WO2017127950A1 - 一种熔盐化学法回收废硬质合金的方法 - Google Patents
一种熔盐化学法回收废硬质合金的方法 Download PDFInfo
- Publication number
- WO2017127950A1 WO2017127950A1 PCT/CN2016/000058 CN2016000058W WO2017127950A1 WO 2017127950 A1 WO2017127950 A1 WO 2017127950A1 CN 2016000058 W CN2016000058 W CN 2016000058W WO 2017127950 A1 WO2017127950 A1 WO 2017127950A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- molten salt
- cemented carbide
- reaction
- chlorine
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/04—Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/056—Submicron particles having a size above 100 nm up to 300 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/949—Tungsten or molybdenum carbides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/02—Obtaining nickel or cobalt by dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1218—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by dry processes
- C22B34/1222—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by dry processes using a halogen containing agent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/30—Obtaining chromium, molybdenum or tungsten
- C22B34/36—Obtaining tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/06—Dry methods smelting of sulfides or formation of mattes by carbides or the like
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/001—Dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/001—Dry processes
- C22B7/002—Dry processes by treating with halogens, sulfur or compounds thereof; by carburising, by treating with hydrogen (hydriding)
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/15—Nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/10—Carbide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention belongs to the technical field of metallurgical engineering, and particularly relates to a method for recovering waste cemented carbide by molten salt chemical method.
- Cemented carbide is mainly a cermet material made of a hard compound of refractory metal and a binder metal by a powder metallurgy process. This material contains a large amount of valuable metal elements such as chromium, bismuth, titanium, tungsten, cobalt, nickel, and molybdenum.
- the current main recycling processes include: saltpeter melting method [1] , zinc melting method [2] , oxidized carbon thermal reduction method [3] , mechanical crushing method [4] and selective electrochemical dissolution method [5] .
- the saltpeter melting method is the earliest method for recycling waste hard alloys in industrial applications.
- the corrosion resistance of the equipment is very high, and NO and NO 2 corrosive harmful gases are emitted during the recovery process, causing great damage to the working environment and the ecological environment [1] .
- Zinc dissolution method is the most widely used method in industry, but it has the problems of high energy consumption, complicated equipment and zinc residue in the product [2] .
- the oxidized carbon thermal reduction method is a method for oxidizing and calcining waste cemented carbide in air to form WO 3 and CoWO 4 composite oxide, and then obtaining a cemented carbide raw material of WC and Co after carbonization and carbonization heat treatment,
- this method has high energy consumption, and CO or CO 2 harmful gases are emitted during the redox process to damage the environment [3] .
- Mechanical crushing method Because of the high strength and hardness of cemented carbide, it requires super abrasive equipment to obtain fine powder, and it is easy to bring secondary pollution elements in the crushing process [4] .
- the selective electrochemical dissolution method is an aqueous solution electrolysis method, which electrochemically dissolves a cobalt or nickel binder phase into an electrolyte, and then obtains cobalt powder or nickel powder by filtration, precipitation, and calcination reduction; and the anode residue is subjected to ball mill crushing treatment. Used in the production of cemented carbide. This method is simple and easy to operate, but there are problems such as prolonged recovery cycle caused by anode passivation and increased recycling cost of treating waste liquid [5] .
- the purpose of the metal thermal reduction method is to prepare a pure metal, or the metal thermal reduction method is to use a reactive metal reducing agent instead of an inactive metal in another metal compound to directly reduce the chemical reaction method for preparing the inert metal element [ 6] .
- the molten salt metal thermal reduction method refers to a method for reducing or producing a metal element or alloy material by a metal heat reduction reaction in a molten salt medium [7-9] .
- the molten salt metal thermal reduction method has attracted much attention in the field of preparation of difficult-melting metals and alloys (or intermetallic compounds) materials, such as short process, low energy consumption, simple equipment, and environmental friendliness.
- Okabe et al. [10] obtained a metal cerium powder with a purity greater than 99.5% by adding CaCl 2 reagent based on the preparation process of magnesia-reduced Nb 2 O 5 .
- Ryosuke et al. [11] studied the preparation of metal ruthenium powder by calcium thermal reduction of Nb 2 O 5 in a CaCl 2 molten salt medium with saturated metal calcium.
- Okabe et al. [12] used electrochemical methods to prepare metal ruthenium powders for the thermal reduction of Nb 2 O 5 in molten salt electrolytes, and successfully obtained pure metal ruthenium powder. Shekhter et al.
- the present invention provides a method for recovering waste cemented carbide nanopowders by using molten salt, which utilizes molten salt
- the oxidative corrosion performance oxidizes and dissolves the waste cemented carbide, enters the molten salt system in the form of Co 2+ , CO 3 2- , and WO 4 2- plasma, and then obtains the hard alloy nano powder through metal thermal reduction.
