WO2017128768A1 - 用于快速自检血液的多通道微流控芯片 - Google Patents

用于快速自检血液的多通道微流控芯片 Download PDF

Info

Publication number
WO2017128768A1
WO2017128768A1 PCT/CN2016/101868 CN2016101868W WO2017128768A1 WO 2017128768 A1 WO2017128768 A1 WO 2017128768A1 CN 2016101868 W CN2016101868 W CN 2016101868W WO 2017128768 A1 WO2017128768 A1 WO 2017128768A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
analysis
blood
blood cell
platform
Prior art date
Application number
PCT/CN2016/101868
Other languages
English (en)
French (fr)
Inventor
张贯京
Original Assignee
深圳市贝沃德克生物技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市贝沃德克生物技术研究院有限公司 filed Critical 深圳市贝沃德克生物技术研究院有限公司
Publication of WO2017128768A1 publication Critical patent/WO2017128768A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices

Definitions

  • the present invention relates to the field of blood detection technology, and more particularly to a multi-channel microfluidic chip for rapid self-testing of blood.
  • the microfluidic chip is a small-scale analytical experimental platform that integrates the functions of blood sample preparation, reaction, separation, and detection.
  • Microfluidic chip analysis completes the whole process of automatic analysis with micron-scale chips as the operating platform. Its device features mainly an effective structure for accommodating fluids, such as channels or reaction chambers. It has strong integration, and its advantages include compact size and use. Small sample size, fast reaction rate, high throughput, low pollution, disposable, etc., which makes it a huge potential for research in the fields of biology, chemistry, medicine, electronics, machinery, etc. Research, drug synthesis screening, environmental monitoring and protection, health quarantine, forensic identification, detection of biological reagents, and many other fields.
  • the microfluidic chip can carry a variety of unit technologies and its flexible combination and scale integration features make it an important platform for various systems research, and its application in cell biology is expanding, which is in the field of biomedical analysis. Future direction. With the development of the society, the concept of family health care has been deeply rooted in the hearts of the people, and various home medical products are constantly being introduced. However, the basic health examination content of blood testing still depends on the diagnosis and treatment equipment of hospitals. The blood test function, and the medical device is large and inconvenient to carry, which makes the blood operation of the household self-test difficult, which brings inconvenience.
  • the main object of the present invention is to provide a multi-channel microfluidic chip for rapid self-testing of blood, which aims to solve the problem that the existing medical equipment cannot realize one-time multiple blood detecting functions and is inconvenient to carry. Problem solution
  • the present invention provides a multi-channel microfluidic chip for rapid self-testing blood, comprising a substrate and a cover sheet, wherein the cover sheet is integrated with a sampling channel, an inertial separation channel, and a shunt Channel, plasma analysis channel, and blood cell analysis channel, the injection channel, the inertial separation channel, and the shunt channel Connected once, the shunt channel is connected to the plasma analysis channel and the blood cell analysis channel by a Y-type structure, wherein:
  • the injection channel is used to input blood to be tested
  • the inertial separation channel separates the blood into plasma and blood cells, and the plasma and blood cells flow into the shunt channel;
  • the shunt channel detects the plasma by the plasma into the plasma analysis channel through the sputum structure, and inserts the blood cells into the blood cell analysis channel to detect and analyze blood cells.
  • the cover sheet further integrates a waste liquid channel, and the plasma analysis channel and the blood cell analysis channel are connected to the waste liquid channel, and the waste liquid channel is used for analyzing the plasma and blood cells.
  • the resulting waste liquid is exported.
  • the plasma analysis channel comprises a hepatitis A analysis platform, a hepatitis B analysis platform, an arthritis analysis platform, and a myocardial infarction analysis platform.
  • the hepatitis A analysis platform comprises an IgM detection unit and an IgA detection unit;
  • the hepatitis B analysis platform comprises an HBsAg detection unit, a HBsAb detection unit, an HBeAg detection unit, an HBeAb detection unit, and an HBcAb detection unit;
  • the analysis platform includes an RF-IgM detection unit, an RF-IgA detection unit, an RF-IgG detection unit, and an RF-IgE detection unit;
  • the myocardial infarction analysis platform includes an hs-CRP detection unit and a CK-MB detection unit;
  • the platform determines plasma detection results by synthesizing plasma detection data from various internal detection units.
  • the blood cell analysis channel comprises a platelet counting platform, a red blood cell counting platform, a hemoglobin analysis platform, a white blood cell counting platform and a blood type analysis platform.
  • the platelet counting platform comprises a platelet sieve and a platelet counter;
  • the red blood cell counting platform comprises a red blood cell sieve, a red blood cell drainage tube and a red blood cell counter; and the platelet counting platform separates the bleeding by controlling the tube size of the platelet sieve
  • the platelets in the cells are counted by a platelet counter;
  • the red blood cell counting platform separates red blood cells in the hemorrhagic cells by controlling the size of the tube of the red blood cell sieve, and counts by a red blood cell counter;
  • the white blood cell counting platform controls the pipeline by itself The white blood cells in the hemorrhagic cells are separated and counted.
  • the blood cell analysis platform performs hemoglobin separation assay, and the remaining white blood cells are counted by the white blood cell counting platform, and enter the blood type analysis platform for blood type genotype analysis.
  • the hemoglobin analysis platform comprises a red blood cell lysis unit, a hemoglobin test unit and a valve, wherein:
  • the red blood cell lysis unit and the hemoglobin test unit are both disc structures, and the two are vertically arranged
  • valve is disposed between the red blood cell lysis unit and the hemoglobin test unit;
  • the erythrocyte lysis unit is provided with a hemolytic agent.
  • the injection channel, the inertial separation channel, the shunt channel, the plasma analysis channel, the blood cell analysis channel, and the waste liquid channel all adopt a curvature structure.
  • the multi-channel microfluidic chip for rapid self-checking blood adopts the above technical solution, and achieves the following beneficial effects:
  • the multi-channel microfluidic chip passes through the centimeter scale
  • the integrated sampling channel, separation area, shunt channel, analysis platform and waste liquid channel on the chip realize a one-time multi-function blood detection function, and the volume is small and easy to carry, which is convenient for household self-test use.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a multi-channel microfluidic chip for rapid self-testing blood according to the present invention.
  • FIG. 2 is a schematic structural view of a preferred embodiment of an inertial separation channel of a multi-channel microfluidic chip for rapid self-testing of blood according to the present invention
