WO2017128478A1 - 一种钢材成形方法及其成形构件 - Google Patents

一种钢材成形方法及其成形构件 Download PDF

Info

Publication number
WO2017128478A1
WO2017128478A1 PCT/CN2016/074804 CN2016074804W WO2017128478A1 WO 2017128478 A1 WO2017128478 A1 WO 2017128478A1 CN 2016074804 W CN2016074804 W CN 2016074804W WO 2017128478 A1 WO2017128478 A1 WO 2017128478A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
forming
steel material
forming method
twip
Prior art date
Application number
PCT/CN2016/074804
Other languages
English (en)
French (fr)
Inventor
熊小川
Original Assignee
重庆哈工易成形钢铁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆哈工易成形钢铁科技有限公司 filed Critical 重庆哈工易成形钢铁科技有限公司
Publication of WO2017128478A1 publication Critical patent/WO2017128478A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the present invention relates to a steel forming method and a forming member thereof.
  • TWIP (Twinning Induced Plasticity) steel is a high-manganese all-austenitic steel with main strength enhancement and ductility mechanism, which has high strength and high elongation. It is an optional high quality for automobile body manufacturing. Steel material. It usually has the following characteristics: high manganese content; microstructure is all austenite; the main plastic deformation mechanism at room temperature is dislocation motion and twinning, and may also include phase transformation induced plastic effect (TRIP). Due to the intersection of these fine deformation twins and dislocations, TWIP steel exhibits a strong dynamic Hall-Petch effect, resulting in high work hardening rates and high tensile strength. At the same time, the high work hardening rate can delay the occurrence of local necking, so that the deformation can occur uniformly, thereby improving its plastic deformation ability and exhibiting extremely high elongation.
  • TRIP phase transformation induced plastic effect Due to the intersection of these fine deformation twins and dislocations, TWIP steel exhibits a strong dynamic Hall
  • TWIP steel parts Due to the ultra-high work hardening ability of TWIP steel itself, the formed TWIP steel parts have large internal stresses, combined with their own superior hydrogen embrittlement sensitivity, resulting in the formation of TWIP steel parts at room temperature. Hidden the huge risk of delayed cracking.
  • CN104233059A proposes to add vanadium alloying element in TWIP steel, and utilize vanadium carbide dots as hydrogen traps to improve the resistance to delayed fracture of TWIP steel and increase the strength.
  • vanadium carbide dots as hydrogen traps to improve the resistance to delayed fracture of TWIP steel and increase the strength.
  • the addition of vanadium is bound to increase the cost of TWIP steel and introduce some solderability problems.
  • CN103003002A proposes pre-forming a TWIP steel sheet, heating the member to 500-700 ° C, and finally correcting the member with a calibration tool.
  • the heating step of 500-700 ° C in this document causes the deformed TWIP steel to recover or recrystallize.
  • the method has high energy consumption and Two sets of molds are required to complete the forming and calibration work separately, with high cost and low production efficiency.
  • An object of the present invention is to provide a novel steel forming method and a forming member thereof which can solve the above problem of delayed cracking at a lower cost and lower power consumption.
  • the steel forming method and the forming member thereof of the present invention can reduce the number and even order of the number of twins formed in the forming process of the steel material, particularly the TWIP steel, and at the same time suppress the formation of martensite, thereby providing a lower cost and more energy consumption. Low technical solution to solve the problem of delayed cracking.
  • a steel forming method comprising the steps of: (A) providing a steel material for forming; (B) heating the steel material to 150 to 500 ° C; And transferring the heated steel material to the steel forming apparatus; (D) forming the steel material in a temperature range of 100 to 450 ° C in the steel forming apparatus.
  • the steel material for forming may be a twin-induced plastic steel material, and the twin-induced plastic steel may include the following components in a weight percentage: Mn: 12 to 30% by weight, C: 0.4 to 1.2. Wt%, Si: 0 to 2 wt%, Al: 0 to 3 wt%, V: 0 to 0.7 wt%, and the balance of Fe and unavoidable impurities.
  • the heating rate is 0.001 to 1000 ° C / s, and the total heating and holding time is 10 s to 10 h.