- the technical solution of the present invention is:
- a method for recovering waste cemented carbide by using molten salt is carried out according to the following process steps:
- the molten salt medium composed of the compound A, the compound B and the NaCl is mixed with the cemented carbide scrap, dehydrated under vacuum, the degree of vacuum is 0.1 to 0.2 MPa, and the molar percentage of A in the molten salt medium is 5 to 30 mol%, B has a molar percentage content of 0 to 60 mol%, a dehydration temperature of 70 to 300 ° C, and a molar percentage of NaCl of 10 to 50 mol%;
- the oxidized molten salt reaction system is passed through a chlorine-containing gas for deoxidation treatment, and the deoxidation temperature is 300 to 1000 ° C;
- the reaction temperature is 400-850 ° C
- the reaction gas is introduced into the whole process, the gas flow rate is 5 to 50 ml / s;
- the mixture obtained by the thermal reduction reaction is sequentially washed with water, filtered and vacuum dried, wherein the vacuum drying condition is a vacuum degree of 0.1 to 0.5 MPa, and the temperature is 20 to 40 ° C, and the molten salt medium and the cemented carbide nano powder are separated. And collection.
- the reaction temperature for the oxidative dissolution is preferably 500 to 800 °C.
- the reaction temperature for the deoxidation treatment is preferably 300 to 600 °C.
- the compound A of the step (1) is one or more of Na 2 O, CaO, K 2 O, CoO/CoO 3 , WO 3 , Na 2 WO 4 , K 2 WO 4 , CaWO 4 ; It is one or more of CaCl 2 , KCl, and LiCl.
- the waste cemented carbide of the step (2) comprises a tungsten carbide-based cemented carbide, a titanium carbide-based cemented carbide, a titanium carbonitride-based cemented carbide, a tungsten-titanium-titanium carbide, a tungsten-titanium-titanium carbide and Chromium carbide based cemented carbide.
- the oxidizing gas in the step (2) is one or more of air, ozone, oxygen or an oxygen-containing mixed gas, wherein the volume ratio of oxygen in the oxygen-containing mixed gas is 20 to 100%, and the remaining nitrogen or argon gas .
- the step (2) is carried out by introducing an oxidizing gas to perform an oxidative dissolution reaction, by controlling the gas flow rate to be 5 to 50 ml/s, or controlling the partial pressure of the gas to be 1.05 to 1.50 atmospheres; and when the oxidizing gas is an oxygen-containing mixed gas
- the oxidative dissolution is carried out by controlling the flow rate.
- the chlorine-containing gas in the step (3) is one or more of chlorine gas, hydrogen chloride gas, chlorine gas or hydrogen chloride mixed gas, wherein the chlorine gas mixed gas has a volume ratio of chlorine gas of 30 to 100%, and the remaining nitrogen gas or argon gas.
- the volume ratio of hydrogen chloride in the mixed gas of hydrogen chloride is 50 to 100%, and the remainder is nitrogen or argon.
- the step (3) is carried out by introducing a chlorine-containing gas for deoxidation treatment, by controlling the gas flow rate to be 5 to 50 ml/s, or controlling the partial pressure of the gas to be 1.05 to 1.50 atmospheres; and when the chlorine-containing gas is a chlorine gas mixed gas Alternatively, when the hydrogen chloride gas is mixed, the deoxidation treatment is performed by controlling the flow rate.
- the reducing agent of the step (4) is sodium metal or calcium metal.
- the shielding gas of the step (4) is a mixed gas of one or two of nitrogen gas and argon gas.
- Oxidative dissolution reaction The reactants O 2 /O 3 , WC and Co are reacted in the form of Co 2+ , CO 3 2- , O 2 ⁇ , WO 4 2- ions in the molten salt system.
- Deoxidation treatment reaction O 2 - in the molten salt is removed by a reaction of a deoxidizer Cl 2 or HCl gas, and the product is a Cl - ion in the molten salt and an overflow gas O 2- or water vapor.
- Reduction synthesis reaction Co 2+ , CO 3 2- , and WO 4 2- ions in the molten salt are reduced to nano particles such as W, WC, and WC-Co by a reaction agent Na or Ca.
- the tungsten, cobalt and carbon ions in the waste cemented carbide can be directly oxidized and dissolved into the molten salt medium to form a uniform reaction system, and the synthetic nano-sized composite powder particles are prepared under the action of the reducing agent.
- the powder has a particle size ranging from 20 to 1000 nm and a purity of 98.0% or more.
- the process can continuously treat waste cemented carbide, reduce and synthesize tungsten, cobalt or its hard alloy nano powder materials, and apply it to civil industry, aerospace, military industry, traffic information, environmental energy and other fields.
- the process of the invention has the characteristics of short process, low energy consumption, low regeneration equipment, excellent regeneration products, and no solid/gas/liquid harmful substances harmful to the environment, and can obtain huge economy. And social benefits.
- This technique can also be applied to the preparation of other refractory metal alloys or intermetallic high temperature structural materials, elemental metal materials, cemented carbide materials, and high specific gravity alloy materials.
- Figure 1 is a schematic view showing the structure of a reaction cell used in the practice of the present invention.
