WO2019138512A1 - 基地局装置、端末装置、通信システム及び送信方法 - Google Patents

基地局装置、端末装置、通信システム及び送信方法 Download PDF

Info

Publication number
WO2019138512A1
WO2019138512A1 PCT/JP2018/000522 JP2018000522W WO2019138512A1 WO 2019138512 A1 WO2019138512 A1 WO 2019138512A1 JP 2018000522 W JP2018000522 W JP 2018000522W WO 2019138512 A1 WO2019138512 A1 WO 2019138512A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
unit
band
frequency band
control channel
Prior art date
Application number
PCT/JP2018/000522
Other languages
English (en)
French (fr)
Inventor
紅陽 陳
ジヤンミン ウー
剛史 下村
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2018/000522 priority Critical patent/WO2019138512A1/ja
Priority to CN201880085967.0A priority patent/CN111630884A/zh
Priority to JP2019564216A priority patent/JPWO2019138512A1/ja
Publication of WO2019138512A1 publication Critical patent/WO2019138512A1/ja
Priority to US16/925,221 priority patent/US20200344757A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to a base station apparatus, a terminal apparatus, a communication system and a transmission method.
  • traffic of mobile terminals (smartphones and feature phones) dominates the resources of the network. Also, traffic used by mobile terminals tends to expand in the future.
  • next-generation (for example, 5G (5th generation mobile communication)) communication standard in addition to the standard technology (for example, non-patent documents 1 to 11) of 4G (4th generation mobile communication), There is a need for technology to realize data rate, capacity increase, and delay reduction.
  • 3GPP for example, TSG-RAN WG1, TSG-RAN WG2, etc.
  • LAA licensed assistant access
  • a license band (Licensed band: hereinafter referred to as "L band”) required for use in a wireless communication system such as a cellular phone network is additionally used, for example, in a wireless LAN (Local Area Network) or the like.
  • Data is transmitted and received in an unlicensed band (hereinafter referred to as "U-band”) which does not require a license to be used.
  • the L band is a frequency band requiring a license
  • a telecommunications carrier or the like who has obtained a license exclusively uses a specific frequency band belonging to the L band, and interference with communication in other wireless communication systems does not occur.
  • the U-band does not require a license and is also used by other wireless communication systems such as a wireless LAN or LAA operated by different operators, for example, when wireless communication using the U-band is performed, Interference may occur with communication in a wireless communication system. Therefore, when a device implements wireless communication, for example, LBT (Listen Before Talk) is introduced to confirm whether wireless communication by another device is in progress, such as carrier sense.
  • LBT Listen Before Talk
  • the transmitting device determines whether or not the U band is available by the LBT, and when it is available, performs transmission of data from the beginning of the next subframe.
  • the frequency band of the U band in the 5G system is considered as a work item / study item (reference non-patent document 39).
  • 3GPP TS 36.211 V14.4.0 (2017-09) 3GPP TS 36.212 V14.4.0 (2017-09) 3GPP TS 36.213 V14.4.0 (2017-09) 3GPP TS 36.300 V 14.4.0 (2017-09) 3GPP TS 36.321 V14.4.0 (2017-09) 3GPP TS 36.322 V14.1.0 (2017-09) 3GPP TS 36.323 V14.4.0 (2017-09) 3GPP TS 36.331 V14.4.0 (2017-09) 3GPP TS 36.413 V14.4.0 (2017-09) 3GPP TS 36.423 V14.4.0 (2017-09) 3GPP TS 36.425 V14.0.0 (2017-03) 3GPP TS 37.340 V2.0.0 (2017-12) 3GPP TS 38.201 V1.1.0 (2017-11) 3GPP TS 38.202 V1.1.0 (2017-11) 3GPP TS 38.211 V1.2.0 (2017-11) 3GPP TS 38.212
  • the technology disclosed herein has been made in view of such a point, and an object thereof is to provide a base station apparatus, a terminal apparatus, a communication system, and a transmission method capable of suppressing a decrease in frequency utilization efficiency.
  • the base station apparatus disclosed in the present application is, in one aspect, a base station apparatus included in a communication system using a first frequency band requiring a license and a second frequency band not requiring a license.
  • a determination unit that determines whether or not the second frequency band is used by another communication system, and a transmission type indicating a time length of a transmission unit in the second frequency band based on the determination result by the determination unit
  • the base station apparatus According to one aspect of the base station apparatus, the terminal apparatus, the communication system, and the transmission method disclosed in the present application, it is possible to suppress a decrease in frequency utilization efficiency.
  • FIG. 1 is a block diagram showing a configuration of a base station apparatus according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a specific example of a U-band transmission type.
  • FIG. 3 is a block diagram showing a configuration of a terminal apparatus according to Embodiment 1.
  • FIG. 4 is a flowchart showing transmission type switching processing according to the first embodiment.
  • FIG. 5 is a diagram of a specific example of downlink communication according to the first embodiment.
  • FIG. 6 is a diagram of a specific example of downlink communication according to the second embodiment.
  • FIG. 7 is a diagram showing another specific example of downlink communication according to the second embodiment.
  • FIG. 8 is a block diagram showing a configuration of a base station apparatus according to Embodiment 3.
  • FIG. 9 is a diagram illustrating a specific example of downlink communication according to the third embodiment.
  • FIG. 1 is a block diagram showing a configuration of base station apparatus 100 according to Embodiment 1.
  • the base station apparatus 100 shown in FIG. 1 includes an L band reception unit 101, a U band reception unit 102, CP (Cyclic Prefix: cyclic prefix) removal units 103 and 104, an FFT (Fast Fourier Transform: fast Fourier transform) unit 105, And a decryption unit 107.
  • These processing units are processing units on the receiving side of the base station apparatus 100.
  • the base station apparatus 100 includes an LBT processing unit 108, a transmission type determination unit 109, a notification information generation unit 110, a control channel generation unit 111, a channel multiplexing unit 112, and an IFFT (Inverse Fast Fourier Transform) unit 113. , 114, CP adding units 115 and 116, L band transmitting unit 117, and U band transmitting unit 118. These processing units are processing units on the transmission side of the base station apparatus 100.
  • the L band receiver 101 receives an L band signal. That is, the L band reception unit 101 receives a signal of a frequency band that requires a license.
  • the U band reception unit 102 receives a U band signal. That is, the U-band reception unit 102 receives a signal of a frequency band that does not require a license.
  • CP removal sections 103 and 104 remove CPs added between Orthogonal Frequency Division Multiplexing (OFDM) symbols from received signals of L band and U band, respectively. That is, when wireless communication of the OFDM scheme is performed, CPs for preventing inter-symbol interference are added between OFDM symbols constituting the wireless signal, so CP removing sections 103 and 104 remove the CPs. Do. In the present embodiment, although the case where wireless communication of the OFDM scheme is performed is described, the present invention is also applicable to the case where wireless communication other than the OFDM scheme is performed. Therefore, when wireless communication other than the OFDM scheme is performed, CP removing sections 103 and 104 can be omitted.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the FFT units 105 and 106 perform fast Fourier transform on the reception signals of L band and U band, respectively, and acquire signals of a plurality of subcarriers having frequencies orthogonal to each other. That is, FFT sections 105 and 106 acquire signals of a plurality of subcarriers by converting received signals in the time domain into signals in the frequency domain.
  • the FFT units 105 and 106 are also processing units that execute processing in the case where wireless communication in the OFDM scheme is performed, as in the CP removal units 103 and 104 described above, and therefore, wireless communication other than the OFDM scheme is performed. Is optional.
  • the decoding unit 107 decodes the L band and U band reception signals to obtain decoded data.
  • the decoded data is information transmitted from a terminal apparatus that is a communication partner of the base station apparatus 100, and includes report information that reports the result of LBT processing in the terminal apparatus.
  • the LBT processing unit 108 detects received energy in the frequency band of the U band, and determines whether the U band is free. That is, when data to be transmitted using the U band is generated, the LBT processing unit 108 executes LBT processing such as carrier sense. Specifically, when the received energy in the U band is equal to or greater than a predetermined threshold, the LBT processing unit 108 determines that the U band is in use by another device. When the received energy in the U band is less than the predetermined threshold, the LBT processing unit 108 determines that the U band is open.
  • the transmission type determination unit 109 determines the transmission type of the U band based on the past report information acquired by the decoding unit 107, the U-band traffic amount, and the like as a result of the past LBT processing by the LBT processing unit 108. . Specifically, the transmission type determination unit 109 selects one transmission type according to the result of the LBT process or the like from among a plurality of transmission types having different transmission unit time lengths.
  • FIG. 2 is a diagram illustrating a specific example of a U-band transmission type. In FIG. 2, three transmission types of types 1 to 3 are illustrated.
  • Type 1 is a transmission unit in which a mini-slot (non-slot) has a time length of 7 symbols, and data is transmitted in units of mini-slots.
  • Symbols indicated by oblique lines in the figure at the beginning of the minislot are, for example, symbols including a control channel such as PDCCH (Physical Downlink Control CHannel).
  • PDCCH Physical Downlink Control CHannel
  • a minislot which is a transmission unit, has a time length of 4 symbols, and data is transmitted in units of minislots.
  • the symbol at the beginning of the minislot in Type 2 includes the control channel.
  • timing at which data transmission can start can be made every minislot of 4 symbols long.
  • a minislot which is a transmission unit, has a time length of 2 symbols, and data is transmitted in units of minislots.
  • the symbol at the beginning of the minislot in Type 3 includes the control channel.
  • timing at which data transmission can be started arrives for each minislot of 2 symbols long.
  • the transmission type determination unit 109 selects a transmission type having a short transmission unit time length as in type 3, for example. Make it possible to start sending data soon after.
  • the transmission type determination unit 109 selects a transmission type having a long transmission unit time length as in type 1, for example, and performs control. Reduce channel overhead.
  • the transmission type determination unit 109 may select a transmission type in which the time length of the transmission unit is long as in, for example, type 1.
  • the determination of the transmission type by the transmission type determination unit 109 may be performed, for example, in a predetermined cycle, or may be performed when the tendency of the result of the LBT process changes.
  • the notification information generation unit 110 generates notification information for notifying the terminal device of the transmission type determined by the transmission type determination unit 109. That is, the notification information generation unit 110 generates notification information specifying one transmission type determined by the transmission type determination unit 109 among a plurality of transmission types having different transmission unit time lengths.
  • the notification information is generated, for example, as a signal of an upper layer, such as RRC (Radio Resource Control) signaling unique to each terminal device.
  • RRC Radio Resource Control
  • the control channel generation unit 111 generates control channel signals of L band and U band. Specifically, for the U band, the control channel generation unit 111 generates a signal of a control channel arranged in the leading symbol of the mini slot according to the transmission type.
  • the control channel includes, for example, allocation information of data arranged in the minislot. That is, the control channel includes assignment information indicating to which frequency region of which symbol in the minislot data for each terminal device is assigned.
  • the channel multiplexing unit 112 assigns transmission data, notification information and control channel signals to subcarriers of respective frequency bands of L band and U band, and performs time multiplexing and frequency multiplexing.