  • the microstructure of the steel after the forming operation Weaving includes austenite having a volume fraction of 95% or more.
  • the forming operation may be a press forming operation, a trimming operation, a blanking operation or a punching operation.
  • a forming member characterized in that the forming member is made of any one of the above-described steel forming methods of the present invention.
  • the forming member may be used for at least one of an automobile component such as a B-pillar reinforcement, a bumper, and a door impact beam, a wheel spoke.
  • the forming member can also be used in any other land vehicle where a lightweight high strength and high ductility member is required.
  • the microstructure of the shaped member comprises austenite having a volume fraction of greater than or equal to 95%.
  • the shaped member has a tensile strength at room temperature greater than 1000 MPa. Further, the formed member does not undergo delayed cracking in the case where the degree of deformation of the forming is 50% or less.
  • Figure 1a is a microstructure of a TWIP steel (Fe-18Mn-0.75C-0.5Si-1.5Al, wt%) formed at room temperature, showing a large amount of twin formation;
  • Figure 1b is a microstructure of the TWIP steel after forming at 300 ° C according to the method of the present invention, wherein no twins or martensite is produced;
  • TWIP 2 is an engineering stress-strain curve of the TWIP steel, wherein the upper curve is a tensile curve at room temperature, the lower curve is a tensile curve at 300 ° C, UTS represents tensile strength, and UE represents uniform elongation. .
  • TWIP steel has austenite transformation into martensite.
  • twins or the formation of martensite provide delayed cracking. Convenient access, so TWIP steel has such a large risk of delayed cracking. Therefore, it is an idea to reduce the number of crystals in the TWIP steel during the forming process and even the order of magnitude while suppressing the formation of martensite to solve the problem of delayed cracking.
  • the properties and plastic deformation mechanisms of austenitic-based steel materials such as TWIP steel mainly depend on its stacking fault energy (SFE).
  • SFE stacking fault energy
  • the high-manganese TWIP steel has a low stacking fault energy at room temperature, and twins are formed during plastic deformation.
  • the stacking fault is closely related to temperature. At higher temperatures, the stacking fault energy of TWIP steel will increase, and the twins will be inhibited or completely disappeared during the deformation process.
  • a TWIP steel having the following composition ranges is provided: Mn: 12 to 30% by weight, C: 0.4 to 1.2% by weight, Si: 0 to 2% by weight, Al: 0 to 3% by weight, V: 0 to 0.7% by weight, and the balance of Fe And unavoidable impurities, where wt% represents mass or weight percentage.
  • Table 1 lists some of the typical compositions of TWIP steel used in the present invention.
  • the TWIP steel of the present invention is not limited to these components, and TWIP steel using other components is also feasible.
  • TWIP steels are first heated to 150-500 ° C, the heating rate can be 0.001 ⁇ 1000 ° C / s, the total heating and holding time can be 10 s ⁇ 10h. Then, the heated TWIP steel was transferred to a press by a robot, and press forming was performed at 100 to 450 °C. The materials formed by this method were tested and found to have no delayed cracking.
  • Fig. 1a and Fig. 1b are microstructure comparison diagrams of TWIP steel after forming at normal temperature and 300 °C, in which it can be seen that a large amount of twins are formed after normal temperature forming, and austenite without twinning after forming at 300 ° C Body grain.
  • the volume fraction of austenite can reach more than 95%.
  • Figure 2 shows the plastic deformation behavior of the above TWIP steel at two comparative temperatures. It can be found that when deformed at 300 ° C, its uniform elongation of 54% is almost the same as the uniform elongation at room temperature (56%), so that high ductility can meet the needs of most automotive parts stamping. In other words, it is formed at 300 ° C, although there is no twin formation, but due to its austenite The excellent deformability of the body itself at 300 ° C can also give almost the same forming ability as at room temperature. Moreover, when deformed at 300 °C, its yield strength and tensile strength are lower than those at room temperature deformation. In other words, TWIP steel has lower deformation resistance during heat forming, which reduces the tonnage of the press and reduces the wear of the stamping die. Positive meaning.