  • FIG. 3 is a schematic structural view of a preferred embodiment of a plasma analysis channel of a multi-channel microfluidic chip for rapid self-testing of blood according to the present invention
  • FIG. 4 is a schematic structural view of a preferred embodiment of a blood cell analysis channel of a multi-channel microfluidic chip for rapid self-testing of blood according to the present invention
  • FIG. 5 is a schematic structural view of a preferred embodiment of a hemoglobin assay platform for a multi-channel microfluidic chip for rapid self-testing of blood according to the present invention.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a multi-channel microfluidic chip for rapidly self-checking blood according to the present invention.
  • the multi-channel microfluidic chip comprises a substrate 1 and a cover sheet 2, and the cover sheet 2 may be, but not limited to, made of polydimethylsiloxane (PDMS), the cover
  • PDMS polydimethylsiloxane
  • the microfluidic channel structure for realizing various blood test functions is integrated in the sheet 2, and includes a sample channel 21, an inertial separation channel 22, a shunt channel 23, a plasma analysis channel 24, a blood cell analysis channel 25, and a waste liquid channel 26.
  • the injection channel 21 is connected to the inertial separation channel 22 by a pupil structure for connecting to the blood vessel to input blood to be examined.
  • the inertial passage 22 communicates with the inlet of the split passage 23.
  • the shunt passage 23 is a Y-shaped structure including an inlet and two outlets, and the two outlets of the split passage 23 are connected to the plasma analysis channel 24 and the blood cell analysis channel 25, respectively.
  • the plasma analysis channel 24 includes a parallel configuration of a hepatitis A analysis platform 241, a hepatitis B analysis platform 242, an arthritis analysis platform 243, and a myocardial infarction analysis platform 244.
  • the blood cell analysis channel 25 includes a platelet count platform 251, a red blood cell count platform 252, a hemoglobin analysis platform 253, a white blood cell count platform 254, and a blood type analysis platform 255.
  • the plasma analysis channel 24 and the blood cell analysis channel 25 are both connected to the waste liquid channel 26, and the waste liquid channel 26 is a pupil structure for deriving the waste liquid produced by the analyzed plasma and blood cells.
  • FIG. 2 is a schematic structural view of a preferred embodiment of an inertial separation channel of a multi-channel microfluidic chip for rapidly self-checking blood according to the present invention.
  • the amount of blood in the order of microliters is introduced into the sample channel 21 by a capillary conduit, and the sample channel 21 introduces blood to be detected into the inertial separation channel 22, and the inertial separation channel 22 is based on The principle of inertial microfluidics separates the blood into two parts, plasma and blood cells.
  • the plasma separation diagram in this embodiment is shown in FIG. 2.
  • the separation of plasma and blood cells in the blood is performed in the inertial separation channel 22, and the cross-sectional view of the inertial separation channel 22 shows that the inertial separation channel 22 is An asymmetrically curved tubular structure, the blood flowing through the asymmetrically curved tubular structure to create a laminar flow through the flow of liquid in the conduit.
  • the blood flows in the pipeline
  • the turbulence produces a pair of counter-rotating and symmetrical vortices, referred to as Dean vortices, which apply inertial lift to blood cells in the blood, the inertial lifts stabilizing blood cells in cross-section In equilibrium position, the Dean vortex generates a Dean drag force on blood cells in the blood, the blood cells flowing under the combined action of the inertial lift and the Dean drag.
  • the blood cells are subjected to a force balance only on one side of the channel section at an appropriate flow rate, and the flow of the blood is a single beam focused flow.
  • the blood is separated into two layers of flowing liquid through the inertial separation channel 22, and the two layers of flowing liquid are blood cells and plasma, respectively.
  • the plasma enters the plasma analysis channel 24, and sequentially passes through the hepatitis A analysis platform 241 and the hepatitis B analysis platform 242.
  • the arthritis analysis platform 243 and the myocardial infarction analysis platform 244 perform specific antibody detection; the blood cells are introduced into the blood cell analysis channel 25, and sequentially pass through the platelet counting platform 251, the red blood cell counting platform 252, the hemoglobin analysis platform 253, and white blood cells.
  • Counting platform 254 and blood type analysis platform 25 5 Both the plasma and blood cell waste liquid after the analysis and detection are discharged through the waste liquid passage 26.
  • FIG. 3 is a schematic structural view of a preferred embodiment of a plasma analysis channel in a multi-channel microfluidic chip for rapid self-testing of blood according to the present invention.
  • the hepatitis A analysis platform 241 includes an IgM detecting unit 2411 and an IgA detecting unit 2412, and the IgM detecting unit 2411 and the eight detecting unit 2412 are integrated on the microfluidic chip substrate 1.
  • the IgM detecting unit 2411 is coated with a hepatitis A virus antigen (H AV-Ag) immune layer, and the HAV-Ag is used as an antigen for capturing specific anti-HAV-IgM in plasma to form an antigen-antibody complex.
  • H AV-Ag hepatitis A virus antigen
  • the deliberate binding between the antigen-antibody produces an electrochemical signal that is quantitatively detected, analyzed, and conducted by the IgM detection unit 2411.
  • the IgA detecting unit 241 2 is coated with an anti-human ⁇ chain immunophore layer for capturing a specific anti-HAV-IgA forming antigen-antibody complex in plasma and generating an electrochemical signal, the IgA A detection unit 2412 is used to quantitatively detect, analyze, and conduct the amount of anti-HAV-IgA in the plasma.
  • the hepatitis A analysis platform 241 analyzes the level of hepatitis A infection by synthesizing the detection results of the Ig M detecting unit 2411 and the IgA detecting unit 2412.
  • the hepatitis B analysis platform 242 includes a hepatitis B surface antigen (HBsAg) detecting unit 2421, a hepatitis B surface antibody (HBsAb) detecting unit 2422, a hepatitis B e antigen (HBeAg) detecting unit 2423, a hepatitis B e antibody (HBeAb) detecting unit 2424, and Hepatitis B core antibody (HBcAb) detection unit 2425.
  • HBsAg hepatitis B surface antigen
  • HBsAb hepatitis B surface antibody
  • HBeAg hepatitis B e antigen detecting unit 2423
  • HBeAb hepatitis B e antibody
  • HBcAb Hepatitis B core antibody
  • the HBs Ag detecting unit 2421, the HBsAb detecting unit 2422, the HBeAg detecting unit 2423, and the HBeAb detecting list Element 2424 and the electrochemical signal generated by antigen-antibody specific recognition and binding on HBcAb detection unit 2425 are used to quantitatively detect, analyze, and conduct the contents of HBsAg, HBsAb, HBeAg, H BeAb, and HBcAb in plasma, respectively.
  • the myocardial infarction analysis platform 243 analyzes the results of the HBsAg detecting unit 2421, the HBsAb detecting unit 2422, the HBeAg detecting unit 2423, the HBeAb detecting unit 2424, and the HBcAb detecting unit 2425 to obtain the results of the five tests of the hepatitis B. Hepatitis B infection.
