQ-ACKの少なくとも一部は、先頭の第2のTTIのUL送信を指示する第2の下り制御情報が送信される第2のTTI以前の第2のTTIで受信したDL送信に対するHARQ-ACKとすることができる。
 また、制御部401は、UL伝送に利用する短縮TTIとDL伝送に利用する短縮TTIの比率が異なるTDDを利用して通信を制御することができる。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号を生成して、マッピング部403に出力する。例えば、送信信号生成部402は、制御部401からの指示に基づいて、送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)等の上り制御信号を生成する。
 また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号(上り制御信号及び/又は上りデータ)を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部404は、DL信号(例えば、無線基地局から送信された下り制御信号、PDSCHで送信された下りデータ信号等)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401、判定部405に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 判定部405は、受信信号処理部404の復号結果に基づいて、再送制御判定(ACK/NACK)を行うと共に、判定結果を制御部401に出力する。複数CC(例えば、6個以上のCC)から下り信号(PDSCH)が送信される場合には、各CCについてそれぞれ再送制御判定(ACK/NACK)を行い制御部401に出力することができる。判定部405は、本発明に係る技術分野での共通認識に基づいて説明される判定回路又は判定装置から構成することができる。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 無線基地局10及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク、フラッシュメモリなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウスなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカーなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDMシンボル、SC-FDMAシンボルなど)で構成されてもよい。
 無線フレーム、サブフレーム、スロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームが送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットがTTIと呼ばれてもよい。つまり、サブフレームやTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅や送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、RBは、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプリフィクス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」や「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的に(例えば、当該所定の情報の通知を行わないことによって)行われてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の各実施形態は単独で用いてもよいし、組み合わせて用いてもよい。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2016年2月19日出願の特願2016-029885に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  第1の送信時間間隔(TTI:Transmission Time Interval)よりTTI長が短い第2のTTIを利用して通信を行うユーザ端末であって、
     無線基地局から第1のTTI毎に送信される第1の下り制御情報と、第2のTTIで送信される第2の下り制御情報と、を受信する受信部と、
     前記第1の制御情報及び前記第2の制御情報に基づいて第2のTTIにおけるUL送信を制御する制御部と、を有し、
     前記制御部は、UL送信を行う第2のTTIから所定期間前に受信した第1の下り制御情報と、当該第1の下り制御情報が送信される第1のTTIに含まれる第2の下り制御情報と、を用いてUL送信を制御することを特徴とするユーザ端末。
  2.  前記制御部は、UL送信を行う第2のTTI前に送信された第1の制御情報のうち最後に送信された第1の制御情報に基づいてUL送信を制御することを特徴とする請求項1に記載のユーザ端末。
  3.  UL送信を行う第2のTTIが、当該第2のTTIのUL送信を指示する第1の制御情報が送信される第1のTTIに含まれることを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、第2のTTIにおけるUL送信のスケジューリング制御情報が送信される第1の制御情報の割当て領域及び/又は第2の制御情報の割当て領域に対して選択的にULグラントの受信を行うように制御することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記制御部は、DL送信区間に含まれる複数の第2のTTIのDL送信にそれぞれ対応する複数のHARQ-ACKの少なくとも一部を、UL送信区間の先頭の第2のTTIで送信するように制御することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  前記複数のHARQ-ACKの少なくとも一部は、前記先頭の第2のTTIのUL送信を指示する第2の下り制御情報が送信される第2のTTI以前の第2のTTIで受信したDL送信に対するHARQ-ACKであることを特徴とする請求項5に記載のユーザ端末。
  7.  前記制御部は、第1のTTIに含まれる複数の第2のTTIを利用してUL送信を行う場合、少なくとも2以上の異なる第1の下り制御情報に基づいて、第2のTTI毎のUL割当てリソースを決定することを特徴とする請求項1から請求項6のいずれかに記載のユーザ端末。
  8.  前記制御部は、UL伝送に利用する短縮TTIとDL伝送に利用する短縮TTIの比率が異なるTDDを利用して通信を制御することを特徴とする請求項1から請求項7のいずれかに記載のユーザ端末。
  9.  第1の送信時間間隔(TTI:Transmission Time Interval)よりTTI長が短い第2のTTIを利用するユーザ端末と通信する無線基地局であって、
     第1のTTI毎に第1の下り制御情報すると共に、第2のTTIで第2の下り制御情報を送信する送信部と、
     前記ユーザ端末が前記第1の制御情報及び前記第2の制御情報に基づいて第2のTTIで送信するUL信号を受信する受信部と、
     前記UL信号が送信される第2のTTIから所定期間前に送信する第1の下り制御情報と、当該第1の下り制御情報を送信する第1のTTIに含まれる第2の下り制御情報と、を用いて前記UL信号のスケジューリングを制御する制御部と、を有することを特徴とする無線基地局。
  10.  第1の送信時間間隔(TTI:Transmission Time Interval)よりTTI長が短い第2のTTIを利用して通信を行うユーザ端末の無線通信方法であって、
     無線基地局から第1のTTI毎に送信される第1の下り制御情報と、第2のTTIで送信される第2の下り制御情報と、を受信する工程と、
     前記第1の制御情報及び前記第2の制御情報に基づいて第2のTTIにおけるUL送信を行う工程と、を有し、
     UL送信を行う第2のTTIから所定期間前に受信した第1の下り制御情報と、当該第1の下り制御情報が送信される第1のTTIに含まれる第2の下り制御情報と、を用いてUL送信を制御することを特徴とする無線通信方法。
PCT/JP2017/005751 2016-02-19 2017-02-16 ユーザ端末、無線基地局及び無線通信方法 WO2017142031A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018500200A JPWO2017142031A1 (ja) 2016-02-19 2017-02-16 ユーザ端末、無線基地局及び無線通信方法
EP17753286.8A EP3419359A4 (en) 2016-02-19 2017-02-16 USER UNIT, WIRELESS BASE STATION AND WIRELESS COMMUNICATION PROCESS
US16/077,699 US20190053256A1 (en) 2016-02-19 2017-02-16 User terminal, radio base station, and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016029885 2016-02-19
JP2016-029885 2016-02-19