  • the present invention proposes another logic for reducing the risk of delayed cracking of TWIP steel automotive parts: heating TWIP steel during press forming to a reasonable temperature (100-450 ° C) The appropriate stacking fault energy is obtained, so that the forming process mainly relies on the dislocation motion to generate deformation, and the twinning is controlled as much as possible.
  • the TWIP steel does not undergo martensite transformation when deformed in this temperature range. Since the formation of twins and martensite is controlled, the risk of delayed cracking of the formed parts is reduced.
  • the stamping temperature is lower than 100 ° C, the stacking fault energy of the TWIP steel may not be raised enough to suppress the degree of twin formation, so that it is disadvantageous to greatly reduce the number of twins of the formed part; if the stamping temperature Above 450 ° C, considering the cooling during the transfer from the furnace to the press station, the heating temperature may need to be higher than 500 ° C. At this time, TWIP steel may recover and partially recrystallize, resulting in the yield of TWIP steel. The strength is reduced, which affects the bearing effect in the service process, and the heating temperature is too high, which causes the problem of excessive energy consumption.
  • the TWIP steel of the present invention has an elongation close to room temperature at 100 to 450 ° C, and parts which can be formed at room temperature can be formed at 100 to 450 ° C.
  • the shaped member formed by the above method can be used for at least one of an automobile component such as a B-pillar reinforcement, a bumper, and a door impact beam, a wheel spoke.
  • the forming member can also be used in any other land vehicle where a lightweight high strength and high ductility member is required.
  • the present invention has the following advantages:
  • TWIP steel After TWIP steel is heated and stamped into parts and cooled to room temperature, the microstructure does not contain a large amount of twins, which can be used as “fresh” TWIP steel in the process of car collision, according to TWIP effect, TRIP effect and dislocation. Mechanism that provides maximum deformation and the ability to absorb energy.
  • Table 2 shows the mechanical behavior of a TWIP steel obtained by tensile deformation at 300 ° C at room temperature. It can be seen from Table 2 that the member exhibits excellent mechanical properties under different deformation amounts. For example, in the case of stretching at 300 ° C for 20%, the yield strength of the member (deformed portion) exceeds 1000 MPa, tensile strength. The strength reaches 1300 MPa, and the total elongation exceeds 40%, which can meet the needs of many automotive applications.
  • TWIP steel After TWIP steel is heated and stamped into parts and cooled to room temperature, TWIP steel can be improved. Rebound problem after forming at room temperature.
  • the member formed by heating has better ability of reaming and flanging than the member formed at room temperature.
  • the member formed at room temperature For example, in the case of a deformation of 20% at 300 ° C (Table 2), the member also has a post-neck elongation of about 10%, and after 20% deformation at room temperature, the member exhibits only about 4% of the post-neck elongation. The degree of elongation after necking is an important feature of the ability to ream and flange.
  • the typical TWIP steel can be (Fe-18Mn-0.75C-0.5Si-1.5Al, wt%).
  • the steel forming method exemplified above is a press forming method
  • the steel forming method of the present invention is not limited thereto, and the steel forming method of the present invention is equally applicable to operations such as a trimming operation, a blanking operation, and a punching operation.
  • operations such as a trimming operation, a blanking operation, and a punching operation.
  • other forming methods and forming members are also contemplated by those skilled in the art based on the teachings of the present invention, which are also within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种钢材成形方法,包括以下步骤:(A)提供用于成形的钢材;(B)将所述钢材加热至150~500℃;(C)将受到加热后的钢材传送到钢材成形设备;(D)在所述钢材成形设备中在100-450℃的温度范围内对所述钢材进行成形操作。所述钢材成形方法以及由该方法制成的成形构件能降低钢材在成形过程中形成的孪晶数量,并且同时抑制马氏体的形成,解决了延迟开裂的问题。