- Example 2 is a graph showing an XRD phase analysis of a tungsten metal nanopowder obtained by recovering a waste WC cemented carbide according to Example 1 of the present invention.
- Example 3 is a FESEM photograph of the surface topography of the tungsten metal nanopowder obtained by recovering the waste WC cemented carbide according to Example 1 of the present invention.
- Example 4 is a graph showing the XRD phase analysis of the WC nanopowder obtained by recovering the waste WC cemented carbide according to Example 2 of the present invention.
- Example 5 is a FESEM photograph of the surface topography of WC nanopowder obtained by recycling waste WC cemented carbide according to Example 2 of the present invention.
- Fig. 6 is a graph showing the XRD phase analysis of the WC-Co composite nanopowder obtained by recovering the waste YG16 type cemented carbide according to Example 3 of the present invention.
- Example 7 is a FESEM photograph of the surface morphology of WC-Co composite nanopowder obtained by recycling waste YG16 type cemented carbide according to Example 3 of the present invention.
- the present invention can carry out an oxidation-reduction synthesis reaction means in a molten salt using a device conventional in the art.
- the apparatus shown in Figure 1 was used: the reaction cell 3 was placed in a closed vessel 1 which provided gas protection and electrical heating.
- the sealed container 1 is provided with a pressure detecting device, a temperature detecting device, an intake port 5, and an exhaust port 2.
- the feed tube 4 and the reducing agent storage tank 6 are inserted into the molten salt medium.
- the method for preparing tungsten nano-powder by using molten salt recovery waste WC cemented carbide is carried out according to the following process steps: mixing a molten salt medium having a molar percentage composition of NaCl-52 mol% CaCl 2 -3 mol% CaO with cemented carbide WC waste,
- the degree of vacuum is 0.1 to 0.2 MPa
- the temperature is 70 to 300 ° C
- the temperature is dehydrated, and after vacuum dehydration, the temperature is raised to the reaction temperature, and the air is subjected to an oxidative dissolution-decarburization reaction at an oxidation temperature of 750 ° C.
- the prepared tungsten metal powder has a purity of 98.6 wt%, and the spherical agglomerated particles have a particle size distribution ranging from 30 to 400 nm.
- the XRD phase analysis curve and FESEM photograph of the tungsten metal nanopowder are shown in Fig. 2 and Fig. 3.
- the method for preparing WC nanopowder by using molten salt recovery waste WC cemented carbide is carried out according to the following process steps: mixing molten salt medium having a molar percentage composition of NaCl-52 mol% CaCl 2 -3 mol% Na 2 O with cemented carbide WC waste Dehydration under the condition of a vacuum degree of 0.1 to 0.2 MPa and a temperature of 70 to 300 ° C. After the vacuum dehydration is completed, the temperature is raised to the reaction temperature, and oxygen is introduced to carry out an oxidative dissolution reaction at an oxidation temperature of 700 ° C.
- the prepared WC nanopowder has a purity of 99.5 wt%, and the spherical agglomerated particle has a particle size distribution ranging from 20 to 350 nm.
- XRD phase analysis curves and FESEM photographs of WC nanopowders are shown in Figures 4 and 5.
- Method for preparing WC-Co nanopowder by using molten salt recovery waste YG16 type tungsten-cobalt cemented carbide mixing molten salt medium having a molar percentage composition of NaCl-52 mol% CaCl 2 -5 mol% CaO with cemented carbide YG16 waste, in vacuum
- the degree is 0.1 to 0.2 MPa
- the temperature is 70 to 300 ° C
- the temperature is dehydrated, the temperature is raised to the reaction temperature after the end of vacuum dehydration, and the oxygen is oxidized and dissolved
- the oxidation temperature is 750 ° C
- the oxidation reaction is gradually reduced as the oxidation reaction progresses.
- the air flow rate increases the flow rate of the inert gas argon gas.
- the oxygen is changed to hydrogen chloride gas to form a 50% hydrogen gas + argon gas mixture for deoxidation reaction, and the hydrogen chloride ratio is gradually reduced as the deoxidation reaction proceeds.
- the gas was protected by argon gas.
- the reducing agent sodium metal was added to the reaction system along the feeding tube.
- the reaction temperature was 700 ° C to complete the thermal reduction reaction.
- the furnace was cooled to room temperature, and the obtained WC- Se composite powder and molten salt medium are separated and collected by molten salt medium and product powder by water washing, filtration and vacuum drying.
- the vacuum degree of 0.5MPa, the drying temperature is 40 °C.
- the prepared WC-Co composite nano powder particles have a purity of 99.3%.