  • the arthritis analysis platform 243 includes four rheumatoid factor (RF) detecting units, which are an RF-IgM detecting unit 2431, an RF-IgA detecting unit 2432, an RF-IgG detecting unit 2433, and an RF- IgE detection unit 2434.
  • the RF-IgM detecting unit 2431, the RF-IgA detecting unit 2432, the RF-IgG detecting unit 2433, and the RF-IgE detecting unit 2434 are respectively used for specifically capturing serum IgM type, IgG type IgA type, and IgE type rheumatoid factor, respectively.
  • the arthritis analysis platform 243 determines the condition of rheumatoid arthritis by synthesizing the results of the RF-IgM detecting unit 2431, the RF-IgA detecting unit 2432, the RF-IgG detecting unit 2433, and the RF-IgE detecting unit 2434.
  • the myocardial infarction analysis platform 244 includes a hypersensitive C-reactive protein (hs-CRP) detection unit 2441 and a creatine kinase isoenzyme (CK-MB) detection unit 2442.
  • the hs-CRP detecting unit 2441 and the CK-MB detecting unit 2442 are respectively used for specifically capturing hs-CRP and CK-MB, and hs-CRP and CK-MB are identified as highly specific myocardial infarction serum markers. .
  • the myocardial infarction analysis platform 244 can quickly determine the myocardial infarction by synthesizing the detection results of the hs-CRP detecting unit 2441 and the CK-MB detecting unit 2442.
  • FIG. 4 is a schematic structural view of a preferred embodiment of a blood cell analysis channel in a multi-channel microfluidic chip for rapid self-testing of blood according to the present invention.
  • the blood cell analysis channel 25 includes the platelet count platform 251, the red blood cell count platform 252, the hemoglobin analysis platform 253, the white blood cell count platform 254, and the blood type analysis platform 255. Based on the volume difference between red blood cells, platelets and white blood cells, the platelet counting platform 251, the red blood cell counting platform 252, and the white blood cell counting platform 253 sort blood cells of different sizes by using pipes of different sizes.
  • the platelet counting platform 251 includes a platelet sieve 2511 and a platelet counter 2512.
  • the red blood cell counting platform 252 includes an red blood cell screen 2521 and a red blood cell drainage tube 25 22 and red blood cell counter 2523.
  • the platelet screen 2511 includes a micro-parallel conduit (e.g., 5 ⁇ diameter), and the platelet counter 2512 is disposed below the platelet count platform 251.
  • the red blood cell screen 25 21 includes a parallel screening tube (for example, a diameter ⁇ ), the bottom of the red blood cell screen 2521 is provided with the red blood cell counter 2522, and the side of the red blood cell screen 2521 is provided with the red blood cell bow I flow tube 2523.
  • the red blood cell drainage tube 2523 is connected to a hemoglobin measurement platform 253, which is connected to the white blood cell counting platform 254.
  • the platelet counter 2512 is metered based on the principle of electrical impedance, and the remaining blood cells continue to pass through the red blood cell counting platform 252, wherein the smaller red blood cells are screened by the red blood cell screen 2521 and flow into the red blood cell bow flow tube 2523, The red blood cell bow I flow tube 2523 is only for red blood cells to line up.
  • the red blood cell counter 2522 is used in erythrocytes through sputum, but is not limited to, the principle of laser counting is to count the number of red blood cells.
  • the red blood cells enter the hemoglobin assay platform 253.
  • FIG. 5 is a schematic structural view of a hemoglobin measurement platform of a multi-channel microfluidic chip for rapidly self-checking blood according to the present invention.
  • the hemoglobin assay platform 253 includes a red blood cell lysis unit 2531, a hemoglobin test unit 2532, and a valve 2533.
  • the red blood cell lysis unit 2531 and the hemoglobin test unit 2532 are both disc structures and disposed perpendicular to each other, which is beneficial for solution mixing.
  • the valve 2533 is disposed between the red blood cell lysis unit 2531 and the hemoglobin test unit 253, and the erythrocyte lysis unit 2531 has a hemolytic agent.
  • the valve 2533 When the red blood cells enter the hemoglobin test unit 2532, the valve 2533 is snored, and the hemolytic agent flows into the hemoglobin test unit 2532 to release red blood cells to hemoglobin, which combines with the hemolytic agent to form a hemoglobin derivative.
  • the hemoglobin test unit 2532 measures the concentration of the hemoglobin derivative by absorbance, and the tested waste liquid is discharged from the waste liquid channel 26.
  • the white blood cells remaining in the blood cell analysis channel 25 continue to pass through the white blood cell counting platform 254, which is a micro-pipeline structure (eg, 21 ⁇ diameter), for a single white blood cell only. Line up through.
  • a white blood cell counter 2541 is provided at the rear of the white blood cell counting platform 254 for counting the number of white blood cells passing through the white blood cell counting platform 254 based on the laser counting principle.
  • the leukocytes flow through the white blood cell counting platform 254 into the blood type analysis platform 255.
  • the blood type analysis platform 255 A cell lysis unit 2551 and a blood group analysis unit 2552 are provided, and a white blood cell lysate is disposed in the cell lysis unit 2551.
  • the leukocyte flow enters the cell lysis unit 2551 ⁇ the leukocyte lysate is thoroughly mixed with the leukocyte, the leukocyte ruptures to form a mixed solution, and the mixed solution flows into the blood group analysis unit 2552, and the blood type analysis unit 2552
  • the genotype of the ABO blood type is analyzed, but not limited to, by the PCR technique, and the analyzed waste liquid is discharged through the waste liquid channel 26.
  • the multi-channel microfluidic chip for rapid self-testing blood of the present invention can be reused, and after the blood detection is completed, the sampling channel 21 is connected to each internal pipe of the water pump flushing, and the waste is The liquid channel 26 is discharged, and the reagent such as the hemolytic agent and the leukocyte lysate may be used after, but not limited to, supplementation by injection.
  • each of the pipeline structure and the pipe joint in the multi-channel microfluidic chip are designed in a curved structure to facilitate liquid flow.
  • the multi-channel microfluidic chip realizes a plurality of blood detecting functions at one time through a microfluidic chip structure integrated on a centimeter scale, and is small in size and convenient to carry, and is convenient for household self-test use.
  • the multi-channel microfluidic chip for rapid self-checking blood adopts the above technical solution, and achieves the following beneficial effects:
  • the multi-channel microfluidic chip passes through the centimeter scale
  • the integrated sampling channel, separation area, shunt channel, analysis platform and waste liquid channel on the chip realize a one-time multi-function blood detection function, and the volume is small and easy to carry, which is convenient for household self-test use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种用于快速自检血液的多通道微流控芯片,包括基底(1)和盖片(2)。盖片(2)中集成有进样通道(21)、惯性分离通道(22)、分流通道(23)、血浆分析通道(24)以及血细胞分析通道(25)。进样通道(21)、惯性分离通道(22)和分流通道(23)依次相连,分流通道(23)采用Y型结构连接至血浆分析通道(24)和血细胞分析通道(25)。进样通道(21)用于输入待检血液;惯性分离通道(22)将血液分离为血浆和血细胞,血浆和血细胞流入分流通道(23);分流通道(23)通过Y型结构将血浆引入血浆分析通道(24)对血浆进行检测分析,并将血细胞引入血细胞分析通道(25)对血细胞进行检测分析。