Description

一种钢材成形方法及其成形构件 技术领域
本发明涉及一种钢材成形方法及其成形构件。
背景技术
轻量化和安全性是汽车工业近年来研究和发展的重点。使用高强度的钢板,可以在不牺牲碰撞安全性的条件下,减小钢板的厚度,达到减轻汽车重量的目的。同时,钢板的延伸率的高低,一方面决定了该钢板是否可以成形为更为复杂、美观而且具有最优工程设计的零件形状,另一方面决定了由此钢板制造的零件在发生碰撞的时候具有多大的能量吸收的能力。因此,高强度和高延伸率使汽车钢板开发的重要指标。
TWIP(Twinning Induced Plasticity,孪生诱导塑性)钢是以孪生诱导塑性为主要强化与提高延性机制的高锰全奥氏体钢,具有高强度和极高的延伸率,是汽车车身制造的可选优质钢铁材料。它通常具有以下几个特点:高锰含量;微观组织为全奥氏体;室温下的主要塑性变形机制是位错运动和孪生,也可以包括相变诱发塑性效应(TRIP)。由于这些细小的形变孪晶与位错之间的相互交叉,TWIP钢表现出了强烈的动态Hall-Petch效应,导致高的加工硬化率以及高的抗拉强度。同时,高的加工硬化率可以推迟局部颈缩的发生,使得变形能够均匀发生,从而提高了其塑性变形能力,表现出极高的延伸率。
然而,也是由于TWIP钢本身具有的超高加工硬化能力,成形后的TWIP钢零件具有较大的内应力,结合其本身并不优越的氢脆敏感抗性,导致了TWIP钢零件在室温成型后隐藏了巨大的延迟开裂风险。
即便从源头入手,在TWIP钢的制造过程中进行严格的去氢处理,仍然无法保证TWIP钢在制造成汽车零件的过程中和在TWIP钢零件的服役过程中不接触氢介质而发生氢致延迟开裂。高的延迟开裂风险是TWIP钢不能在汽车工业大规模应用的重要原因之一。
WO2015023012A1、US20080240969A1、CN100577846C等专利文献通过在TWIP里添加铝来降低氢致延迟开裂的风险。然而,加铝导致断裂强度(UTS)降低,使得构件在服役过程中承载能力下降,导致此 类加铝TWIP钢的在汽车车身应用中的减重优势变小。而且,高的铝添加量会使TWIP钢在连铸过程中产生浇口堵塞等问题,不利于连铸生产。
CN104233059A提出了在TWIP钢中添加合金元素钒,利用碳化钒质点作为氢陷阱来提高TWIP钢的抗延迟断裂能力并增加强度。然而,钒的添加势必会提高TWIP钢的成本,并且会带来一些可焊性的问题。
CN103003002A提出了对TWIP钢板进行预先成形,再将构件加热到500~700℃,最后用校正工具对构件进行校正。此文献中的500~700℃的加热步骤使变形后的TWIP钢发生了回复或重结晶的现象,虽然能够全面消除构件里的残余应力,解决延迟开裂的问题,但是此方法能耗高,而且需要两套模具来分别完成成形和校正的工作,成本高、生产效率低。
发明内容
本发明的一个目的在于提供一种新的钢材成形方法及其成形构件,其能以更低的成本和更低的能耗来解决上述延迟开裂的问题。本发明的钢材成形方法及其成形构件能降低钢材特别是TWIP钢在成形过程中形成的孪晶数量甚至数量级,并且同时抑制马氏体的形成,从而提供了一种成本更低并且能耗更低的解决延迟开裂问题的技术方案。
根据本发明的一个实施例,提供了一种钢材成形方法,其特征在于,包括以下步骤:(A)提供用于成形的钢材;(B)将所述钢材加热至150~500℃;(C)将受到加热后的钢材传送到钢材成形设备;(D)在所述钢材成形设备中在100~450℃的温度范围内对所述钢材进行成形操作。
根据本发明的一个优选实施例,所述用于成形的钢材可为孪生诱导塑性钢材,所述孪生诱导塑性钢材以重量百分比计可包括以下成分:Mn:12~30wt%,C:0.4~1.2wt%,Si:0~2wt%,Al:0~3wt%,V:0~0.7wt%以及余量的Fe和不可避免的杂质。