  • the channel multiplexing unit 112 channel multiplexes the transmission data and the control channel signal when it is determined that the U band is free as a result of the LBT processing by the LBT processing unit 108 for the U band.
  • the channel multiplexing unit 112 time multiplexes the transmission data and the control channel signal in the U-band minislot according to the transmission type determined by the transmission type determination unit 109.
  • the IFFT units 113 and 114 perform inverse fast Fourier transform on data for each subcarrier of L band and U band, respectively, to obtain an OFDM symbol in the time domain. That is, the IFFT units 113 and 114 acquire OFDM symbols by converting data in the frequency domain assigned to each subcarrier into a signal in the time domain.
  • the IFFT units 113 and 114 are processing units that execute processing in the case where wireless communication of the OFDM scheme is performed, as in the CP removal units 103 and 104 and the FFT units 105 and 106 described above. This can be omitted when wireless communication is performed.
  • the CP addition sections 115 and 116 respectively add CPs between OFDM symbols of L band and U band to generate transmission signals of L band and U band.
  • the CP addition units 115 and 116 are processing units that execute processing in the case where wireless communication in the OFDM scheme is performed, so that wireless communication other than the OFDM scheme is performed. Is optional.
  • the L band transmission unit 117 transmits an L band transmission signal. That is, L band transmission section 117 transmits a transmission signal of a frequency band that requires a license.
  • the transmission signal includes, for example, notification information generated by the notification information generation unit 110.
  • the U band transmission unit 118 transmits a transmission signal of the U band. That is, the U-band transmission unit 118 transmits a transmission signal of a frequency band that does not require a license.
  • FIG. 3 is a block diagram showing the configuration of the terminal device 200 according to the first embodiment.
  • the terminal device 200 illustrated in FIG. 3 includes an L-band receiving unit 201, a U-band receiving unit 202, CP removing units 203 and 204, FFT units 205 and 206, and a decoding unit 207. These processing units are processing units on the receiving side of the terminal device 200.
  • the terminal device 200 further includes an LBT processing unit 208, a report information generation unit 209, a channel multiplexing unit 210, IFFT units 211 and 212, CP addition units 213 and 214, an L band transmission unit 215, and a U band transmission unit 216. These processing units are processing units on the transmission side of the terminal device 200.
  • the L band receiver 201 receives an L band signal. That is, the L band reception unit 201 receives a signal of a frequency band that requires a license.
  • the reception signal of the L band reception unit 201 includes, for example, notification information transmitted from the base station apparatus 100.
  • the U-band reception unit 202 receives a U-band signal. That is, the U-band reception unit 202 receives a signal of a frequency band that does not require a license.
  • CP removing sections 203 and 204 respectively remove CPs added between OFDM symbols from received signals of L band and U band.
  • the CP removing units 203 and 204 are also processing units that execute processing in the case where wireless communication of the OFDM scheme is performed, similarly to the CP removing units 103 and 104 described above, wireless communication other than the OFDM scheme is performed. In the case it is possible to omit.
  • the FFT units 205 and 206 perform fast Fourier transform on the reception signals of L band and U band, respectively, and acquire signals of a plurality of subcarriers having frequencies orthogonal to each other.
  • the FFT units 205 and 206 are also processing units that execute processing in the case where wireless communication in the OFDM scheme is performed, as in the case of the CP removal units 203 and 204 described above. Is optional.
  • Decoding section 207 decodes signals of a plurality of subcarriers of L band and U band, and obtains decoded data addressed to terminal apparatus 200. For U-band, decoding section 207 monitors the leading symbol of the minislot according to the transmission type notified by notification information such as RRC signaling, for example. That is, when the transmission type is, for example, the type 1 described above, the decoding unit 207 monitors the leading symbol of each minislot of 7 symbols long, and when the transmission type is, for example, the type 3 described above Monitors the leading symbol of each minislot of 2 symbols long.
  • notification information such as RRC signaling
  • the decoding unit 207 decodes the signal of the control channel, and is addressed to the terminal device 200 in the minislot in which the signal of the control channel is arranged. Identify the data assignment location. Thereafter, the decoding unit 207 decodes data of the specified assigned position, and acquires decoded data addressed to the terminal device 200 in the minislot.
  • the LBT processing unit 208 detects reception energy in the frequency band of the U band when there is transmission data to be transmitted using the U band to the base station apparatus 100, and determines whether the U band is vacant or not. Do. That is, when data to be transmitted using the U band is generated, the LBT processing unit 208 performs LBT processing such as carrier sense. Also, when the transmission of data is permitted from the base station apparatus 100, the LBT processing unit 208 executes the LBT process again immediately before the transmission of data. Specifically, the LBT processing unit 208 determines that the U band is in use by another device when the received energy in the U band is equal to or greater than a predetermined threshold. Further, when the reception energy in the U band is less than a predetermined threshold, the LBT processing unit 208 determines that the U band is vacant.
  • the report information generation unit 209 generates report information for reporting the result of the LBT processing by the LBT processing unit 208 to the base station apparatus 100. That is, the report information generation unit 209 generates report information indicating the free state of the U band.
  • the report information is an indicator of whether the U-band is open or busy.
  • the channel multiplexing unit 210 allocates transmission data and report information to subcarriers of respective frequency bands of L band and U band, and performs time multiplexing and frequency multiplexing.
  • the channel multiplexing unit 210 channel multiplexes transmission data when it is determined that the U band is free as a result of the LBT processing by the LBT processing unit 208 for the U band.
  • the IFFT units 211 and 212 perform inverse fast Fourier transform on the data for each subcarrier of the L band and the U band, respectively, to obtain an OFDM symbol in the time domain. That is, the IFFT units 211 and 212 acquire OFDM symbols by converting data in the frequency domain assigned to each subcarrier into a signal in the time domain. Note that the IFFT units 211 and 212 are processing units that execute processing in the case where wireless communication in the OFDM scheme is performed, and therefore can be omitted in the case where wireless communication other than the OFDM scheme is performed.
  • the CP addition sections 213 and 214 respectively add CPs between OFDM symbols of L band and U band to generate transmission signals of L band and U band.
  • the CP addition units 213 and 214 are also processing units that execute processing when wireless communication in the OFDM scheme is performed, and thus wireless communications other than the OFDM scheme are performed. Is optional.
  • the L band transmission unit 215 transmits an L band transmission signal. That is, the L band transmission unit 215 transmits a transmission signal of a frequency band that requires a license.
  • the U-band transmitter 216 transmits a U-band transmission signal. That is, the U-band transmission unit 216 transmits a transmission signal of a frequency band that does not require a license.
  • the base station apparatus 100 and the terminal apparatus 200 both execute LBT processing to determine whether the U band is open. That is, LBT processing section 108 of base station apparatus 100 and LBT processing section 208 of terminal apparatus 200 execute LBT processing. Then, the result of the LBT processing by the LBT processing unit 208 of the terminal device 200 is reported to the base station device 100 by the report information.
  • the report information may be transmitted from the terminal device 200 using either the L band or the U band.
  • the report information is received by the L band reception unit 101 or the U band reception unit 102 of the base station apparatus 100, and is decoded by the decoding unit 107 to be acquired by the transmission type determination unit 109 (step S101). Further, the transmission type determination unit 109 acquires the result of the LBT processing from the LBT processing unit 108 of the base station apparatus 100 (step S102). By this means, transmission type determination section 109 can grasp the free state of the U band from the result of the LBT processing of base station apparatus 100 and terminal apparatus 200.
  • the transmission type determination unit 109 determines the transmission type of the U-band based on the vacant state of the U-band and the data amount of data to be transmitted using the U-band (step S103). Specifically, one transmission type is selected by the transmission type determination unit 109 from among a plurality of transmission types having different transmission unit time lengths. At this time, for example, when the U-band is congested and often not vacant, a transmission type with a long transmission unit time length is selected, and a terminal apparatus that monitors the presence or absence of a control channel for each transmission unit. The burden of 200 may be reduced.
  • the U band when the U band is often vacant, a transmission type in which the time length of the transmission unit is short is selected, and the timing at which data transmission can be started frequently comes to the LBT. The time until the start of data transmission after processing may be shortened. Furthermore, for example, when the data amount of data to be transmitted using the U band is large, the transmission type having a long time length of the transmission unit is selected, and the transmittable data amount is increased for each transmission unit. Also good.
  • the determined transmission type is notified to the notification information generation unit 110, and the notification information generation unit 110 generates notification information for notifying the transmission type (step S104).
  • the notification information is generated as a signal of the upper layer, such as RRC signaling specific to the terminal device 200, for example. Therefore, different transmission types can be individually notified to each of the terminal devices 200. Also, by notifying the terminal device 200 of the transmission type by the notification information, it is possible to switch the transmission type from the current transmission type to a different transmission type.
  • the notification information generated by the notification information generation unit 110 is channel multiplexed with the transmission data and the control channel signal by the channel multiplexing unit 112 (step S105), and the obtained multiplexed signal is inverted by the IFFT units 113 and 114.
  • the fast Fourier transform is performed (step S106).
  • CP is added to each OFDM symbol obtained by the inverse fast Fourier transform by CP adding units 115 and 116 (step S107), and transmitted from L band transmitting unit 117 and U band transmitting unit 118 (step S108). .
  • the terminal device 200 When the notification information is received by the terminal device 200, the terminal device 200 detects a transmission type indicated by the notification information. Then, the decoding unit 207 of the terminal device 200 monitors the presence or absence of the control channel signal for each timing of the leading symbol of the transmission unit according to the transmission type. Therefore, the timing at which transmission can be started in the U-band arrives for each transmission unit, and the time from the LBT processing to the start of data transmission can be shortened to suppress a decrease in frequency utilization efficiency.
  • FIG. 5 is a diagram of a specific example of downlink communication according to the first embodiment.
  • the control channel 301 of the L band is arranged at a predetermined cycle.
  • the control channel 301 may include, for example, information such as UL (UpLink) grant for permitting uplink communication.
  • UL UpLink
  • the control channel can notify the terminal apparatus 200 of resource allocation for transmission data. For this reason, in the section 312, no control channel signal is arranged except for the leading symbol, and resources can be allocated to data destined for the terminal apparatus 200 as much as possible.