Publications (1)

Publication Number Publication Date
WO2017142031A1 true WO2017142031A1 (ja) 2017-08-24

Family

ID=59625949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005751 WO2017142031A1 (ja) 2016-02-19 2017-02-16 ユーザ端末、無線基地局及び無線通信方法

Country Status (4)

Country Link
US (1) US20190053256A1 (ja)
EP (1) EP3419359A4 (ja)
JP (1) JPWO2017142031A1 (ja)
WO (1) WO2017142031A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138512A1 (ja) * 2018-01-11 2019-07-18 富士通株式会社 基地局装置、端末装置、通信システム及び送信方法
CN112673672A (zh) * 2018-07-06 2021-04-16 株式会社Ntt都科摩 用户终端以及无线通信方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10341061B2 (en) * 2016-03-30 2019-07-02 Qualcomm Incorporated Hybrid automatic repeat request timing for reduced transmission time intervals
CN108886832B (zh) * 2016-05-12 2021-01-29 华为技术有限公司 下行控制信息的传输方法、终端和基站
CA3036519C (en) * 2016-10-17 2022-12-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for transmitting information
US11497007B2 (en) * 2017-05-05 2022-11-08 Qualcomm Incorporated Sounding reference signal configuration and transport block size scaling in low latency systems
US11122081B2 (en) 2019-02-21 2021-09-14 Bank Of America Corporation Preventing unauthorized access to information resources by deploying and utilizing multi-path data relay systems and sectional transmission techniques
WO2020237449A1 (zh) * 2019-05-24 2020-12-03 北京小米移动软件有限公司 控制信息传输方法及装置
CN114830752A (zh) * 2020-01-17 2022-07-29 株式会社Ntt都科摩 通信装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212597A (ja) * 2008-02-29 2009-09-17 Ntt Docomo Inc 移動通信システム、基地局装置、ユーザ装置及び方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104468030B (zh) * 2014-08-26 2018-06-05 上海华为技术有限公司 一种数据传输方法、用户设备及基站
WO2016040290A1 (en) * 2014-09-08 2016-03-17 Interdigital Patent Holdings, Inc. Systems and methods of operating with different transmission time interval (tti) durations
WO2016064039A1 (ko) * 2014-10-21 2016-04-28 엘지전자(주) 저 지연을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
WO2016143968A1 (ko) * 2015-03-12 2016-09-15 엘지전자 주식회사 Short tti 내 제어 채널의 전송 자원을 감소시키는 방법 및 이를 사용한 기기