根据本发明的另一优选实施例,在步骤(B)中,加热速率0.001~1000℃/s,加热及保温总时间10s~10h。
根据本发明的另一优选实施例,所述钢材在成形操作后的微观组 织包括体积分数大于等于95%的奥氏体。
根据本发明的另一优选实施例,所述成形操作可为冲压成形操作、切边操作,下料操作或冲孔操作。
根据本发明的一个实施例,还提供了一种成形构件,其特征在于,该成形构件由本发明上述钢材成形方法中的任一种制成。所述成形构件可用于汽车构件,例如B柱增强件、保险杠、和车门防撞梁、车轮轮辐中的至少一种。当然,所述成形构件也可以用于其它所有陆用车辆中要求轻质的高强度加高延性的构件的场合。
根据本发明的一个优选实施例,所述成形构件的微观组织包括体积分数大于等于95%的奥氏体。
根据本发明的另一个优选实施例,所述成形构件在室温下的抗拉强度大于1000MPa。此外,所述成形构件在成形变形度小于等于50%的情况下不发生延迟开裂现象。
附图说明
图1a是一种TWIP钢(Fe-18Mn-0.75C-0.5Si-1.5Al,wt%)在室温下成形后的微观组织,其中显示有大量的孪晶产生;
图1b是该TWIP钢根据本发明的方法在300℃成形后的微观组织,其中显示没有孪晶也没有马氏体产生;
图2是该TWIP钢的工程应力-应变曲线,其中位于上方的曲线为室温时的拉伸曲线,位于下方的曲线为300℃时的拉伸曲线,UTS代表抗拉强度,UE代表均匀延伸率。
具体实施方式
本发明人经研究发现,TWIP钢变形过程中会形成形变孪晶,某些TWIP钢也会有奥氏体相变为马氏体,孪晶的形成或马氏体的形成为延迟开裂提供了便利渠道,因此TWIP钢具有如此大的延迟开裂风险。因此,降低成形过程中TWIP钢中的孪晶数量甚至数量级且同时抑制马氏体形成为解决延迟开裂问题提供了一个思路。
TWIP钢等以奥氏体为基体的钢铁材料的性能和塑性变形机制主要取决于其层错能(SFE:Stacking Fault Energy)。室温下高锰TWIP钢层错能较低,在塑性变形中会形成孪晶。而层错能与温度密切相关, 在较高的温度下,TWIP钢的层错能会升高,此时其变形过程中,孪生会被抑制或完全消失。
下面以冲压成形操作为例来说明本发明的成形方法及其成形构件。提供具有如下成分范围的TWIP钢:Mn:12~30wt%,C:0.4~1.2wt%,Si:0~2wt%,Al:0~3wt%,V:0~0.7wt%以及余量的Fe和不可避免的杂质,其中wt%表示质或重量百分比。表1列出了本发明所用的一些典型成分的TWIP钢。当然,本发明的TWIP钢并不局限于这些成分,使用其它成分的TWIP钢也是可行的。
先将这些TWIP钢加热至150~500℃,其加热速率可为0.001~1000℃/s,加热及保温总时间可为10s~10h。然后,通过机械手将加热后的TWIP钢传送到压机,在100~450℃进行冲压成形。对以这种方法成形后的材料进行检测,发现其均不发生延迟开裂现象。
表1本发明的TWIP钢在加热冲压后的延迟开裂情况
Figure PCTCN2016074804-appb-000001
此外,还对在常温和300℃成形后的TWIP钢的微观组织进行了对比。图1a和1b是在常温和300℃成形后的TWIP钢的微观组织对比图,其中可以看出在常温成形后生成大量的孪晶,而在300℃成形后的毫无孪晶生成的奥氏体晶粒。奥氏体的体积分数能够达到95%以上。