  • other terminals other than the terminal device 200 continuously monitor the presence or absence of the control channel every two symbols if the transmission type of which the transmission unit is two symbols long is notified. That is, the other terminal device monitors the presence or absence of the control channel addressed to the own device at timing 313 indicated by the arrow in the drawing.
  • the base station apparatus selects one transmission type from transmission types having different transmission unit time lengths, and notifies the terminal apparatus of the transmission type in the U band. Then, the terminal device monitors the presence or absence of the control channel for each transmission unit according to the notified transmission type. Therefore, the timing at which data transmission can be started can be specified by the transmission type, the time from LBT processing to data transmission start can be shortened, and a decrease in frequency utilization efficiency can be suppressed.
  • Second Embodiment The feature of the second embodiment is that the monitoring cycle of the control channel by the terminal apparatus is controlled by the common control information.
  • notification information generation section 110 of base station apparatus 100 transmits, to a terminal apparatus, a signal common to notification information for notifying the terminal apparatus of the transmission type determined by transmission type determination section 109.
  • the notification information generation unit 110 generates, for example, notification information as an upper layer signal such as RRC signaling common to the terminal device. Therefore, the common transmission type is notified to the terminals communicating with the base station apparatus 100, and each terminal monitors the presence or absence of the control channel for the same symbol.
  • control channel generation unit 111 of the base station apparatus 100 arranges common control information in the control channel of the U band.
  • the common control information indicates a terminal device of a destination of data to be transmitted using the U band and the number of transmission units in which transmission of data to the terminal device continues. That is, the common control information is information indicating a terminal apparatus using the U band and a time when the U band is occupied by the terminal apparatus.
  • each terminal device since the transmission type is common to each terminal device, each terminal device monitors the presence or absence of a control channel at the same cycle according to the same transmission type. Then, when communication using the U band is started for any of the terminal devices, common control information is included in the control channel at the top of the transmission unit in which communication is started. Since the time during which the U band is occupied is indicated in the common control information, terminal devices other than the terminal device that is the destination of data transmitted by the U band do not need to monitor the presence or absence of the control channel. The time can be known from the common control information.
  • the time for which any one terminal device occupies the U band is the time when data destined for the other terminal device is not transmitted using the U band, this time represents the presence or absence of a control channel for the other terminal device. It is time when monitoring is unnecessary. Therefore, based on the common control information, the other terminal device omits monitoring of the control channel while the U band is occupied. Thereby, the processing load of monitoring of the control channel by the terminal device can be reduced. In other words, overhead due to the control channel can be reduced.
  • FIG. 6 is a diagram of a specific example of downlink communication according to the second embodiment.
  • the same parts as in FIG. 5 are denoted by the same reference numerals.
  • the control channel 301 of the L band is arranged at a predetermined cycle.
  • the control channel 301 may include, for example, information such as UL grant for permitting uplink communication.
  • the control channel of the leading symbol includes the common control information 321.
  • the common control information 321 is decoded by another terminal device other than the terminal device of the data destination of the section 312. Then, since the common control information 321 indicates the terminal apparatus using the U band in the section 312 and the time for which the terminal apparatus occupies the U band, the other terminal apparatuses need to monitor the control channel. I can know the unnecessary time.
  • the other terminal apparatus monitors the presence or absence of the control channel at timing 322 every two symbols until the section 312 starts, but in section 312, monitoring of the control channel at timing 323 is omitted. Thereby, the processing load of monitoring of the control channel by the terminal device can be reduced. In other words, overhead due to the control channel can be reduced.
  • FIG. 7 is a diagram illustrating an example in which a UL grant 324 is transmitted using a U-band control channel.
  • the UL grant 324 has a transmission timing of, for example, six symbol periods, whereas the transmission unit is two symbols long, so the timing at which the control channel signal can be transmitted is two symbol periods. To come.
  • the transmission timing of the UL grant 324 and the transmission timing of the control channel signal do not necessarily have to match.
  • the base station apparatus when the base station apparatus notifies the terminal apparatus of the common transmission type and starts communication using any of the terminal apparatuses with the U-band, common control is performed. Send information Then, the terminal apparatus other than the terminal apparatus that communicates using the U band omits monitoring of the control channel for each transmission unit while the U band is occupied based on the common control information. For this reason, the processing load of monitoring of the control channel by the terminal device can be reduced, and the overhead by the control channel can be reduced.
  • the feature of the third embodiment is that the transmission type is notified by the control channel transmitted in the leading symbol of the transmission unit.
  • FIG. 8 is a block diagram showing a configuration of base station apparatus 100 according to Embodiment 3.
  • the base station apparatus 100 shown in FIG. 8 deletes the notification information generation unit 110 of the base station apparatus 100 shown in FIG. 1 and adds the LBT processing unit 108 and the control channel generation unit 111 to the LBT processing unit 151 and the control channel generation unit 152. Take the changed configuration.
  • the LBT processing unit 151 detects reception energy in the frequency band of the U band when there is transmission data to be transmitted using the U band to the terminal apparatus, and determines whether or not the U band is vacant. That is, when data to be transmitted using the U band is generated, the LBT processing unit 151 performs LBT processing such as carrier sense. However, even when the transmission data is generated, the LBT processing unit 151 performs the LBT processing at a limited timing. Specifically, since the period during which the LBT process can be performed is set at a predetermined cycle, the LBT processing unit 151 executes the LBT process within the set period.
  • the control channel generation unit 152 generates control channel signals of L band and U band. Specifically, for the U band, the control channel generation unit 152 generates a control channel signal arranged in the leading symbol of the minislot according to the transmission type.
  • the control channel includes notification information for notifying the terminal apparatus of the transmission type determined by the transmission type determination unit 109, in addition to allocation information of data arranged in the minislot. That is, when changing the time length of the transmission unit for the U band, the control channel generation unit 152 generates a control channel signal for notifying of the transmission type.
  • the symbol of the U band immediately after this period is a symbol in which a control channel can be allocated. Then, when a control channel is allocated to this symbol, notification information for notifying a transmission type is included in the control channel.
  • the terminal apparatus can receive the control channel and know the transmission type by monitoring the U-band symbol immediately after the period in which LBT processing is possible. After that, the presence or absence of the control channel is monitored for each transmission unit corresponding to the transmission type, and the terminal apparatus can receive and decode data for each transmission unit.
  • the base station apparatus may transmit notification information included in the control channel again. After being notified of the transmission type, each terminal device monitors the presence or absence of the control channel for each transmission unit according to the transmission type, and therefore receives notification information included in the control channel to change the transmission type. You can know
  • FIG. 9 is a diagram illustrating a specific example of downlink communication according to the third embodiment.
  • FIG. 9 shows communication for each symbol length in the U band.
  • a period 331 in which LBT processing can be performed periodically arrives.
  • the base station apparatus performs LBT processing in this period 331 when data to be transmitted is generated.
  • the base station apparatus arranges and transmits a control channel including notification information in the symbol 332 immediately after the period 331.
  • the terminal apparatus receives the signal of the control channel transmitted in the symbol 332 because the symbol 332 immediately after the period 331 is to be monitored for the presence or absence of the control channel. Then, the terminal device identifies the transmission type from the notification information included in the control channel, and monitors the presence or absence of the control channel for each transmission unit according to the transmission type. In the example illustrated in FIG. 9, since the transmission type having a transmission unit length of 4 symbols is specified, the terminal apparatus sets the symbol 333 as a monitoring target of the presence or absence of the control channel.
  • the transmission type is designated by the notification information included in this control channel, and thereafter, the terminal device , Monitor the presence or absence of a control channel for each transmission unit according to the transmission type. Therefore, it is possible to notify of the change of transmission type by the control channel, and it is possible to eliminate the need for notification of transmission type by upper layer signal such as RRC signaling, for example.
  • the base station apparatus since the base station apparatus notifies the transmission type by the control channel for each transmission unit of the U band, the notification of the transmission type by the signal of the upper layer is unnecessary. it can.
  • the LBT process may not be performed over the entire period 331. That is, for example, in FIG. 9, the period 331 corresponds to a time length of three symbols, but LBT processing may be performed in a period of one symbol or two symbols among them.
  • the control channel may be arranged in the symbol immediately after the LBT processing is performed. Therefore, for example, LBT processing is performed during the first one symbol of period 331, and if it becomes possible to transmit data, the first control channel is allocated to the second symbol in period 331.
  • the terminal apparatus makes the second to third symbols and the symbol 332 in the period 331 in which the control channel can be allocated be monitored for the presence or absence of the control channel.
  • the configurations of base station apparatus 100 and terminal apparatus 200 in the above-described embodiments are merely examples, and the base station apparatus and the terminal apparatus may not necessarily be configured as shown in FIGS.
  • the L band reception unit 101, the U band reception unit 102, the L band transmission unit 117, and the U band transmission unit 118 of the base station apparatus 100 of FIGS. 1 and 8 are configured as one or more radio units. It may be done.
  • the other processing units of the base station apparatus 100 of FIGS. 1 and 8 may be configured as one or more processors.
  • the processing unit 3 may be configured as one or more radio units.
  • the processing unit may be configured as one or more processors.
  • the processor for example, a central processing unit (CPU), a micro processing unit (MPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or a digital signal processor (DSP) may be used. .
  • CPU central processing unit
  • MPU micro processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • DSP digital signal processor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局装置は、免許が必要な第1の周波数帯域と免許が不要な第2の周波数帯域とを利用する通信システムが有する基地局装置(100)であって、前記第2の周波数帯域が他の通信システムによって利用されているか否かを判断する判断部(108、151)と、前記判断部(108、151)による判断結果に基づいて、前記第2の周波数帯域における送信単位の時間長を示す送信タイプを決定する決定部(109)と、前記決定部(109)によって決定された送信タイプを通知する通知情報を送信する送信部(117、118)とを有する。