Description

用于快速自检血液的多通道微流控芯片
技术领域
[0001] 本发明涉及血液检测技术领域, 尤其涉及一种用于快速自检血液的多通道微流 控芯片。
背景技术
[0002] 微流控芯片是一个集血液样品制备、 反应、 分离、 检测等功能于一体的小型分 析实验平台。 微流控芯片分析以微米尺度的芯片为操作平台完成自动分析全过 程, 其装置特征主要是具有容纳流体的有效结构, 比如通道或者反应室, 具有 强大的集成性, 其优点包括体积轻巧, 使用样品少, 反应速度快, 高通量, 低 污染, 即用即弃等, 这使其在生物、 化学、 医学、 电子、 机械等学科交叉的研 究领域展示出巨大的发展潜力, 用于生物医学研究、 药物合成筛选、 环境监测 与保护、 卫生检疫、 司法鉴定、 生物试剂的检测等众多领域。
[0003] 微流控芯片能承载多种单元技术并使之灵活组合和规模集成的特征使其成为各 种系统研究的重要平台, 在细胞生物学中的应用不断扩展, 是生物医药分析领 域的未来发展方向。 随着现在社会的发展, 家庭医疗保健的观念不断深入人心 , 各种家用医疗产品不断推出, 然而血液检测这一基本健康体检内容仍然依赖 于医院的诊疗设备, 这些诊疗设备无法实现一次性多种血液检测功能, 且医疗 设备体积大不便于携带, 从而给家庭自检血液操作困难, 带来不方便。
技术问题
[0004] 本发明的主要目的在于提供一种用于快速自检血液的多通道微流控芯片, 旨在 解决现有诊疗设备无法实现一次性多种血液检测功能且携带不便的问题。 问题的解决方案
技术解决方案
[0005] 为实现上述目的, 本发明提供了一种用于快速自检血液的多通道微流控芯片, 包括基底和盖片, 所述盖片中集成有进样通道、 惯性分离通道、 分流通道、 血 浆分析通道以及血细胞分析通道, 所述进样通道、 惯性分离通道和分流通道依 次相连, 所述分流通道采用 Y型结构连接至所述血浆分析通道和所述血细胞分析 通道, 其中:
[0006] 所述进样通道用于输入待检血液;
[0007] 所述惯性分离通道将所述血液分离为血浆和血细胞, 所述血浆和血细胞流入所 述分流通道;
[0008] 所述分流通道通过所述 Υ型结构将所述血浆弓 I入所述血浆分析通道对血浆进行 检测分析, 并将所述血细胞弓 I入所述血细胞分析通道对血细胞进行检测分析。
[0009] 优选的, 所述盖片中还集成有废液通道, 所述血浆分析通道和血细胞分析通道 均与所述废液通道相连, 所述废液通道用于将已分析的血浆和血细胞产生的废 液导出。
[0010] 优选的, 所述血浆分析通道包括甲肝分析平台、 乙肝分析平台、 关节炎分析平 台以及心肌梗死分析平台。
[0011] 优选的, 所述甲肝分析平台包括 IgM探测单元和 IgA探测单元; 所述乙肝分析 平台包括 HBsAg探测单元、 HBsAb探测单元、 HBeAg探测单元、 HBeAb探测单 元以及 HBcAb探测单元; 所述关节炎分析平台包括 RF-IgM探测单元、 RF-IgA探 测单元、 RF-IgG探测单元以及 RF-IgE探测单元; 所述心肌梗死分析平台包括 hs- CRP探测单元和 CK-MB探测单元; 所述免疫分析平台通过综合其内部的各个探 测单元对血浆的检测数据判定血浆的检测结果。
[0012] 优选的, 所述血细胞分析通道包括血小板计数平台、 红细胞计数平台、 血红蛋 白分析平台、 白细胞计数平台以及血型分析平台。
[0013] 优选的, 所述血小板计数平台包括血小板筛和血小板计数器; 所述红细胞计数 平台包括红细胞筛、 红细胞引流管和红细胞计数器; 所述血小板计数平台通过 控制所述血小板筛的管道尺寸分离出血细胞中的血小板, 并通血小板计数器进 行计数; 所述红细胞计数平台通过控制所述红细胞筛的管道尺寸分离出血细胞 中的红细胞, 并通过红细胞计数器进行计数; 所述白细胞计数平台通过控制自 身的管道尺寸分离出血细胞中的白细胞并进行计数。
[0014] 优选的, 当血细胞流过所述血细胞分析通道吋, 血小板被滞留在所述血小板计 数平台, 红细胞经过所述红细胞计数平台, 由所述红细胞引流管进入所述血红 蛋白分析平台进行血红蛋白分离测定, 剩余的白细胞通过所述白细胞计数平台 进行计数, 并进入所述血型分析平台进行血型基因型分析。
[0015] 优选的, 所述血红蛋白分析平台包括红细胞裂解单元、 血红蛋白测试单元和阀 门, 其中:
[0016] 所述红细胞裂解单元和所述血红蛋白测试单元均为圆盘结构, 且两者垂直设置
[0017] 所述阀门设置在所述红细胞裂解单元和所述血红蛋白测试单元之间;
[0018] 所述红细胞裂解单元中设有溶血剂。
[0019] 优选的, 所述进样通道、 惯性分离通道、 分流通道、 血浆分析通道、 血细胞分 析通道以及废液通道均采用弧度结构。
发明的有益效果
有益效果
[0020] 相较于现有技术, 本发明所述用于快速自检血液的多通道微流控芯片采用了上 述技术方案, 达到了如下有益效果: 该多通道微流控芯片通过在厘米尺度的芯 片上集成进样通道、 分离区域、 分流通道、 分析平台和废液通道, 实现一次性 多种血液检测功能, 且体积小便于携带, 方便家庭自检使用。
对附图的简要说明
附图说明
[0021] 图 1是本发明用于快速自检血液的多通道微流控芯片较佳实施例的结构示意图
[0022] 图 2是本发明用于快速自检血液的多通道微流控芯片的惯性分离通道较佳实施 例的结构示意图;
[0023] 图 3是本发明用于快速自检血液的多通道微流控芯片的血浆分析通道较佳实施 例的结构示意图;
[0024] 图 4是本发明用于快速自检血液的多通道微流控芯片的血细胞分析通道较佳实 施例的结构示意图;
[0025] 图 5是本发明用于快速自检血液的多通道微流控芯片的血红蛋白测定平台较佳 实施例的结构示意图。 [0026] 本发明目的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。 实施该发明的最佳实施例
本发明的最佳实施方式
[0027] 为更进一步阐述本发明为达成上述目的所采取的技术手段及功效, 以下结合附 图对本发明的具体实施方式、 结构、 特征及其功效进行说明。 应当指出的是, 此处所描述的具体实施例仅仅用以解释本发明, 并不以任何形式限定本发明。