图2示出了上述TWIP钢在两个对比温度下的塑性变形行为。可以发现在300℃变形时,其54%的均匀延伸率与室温时的均匀延伸率(56%)几乎一样,这样高的延展性可满足绝大多数汽车零件冲压成形的需要。换句话说,在300℃成形,虽然没有孪晶形成,但由于其奥氏 体本身在300℃时极佳的变形能力也可以得到与室温时几乎一样的成形能力。而且,在300℃变形时,其屈服强度和抗拉强度低于室温变形时的情况,换言之,加热成形时TWIP钢具有更低的变形抗力,对降低压机吨位和减少冲压模具的磨损均有正面的意义。
基于上述研究结果,本发明提出了一种为TWIP钢汽车零件降低延迟开裂风险的另一种逻辑思路:对TWIP钢在冲压成形过程中进行加热,使其在合理的温度下(100~450℃)得到合适的层错能,使成形过程主要依靠位错运动产生变形,尽量控制孪晶的产生。另外,TWIP钢在该温度区间内变形亦不会发生马氏体相变。由于控制了孪晶和马氏体的形成,从而降低成形后的零件延迟开裂的风险。
在本发明中,如果冲压温度低于100℃,则可能不能将TWIP钢的层错能升高到足以抑制孪晶生成的程度,所以不利于大量降低成形后零件的孪晶数量;如果冲压温度高于450℃,考虑到从炉子到压机工位的转移过程中的冷却,则加热温度可能需要高于500℃,此时TWIP钢可能发生回复和部分重结晶的现象,导致TWIP钢的屈服强度下降,影响其服役过程中的承载效果,而且加热温度过高会带来能耗过高的问题。
还需要指出的是,本发明的TWIP钢在100~450℃下具有和室温接近的延伸率,在室温下能成形的零部件,在100~450℃也能成形。通过上述方法形成的成形构件可用于汽车构件,例如B柱增强件、保险杠、和车门防撞梁、车轮轮辐中的至少一种。当然,所述成形构件也可以用于其它所有陆用车辆中要求轻质的高强度加高延性的构件的场合。
此外,本发明还具备以下优势:
1、在TWIP钢加热冲压成零件并冷却到室温后,微观组织中不含大量的孪晶,在汽车发生碰撞的过程中可以作为“新鲜”的TWIP钢,根据TWIP效应、TRIP效应及位错机制,提供最大程度的变形和吸收能量的能力。表2展示了一种TWIP钢在300℃下通过拉伸变形后得到的构件在室温下的力学表现。从表2可以看出,在不同变形量下该构件均体现出非常优秀的力学性能,例如在300℃下拉伸20%的情况下,构件(变形部分)的屈服强度超过了1000MPa,抗拉强度达到了1300MPa,而总延伸率超过了40%,可以满足很多汽车应用的需要。
2、在TWIP钢加热冲压成零件并冷却到室温后,可改善TWIP钢在 室温成形后的回弹问题。
3、对比图2的两条曲线可以发现,TWIP钢加热拉伸的曲线有较高的颈缩后延伸率(post uniform elongation),说明材料在此温度下的抗裂纹扩展能力较强。与之相比,室温下成形TWIP钢颈缩后延伸率很低,说明具有较差的抵抗裂纹扩展能力,即具有很高裂纹敏感性。因此,对于切边操作、下料操作和冲孔操作等涉及到料片边缘质量和抗裂纹扩展的能力的操作,加热进行以上操作均优于室温下的操作。
4、对于成形后的构件还需要扩孔和翻边等操作的场合,加热成形的构件比室温成形的构件具有更好的扩孔和翻边的能力。例如在300℃下变形20%的情况下(表2),构件还具有约10%的颈缩后延伸率,而室温下变形20%以后,构件仅展现出约4%的颈缩后延伸率,颈缩后延伸率的高低是扩孔和翻边能力的重要特征。
表2本发明的TWIP钢在根据本发明的成形方法变形后得到的构件在室温下的机械性能
Figure PCTCN2016074804-appb-000002
注:表2中0%一行表示未经拉伸变形的原材料性能,典型的TWIP钢可为(Fe-18Mn-0.75C-0.5Si-1.5Al,wt%)。
虽然上面例示的钢材成形方法是冲压成形方法,然而本发明的钢材成形方法并不局限于此,本发明的钢材成形方法同样可以适用于切边操作、下料操作和冲孔操作等操作。当然,基于本发明的教导,本领域的技术人员也可以想到一些其它成形方法和成形构件,其同样落入本发明的保护范围内。