Description

基地局装置、端末装置、通信システム及び送信方法
 本発明は、基地局装置、端末装置、通信システム及び送信方法に関する。
 現在のネットワークにおいては、モバイル端末(スマートフォンやフィーチャーホン)のトラフィックがネットワークのリソースの大半を占めている。また、モバイル端末が使うトラフィックは、今後も拡大していく傾向にある。
 一方で、IoT(Internet of a things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開に合わせて、多様な要求条件を持つサービスに対応することが求められている。そのため、次世代(例えば、5G(第5世代移動体通信))の通信規格では、4G(第4世代移動体通信)の標準技術(例えば、非特許文献1~11)に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が求められている。なお、次世代通信規格については、3GPPの作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められている(非特許文献12~39)。
 上述したように、多種多様なサービスに対応するために、5Gでは、eMBB(Enhanced Mobile BroadBand)、Massive MTC(Machine Type Communications)及びURLLC(Ultra-Reliable and Low Latency Communication)に分類される多くのユースケースのサポートが想定されている。これらのユースケースに対応するため、例えば、免許が必要な周波数帯域と免許が不要な周波数帯域とを束ねて通信を高速化するライセンスアシスタントアクセス(licensed assisted access(LAA))が3GPPの仕様のRel.13から導入されている。
 LAAでは、例えば携帯電話網などの無線通信システムで使用される免許が必要なライセンスバンド(Licensed band:以下「Lバンド」という)を補助的に用いて、例えば無線LAN(Local Area Network)などに用いられる免許が不要なアンライセンスバンド(Unlicensed band:以下「Uバンド」という)でデータが送受信される。
 Lバンドは免許が必要な周波数帯域であるため、免許を取得した通信事業者等がLバンドに属する特定の周波数帯域を専有し、他の無線通信システムにおける通信との干渉は発生しない。一方、Uバンドは免許が不要であり、例えば無線LANや異なる事業者が運用するLAAなどの他の無線通信システムによっても用いられるため、Uバンドを使用した無線通信が行われる場合には、他の無線通信システムにおける通信との間で干渉が発生し得る。そこで、装置が無線通信を実施する際には、例えばキャリアセンスのように、他の装置による無線通信が実施中であるか否かを確認するLBT(Listen Before Talk)が導入される。4GシステムにおけるLAAでは、送信装置は、LBTによってUバンドを使用可能であるか否かを判断し、使用可能である場合には、次のサブフレームの先頭からデータの送信を実行する。
 5GシステムにおいてもLAAの導入が検討されている。そのため、3GPPの作業部会では、5GシステムにおけるUバンドの周波数帯域がWork item/Study Itemとして検討課題とされている(非特許文献39)。
3GPP TS 36.211 V14.4.0(2017-09) 3GPP TS 36.212 V14.4.0(2017-09) 3GPP TS 36.213 V14.4.0(2017-09) 3GPP TS 36.300 V14.4.0(2017-09) 3GPP TS 36.321 V14.4.0(2017-09) 3GPP TS 36.322 V14.1.0(2017-09) 3GPP TS 36.323 V14.4.0(2017-09) 3GPP TS 36.331 V14.4.0(2017-09) 3GPP TS 36.413 V14.4.0(2017-09) 3GPP TS 36.423 V14.4.0(2017-09) 3GPP TS 36.425 V14.0.0(2017-03) 3GPP TS 37.340 V2.0.0(2017-12) 3GPP TS 38.201 V1.1.0(2017-11) 3GPP TS 38.202 V1.1.0(2017-11) 3GPP TS 38.211 V1.2.0(2017-11) 3GPP TS 38.212 V1.2.0(2017-11) 3GPP TS 38.213 V1.2.0(2017-11) 3GPP TS 38.214 V1.2.0(2017-11) 3GPP TS 38.215 V1.2.0(2017-11) 3GPP TS 38.300 V2.0.0(2017-12) 3GPP TS 38.321 V2.0.0(2017-12) 3GPP TS 38.322 V2.0.0(2017-12) 3GPP TS 38.323 V2.0.0(2017-12) 3GPP TS 38.331 V0.4.0(2017-12) 3GPP TS 38.401 V1.0.0(2017-12) 3GPP TS 38.410 V0.6.0(2017-12) 3GPP TS 38.413 V0.5.0(2017-12) 3GPP TS 38.420 V0.5.0(2017-12) 3GPP TS 38.423 V0.5.0(2017-12) 3GPP TS 38.470 V1.0.0(2017-12) 3GPP TS 38.473 V1.0.0(2017-12) 3GPP TR 38.801 V14.0.0(2017-04) 3GPP TR 38.802 V14.2.0(2017-09) 3GPP TR 38.803 V14.2.0(2017-09) 3GPP TR 38.804 V14.0.0(2017-04) 3GPP TR 38.900 V14.3.1(2017-07) 3GPP TR 38.912 V14.1.0(2017-06) 3GPP TR 38.913 V14.3.0(2017-06) "New SID on NR-based Access to Unlicensed Spectrum", Qualcomm, 3GPP TSG RAN Meeting #75, RP-170828, Dubrovnik, Croatia, March 6-9, 2017
 しかしながら、Uバンドを用いた通信が実行される場合には、Uバンドの周波数利用効率が低いことがあるという問題がある。具体的には、例えば上述した4GシステムのLAAにおいて、LBT処理の結果他の装置が無線通信を実施中でなければ、次のサブフレームの先頭からデータの送信が実行される。したがって、LBT処理が完了してから次のサブフレームの先頭までは、いずれの装置によってもUバンドが利用されず、データの送受信に利用されない周波数帯域が生じることとなる。このため、LBT処理が例えば1ms(ミリ秒)のサブフレームの先頭付近で実行された場合には、次のサブフレームまでの約1msの間、Uバンドが通信に用いられず、周波数利用効率が低下する。
 開示の技術は、かかる点に鑑みてなされたものであって、周波数利用効率の低下を抑制することができる基地局装置、端末装置、通信システム及び送信方法を提供することを目的とする。
 本願が開示する基地局装置は、1つの態様において、免許が必要な第1の周波数帯域と免許が不要な第2の周波数帯域とを利用する通信システムが有する基地局装置であって、前記第2の周波数帯域が他の通信システムによって利用されているか否かを判断する判断部と、前記判断部による判断結果に基づいて、前記第2の周波数帯域における送信単位の時間長を示す送信タイプを決定する決定部と、前記決定部によって決定された送信タイプを通知する通知情報を送信する送信部とを有する。
 本願が開示する基地局装置、端末装置、通信システム及び送信方法の1つの態様によれば、周波数利用効率の低下を抑制することができるという効果を奏する。
図1は、実施の形態1に係る基地局装置の構成を示すブロック図である。 図2は、Uバンドの送信タイプの具体例を示す図である。 図3は、実施の形態1に係る端末装置の構成を示すブロック図である。 図4は、実施の形態1に係る送信タイプ切替処理を示すフロー図である。 図5は、実施の形態1に係るダウンリンク通信の具体例を示す図である。 図6は、実施の形態2に係るダウンリンク通信の具体例を示す図である。 図7は、実施の形態2に係るダウンリンク通信の他の具体例を示す図である。 図8は、実施の形態3に係る基地局装置の構成を示すブロック図である。 図9は、実施の形態3に係るダウンリンク通信の具体例を示す図である。
 以下、本願が開示する基地局装置、端末装置、通信システム及び送信方法の実施の形態について、図面を参照して詳細に説明する。本明細書における課題及び実施の形態は一例であり、本願の権利範囲を限定するものではない。特に、記載の表現が異なっていたとしても技術的に同等であれば、本願の技術を適用可能であり、権利範囲を限定するものではない。そして、各実施の形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
 また、本明細書で使用している用語や記載した技術的内容は、3GPPなど通信に関する規格として仕様書や寄書に記載された用語や技術的内容が適宜用いられても良い。このような仕様書としては、例えば、上述した非特許文献1~38がある。
(実施の形態1)
 図1は、実施の形態1に係る基地局装置100の構成を示すブロック図である。図1に示す基地局装置100は、Lバンド受信部101、Uバンド受信部102、CP(Cyclic Prefix:サイクリックプレフィックス)除去部103、104、FFT(Fast Fourier Transform:高速フーリエ変換)部105、106及び復号部107を有する。これらの処理部は、基地局装置100の受信側の処理部である。また、基地局装置100は、LBT処理部108、送信タイプ決定部109、通知情報生成部110、制御チャネル生成部111、チャネル多重部112、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部113、114、CP付加部115、116、Lバンド送信部117及びUバンド送信部118を有する。これらの処理部は、基地局装置100の送信側の処理部である。
 Lバンド受信部101は、Lバンドの信号を受信する。すなわち、Lバンド受信部101は、免許が必要な周波数帯域の信号を受信する。
 Uバンド受信部102は、Uバンドの信号を受信する。すなわち、Uバンド受信部102は、免許が不要な周波数帯域の信号を受信する。