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212597A (ja) * 2008-02-29 2009-09-17 Ntt Docomo Inc 移動通信システム、基地局装置、ユーザ装置及び方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "DCI bit fields for short TTI uplink transmissions", 3GPP TSG-RAN WG1#84 R1-160941, 6 February 2016 (2016-02-06), XP051053555, Retrieved from the Internet <URL:http://www.3gpp.org/ ftp/tsg_ran/WG1_RL1/TSGR1_84/Docs/R1_160941. zip> *
ERICSSON: "DCI for short TTI uplink transmissions", 3 GPP TSG-RAN WG1#84 RL-160938, 6 February 2016 (2016-02-06), XP051053552, Retrieved from the Internet <URL:http://www.3gpp.org/ ftp/tsg_ran/WG1_RL1/TSGR1_84/Docs/R1_160938. zip> *
NTT DOCOMO: "Initial views on DL control channel design", 3GPP TSG-RAN WG1#86B RL-1610058, 14 October 2016 (2016-10-14), XP051150083, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg _ ran/ WG1_RL1/TSGR1_86b/Docs/R1_1610058.zip> *
See also references of EP3419359A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138512A1 (ja) * 2018-01-11 2019-07-18 富士通株式会社 基地局装置、端末装置、通信システム及び送信方法
CN111630884A (zh) * 2018-01-11 2020-09-04 富士通株式会社 基站装置、终端装置、通信系统以及发送方法
JPWO2019138512A1 (ja) * 2018-01-11 2020-12-24 富士通株式会社 基地局装置、端末装置、通信システム及び送信方法
CN112673672A (zh) * 2018-07-06 2021-04-16 株式会社Ntt都科摩 用户终端以及无线通信方法

Also Published As

Publication number Publication date
JPWO2017142031A1 (ja) 2018-12-13
US20190053256A1 (en) 2019-02-14
EP3419359A1 (en) 2018-12-26
EP3419359A4 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6681920B2 (ja) ユーザ端末及び無線基地局
JP6954841B2 (ja) ユーザ端末及び無線基地局
JP7197660B2 (ja) 端末、無線通信方法、基地局及びシステム
JP6878278B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7182876B2 (ja) 端末、無線通信方法、基地局及びシステム
JP6938390B2 (ja) 端末、無線通信方法、基地局及びシステム
JP6886919B2 (ja) 端末及び無線通信方法
WO2017170889A1 (ja) ユーザ端末及び無線通信方法
JP6791485B2 (ja) 端末及び無線通信方法
JP2021029057A (ja) 端末、基地局、無線通信方法及びシステム
JP7107832B2 (ja) 端末、基地局、無線通信方法及びシステム
WO2017142031A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP7054405B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2017110960A1 (ja) ユーザ端末及び無線通信方法
WO2017126658A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017110962A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2018128183A1 (ja) ユーザ端末及び無線通信方法
JP7227000B2 (ja) 端末、基地局、無線通信方法及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753286

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018500200

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017753286

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017753286

Country of ref document: EP

Effective date: 20180919