Claims (9)

  1. 一种钢材成形方法,其特征在于,包括以下步骤:
    (A)提供用于成形的钢材;
    (B)将所述钢材加热至150~500℃;
    (C)将受到加热后的钢材传送到钢材成形设备;
    (D)在所述钢材成形设备中在100~450℃的温度范围内对所述钢材进行成形操作。
  2. 如权利要求1所述的钢材成形方法,其特征在于,所述用于成形的钢材为孪生诱导塑性钢材,所述孪生诱导塑性钢材以重量百分比计包括以下成分:Mn:12~30wt%,C:0.4~1.2wt%,Si:0~2wt%,Al:0~3wt%,V:0~0.7wt%以及余量的Fe和不可避免的杂质。
  3. 如权利要求1或2所述的钢材成形方法,其特征在于,在步骤(B)中,加热速率0.001~1000℃/s,加热及保温总时间10s~10h。
  4. 如权利要求1或2所述的钢材成形方法,其特征在于,所述钢材经所述成形操作后的微观组织包括体积分数大于等于95%的奥氏体。
  5. 如权利要求1或2所述的钢材成形方法,其特征在于,所述成形操作包括冲压成形操作、切边操作、下料操作或冲孔操作。
  6. 一种成形构件,其特征在于,所述成形构件由权利要求1-5项中任一项所述的钢材成形方法制成。
  7. 如权利要求6所述的成形构件,其特征在于,所述成形构件的微观组织包括体积分数大于等于95%的奥氏体。
  8. 如权利要求6或7所述的成形构件,其特征在于,所述成形构件在室温下的抗拉强度大于1000MPa。
  9. 如权利要求6或7所述的成形构件,其特征在于,所述成形构件在成形变形度小于等于50%的情况下不发生延迟开裂。
PCT/CN2016/074804 2016-01-25 2016-02-29 一种钢材成形方法及其成形构件 WO2017128478A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610047076.9 2016-01-25
CN201610047076.9A CN105665576B (zh) 2016-01-25 2016-01-25 一种钢材成形方法及其成形构件

Publications (1)

Publication Number Publication Date
WO2017128478A1 true WO2017128478A1 (zh) 2017-08-03

Family

ID=56302365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074804 WO2017128478A1 (zh) 2016-01-25 2016-02-29 一种钢材成形方法及其成形构件

Country Status (2)

Country Link
CN (1) CN105665576B (zh)
WO (1) WO2017128478A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019154753A1 (de) * 2018-02-09 2019-08-15 Salzgitter Flachstahl Gmbh Verfahren zur herstellung eines bauteils durch warmumformen eines vorproduktes aus manganhaltigem stahl und ein warmumgeformtes stahlbauteil