 CP除去部103、104は、それぞれLバンド及びUバンドの受信信号からOFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)シンボル間に付加されたCPを除去する。すなわち、OFDM方式の無線通信が行われる場合には、無線信号を構成するOFDMシンボル間にシンボル間干渉を防止するためのCPが付加されるため、CP除去部103、104は、このCPを除去する。なお、本実施の形態においては、OFDM方式の無線通信が行われる場合について説明するが、本発明は、OFDM方式以外の無線通信が行われる場合にも適用可能である。したがって、OFDM方式以外の無線通信が行われる場合には、CP除去部103、104は省略可能である。
 FFT部105、106は、それぞれLバンド及びUバンドの受信信号を高速フーリエ変換し、互いに直交する周波数を有する複数のサブキャリアの信号を取得する。すなわち、FFT部105、106は、時間領域の受信信号を周波数領域の信号へ変換することにより、複数のサブキャリアの信号を取得する。なお、FFT部105、106も上記のCP除去部103、104と同様に、OFDM方式の無線通信が行われる場合の処理を実行する処理部であるため、OFDM方式以外の無線通信が行われる場合には省略可能である。
 復号部107は、Lバンド及びUバンドの受信信号を復号して、復号データを取得する。復号データには、基地局装置100の通信相手である端末装置から送信される情報であって、端末装置におけるLBT処理の結果を報告する報告情報などが含まれる。
 LBT処理部108は、端末装置に対してUバンドを用いて送信すべき送信データが発生した場合に、Uバンドの周波数帯域における受信エネルギー検出し、Uバンドが空いているか否かを判断する。すなわち、LBT処理部108は、Uバンドを使用して送信すべきデータが発生した場合に、キャリアセンスなどのLBT処理を実行する。具体的には、LBT処理部108は、Uバンドにおける受信エネルギーが所定の閾値以上である場合には、Uバンドが他の装置によって使用中であると判断する。また、LBT処理部108は、Uバンドにおける受信エネルギーが所定の閾値未満である場合には、Uバンドが空いていると判断する。
 送信タイプ決定部109は、LBT処理部108による過去のLBT処理の結果、復号部107によって取得された過去の報告情報、及びUバンドのトラフィック量などに基づいて、Uバンドの送信タイプを決定する。具体的には、送信タイプ決定部109は、送信単位の時間長が異なる複数の送信タイプの中から、LBT処理の結果等に応じた1つの送信タイプを選択する。
 図2は、Uバンドの送信タイプの具体例を示す図である。図2には、タイプ1~3の3つの送信タイプが例示されている。
 タイプ1は、送信単位であるミニスロット(non-slot)が7シンボル分の時間長を有し、このミニスロット単位でデータが送信されるものである。ミニスロットの先頭の図中斜線で示すシンボルは、例えばPDCCH(Physical Downlink Control CHannel)などの制御チャネルを含むシンボルである。タイプ1によってダウンリンクの通信が行われる場合には、7シンボル長のミニスロットごとにデータの送信を開始可能なタイミングが到来する。
 タイプ2は、送信単位であるミニスロットが4シンボル分の時間長を有し、このミニスロット単位でデータが送信されるものである。タイプ1と同様に、タイプ2においてもミニスロットの先頭のシンボルは、制御チャネルを含む。タイプ2によってダウンリンクの通信が行われる場合には、4シンボル長のミニスロットごとにデータの送信を開始可能なタイミングが到来する。
 タイプ3は、送信単位であるミニスロットが2シンボル分の時間長を有し、このミニスロット単位でデータが送信されるものである。タイプ1と同様に、タイプ3においてもミニスロットの先頭のシンボルは、制御チャネルを含む。タイプ3によってダウンリンクの通信が行われる場合には、2シンボル長のミニスロットごとにデータの送信を開始可能なタイミングが到来する。
 送信タイプ決定部109は、例えば過去のLBT処理の結果、Uバンドが空いていることが多い場合には、例えばタイプ3のように送信単位の時間長が短い送信タイプを選択し、LBT処理の後すぐにデータ送信を開始できるようにする。一方、送信タイプ決定部109は、例えば過去のLBT処理の結果、Uバンドが空いていないことが多い場合には、例えばタイプ1のように送信単位の時間長が長い送信タイプを選択し、制御チャネルによるオーバーヘッドを削減する。また、送信タイプ決定部109は、Uバンドを用いて送信すべきデータのデータ量が大きい場合には、例えばタイプ1のように送信単位の時間長が長い送信タイプを選択しても良い。
 送信タイプ決定部109による送信タイプの決定は、例えば所定の周期で実行されても良いし、LBT処理の結果の傾向が変化した場合などに実行されても良い。
 通知情報生成部110は、送信タイプ決定部109によって決定された送信タイプを端末装置へ通知するための通知情報を生成する。すなわち、通知情報生成部110は、送信単位の時間長が異なる複数の送信タイプのうち、送信タイプ決定部109によって決定された1つの送信タイプを指定する通知情報を生成する。通知情報は、例えば端末装置ごとに固有のRRC(Radio Resource Control)シグナリングなど、上位レイヤの信号として生成される。
 制御チャネル生成部111は、Lバンド及びUバンドの制御チャネルの信号を生成する。具体的には、制御チャネル生成部111は、Uバンドについては、送信タイプに応じてミニスロットの先頭のシンボルに配置される制御チャネルの信号を生成する。この制御チャネルは、ミニスロット内に配置されるデータの割当情報などを含む。すなわち、制御チャネルは、各端末装置宛てのデータがミニスロット内のどのシンボルのどの周波数領域に割り当てられているかを示す割当情報を含む。
 チャネル多重部112は、送信データ、通知情報及び制御チャネルの信号をLバンド及びUバンドのそれぞれの周波数帯域のサブキャリアに割り当て、時間多重及び周波数多重する。なお、チャネル多重部112は、Uバンドについては、LBT処理部108によるLBT処理の結果、Uバンドが空いていると判断された場合に送信データ及び制御チャネルの信号をチャネル多重する。また、チャネル多重部112は、送信タイプ決定部109によって決定された送信タイプに従って、Uバンドのミニスロット内に送信データ及び制御チャネルの信号を時間多重する。
 IFFT部113、114は、それぞれLバンド及びUバンドのサブキャリアごとのデータを逆高速フーリエ変換し、時間領域のOFDMシンボルを取得する。すなわち、IFFT部113、114は、各サブキャリアに割り当てられた周波数領域のデータを時間領域の信号へ変換することにより、OFDMシンボルを取得する。なお、IFFT部113、114は、上記のCP除去部103、104及びFFT部105、106と同様に、OFDM方式の無線通信が行われる場合の処理を実行する処理部であるため、OFDM方式以外の無線通信が行われる場合には省略可能である。
 CP付加部115、116は、それぞれLバンド及びUバンドのOFDMシンボル間にCPを付加し、Lバンド及びUバンドの送信信号を生成する。なお、CP付加部115、116も上記のIFFT部113、114と同様に、OFDM方式の無線通信が行われる場合の処理を実行する処理部であるため、OFDM方式以外の無線通信が行われる場合には省略可能である。
 Lバンド送信部117は、Lバンドの送信信号を送信する。すなわち、Lバンド送信部117は、免許が必要な周波数帯域の送信信号を送信する。この送信信号には、例えば通知情報生成部110によって生成された通知情報などが含まれる。
 Uバンド送信部118は、Uバンドの送信信号を送信する。すなわち、Uバンド送信部118は、免許が不要な周波数帯域の送信信号を送信する。
 次に、基地局装置100から送信された信号を受信する端末装置の構成について説明する。図3は、実施の形態1に係る端末装置200の構成を示すブロック図である。図3に示す端末装置200は、Lバンド受信部201、Uバンド受信部202、CP除去部203、204、FFT部205、206及び復号部207を有する。これらの処理部は、端末装置200の受信側の処理部である。また、端末装置200は、LBT処理部208、報告情報生成部209、チャネル多重部210、IFFT部211、212、CP付加部213、214、Lバンド送信部215及びUバンド送信部216を有する。これらの処理部は、端末装置200の送信側の処理部である。
 Lバンド受信部201は、Lバンドの信号を受信する。すなわち、Lバンド受信部201は、免許が必要な周波数帯域の信号を受信する。Lバンド受信部201の受信信号には、例えば基地局装置100から送信された通知情報などが含まれる。
 Uバンド受信部202は、Uバンドの信号を受信する。すなわち、Uバンド受信部202は、免許が不要な周波数帯域の信号を受信する。
 CP除去部203、204は、それぞれLバンド及びUバンドの受信信号からOFDMシンボル間に付加されたCPを除去する。なお、CP除去部203、204も上記のCP除去部103、104と同様に、OFDM方式の無線通信が行われる場合の処理を実行する処理部であるため、OFDM方式以外の無線通信が行われる場合には省略可能である。
 FFT部205、206は、それぞれLバンド及びUバンドの受信信号を高速フーリエ変換し、互いに直交する周波数を有する複数のサブキャリアの信号を取得する。なお、FFT部205、206も上記のCP除去部203、204と同様に、OFDM方式の無線通信が行われる場合の処理を実行する処理部であるため、OFDM方式以外の無線通信が行われる場合には省略可能である。
 復号部207は、Lバンド及びUバンドの複数のサブキャリアの信号を復号し、端末装置200宛ての復号データを得る。復号部207は、Uバンドについては、例えばRRCシグナリングなどの通知情報によって通知された送信タイプに従って、ミニスロットの先頭のシンボルを監視する。すなわち、復号部207は、送信タイプが例えば上述したタイプ1である場合には、7シンボル長の各ミニスロットの先頭のシンボルを監視し、送信タイプが例えば上述したタイプ3である場合には、2シンボル長の各ミニスロットの先頭のシンボルを監視する。そして、復号部207は、監視したシンボルに制御チャネルの信号が含まれている場合には、この制御チャネルの信号を復号し、制御チャネルの信号が配置されたミニスロット内の端末装置200宛てのデータの割り当て位置を特定する。その後、復号部207は、特定した割り当て位置のデータを復号し、ミニスロット内の端末装置200宛ての復号データを取得する。