- the XRD phase analysis curve and FESEM photograph of the WC-Co composite nanopowder are shown in Fig. 6 and Fig. 7.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
一种熔盐化学法回收废硬质合金的方法,按照以下工艺步骤进行:(1)熔盐介质真空脱水;(2)废硬质合金在熔盐介质中进行氧化溶解反应;(3)熔盐反应体系进行脱氧处理;(4)熔盐反应体系进行热还原反应;(5)热还原反应获得的混合物依次经过水洗、过滤及真空干燥进行熔盐介质与硬质合金纳米粉末的分离及收集。所述方法可以连续处理废硬质合金,还原合成再生钨、钴或其硬质合金纳米粉末材料,具有流程短、设备简单能耗低、再生产品优良等特点,且不产生固/气/液有害物质危害环境。
Description
本发明属于冶金工程技术领域,具体涉及一种熔盐化学法回收废硬质合金的方法。
硬质合金主要是由难熔金属的硬质化合物和粘结金属通过粉末冶金工艺制成的一种金属陶瓷材料。此材料中因含有大量的铬、钽、钛、钨、钴、镍、钼等有价值金属元素。
我国钴资源短缺,每年需大量进口;而钨资源虽然丰富,但随着近些年大量的开采,其储藏量和开采量日益减小。同时废旧硬质合金数量日益增加并且其钨钴含量远高于工业原料的含量,其中钨金属含量可达到40%~95%,其回收具有巨大的经济价值和社会效益。因此,废硬质合金的回收对现有矿物资源和生态资源的保护及合理利用具有重要的意义。当前主要回收工艺包括:硝石熔融法[1]、锌熔法[2]、氧化碳热还原法[3]、机械破碎法[4]和选择性电化学溶解法[5]。
硝石熔融法是工业化应用最早的一种回收废硬质合的方法。但对设备的耐蚀性要求很高,回收过程中会排放出NO和NO2腐蚀性有害气体,对工作环境和生态环境造成巨大破坏[1]。锌溶法是工业应用最广的一种方法,但其具有能耗高、设备复杂并且产品中存在锌残余等问题[2]。氧化碳热还原法是将废硬质合金在空气中氧化煅烧形成WO3与CoWO4复合氧化物,然后经过配碳及碳化热处理后得到WC与Co的硬质合金混合粉末原料的一种方法,但是此法具有能耗高,氧化还原过程中会排放出CO或CO2有害气体破坏环境[3]。机械破碎法因硬质合金具有很高强度和硬度,获得细粉需要超强的磨料设备,并且在破碎过程中容易带入二次污染元素[4]。选择性电化学溶解法是水溶液电解法,经过电化学溶解钴或镍粘结相进入电解液中,再经过滤→沉淀→煅烧还原获得钴粉或镍粉末;而阳极残渣经球磨破碎处理后再用于硬质合金的生产。此法简单易操作,但存在阳极钝化造成回收周期延长,以及处理废液增加回收成本等问题[5]。
金属热还原方法目的是制备纯金属,或者说金属热还原方法是利用一种活泼金属还原剂代替另一种金属化合物中不活泼的金属,直接还原制备出此不活泼金属单质的化学反应方法[6]。而熔盐金属热还原法是指在熔盐介质中通过金属热还
原反应,还原制备出金属单质或合金材料的一种方法[7-9]。熔盐金属热还原法在难融金属及其合金(或金属间化合物)材料制备领域,具有流程短、能耗低、设备简单、环境友好等特点备受世人关注。
Okabe等人[10]在镁热还原Nb2O5制备工艺基础上加入CaCl2试剂获得了纯度大于99.5%的金属铌粉。Ryosuke等人[11]对在具有饱和金属钙的CaCl2熔盐介质中,进行钙热还原Nb2O5制备金属铌粉末的研究。同年,Okabe等人[12]利用电化学方法在熔盐电解质中对钙热还原Nb2O5制备金属铌粉末进行了研究,成功获得了纯金属铌粉末。Shekhter等人[13]在熔融的CaCl2熔盐介质中,探讨了由气相介入的金属热还原方法,即采用较易处理的Ca或Mg蒸气来还原粉末状稀有金属氧化物的方法。Baba等人[14]在CaCl2熔盐介质中,对钙金属热还原Nb2O5制备金属铌粉末的反应时间进行了详细的研究。熔盐钙金属热还原法完成了由钙蒸汽直接还原Nb2O5粉末(或胚体)向钙原子直接还原熔盐稀释剂中的Nb2O5制备单一金属铌粉末的转变,成功制备获得了高纯的纳米级金属铌粉末颗粒。后来,Hongmin Zhu等人[7-9]在含CaCl2熔盐介质中,对钠热还原制备铌及铌铝金属金属间化合物材料进行了一系列的研究,成功制备获得了纳米级铌及Nb3Al/NbAl3/Nb2Al-NbAl3金属间化合物粉体颗粒。以上研究指出金属热还原法具有流程短、设备简单、能耗低、环境友好、生产规模易调节的特点。
参考文献:
[1]Deloume J P,Marote P,Sigala C,et al.Study of the reaction of tungsten carbide in molten alkali metal nitrates,Syntheses of divalent(s and d blocks)metal tungstates.J Solid State Chem.2003,174:1.