[0028] 如图 1所示, 图 1是本发明用于快速自检血液的多通道微流控芯片较佳实施例的 结构示意图。 在本实施例中, 所述多通道微流控芯片包括基底 1和盖片 2, 所述 盖片 2可以, 但不仅限于, 由聚二甲基硅氧烷 (PDMS)制成, 所述盖片 2中集成有 实现多种血检功能的微流控通道结构, 包括进样通道 21、 惯性分离通道 22、 分 流通道 23、 血浆分析通道 24、 血细胞分析通道 25以及废液通道 26。 所述进样通 道 21采用幵孔结构连接所述惯性分离通道 22, 该进样通道 21用于与输血管相连 输入待检血液。 所述惯性通道 22与所述分流通道 23的入口相通。 所述分流通道 2 3为 Y型结构, 包括一个入口和两个出口, 所述分流通道 23的两个出口分别连接 所述血浆分析通道 24和血细胞分析通道 25。 所述血浆分析通道 24包括平行设置 的甲肝分析平台 241、 乙肝分析平台 242、 关节炎分析平台 243以及心肌梗死分析 平台 244。 所述血细胞分析通道 25包括血小板计数平台 251、 红细胞计数平台 252 、 血红蛋白分析平台 253、 白细胞计数平台 254以及血型分析平台 255。 所述血浆 分析通道 24和血细胞分析通道 25均与所述废液通道 26相连, 所述废液通道 26出 口为幵孔结构, 用于将已分析的血浆和血细胞产生的废液导出。
[0029] 如图 2所示, 图 2是本发明用于快速自检血液的多通道微流控芯片的惯性分离通 道较佳实施例的结构示意图。 在本实施例中, 微升数量级的血液量由毛细导管 导入所述进样通道 21中, 所述进样通道 21将待检血液导入所述惯性分离通道 22 中, 所述惯性分离通道 22基于惯性微流原理将所述血液分离成血浆和血细胞两 部分。 本实施例中的血浆分离示意图由图 2所示, 所述血液中的血浆和血细胞的 分离在所述惯性分离通道 22中实施, 所述惯性分离通道 22的剖视图显示所述惯 性分离通道 22为不对称弯管状结构, 所述血液经过所述不对称弯管状结构吋通 过液体在管道中的流动产生层流。 基于管道的不对称性, 所述血液在管道中流 动吋产生一对反向旋转且对称的涡流, 所述涡流被称为迪恩涡流, 所述层流对 所述血液中的血细胞施加惯性升力, 所述惯性升力使血细胞稳定在横截面中的 平衡位置, 所述迪恩涡流对所述血液中的血细胞产生迪恩曳力, 所述血细胞在 所述惯性升力和迪恩曳力的共同作用下流动。 在本实施例中, 经过设计所述不 对称弯管状结构的尺寸与长度, 血细胞在适当的流速条件下只在通道截面的一 侧产生受力平衡, 所述血液的流动为单束聚焦流动, 所述血液经过所述惯性分 离通道 22分离为两层流动液体, 所述两层流动液体分别为血细胞和血浆。 一并 参考图 1所示, 在所述分流通道 23的不对称 Y型结构的分流作用下, 所述血浆进 入所述血浆分析通道 24, 依次通过所述甲肝分析平台 241、 乙肝分析平台 242、 关节炎分析平台 243以及心肌梗死分析平台 244进行特异性抗体检测; 所述血细 胞被引流入所述血细胞分析通道 25, 依次通过所述血小板计数平台 251、 红细胞 计数平台 252、 血红蛋白分析平台 253、 白细胞计数平台 254以及血型分析平台 25 5。 经过分析检测后的血浆和血细胞废液均通过所述废液通道 26排出。
[0030] 如图 3所示, 图 3是本发明用于快速自检血液的多通道微流控芯片中的血浆分析 通道较佳实施例的结构示意图。 在本实施例中, 所述甲肝分析平台 241包括 IgM 探测单元 2411和 IgA探测单元 2412, 所述 IgM探测单元 2411和 八探测单元2412集 成在所述微流控芯片基底 1上。 所述 IgM探测单元 2411上包被有甲肝病毒抗原 (H AV-Ag) 免疫层, 所述 HAV-Ag作为抗原用于捕获血浆中特异性抗 HAV-IgM, 形 成抗原-抗体复合物, 所述抗原-抗体之间的特意性结合产生电化学信号, 所述电 化学信号由所述 IgM探测单元 2411定量检测、 分析和传导。 所述 IgA探测单元 241 2上包被有抗人 μ链免疫层, 所述抗人 μ链用于捕获血浆中特异性抗 HAV-IgA形成 抗原 -抗体复合物并产生电化学信号, 所述 IgA探测单元 2412用于定量检测、 分析 和传导所述血浆中的抗 HAV-IgA的含量。 所述甲肝分析平台 241通过综合所述 Ig M探测单元 2411和 IgA探测单元 2412的检测结果分析甲肝感染水平。
[0031] 所述乙肝分析平台 242包括乙肝表面抗原 (HBsAg) 探测单元 2421、 乙肝表面 抗体 (HBsAb) 探测单元 2422、 乙肝 e抗原 (HBeAg) 探测单元 2423、 乙肝 e抗体 (HBeAb) 探测单元 2424以及乙肝核心抗体 (HBcAb) 探测单元 2425。 所述 HBs Ag探测单元 2421、 HBsAb探测单元 2422、 HBeAg探测单元 2423、 HBeAb探测单 元 2424以及 HBcAb探测单元 2425上通过抗原-抗体特异性识别和结合产生的电化 学信号, 分别用于定量检测、 分析和传导血浆中的 HBsAg、 HBsAb、 HBeAg、 H BeAb以及 HBcAb的含量。 所述心肌梗死分析平台 243通过综合所述 HBsAg探测单 元 2421、 HBsAb探测单元 2422、 HBeAg探测单元 2423、 HBeAb探测单元 2424以 及 HBcAb探测单元 2425的结果分析得到乙肝五项的检査结果, 据以判断乙肝感 染情况。
[0032] 所述关节炎分析平台 243包括四个类风湿因子 (rheumatoid factor, RF) 探测单 元, 分别为 RF-IgM探测单元 2431、 RF-IgA探测单元 2432、 RF-IgG探测单元 2433 以及 RF-IgE探测单元 2434。 所述 RF-IgM探测单元 2431、 RF-IgA探测单元 2432、 RF-IgG探测单元 2433以及 RF-IgE探测单元 2434分别用于特异性捕获血清中 IgM型 、 IgG型 IgA型和 IgE型类风湿因子, 并通过形成抗原-抗体复合物产生的电化学信 号分析出所述血浆中的各类型类风湿因子的含量。 所述甲关节炎分析平台 243通 过综合所述 RF-IgM探测单元 2431、 RF-IgA探测单元 2432、 RF-IgG探测单元 2433 以及 RF-IgE探测单元 2434的检测结果判断类风湿关节炎的情况。