 LBT処理部208は、基地局装置100に対してUバンドを用いて送信すべき送信データが発生した場合に、Uバンドの周波数帯域における受信エネルギー検出し、Uバンドが空いているか否かを判断する。すなわち、LBT処理部208は、Uバンドを使用して送信すべきデータが発生した場合に、キャリアセンスなどのLBT処理を実行する。また、LBT処理部208は、基地局装置100からデータの送信を許可された場合にも、データの送信直前に再度LBT処理を実行する。具体的には、LBT処理部208は、Uバンドにおける受信エネルギーが所定の閾値以上である場合には、Uバンドが他の装置によって使用中であると判断する。また、LBT処理部208は、Uバンドにおける受信エネルギーが所定の閾値未満である場合には、Uバンドが空いていると判断する。
 報告情報生成部209は、LBT処理部208によるLBT処理の結果を基地局装置100へ報告するための報告情報を生成する。すなわち、報告情報生成部209は、Uバンドの空き状態を示す報告情報を生成する。報告情報は、Uバンドが空いているのか混雑しているのかの指標となる。
 チャネル多重部210は、送信データ及び報告情報をLバンド及びUバンドのそれぞれの周波数帯域のサブキャリアに割り当て、時間多重及び周波数多重する。なお、チャネル多重部210は、Uバンドについては、LBT処理部208によるLBT処理の結果、Uバンドが空いていると判断された場合に送信データをチャネル多重する。
 IFFT部211、212は、それぞれLバンド及びUバンドのサブキャリアごとのデータを逆高速フーリエ変換し、時間領域のOFDMシンボルを取得する。すなわち、IFFT部211、212は、各サブキャリアに割り当てられた周波数領域のデータを時間領域の信号へ変換することにより、OFDMシンボルを取得する。なお、IFFT部211、212は、OFDM方式の無線通信が行われる場合の処理を実行する処理部であるため、OFDM方式以外の無線通信が行われる場合には省略可能である。
 CP付加部213、214は、それぞれLバンド及びUバンドのOFDMシンボル間にCPを付加し、Lバンド及びUバンドの送信信号を生成する。なお、CP付加部213、214も上記のIFFT部211、212と同様に、OFDM方式の無線通信が行われる場合の処理を実行する処理部であるため、OFDM方式以外の無線通信が行われる場合には省略可能である。
 Lバンド送信部215は、Lバンドの送信信号を送信する。すなわち、Lバンド送信部215は、免許が必要な周波数帯域の送信信号を送信する。
 Uバンド送信部216は、Uバンドの送信信号を送信する。すなわち、Uバンド送信部216は、免許が不要な周波数帯域の送信信号を送信する。
 次いで、実施の形態1に係るUバンドの送信タイプの切替処理について、図4に示すフロー図を参照しながら説明する。以下に説明する送信タイプ切替処理は、基地局装置100によって実行される。
 基地局装置100及び端末装置200は、いずれもUバンドを利用してデータを送信する場合、LBT処理を実行してUバンドが空いているか否かを判断する。すなわち、基地局装置100のLBT処理部108及び端末装置200のLBT処理部208は、LBT処理を実行する。そして、端末装置200のLBT処理部208によるLBT処理の結果は、報告情報によって基地局装置100へ報告される。報告情報は、Lバンド及びUバンドのいずれを用いて端末装置200から送信されても良い。
 報告情報は、基地局装置100のLバンド受信部101又はUバンド受信部102によって受信され、復号部107によって復号されることにより、送信タイプ決定部109によって取得される(ステップS101)。また、送信タイプ決定部109によって、基地局装置100のLBT処理部108からLBT処理の結果が取得される(ステップS102)。これにより、送信タイプ決定部109は、基地局装置100及び端末装置200のLBT処理の結果から、Uバンドの空き状態を把握することが可能となる。
 そこで、送信タイプ決定部109によって、Uバンドの空き状態及びUバンドを用いて送信すべきデータのデータ量などに基づいて、Uバンドの送信タイプが決定される(ステップS103)。具体的には、送信タイプ決定部109によって、送信単位の時間長が異なる複数の送信タイプの中から、1つの送信タイプが選択される。このとき、例えばUバンドが混雑しており空いていないことが多い場合には、送信単位の時間長が長い送信タイプが選択されるようにし、送信単位ごとに制御チャネルの有無を監視する端末装置200の負担を軽減しても良い。また、例えばUバンドが空いていることが多い場合には、送信単位の時間長が短い送信タイプが選択されるようにし、データの送信開始が可能なタイミングが頻繁に到来するようにして、LBT処理後データ送信開始までの時間を短縮しても良い。さらに、例えばUバンドを用いて送信すべきデータのデータ量が大きい場合には、送信単位の時間長が長い送信タイプが選択されるようにし、送信単位ごとに伝送可能なデータ量を大きくしても良い。
 決定された送信タイプは、通知情報生成部110へ通知され、通知情報生成部110によって、送信タイプを通知するための通知情報が生成される(ステップS104)。通知情報は、例えば端末装置200に固有のRRCシグナリングなど、上位レイヤの信号として生成される。したがって、端末装置200それぞれに対して、異なる送信タイプを個別に通知することができる。また、通知情報によって送信タイプを端末装置200へ通知することにより、送信タイプを現在の送信タイプから異なる送信タイプへ切り替えることができる。
 通知情報生成部110によって生成された通知情報は、チャネル多重部112によって、送信データ及び制御チャネルの信号などとチャネル多重され(ステップS105)、得られた多重信号は、IFFT部113、114によって逆高速フーリエ変換される(ステップS106)。そして、CP付加部115、116によって、逆高速フーリエ変換により得られた各OFDMシンボルにCPが付加され(ステップS107)、Lバンド送信部117及びUバンド送信部118から送信される(ステップS108)。
 通知情報が端末装置200によって受信されると、端末装置200は、通知情報によって示される送信タイプを検出する。そして、端末装置200の復号部207は、送信タイプに従って、送信単位の先頭のシンボルのタイミングごとに、制御チャネルの信号の有無を監視する。このため、Uバンドにおける送信開始可能なタイミングが送信単位ごとに到来することになり、LBT処理からデータの送信開始までの時間を短縮して、周波数利用効率の低下を抑制することができる。
 図5は、実施の形態1に係るダウンリンク通信の具体例を示す図である。図5の上図に示すように、Lバンドにおいては、所定の周期でLバンドの制御チャネル301が配置される。この制御チャネル301には、例えばアップリンクの通信を許可するUL(UpLink)グラントなどの情報が含まれていても良い。
 一方、図5の下図に示すように、Uバンドにおいては、送信タイプによって指定された送信単位ごとに、Uバンドの制御チャネルが送信され得るシンボルが配置される。図5においては、送信タイプによって指定される送信単位が2シンボル長であるため、図中斜線で示す各送信単位の先頭のシンボルが、制御チャネルが送信され得るシンボルとなっている。したがって、基地局装置100が例えば区間311においてLBT処理を実行し、Uバンドが空いていると判断した場合、基地局装置100は、次の送信単位の先頭シンボルを用いて制御チャネルの信号を送信し、区間312においてデータの送信をすることができる。つまり、LBT処理が実行される区間311の終了からデータが送信される区間312の開始までの時間が最大でも2シンボル長に抑えられ、Uバンドが通信に用いられない無駄な時間を短縮することができる。結果として、周波数利用効率の低下を抑制することができる。
 なお、基地局装置100は、区間312の先頭のシンボルで制御チャネルの信号を送信するため、この制御チャネルによって、送信データに対するリソース割り当てを端末装置200へ通知することができる。このため、区間312においては、先頭のシンボル以外には制御チャネルの信号が配置されず、端末装置200宛てのデータに最大限にリソースを割り当てることができる。ただし、端末装置200以外の他の端末装置は、送信単位が2シンボル長の送信タイプが通知されていれば、2シンボルごとに制御チャネルの有無を継続して監視する。すなわち、他の端末装置は、図中矢印で示すタイミング313において、自装置宛ての制御チャネルの有無を監視する。
 以上のように、本実施の形態によれば、基地局装置が、送信単位の時間長が異なる送信タイプから1つの送信タイプを選択し、Uバンドにおける送信タイプを端末装置へ通知する。そして、端末装置は、通知された送信タイプに従って、送信単位ごとに制御チャネルの有無を監視する。このため、データの送信開始が可能なタイミングを送信タイプによって指定し、LBT処理からデータの送信開始までの時間を短縮することができ、周波数利用効率の低下を抑制することができる。
(実施の形態2)
 実施の形態2の特徴は、端末装置による制御チャネルの監視周期を共通制御情報によって制御する点である。
 実施の形態2に係る基地局装置及び端末装置の構成は、実施の形態1と同様であるため、その説明を省略する。ただし、実施の形態2においては、基地局装置100の通知情報生成部110は、送信タイプ決定部109によって決定された送信タイプを端末装置へ通知するための通知情報を、端末装置に共通の信号として生成する。すなわち、通知情報生成部110は、例えば端末装置に共通のRRCシグナリングなどの上位レイヤの信号として、通知情報を生成する。したがって、基地局装置100と通信する端末装置には、共通の送信タイプが通知され、各端末装置は、同一のシンボルを対象として制御チャネルの有無を監視することになる。
 また、基地局装置100の制御チャネル生成部111は、Uバンドの制御チャネルに、共通制御情報を配置する。共通制御情報は、Uバンドを用いて送信されるデータの宛先の端末装置と、この端末装置に対するデータの送信が継続する送信単位の数とを示す。すなわち、共通制御情報は、Uバンドを利用する端末装置とこの端末装置によってUバンドが占有される時間とを示す情報である。
 実施の形態2においては、送信タイプが各端末装置に共通であるため、各端末装置が同一の送信タイプに従って同じ周期で制御チャネルの有無を監視する。そして、いずれかの端末装置に対してUバンドを用いた通信が開始される際には、通信が開始される送信単位の先頭の制御チャネルに、共通制御情報が含まれる。共通制御情報には、Uバンドが占有される時間が示されているため、Uバンドによって送信されるデータの宛先となる端末装置以外の他の端末装置は、制御チャネルの有無の監視が不要な時間を共通制御情報から知ることができる。すなわち、いずれかの端末装置がUバンドを占有する時間は、他の端末装置宛てのデータがUバンドを用いて送信されない時間であるため、この時間は、他の端末装置にとって制御チャネルの有無の監視が不要な時間である。そこで、他の端末装置は、共通制御情報に基づいて、Uバンドが占有される間は制御チャネルの監視を省略する。これにより、端末装置による制御チャネルの監視の処理負荷を低減することができる。換言すれば、制御チャネルによるオーバーヘッドを低減することができる。