[2]Gurmen S,Friedrich B.Recovery of cobalt powder and tungsten carbide from cemented carbide scrap-Part I:Kinetics of cobalt acid leaching[J].Erzmetall,2004,57:143-147.
[3]Jung W G.Recovery of tungsten carbide from hard material sludge by oxidation and carbothermal reduction process.Journal of Industrial and Engineering Chemistry,2013,10:1-5.
[4]Edtmairer C,Schiesser R,Meissl C,et al.Selective removal of the cobalt binder in WC/Co based hardmetal scraps by acetic acid leaching[J].Hydrometallurgy,2005,76(1):63-71.
[5]Lee C,Kima E Y,Kim J H,et al.Recycling of WC-Co hardmetal sludge by a new hydrometallurgical route[J].Int.Journal of Refractory Metals and Hard Materials,2011,(29):365-371.
[6]Gupta C K.Extractive metallurgy of niobium,tantalum,and vanadium[J].Int.Met.Rev.1984,29(06):405-444.
[7]Na W,Kai H,Jungang H,et al.Preparation of niobium powder by sodiothermic reduction of Nb2O5in molten salts.Rare Metals,2012,31(6):621-626.
[8]Na W,Yao Z,Kai H,et al.Preparation of Nb-Al nanoparticles by sodiothermic homogeneous reduction at low temperature in molten salts[J].Intermetallics,2013,43:45-52.
[9]Chao D,Na W,Jungang H,et al.Facile synthesis of Nb-Al alloy powders via sodiothermic reduction in molten salts[J].J.Alloys Compd.2013,555:405-411.
[10]Yuan B Y,Okabe T H.Niobium powder production by reducing electro-chemically dissolved niobium ions in molten salt[J].J.Alloys Compd.2008,454:185-193.
[11]Josua L,Frank B.Niobium powder and a process for the production of niobium an d/or tantalum powder[P].US 6136062,2000.
[12]Okabe T H,Park Il,Jacob K T,et al.Production of niobium powder by electronically mediated reaction(EMR)using calcium as a reductant[J].J.Alloys Compd.1999,288:200-210.
[13]Shekhter L,Lanin L,Tripp T.A New process for the production of tantalum and niobium powder from oxide[C].DrewR A L,Pugh M,Brochum eds.41th TIC Symposium,San Francisco:Tantalum-Niobium International Study Center Press,2000:87-101.
[14]Baba M,Ono Y,Suzuki R O.Tantalum and niobium powder preparation from their oxides by calciothermic reduction in the molten CaCl2[J].J.Phys.Chem.Solids,2005,66:466-470.
发明内容
针对现有回收技术中存在的各种问题,并结合熔盐中金属热还原方法的研究成果,本发明提供一种利用熔盐回收废硬质合金纳米粉末的方法,所述方法利用熔盐的氧化腐蚀性能对废旧硬质合金进行氧化溶解,以Co2+、CO3
2-、WO4
2-等离子形态进入熔盐体系,再经过金属热还原获得硬质合金纳米粉末。本发明的技术方案为:
一种利用熔盐回收废硬质合金的方法,按照以下工艺步骤进行:
(1)将组成为化合物A,化合物B和NaCl的熔盐介质与硬质合金废料混合,在真空条件下脱水,真空度为0.1~0.2MPa,熔盐介质中A的摩尔百分比含量为5~30mol%,B的摩尔百分比含量为0~60mol%,脱水温度为70~300℃,NaCl的摩尔百分比含量为10~50mol%;