[0033] 所述心肌梗死分析平台 244包括超敏 C反应蛋白 (hs-CRP) 探测单元 2441和肌 酸激酶同工酶 (CK-MB) 探测单元 2442。 所述 hs-CRP探测单元 2441和 CK-MB探 测单元 2442分别用于特异性捕获 hs-CRP和 CK-MB, 而 hs-CRP和 CK-MB被认定为 具有高度特异性的心肌梗死血清标志物。 心肌梗死分析平台 244通过综合所述 hs- CRP探测单元 2441和 CK-MB探测单元 2442的检测结果, 可以对心肌梗死进行快 速判定。
[0034] 如图 4所示, 图 4是本发明用于快速自检血液的多通道微流控芯片中的血细胞分 析通道较佳实施例的结构示意图。 在本实施例中, 所述血细胞分析通道 25包括 所述血小板计数平台 251、 红细胞计数平台 252、 血红蛋白分析平台 253、 白细胞 计数平台 254以及血型分析平台 255。 基于红细胞、 血小板与白细胞之间的体积 差别, 所述血小板计数平台 251、 红细胞计数平台 252以及白细胞计数平台 253通 过使用不同大小的管道来分选不同大小的血细胞。
[0035] 在本实施例中, 结合图 4所示, 所述血小板计数平台 251包括血小板筛 2511和血 小板计数器 2512。 所述红细胞计数平台 252包括红细胞筛 2521、 红细胞引流管 25 22和红细胞计数器 2523。 所述血小板筛 2511包括微平行管道 (例如直径 5μηι) , 所述血小板计数器 2512设置在所述血小板计数平台 251的下方。 所述红细胞筛 25 21包括平行筛选管道 (例如直径 ΙΟμηι) , 所述红细胞筛 2521的底部设置有所述 红细胞计数器 2522, 所述红细胞筛 2521的侧部设置有所述红细胞弓 I流管 2523, 所述红细胞引流管 2523与血红蛋白测定平台 253相连, 所述血细胞分析通道 25与 白细胞计数平台 254相连。
[0036] 当血细胞由所述血细胞分析通道 25弓 I导经过所述血小板计数平台 251吋, 体积 最小的血小板进入所述血小板筛 2511并沉入所述血小板筛 2511的底部, 筛选得 到的血小板由所述血小板计数器 2512基于电阻抗原理分析计量, 余下的血细胞 继续通过所述红细胞计数平台 252, 其中体积较小的红细胞由所述红细胞筛 2521 筛选并流入所述红细胞弓 I流管 2523, 所述红细胞弓 I流管 2523仅供红细胞排队通 过。 所述红细胞计数器 2522在红细胞通过吋使用, 但不仅限于, 激光计数原理 统计红细胞数量。 所述红细胞进入所述血红蛋白测定平台 253。
[0037] 如图 5所示, 图 5是本发明用于快速自检血液的多通道微流控芯片的血红蛋白测 定平台的结构示意图。 在本实施例中, 所述血红蛋白测定平台 253包括红细胞裂 解单元 2531、 血红蛋白测试单元 2532和阀门 2533。 所述红细胞裂解单元 2531和 所述血红蛋白测试单元 2532均为圆盘结构且相互垂直设置, 有益于溶液混合。 所述阀门 2533设置在所述红细胞裂解单元 2531和血红蛋白测试单元 253之间, 所 述红细胞裂解单元 2531内有溶血剂。 当红细胞进入所述血红蛋白测试单元 2532 , 所述阀门 2533打幵, 所述溶血剂流入所述血红蛋白测试单元 2532, 使红细胞 释放出血红蛋白, 所述血红蛋白与溶血剂结合形成血红蛋白衍生物。 所述血红 蛋白测试单元 2532通过吸光度测定所述血红蛋白衍生物的浓度, 经过测试后的 废液由所述废液通道 26排出。
[0038] 再参考图 4所示, 留在所述血细胞分析通道 25中的白细胞继续通过所述白细胞 计数平台 254, 所述白细胞计数平台 254为微管道结构 (例如直径 21μηι) , 仅供 单个白细胞排队通过。 所述白细胞计数平台 254后部设置有白细胞计数器 2541, 用于基于激光计数原理统计通过白细胞计数平台 254的白细胞数量。 所述白细胞 流经所述白细胞计数平台 254进入所述血型分析平台 255。 所述血型分析平台 255 包括细胞裂解单元 2551和血型分析单元 2552, 所述细胞裂解单元 2551内设置有 白细胞裂解液。 当所述白细胞流进入所述细胞裂解单元 2551吋, 所述白细胞裂 解液与所述白细胞充分混合, 白细胞破裂形成混合液, 所述混合液流入所述血 型分析单元 2552, 所述血型分析单元 2552利用, 但不仅限于, PCR技术分析出 A BO血型的基因型, 分析后的废液经过所述废液通道 26排出。
[0039] 本发明所述用于快速自检血液的多通道微流控芯片可重复利用, 当血液检测完 成后, 所述进样通道 21连接水泵冲洗的内部的各个管道, 并由所述废液通道 26 排出, 所述溶血剂和白细胞裂解液等试剂在使用完之后可以, 但不仅限于, 通 过注射补充。 此外, 所述多通道微流控芯片中的各个管道结构和管道连接处均 采用弧度结构设计, 便于液体流动。 所述多通道微流控芯片通过集成在厘米尺 度上的微流控芯片结构一次性实现多种血液检测功能, 且体积小便于携带, 方 便家庭自检使用。
[0040] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效功能变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
工业实用性
[0041] 相较于现有技术, 本发明所述用于快速自检血液的多通道微流控芯片采用了上 述技术方案, 达到了如下有益效果: 该多通道微流控芯片通过在厘米尺度的芯 片上集成进样通道、 分离区域、 分流通道、 分析平台和废液通道, 实现一次性 多种血液检测功能, 且体积小便于携带, 方便家庭自检使用。