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107574376A (zh) * 2017-09-07 2018-01-12 北京科技大学 一种低成本高强塑型高锰twip/trip效应共生钢及其制备方法
CN107760997A (zh) * 2017-09-25 2018-03-06 武汉钢铁有限公司 双重诱导塑性高强钢及其制造方法
CN108118255A (zh) * 2018-01-08 2018-06-05 河北工业大学 一种具有高冲击韧性的高锰twip耐低温钢及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1121627A (en) * 1966-04-05 1968-07-31 Hoerder Huettenunion Ag A process for deep drawing de-boomed laminated sheets
CN101280352A (zh) * 2008-05-21 2008-10-08 钢铁研究总院 高安全高精度热成型马氏体钢零件制备方法
JP2009241088A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 高珪素鋼帯の打ち抜き加工方法及び抜き加工設備
CN102989922A (zh) * 2012-12-01 2013-03-27 西安优耐特容器制造有限公司 一种薄壁封头的冲压成型方法
CN103934360A (zh) * 2014-04-25 2014-07-23 吉林大学 超高强度钢热冲压、温冲裁复合成形工艺及模具
US20140223743A1 (en) * 2013-02-08 2014-08-14 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle stabilizer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006048034A1 (de) * 2004-11-03 2006-05-11 Thyssenkrupp Steel Ag Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels “direct strip casting '
KR20070018416A (ko) * 2005-08-10 2007-02-14 현대자동차주식회사 자동차 차체부품용 twip형 초고강도 강판 및 그제조방법
CN101422797A (zh) * 2007-10-31 2009-05-06 中国科学院金属研究所 一种金属板材成形方法
CN100577846C (zh) * 2007-11-29 2010-01-06 北京科技大学 一种铜、镍合金化的孪晶诱导塑性钢铁材料及制备工艺
EP2257394B1 (en) * 2008-01-30 2018-11-07 Tata Steel IJmuiden BV Method of producing a hot-rolled twip-steel and a twip-steel product produced thereby
CN102400036B (zh) * 2010-09-07 2014-07-09 鞍钢股份有限公司 一种高延伸率和高扩孔率的孪晶诱发塑性钢及其制造方法
CN105200340B (zh) * 2015-09-23 2020-11-17 宝钢德盛不锈钢有限公司 800~1600MPa级高强度奥氏体不锈钢及制造方法和温成型方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1121627A (en) * 1966-04-05 1968-07-31 Hoerder Huettenunion Ag A process for deep drawing de-boomed laminated sheets
JP2009241088A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 高珪素鋼帯の打ち抜き加工方法及び抜き加工設備
CN101280352A (zh) * 2008-05-21 2008-10-08 钢铁研究总院 高安全高精度热成型马氏体钢零件制备方法
CN102989922A (zh) * 2012-12-01 2013-03-27 西安优耐特容器制造有限公司 一种薄壁封头的冲压成型方法
US20140223743A1 (en) * 2013-02-08 2014-08-14 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle stabilizer
CN103934360A (zh) * 2014-04-25 2014-07-23 吉林大学 超高强度钢热冲压、温冲裁复合成形工艺及模具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019154753A1 (de) * 2018-02-09 2019-08-15 Salzgitter Flachstahl Gmbh Verfahren zur herstellung eines bauteils durch warmumformen eines vorproduktes aus manganhaltigem stahl und ein warmumgeformtes stahlbauteil

Also Published As

Publication number Publication date
CN105665576B (zh) 2018-02-02
CN105665576A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5637342B2 (ja) ホットプレス加工を施した鋼板部材及びその製造方法
CN109207849B (zh) 高强高塑性1000MPa级热轧钢板及制备方法
WO2017128478A1 (zh) 一种钢材成形方法及其成形构件
CN108315656B (zh) 一种免热处理的8.8级紧固件用冷镦钢及其制造方法
US20100051146A1 (en) Method of manufacturing twinning induced plasticity type ultra-high strength steel sheet
CN110358971B (zh) 一种屈服强度1300MPa级的低碳超高强钢及其制备方法
CN111218620A (zh) 一种高屈强比冷轧双相钢及其制造方法
KR20090084885A (ko) 캔용 강판의 제조 방법
CN108977726B (zh) 一种抗延迟开裂的马氏体超高强度冷轧钢带及其制造方法
US20230098505A1 (en) Cold-rolled annealed dual-phase steel, steel plate, and manufacturing method therefor
JP2013040390A (ja) 熱間プレス部材の製造方法
JP4833698B2 (ja) ダイクエンチ用高強度鋼板
CN109136759B (zh) 轮辐用厚规格1300MPa级热成形钢及制备方法
CN114381671A (zh) 高强度且高塑性中锰钢及生产方法
JP2011202204A (ja) 超高強度部材の製造方法および使用方法
JP5717631B2 (ja) プレス成形性に優れた冷延鋼板の製造方法及び冷延鋼板
CN109440004B (zh) 罐用钢板及其制造方法
CN109972058A (zh) 一种汽车用冷轧低合金高强度空冷强化钢及制备方法
CN109023092B (zh) 轮辋用1300MPa级热成形钢及制备方法
TWI507539B (zh) 熱軋鋼板及其製造方法
JP5197113B2 (ja) ステンレス鋼プレス成形体および製造方法
RU2366728C1 (ru) Способ получения толстолистового проката из аустенитной немагнитной стали
KR101673342B1 (ko) 핫 스탬핑 방법 및 핫 스탬핑 강
CN114457285B (zh) 一种乘用车b柱用高强钢板及其制备方法
CN113462970B (zh) 一种用CSP生产抗拉强度为1800MPa级高塑韧性汽车结构件用钢及生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887362

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16887362

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16887362

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 11/06/2019)