(2)将含有硬质合金废料的熔盐介质进行搅拌,通入氧化气体进行氧化溶解反应,反应温度为300~1000℃;
(3)将氧化的熔盐反应体系通入含氯气体进行脱氧处理,脱氧温度为300~1000℃;
(4)在脱氧后的熔盐反应体系中加入还原剂进行热还原反应,反应温度为400~850℃,反应全程通入保护气体,气体流量为5~50ml/s;
(5)热还原反应获得的混合物依次经过水洗、过滤及真空干燥,其中真空干燥的条件为真空度0.1~0.5MPa,温度为20~40℃,进行熔盐介质与硬质合金纳米粉末的分离及收集。
优选氧化溶解的反应温度为500~800℃。
优选脱氧处理的反应温度为300~600℃。
所述步骤(1)的化合物A为Na2O、CaO、K2O、CoO/CoO3、WO3、Na2WO4、K2WO4、CaWO4中的一种或多种;化合物B为CaCl2、KCl、LiCl中的一种或多种。
所述步骤(2)的废硬质合金包括碳化钨基硬质合金,碳化钛基硬质合金,碳氮化钛基硬质合金,钨钛钽硬质合金,钨钛钽铌硬质合金和碳化铬基硬质合金。
所述步骤(2)的氧化气体为空气、臭氧、氧气或含氧混合气体中的一种或多种,其中含氧混合气体中氧气的体积比例为20~100%,剩余为氮气或氩气。
所述步骤(2)通入氧化气体进行氧化溶解反应,通过控制气体流量为5~50ml/s,或者控制气体分压为1.05~1.50个大气压的方式进行;且当氧化气体为含氧混合气体时,通过控制流量进行所述氧化溶解。
所述步骤(3)的含氯气体为氯气、氯化氢气体,氯气或氯化氢混合气体中的一种或多种,其中氯气混合气体中氯气的体积比例为30~100%,剩余为氮气或氩气;氯化氢混合气体中氯化氢的体积比例为50~100%,剩余为氮气或氩气。
所述步骤(3)通入含氯气体进行脱氧处理,通过控制气体流量为5~50ml/s,或者控制气体分压为1.05~1.50个大气压的方式进行;且当含氯气体为氯气混合气体或者氯化氢混合气体时,通过控制流量进行所述脱氧处理。
所述步骤(4)的还原剂为金属钠或金属钙。
所述步骤(4)的保护气体为氮气、氩气中的一种或两种的混合气体。
因本发明涉及的氧化还原反应都在液态的熔盐介质中,其主要阶段的反应物质的存在状态如下:
氧化溶解反应:由反应物O2/O3、WC和Co经反应以Co2+、CO3
2-、O2-、WO4
2-离子形态存在熔盐体系中。
脱氧处理反应:由脱氧剂Cl2或HCl气体经反应把熔盐中的O2-脱出,其产物为熔盐中的Cl-离子和溢出气体O2-或水蒸气。
还原合成反应:由还原剂Na或Ca经反应把熔盐中的Co2+、CO3
2-、WO4
2-离子还原成W、WC、WC-Co等纳米颗粒。
本发明有益效果在于:
1、采用本发明的技术方案,废旧硬质合金中的钨、钴、碳等离子可以直接氧化溶解到熔盐介质中形成均匀的反应体系,在还原剂的作用下制备合成纳米级复合粉末颗粒,其粉末粒径范围为20~1000nm,纯度可达到98.0%以上。此工艺可以连续处理废硬质合金,还原合成再生钨、钴或其硬质合金纳米粉末材料,将应用到民用工业、航空航天、军事工业、交通信息、环境能源等领域。
2、本发明工艺与目前回收废旧硬质合金工艺相比,具有流程短、设备简单能耗低、再生产品优良等特点,且不产生固/气/液有害物质危害环境,能获得巨大的经济和社会效益。此技术也可以应用到其他难熔金属合金或金属间化合物高温结构材料、单质金属材料、硬质合金材料以及高比重合金材料的制备。
图1为本发明方案实施采用的反应池结构示意图。
图2为本发明实施例1回收废WC硬质合金获得的钨金属纳米粉末的XRD物相分析曲线图。
图3为本发明实施例1回收废WC硬质合金获得的钨金属纳米粉末表面形貌的FESEM照片。
图4为本发明实施例2回收废WC硬质合金获得的WC纳米粉末的XRD物相分析曲线图。
图5为本发明实施例2回收废WC硬质合金获得的WC纳米粉末表面形貌的FESEM照片。
图6为本发明实施例3回收废YG16型硬质合金获得的WC-Co复合纳米粉末的XRD物相分析曲线图。
图7为本发明实施例3回收废YG16型硬质合金获得的WC-Co复合纳米粉末表面形貌的FESEM照片。
图1中:1.密闭容器,2.排气口,3.反应池,4.加料管,5.进气口,6.存储罐。
具体实施案例
下面通过最佳实施例来阐述说明本发明。本领域技术人员所应知的是,实施例只用来说明本发明而不是用来限制本发明的范围。实施例中,如无特别说明,所用手段均为本领域常规的。
本发明可以采用本领域常规的装置进行熔盐中氧化-还原合成反应手段。以下实施例中,使用图1所示的装置:反应池3置于一个密闭容器1中,该密闭容器提供气体保护和电加热。密闭容器1上设置有压力检测装置、温度检测装置、进气口5、排气口2。插入熔盐介质中的加料管4和还原剂存储罐6。
实施例1:
利用熔盐回收废WC硬质合金制备钨纳米粉末的方法,按照以下工艺步骤进行:将摩尔百分比组成为NaCl-52mol%CaCl2-3mol%CaO的熔盐介质与硬质合金WC废料混合,在真空度为0.1~0.2MPa,温度为70~300℃的条件下脱水,真空脱水结束后升温至反应温度,通入空气进行氧化溶解-脱碳反应,氧化温度为750℃,随着氧化溶解反应的进行逐步减少空气流量,增加惰性气体氩气的流量,氧化溶解反应5小时后把空气改为氯气,形成50%氯气+氩气混合气体进行脱氧反应,顺着脱氧反应的进行逐步减少氯气比例,直到6小时脱氧反应结束改为氩气进行气体保护,同时还原剂钠金属通过加料管进入熔盐体系,反应温度为750℃完成金属热还原反应,反应结束后随炉降至室温。反应获得钨金属粉末与熔盐介质采用水洗、过滤及真空干燥的方法进行熔盐介质与产品粉末的分离与收集,其中真空度为0.5MPa,干燥温度为40℃。