Claims

权利要求书
一种用于快速自检血液的多通道微流控芯片, 包括基底和盖片, 其特 征在于, 所述盖片中集成有进样通道、 惯性分离通道、 分流通道、 血 浆分析通道以及血细胞分析通道, 所述进样通道、 惯性分离通道和分 流通道依次相连, 所述分流通道采用 Y型结构连接至所述血浆分析通 道和所述血细胞分析通道, 其中: 所述进样通道用于输入待检血液; 所述惯性分离通道将所述血液分离为血浆和血细胞, 所述血浆和血细 胞流入所述分流通道; 所述分流通道通过所述 Y型结构将所述血浆引 入所述血浆分析通道对血浆进行检测分析, 并将所述血细胞弓 I入所述 血细胞分析通道对血细胞进行检测分析。
根据权利要求 1所述的用于快速自检血液的多通道微流控芯片, 其特 征在于, 所述盖片中还集成有废液通道, 所述血浆分析通道和血细胞 分析通道均与所述废液通道相连, 所述废液通道用于将已分析的血浆 和血细胞产生的废液导出。
根据权利要求 1所述的用于快速自检血液的多通道微流控芯片, 其特 征在于, 所述血浆分析通道包括甲肝分析平台、 乙肝分析平台、 关节 炎分析平台以及心肌梗死分析平台。
根据权利要求 3所述的用于快速自检血液的多通道微流控芯片, 其特 征在于: 所述甲肝分析平台包括 IgM探测单元和 IgA探测单元; 所述 乙肝分析平台包括 HBsAg探测单元、 HBsAb探测单元、 HBeAg探测单 元、 HBeAb探测单元以及 HBcAb探测单元; 所述关节炎分析平台包 括 RF-IgM探测单元、 RF-IgA探测单元、 RF-IgG探测单元以及 RF-IgE 探测单元; 所述心肌梗死分析平台包括 hs-CRP探测单元和 CK-MB探 测单元; 所述免疫分析平台通过综合其内部的各个探测单元对血浆的 检测数据判定血浆的检测结果。
根据权利要求 1所述的用于快速自检血液的多通道微流控芯片, 其特 征在于, 所述血细胞分析通道包括血小板计数平台、 红细胞计数平台 、 血红蛋白分析平台、 白细胞计数平台以及血型分析平台。 [权利要求 6] 根据权利要求 5所述的用于快速自检血液的多通道微流控芯片, 其特 征在于: 所述血小板计数平台包括血小板筛和血小板计数器; 所述红 细胞计数平台包括红细胞筛、 红细胞引流管和红细胞计数器; 所述血 小板计数平台通过控制所述血小板筛的管道尺寸分离出血细胞中的血 小板, 并通过所述血小板计数器进行计数; 所述红细胞计数平台通过 控制所述红细胞筛的管道尺寸分离出血细胞中的红细胞, 并通过所述 红细胞计数器进行计数; 所述白细胞计数平台通过控制自身的管道尺 寸分离出血细胞中的白细胞并进行计数。
[权利要求 7] 根据权利要求 6所述的用于快速自检血液的多通道微流控芯片, 其特 征在于, 当血细胞流过所述血细胞分析通道吋, 血小板被滞留在所述 血小板计数平台, 红细胞经过所述红细胞计数平台, 由所述红细胞引 流管进入所述血红蛋白分析平台进行血红蛋白分离测定, 剩余的白细 胞通过所述白细胞计数平台进行计数, 并进入所述血型分析平台进行 血型基因型分析。
[权利要求 8] 根据权利要求 5所述的用于快速自检血液的多通道微流控芯片, 其特 征在于, 所述血红蛋白分析平台包括红细胞裂解单元、 血红蛋白测试 单元和阀门, 其中: 所述红细胞裂解单元和所述血红蛋白测试单元均 为圆盘结构, 且相互垂直设置; 所述阀门设置在所述红细胞裂解单元 和所述血红蛋白测试单元之间; 所述红细胞裂解单元中设有溶血剂。
[权利要求 9] 根据权利要求 1至 8任一项所述的用于快速自检血液的多通道微流控芯 片, 其特征在于, 所述进样通道、 惯性分离通道、 分流通道、 血浆分 析通道、 血细胞分析通道以及废液通道均采用弧度结构。
PCT/CN2016/101868 2016-01-30 2016-10-12 用于快速自检血液的多通道微流控芯片 WO2017128768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610068754.XA CN105728069B (zh) 2016-01-30 2016-01-30 用于快速自检血液的多通道微流控芯片
CN201610068754.X 2016-01-30

Publications (1)

Publication Number Publication Date
WO2017128768A1 true WO2017128768A1 (zh) 2017-08-03

Family

ID=56248086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101868 WO2017128768A1 (zh) 2016-01-30 2016-10-12 用于快速自检血液的多通道微流控芯片

Country Status (2)

Country Link
CN (1) CN105728069B (zh)
WO (1) WO2017128768A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105728069B (zh) * 2016-01-30 2021-01-19 深圳市安测健康信息技术有限公司 用于快速自检血液的多通道微流控芯片
CN107643393B (zh) * 2016-07-21 2021-11-05 深圳迈瑞生物医疗电子股份有限公司 样本分析仪及其清洗方法、含有溶血剂成分的液体的用途
CN106483182A (zh) * 2016-08-22 2017-03-08 浙江大学 一种干式测定血红蛋白的生物传感器及其制备方法
CN106399047A (zh) * 2016-09-14 2017-02-15 成都测迪森生物科技有限公司 一种血样分离盒
CN106404640A (zh) * 2016-10-28 2017-02-15 徐廷宽 一种血细胞检测分析的系统
CN107101932B (zh) * 2017-05-28 2021-07-27 合肥赫博医疗器械有限责任公司 一种微量全自动血细胞与血红蛋白计量装置的使用方法
CN107262171A (zh) * 2017-07-12 2017-10-20 华讯方舟科技有限公司 一种血液分离预处理芯片及血液分离装置
CN107702973A (zh) * 2017-09-08 2018-02-16 深圳市太赫兹科技创新研究院有限公司 一种全血血浆分离系统及方法
CN109991035B (zh) * 2017-12-29 2021-12-24 台达电子工业股份有限公司 微量取样装置
CN110339875A (zh) * 2019-06-26 2019-10-18 清华大学 一种用于血液细胞分离的微通道
CN110437978A (zh) * 2019-08-12 2019-11-12 北京航空航天大学 细菌总量、细菌孢子量的一体化的检测微流控芯片
CN112547143B (zh) * 2019-09-26 2022-07-22 京东方科技集团股份有限公司 微流控芯片及血细胞检测装置
CN110794150A (zh) * 2019-10-30 2020-02-14 中山生物工程有限公司 可循环使用的血型自动分析装置及血型分析方法
CN111495446B (zh) * 2020-03-23 2022-01-11 江苏大学 一种基于微流控芯片的普适食物过敏原检测装置与方法
CN112525865B (zh) * 2020-11-17 2022-12-27 西安工业大学 溶血检测光纤微流控传感系统及检测方法
CN113116348B (zh) * 2021-03-02 2022-09-27 天津大学 一种连续动脉血液检测装置
CN114018835B (zh) * 2021-09-22 2023-03-17 浙江大学 微量全血预处理和血浆自动定量分配装置及分析方法
CN113759129A (zh) * 2021-09-26 2021-12-07 北京倍肯恒业科技发展股份有限公司 一种白细胞结合c反应蛋白快速检测卡及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119488A1 (fr) * 2008-05-13 2009-11-18 Commissariat a L'Energie Atomique Procédé et dispositif d'extraction d'une phase liquide d'une suspension
CN103191791A (zh) * 2013-03-01 2013-07-10 东南大学 生物微粒高通量分选和计数检测的集成芯片系统及应用
CN103343090A (zh) * 2013-07-12 2013-10-09 湖南工程学院 一种集成化多功能可控细胞操纵及分析微流控芯片及应用
CN105728069A (zh) * 2016-01-30 2016-07-06 深圳市贝沃德克生物技术研究院有限公司 用于快速自检血液的多通道微流控芯片