 図6は、実施の形態2に係るダウンリンク通信の具体例を示す図である。図6において、図5と同じ部分には同じ符号を付す。図6の上図に示すように、Lバンドにおいては、所定の周期でLバンドの制御チャネル301が配置される。この制御チャネル301には、例えばアップリンクの通信を許可するULグラントなどの情報が含まれていても良い。
 一方、図6の下図に示すように、Uバンドにおいては、送信タイプによって指定された送信単位ごとに、Uバンドの制御チャネルが送信され得るシンボルが配置される。図6においては、送信タイプによって指定される送信単位が2シンボル長であるため、図中斜線で示す各送信単位の先頭のシンボルが、制御チャネルが送信され得るシンボルとなっている。したがって、基地局装置100が例えば区間311においてLBT処理を実行し、Uバンドが空いていると判断した場合、基地局装置100は、次の送信単位の先頭シンボルを用いて制御チャネルの信号を送信し、区間312においてデータの送信をすることができる。つまり、LBT処理が実行される区間311の終了からデータが送信される区間312の開始までの時間が最大でも2シンボル長に抑えられ、Uバンドが通信に用いられない無駄な時間を短縮することができる。結果として、周波数利用効率の低下を抑制することができる。
 また、基地局装置100が区間312においてデータの送信をする際、先頭シンボルの制御チャネルには共通制御情報321が含まれる。共通制御情報321は、区間312のデータの宛先の端末装置以外の他の端末装置によって復号される。そして、共通制御情報321には、区間312においてUバンドを利用する端末装置とこの端末装置によってUバンドが占有される時間とが示されているため、他の端末装置は、制御チャネルの監視が不要な時間を知ることができる。
 そこで、他の端末装置は、区間312が開始するまでは、2シンボルごとにタイミング322において制御チャネルの有無を監視するが、区間312では、タイミング323における制御チャネルの監視を省略する。これにより、端末装置による制御チャネルの監視の処理負荷を低減することができる。換言すれば、制御チャネルによるオーバーヘッドを低減することができる。
 なお、図6においては、ULグラントがLバンドの制御情報301によって送信されるものとしたが、ULグラントは、Uバンドを用いて送信されても良い。図7は、Uバンドの制御チャネルを用いてULグラント324が送信される例を示す図である。図7において、図5、6と同じ部分には同じ符号を付す。図7に示すように、ULグラント324は、例えば6シンボル周期で送信タイミングが到来するのに対し、送信単位が2シンボル長であるため、制御チャネルの信号が送信され得るタイミングは2シンボル周期で到来する。このように、ULグラント324の送信タイミングと制御チャネルの信号の送信タイミングとは、必ずしも一致しなくても良い。
 以上のように、本実施の形態によれば、基地局装置が、共通の送信タイプを端末装置へ通知し、いずれかの端末装置とUバンドを用いた通信を開始する際には、共通制御情報を送信する。そして、Uバンドを用いて通信する端末装置以外の他の端末装置は、共通制御情報に基づいて、Uバンドが占有される間は送信単位ごとの制御チャネルの監視を省略する。このため、端末装置による制御チャネルの監視の処理負荷を低減することができ、制御チャネルによるオーバーヘッドを低減することができる。
(実施の形態3)
 実施の形態3の特徴は、送信単位の先頭シンボルで送信される制御チャネルによって、送信タイプを通知する点である。
 図8は、実施の形態3に係る基地局装置100の構成を示すブロック図である。図8において、図1と同じ部分には同じ符号を付し、その説明を省略する。図8に示す基地局装置100は、図1に示す基地局装置100の通知情報生成部110を削除し、LBT処理部108及び制御チャネル生成部111をLBT処理部151及び制御チャネル生成部152に変更した構成を採る。
 LBT処理部151は、端末装置に対してUバンドを用いて送信すべき送信データが発生した場合に、Uバンドの周波数帯域における受信エネルギー検出し、Uバンドが空いているか否かを判断する。すなわち、LBT処理部151は、Uバンドを使用して送信すべきデータが発生した場合に、キャリアセンスなどのLBT処理を実行する。ただし、LBT処理部151は、送信データが発生した場合でも、限られたタイミングでLBT処理を実行する。具体的には、LBT処理が可能な期間が所定の周期で設定されているため、LBT処理部151は、設定された期間内にLBT処理を実行する。
 制御チャネル生成部152は、Lバンド及びUバンドの制御チャネルの信号を生成する。具体的には、制御チャネル生成部152は、Uバンドについては、送信タイプに応じてミニスロットの先頭のシンボルに配置される制御チャネルの信号を生成する。この制御チャネルは、ミニスロット内に配置されるデータの割当情報の他に、送信タイプ決定部109によって決定された送信タイプを端末装置へ通知するための通知情報を含む。つまり、制御チャネル生成部152は、Uバンドについて送信単位の時間長を変更する際に、送信タイプを通知する制御チャネルの信号を生成する。
 実施の形態3においては、LBT処理が可能な期間が設定されているため、この期間の直後のUバンドのシンボルは、制御チャネルが配置され得るシンボルである。そして、このシンボルに制御チャネルが配置される場合には、送信タイプを通知する通知情報が制御チャネルに含まれる。端末装置は、LBT処理が可能な期間の直後のUバンドのシンボルを監視することにより、制御チャネルを受信して送信タイプを知ることができる。そして、その後は、送信タイプに応じた送信単位ごとに制御チャネルの有無を監視し、端末装置は、送信単位ごとのデータを受信及び復号することができる。
 また、基地局装置は、一度送信タイプを通知した後に送信タイプを変更する場合には、再度制御チャネルに通知情報を含めて送信すれば良い。送信タイプが通知された後は、各端末装置は、送信タイプに応じた送信単位ごとに制御チャネルの有無を監視しているため、制御チャネルに含まれる通知情報を受信して、送信タイプの変更を知ることができる。
 図9は、実施の形態3に係るダウンリンク通信の具体例を示す図である。図9は、Uバンドにおけるシンボル長ごとの通信を示す。図9に示すように、実施の形態3では、LBT処理が可能な期間331が周期的に到来する。基地局装置は、送信すべきデータが発生した場合、この期間331においてLBT処理を実行する。そして、基地局装置は、LBT処理を実行した場合、期間331の直後のシンボル332に通知情報を含む制御チャネルを配置して送信する。
 端末装置は、期間331直後のシンボル332を制御チャネルの有無の監視対象としているため、シンボル332において送信された制御チャネルの信号を受信する。そして、端末装置は、制御チャネルに含まれる通知情報から送信タイプを特定し、送信タイプに従った送信単位ごとに制御チャネルの有無を監視する。図9に示す例では、送信単位が4シンボル長の送信タイプが特定されるため、端末装置は、シンボル333を制御チャネルの有無の監視対象とする。
 このように、期間331の直後のシンボル332に最初の制御チャネルが配置されると決定されていれば、この制御チャネルに含まれる通知情報によって送信タイプが指定されるため、以後は、端末装置は、送信タイプに応じた送信単位ごとに制御チャネルの有無を監視する。このため、制御チャネルによって送信タイプの変更を通知することができ、例えばRRCシグナリングなどの上位レイヤの信号による送信タイプの通知を不要にすることができる。
 以上のように、本実施の形態によれば、基地局装置は、Uバンドの送信単位ごとの制御チャネルによって送信タイプを通知するため、上位レイヤの信号による送信タイプの通知を不要にすることができる。
 なお、上記実施の形態3においては、期間331の全期間にわたってLBT処理が実行されなくても良い。すなわち、例えば図9においては、期間331が3シンボル分の時間長に相当するが、このうちの1シンボル分又は2シンボル分の期間においてLBT処理が実行されても良い。この場合、LBT処理の結果、データの送信が可能であれば、LBT処理が実行された直後のシンボルに制御チャネルが配置されても良い。したがって、例えば期間331の最初の1シンボル分の期間にLBT処理が実行され、データの送信が可能となれば、期間331内の2シンボル目に最初の制御チャネルが配置される。このようにする場合、端末装置は、制御チャネルが配置され得る期間331内の2~3シンボル目及びシンボル332を制御チャネルの有無の監視対象とする。
 なお、上記各実施の形態における基地局装置100及び端末装置200の構成は一例に過ぎず、基地局装置及び端末装置は、必ずしも図1、3、8のように構成されなくても良い。具体的には、例えば、図1、8の基地局装置100のLバンド受信部101、Uバンド受信部102、Lバンド送信部117及びUバンド送信部118が1つ又は複数の無線部として構成されても良い。また、図1、8の基地局装置100のその他の処理部が1つ又は複数のプロセッサとして構成されても良い。同様に、図3の端末装置200のLバンド受信部201、Uバンド受信部202、Lバンド送信部215及びUバンド送信部216が1つ又は複数の無線部として構成されても良く、その他の処理部が1つ又は複数のプロセッサとして構成されても良い。ここで、プロセッサとしては、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)又はDSP(Digital Signal Processor)などを用いることができる。
 101、201 Lバンド受信部
 102、202 Uバンド受信部
 103、104、203、204 CP除去部
 105、106、205、206 FFT部
 107、207 復号部
 108、151、208 LBT処理部
 109 送信タイプ決定部
 110 通知情報生成部
 111、152 制御チャネル生成部
 112、210 チャネル多重部
 113、114、211、212 IFFT部
 115、116、213、214 CP付加部
 117、215 Lバンド送信部
 118、216 Uバンド送信部
 209 報告情報生成部