制备得到的钨金属粉末纯度达到98.6wt%,球形团聚颗粒粒径分布范围为30~400nm。钨金属纳米粉末的XRD物相分析曲线图和FESEM照片见图2和图3。
实施例2:
利用熔盐回收废WC硬质合金制备WC纳米粉末的方法,按照以下工艺步骤进行:将摩尔百分比组成为NaCl-52mol%CaCl2-3mol%Na2O的熔盐介质与硬质合金WC废料混合,在真空度为0.1~0.2MPa,温度为70~300℃的条件下脱水,真空脱水结束后升温至反应温度,通入氧气进行氧化溶解反应,氧化温度为700℃,随着氧化溶解反应的进行逐步减少空气流量,增加惰性气体氩气的流量,氧化溶解反应4小时候后把氧气改为氯化氢气体,形成50%氢气体+氩气混合气体进行脱氧反应,随着脱氧反应的进行逐步减少氯化氢比例,直到2小时脱氧反应结束改为氩气进行气体保护,同时沿加料管加入还原剂钠金属到反应体系中,反应温度为750℃完成热还原反应,反应结束后随炉降至室温。获得WC粉末与熔盐介质采用水洗、过滤及真空干燥的方法进行熔盐介质与产品粉末的分离与收集,其中真空度为0.5MPa,干燥温度为40℃。
制备得到的WC纳米粉末纯度达到99.5wt%,球形团聚颗粒粒径分布范围为20~350nm。WC纳米粉末的XRD物相分析曲线图和FESEM照片见图4和图5。
实施例3:
利用熔盐回收废YG16型钨钴硬质合金制备WC-Co纳米粉末的方法:将摩尔百分比组成为NaCl-52mol%CaCl2-5mol%CaO的熔盐介质与硬质合金YG16废料混合,在真空度为0.1~0.2MPa,温度为70~300℃的条件下脱水,真空脱水结束后升温至反应温度,通入氧气进行氧化溶解反应,氧化温度为750℃,随着氧化溶解反应的进行逐步减少空气流量,增加惰性气体氩气的流量,氧化溶解反应6小时候后把氧气改为氯化氢气体,形成50%氢气体+氩气混合气体进行脱氧反应,随着脱氧反应的进行逐步减少氯化氢比例,直到3小时脱氧反应结束改为氩气进行气体保护,同时沿加料管加入还原剂钠金属到反应体系中,反应温度为700℃完成热还原反应,反应结束后随炉降至室温,获得的WC-Co复合纳米粉末与熔盐介质采用水洗、过滤及真空烘干的方法进行熔盐介质与产品粉末的分离与收集,其中真空度为0.5MPa,干燥温度为40℃。
制备得到的WC-Co复合纳米粉末颗粒纯度达到99.3%。WC-Co复合纳米粉末的XRD物相分析曲线图和FESEM照片见图6和图7。
以上的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案做出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。
非常感谢中国国家自然科学基金-青年科学基金(No.51401004)对本项科研工作的资金大力支持。
Claims (10)
- 一种熔盐化学法回收废硬质合金的方法,其特征在于按照以下工艺步骤进行:(1)将组成为化合物A,化合物B和NaCl的熔盐介质与硬质合金废料混合,在真空条件下脱水,真空度为0.1~0.2MPa,脱水温度为70~300℃,熔盐介质中A的摩尔百分比含量为5~30mol%,B的摩尔百分比含量为0~60mol%,NaCl的摩尔百分比含量为10~50mol%;(2)将含有硬质合金废料的熔盐介质进行搅拌,通入氧化气体进行氧化溶解反应,反应温度为300~1000℃;(3)将氧化的熔盐反应体系通入含氯气体进行脱氧处理,脱氧温度为300~1000℃:(4)在脱氧的熔盐反应体系中加入还原剂进行热还原反应,反应温度为400~850℃,反应全程通入保护气体,气体流量为5~50ml/s;(5)热还原反应获得的混合物依次经过水洗、过滤及真空干燥,其中真空干燥的条件为真空度0.1~0.5MPa,温度为20~40℃,进行熔盐介质与硬质合金纳米粉末的分离及收集。
- 根据权利要求1所述的一种熔盐化学法回收废硬质合金的方法,其特征在于所述步骤(1)的化合物A为Na2O、CaO、K2O、CoO/CoO3、WO3、Na2WO4、K2WO4、CaWO4中的一种或多种;化合物B为CaCl2、KCl、LiCl中的一种或多种。
- 根据权利要求1所述的一种熔盐化学法回收废硬质合金的方法,其特征在于所述步骤(2)氧化溶解的反应温度为500~800℃。
- 根据权利要求1所述的一种熔盐化学法回收废硬质合金的方法,其特征在于所述步骤(2)的废硬质合金包括碳化钨基硬质合金,碳化钛基硬质合金,碳氮化钛基硬质合金,钨钛钽硬质合金,钨钛钽铌硬质合金和碳化铬基硬质合金。
- 根据权利要求1所述的一种熔盐化学法回收废硬质合金的方法,其特征在于所述步骤(2)的氧化气体为空气、臭氧、氧气或含氧混合气体中的一种或多种,其中含氧混合气体中氧气的体积比例为20~100%,剩余为氮气或氩气。
- 根据权利要求1所述的一种熔盐化学法回收废硬质合金的方法,其特征在于所述步骤(2)通入氧化气体进行氧化溶解反应,通过控制气体流量为5~50ml/s,或者控制气体分压为1.05~1.50个大气压的方式进行;且当氧化气体为含氧混合气体时,通过控制流量进行所述氧化溶解。
- 根据权利要求1所述的一种熔盐化学法回收废硬质合金的方法,其特征在于所述步骤(3)脱氧处理的反应温度为300~600℃。
- 根据权利要求1所述的一种熔盐化学法回收废硬质合金的方法,其特征在于所述步骤(3)的含氯气体为氯气、氯化氢气体,氯气或氯化氢混合气体中的一种或多种,其中氯气混合气体中氯气的体积比例为30~100%,剩余为氮气或氩气;氯化氢混合气体中氯化氢的体积比例为50~100%,剩余为氮气或氩气。