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038358B1 (zh) * 1970-02-20 1975-12-09
US3768084A (en) * 1972-07-14 1973-10-23 Becton Dickinson Co Particle counter having a clog and bubble alarm
JPS5949529B2 (ja) * 1976-06-25 1984-12-03 東亜医用電子株式会社 血小板計測装置
EP0598663B1 (en) * 1992-11-19 2000-02-02 Sysmex Corporation A pretreatment method for blood analysis
NL1000607C1 (nl) * 1995-02-07 1996-08-07 Hendrik Jan Westendorp Telkamer en werkwijze voor het vervaardigen van een telkamer
US6667177B1 (en) * 1997-11-11 2003-12-23 Kowa Company, Ltd. Method for counting leukocytes and apparatus for counting leukocytes
US6235536B1 (en) * 1998-03-07 2001-05-22 Robert A. Levine Analysis of quiescent anticoagulated whole blood samples
US7553453B2 (en) * 2000-06-02 2009-06-30 Honeywell International Inc. Assay implementation in a microfluidic format
SE528697C2 (sv) * 2005-03-11 2007-01-30 Hemocue Ab Volymetrisk bestämning av antalet vita blodkroppar i ett blodprov
JP2009505634A (ja) * 2005-08-31 2009-02-12 日産化学工業株式会社 細胞応答評価用マイクロチップ
US7731901B2 (en) * 2005-10-19 2010-06-08 Abbott Laboratories Apparatus and method for performing counts within a biologic fluid sample
CN101078720B (zh) * 2006-05-22 2010-12-01 深圳迈瑞生物医疗电子股份有限公司 一种改进的用于对白细胞进行分类的试剂及方法
CN1945326A (zh) * 2006-10-13 2007-04-11 江西特康科技有限公司 基于视觉形态的五分类全血细胞分析方法
US20090042241A1 (en) * 2007-04-06 2009-02-12 California Institute Of Technology Microfluidic device
EP2216095A1 (en) * 2009-01-27 2010-08-11 Koninklijke Philips Electronics N.V. Microfluidic device for full blood count
EP2519820B1 (en) * 2009-12-31 2013-11-06 Abbott Point Of Care, Inc. Method and apparatus for determining mean cell volume of red blood cells
US20120214224A1 (en) * 2011-02-01 2012-08-23 Chan Eugene Y Flow based clinical analysis
CN102749443B (zh) * 2011-04-22 2014-10-01 国家纳米科学中心 双层微流控芯片器件及其在免疫检测中的用途
EP3460486A1 (en) * 2012-11-12 2019-03-27 The Regents of The University of California Electrophoretic bar code assay devices and methods for making and using the same
CN103471980B (zh) * 2013-08-23 2015-08-26 深圳中科强华科技有限公司 一种芯片式血细胞分析装置及方法
US10350602B2 (en) * 2014-07-02 2019-07-16 The Regents Of The University Of California Devices for separating constituents in a sample and methods for use thereof
CN104133072A (zh) * 2014-07-28 2014-11-05 王泰朕 一种血液分析生物芯片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119488A1 (fr) * 2008-05-13 2009-11-18 Commissariat a L'Energie Atomique Procédé et dispositif d'extraction d'une phase liquide d'une suspension
CN103191791A (zh) * 2013-03-01 2013-07-10 东南大学 生物微粒高通量分选和计数检测的集成芯片系统及应用
CN103343090A (zh) * 2013-07-12 2013-10-09 湖南工程学院 一种集成化多功能可控细胞操纵及分析微流控芯片及应用
CN105728069A (zh) * 2016-01-30 2016-07-06 深圳市贝沃德克生物技术研究院有限公司 用于快速自检血液的多通道微流控芯片

Also Published As

Publication number Publication date
CN105728069A (zh) 2016-07-06
CN105728069B (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
WO2017128768A1 (zh) 用于快速自检血液的多通道微流控芯片
US10527568B2 (en) Counting particles using an electrical differential counter
JP6823699B2 (ja) 生物医学的な感知及び検出のための粒子を含む溶液中の粒子の空間的な分離
TWI550274B (zh) 微流體檢驗裝置及其運作方法
JP4587298B2 (ja) マイクロ流体デバイス内での粒子分離方法及び装置
JP3220158B2 (ja) 分析対象物質の確定及び処理のためのメソ規模の試料前処理装置及びシステム
KR100843339B1 (ko) 혈액 중의 혈장 분리를 위하여 마이크로채널을 이용한혈장분리기 및 이에 의한 혈장분리방법
US20120214224A1 (en) Flow based clinical analysis
US20040019300A1 (en) Microfluidic blood sample separations
JP4844318B2 (ja) マイクロ流路デバイス
CN106622411B (zh) 一种微流控芯片及其制备方法和应用
CN103170377B (zh) 血细胞分析芯片及应用该芯片的系统
JP2007532878A (ja) 使い捨て試験装置と検体量測定/混合方法
EP2214823A1 (en) Integrated separation and detection cartridge with means and method for increasing signal to noise ratio
Robinson et al. Rapid isolation of blood plasma using a cascaded inertial microfluidic device
JP2009156765A (ja) マイクロチップ
CN116493061B (zh) 一种血液检测微流控芯片及其检测方法
Su et al. A low cost, membranes based serum separator modular
JP5137014B2 (ja) マイクロチップ
CN112547143B (zh) 微流控芯片及血细胞检测装置
JP2009276143A (ja) マイクロチップ
JP4987592B2 (ja) マイクロ流体チップ
KR101635510B1 (ko) 적혈구 멤브레인의 슬립현상에 의한 속도차이 계측용 직렬형 랩온어칩 장치 및 그 광계측 시스템
Chen et al. Disposable Microfluidic Chips for Blood Pre-Treatment and Immunoassay
JP2009156683A (ja) マイクロチップ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17/12/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16887641

Country of ref document: EP

Kind code of ref document: A1