Claims (10)

  1.  免許が必要な第1の周波数帯域と免許が不要な第2の周波数帯域とを利用する通信システムが有する基地局装置であって、
     前記第2の周波数帯域が他の通信システムによって利用されているか否かを判断する判断部と、
     前記判断部による判断結果に基づいて、前記第2の周波数帯域における送信単位の時間長を示す送信タイプを決定する決定部と、
     前記決定部によって決定された送信タイプを通知する通知情報を送信する送信部と
     を有することを特徴とする基地局装置。
  2.  前記第2の周波数帯域に関する制御チャネルの信号を生成する生成部をさらに有し、
     前記送信部は、
     前記判断部によって前記第2の周波数帯域が他の通信システムによって利用されていないと判断された場合、前記生成部によって生成された制御チャネルの信号を前記第2の周波数帯域の送信単位の先頭に配置して送信する
     ことを特徴とする請求項1記載の基地局装置。
  3.  前記生成部は、
     前記第2の周波数帯域の送信単位におけるデータの割当情報を含む制御チャネルの信号を生成することを特徴とする請求項2記載の基地局装置。
  4.  前記生成部は、
     前記第2の周波数帯域が1つの端末装置宛てのデータ送信に利用される場合、当該1つの端末装置宛てのデータ送信が継続する時間を示す共通制御情報であって、前記1つの端末装置以外の他の端末装置宛ての共通制御情報を含む制御チャネルの信号を生成することを特徴とする請求項2記載の基地局装置。
  5.  前記生成部は、
     前記第2の周波数帯域を利用して端末装置がデータ送信することを許可する許可情報を含む制御チャネルの信号を生成することを特徴とする請求項2記載の基地局装置。
  6.  前記生成部は、
     前記決定部によって決定された送信タイプを通知する通知情報を含む制御チャネルの信号を生成することを特徴とする請求項2記載の基地局装置。
  7.  免許が必要な第1の周波数帯域と免許が不要な第2の周波数帯域とを利用する通信システムが有する端末装置であって、
     前記第2の周波数帯域における送信単位の時間長を示す送信タイプを通知する通知情報を受信する受信部と、
     前記受信部によって受信された通知情報から送信タイプを特定し、送信タイプに応じた送信単位ごとに制御チャネルの信号の有無を監視し、制御チャネルの信号がある送信単位から自装置宛てのデータを復号する復号部と
     を有することを特徴とする端末装置。
  8.  前記復号部は、
     制御チャネルの信号が、自装置とは異なる端末装置宛てのデータ送信が継続する時間を示す共通制御情報を含む場合に、前記共通制御情報によって示される時間の間、制御チャネルの信号の有無の監視を省略することを特徴とする請求項7記載の端末装置。
  9.  免許が必要な第1の周波数帯域と免許が不要な第2の周波数帯域とを利用して無線通信する基地局装置と端末装置とを有する通信システムであって、
     前記基地局装置は、
     前記第2の周波数帯域が他の通信システムによって利用されているか否かを判断する判断部と、
     前記判断部による判断結果に基づいて、前記第2の周波数帯域における送信単位の時間長を示す送信タイプを決定する決定部と、
     前記決定部によって決定された送信タイプを通知する通知情報を送信する送信部とを有し、
     前記端末装置は、
     前記通知情報を受信する受信部と、
     前記受信部によって受信された通知情報から送信タイプを特定し、送信タイプに応じた送信単位ごとに制御チャネルの信号の有無を監視し、制御チャネルの信号がある送信単位から自装置宛てのデータを復号する復号部とを有する
     ことを特徴とする通信システム。
  10.  免許が必要な第1の周波数帯域と免許が不要な第2の周波数帯域とを利用する通信システムにおける送信方法であって、
     前記第2の周波数帯域が他の通信システムによって利用されているか否かを判断し、
     判断結果に基づいて、前記第2の周波数帯域における送信単位の時間長を示す送信タイプを決定し、
     決定された送信タイプを通知する通知情報を送信する
     処理を有することを特徴とする送信方法。
PCT/JP2018/000522 2018-01-11 2018-01-11 基地局装置、端末装置、通信システム及び送信方法 WO2019138512A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/000522 WO2019138512A1 (ja) 2018-01-11 2018-01-11 基地局装置、端末装置、通信システム及び送信方法
CN201880085967.0A CN111630884A (zh) 2018-01-11 2018-01-11 基站装置、终端装置、通信系统以及发送方法
JP2019564216A JPWO2019138512A1 (ja) 2018-01-11 2018-01-11 基地局装置、端末装置、通信システム及び送信方法
US16/925,221 US20200344757A1 (en) 2018-01-11 2020-07-09 Base station device, terminal device, communication system, and transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000522 WO2019138512A1 (ja) 2018-01-11 2018-01-11 基地局装置、端末装置、通信システム及び送信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/925,221 Continuation US20200344757A1 (en) 2018-01-11 2020-07-09 Base station device, terminal device, communication system, and transmission method

Publications (1)

Publication Number Publication Date
WO2019138512A1 true WO2019138512A1 (ja) 2019-07-18

Family

ID=67218954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000522 WO2019138512A1 (ja) 2018-01-11 2018-01-11 基地局装置、端末装置、通信システム及び送信方法

Country Status (4)

Country Link
US (1) US20200344757A1 (ja)
JP (1) JPWO2019138512A1 (ja)
CN (1) CN111630884A (ja)
WO (1) WO2019138512A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351881B (zh) * 2018-04-04 2021-11-19 展讯通信(上海)有限公司 信道接入方法及装置、存储介质、终端、基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151729A1 (ja) * 2014-03-31 2015-10-08 株式会社Nttドコモ 移動局、基地局、上りリンク信号送信方法及び上りリンク信号受信方法
WO2017130801A1 (ja) * 2016-01-26 2017-08-03 株式会社Nttドコモ 基地局及び送信方法
WO2017142031A1 (ja) * 2016-02-19 2017-08-24 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017170809A1 (ja) * 2016-03-31 2017-10-05 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793123B (zh) * 2016-12-30 2020-07-03 宇龙计算机通信科技(深圳)有限公司 一种迷你时隙配置及使用方法及智能终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151729A1 (ja) * 2014-03-31 2015-10-08 株式会社Nttドコモ 移動局、基地局、上りリンク信号送信方法及び上りリンク信号受信方法
WO2017130801A1 (ja) * 2016-01-26 2017-08-03 株式会社Nttドコモ 基地局及び送信方法
WO2017142031A1 (ja) * 2016-02-19 2017-08-24 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017170809A1 (ja) * 2016-03-31 2017-10-05 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "FrameStructure for NR unlicensed operation", 3GPP TSG-RAN WG1#86B R1-1609508, 14 October 2016 (2016-10-14), XP051149547 *
NOKIA NETWORKS: "On DL transmission detection and UL subframe indication for LAA", 3GPP TSG-RAN R1-155602, 9 October 2015 (2015-10-09), XP051002466 *

Also Published As

Publication number Publication date
US20200344757A1 (en) 2020-10-29
JPWO2019138512A1 (ja) 2020-12-24
CN111630884A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
US10917885B2 (en) Base station, method, computer readable medium, and system for radio communication for suppressing load of blind decoding using a control signal
KR102130953B1 (ko) Lte 셀의 타이밍 정렬 및 비허가된 스펙트럼 상의 오퍼레이터 간 공존을 위한 시스템 및 방법
CN110601809B (zh) 信息发送方法及装置、信息接收方法及装置
KR102703492B1 (ko) 스케줄링 요청을 송수신하는 방법 및 장치
CN108141383B (zh) 配置修改的空口的系统和方法
US10064230B2 (en) Methods and devices enabling resource sharing for device-to-device communication in unlicensed band
JP7020529B2 (ja) ユーザ機器、基地局、システム、及び方法
CN113207182A (zh) 切换资源池的方法、终端设备和通信设备
CN112469127B (zh) 一种通信方法、终端及网络设备
CN107926049A (zh) 用于在免许可频带中发送数据的方法和装置
WO2017166245A1 (zh) 一种资源管理方法及相关设备
WO2014174879A1 (ja) 通信制御装置、通信制御方法、無線通信システム及び端末装置
JP2019511879A (ja) 情報伝送方法およびデバイス
TW201813441A (zh) 經由錨定載波的小區存取方法和裝置
CN111867089A (zh) 一种资源分配方法及设备
CN106658725B (zh) 一种数据传输方法及装置
CN109600820B (zh) 一种数据传输方法、网络设备及终端设备
JP2024532390A (ja) 第1のユーザ装置の方法、第1のユーザ装置、及び第2のユーザ装置
US20200344757A1 (en) Base station device, terminal device, communication system, and transmission method
CN116491085A (zh) 探测参考信号的发送和接收方法以及装置
KR20190098980A (ko) 정보를 전송하는 방법, 네트워크 장치와 단말 장치
US20210022012A1 (en) Base station device, terminal device, wireless communication system, and transmission method
US11696303B2 (en) Service transmission method, base station, and terminal
WO2019064445A1 (ja) 基地局装置、端末装置、無線通信システム及び送信タイミング設定方法
JP2023541600A (ja) ユーザ機器アクセス方法、共有キャリア基地局、ユーザ機器、コンピュータ可読記録媒体、及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900434

Country of ref document: EP

Kind code of ref document: A1