- 根据权利要求1所述的一种熔盐化学法回收废硬质合金的方法,其特征在于所述步骤(3)通入含氯气体进行脱氧处理,通过控制气体流量为5~50ml/s,或者控制气体分压为1.05~1.50个大气压的方式进行;且当含氯气体为氯气混合气体或者氯化氢混合气体时,通过控制流量进行所述脱氧处理。
- 根据权利要求1所述的一种熔盐化学法回收废硬质合金的方法,其特征在于所述步骤(4)的还原剂为金属钠或金属钙,保护气体为氮气、氩气中的一种或两种的混合气体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/000058 WO2017127950A1 (zh) | 2016-01-27 | 2016-01-27 | 一种熔盐化学法回收废硬质合金的方法 |
CN201680001960.7A CN106795580B (zh) | 2016-01-27 | 2016-01-27 | 一种熔盐化学法回收废硬质合金的方法 |
US15/399,723 US10369631B2 (en) | 2016-01-27 | 2017-01-05 | Method for recycling waste cemented carbide by molten salt chemistry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/000058 WO2017127950A1 (zh) | 2016-01-27 | 2016-01-27 | 一种熔盐化学法回收废硬质合金的方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/399,723 Continuation US10369631B2 (en) | 2016-01-27 | 2017-01-05 | Method for recycling waste cemented carbide by molten salt chemistry |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017127950A1 true WO2017127950A1 (zh) | 2017-08-03 |
Family
ID=58952178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/000058 WO2017127950A1 (zh) | 2016-01-27 | 2016-01-27 | 一种熔盐化学法回收废硬质合金的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10369631B2 (zh) |
CN (1) | CN106795580B (zh) |
WO (1) | WO2017127950A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10940538B2 (en) * | 2017-08-11 | 2021-03-09 | Kennametal Inc. | Grade powders and sintered cemented carbide compositions |
CN108117077B (zh) * | 2017-11-22 | 2021-07-23 | 宁夏东方钽业股份有限公司 | 一种NbTi合金废料制备复合碳化物固溶体的方法 |
CN109338116A (zh) * | 2018-11-22 | 2019-02-15 | 王娜 | 一种短流程处理钛渣提取制备钛及其合金纳米粉末的方法 |
CN109628731B (zh) * | 2019-01-31 | 2020-09-04 | 河钢股份有限公司承德分公司 | 一种短流程处理含钒原料提取制备钒及合金粉末的方法 |
CN112974824B (zh) * | 2021-02-02 | 2022-05-06 | 中南大学 | 一种多面体钨粉的制备方法 |
CN113136585B (zh) * | 2021-03-10 | 2022-04-22 | 北京工业大学 | 一种原位合成碳化钨粉的方法 |
CN114016083B (zh) * | 2021-11-05 | 2023-11-03 | 澳润新材料科技(宜兴)有限公司 | 一种碱金属热还原金属氧化物制备金属过程中再生碱金属还原剂的方法 |
CN114160797B (zh) * | 2021-12-06 | 2024-08-30 | 桂林特邦新材料股份有限公司 | 一种超硬材料聚晶复合麻花铣刀及其制备方法 |
CN114288837B (zh) * | 2021-12-13 | 2022-09-16 | 中国科学院上海应用物理研究所 | 一种卤化物熔盐的化学脱碳装置以及化学脱碳方法 |
CN116177505B (zh) * | 2023-03-03 | 2024-06-25 | 安徽工业大学 | 一种熔盐体系高效回收磷化铟废料中铟和磷的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB782371A (en) * | 1953-12-14 | 1957-09-04 | Horizons Titanium Corp | Improvements in fused salt baths for use in the electrodeposition of refractory metals |
CN1853830A (zh) * | 2001-05-04 | 2006-11-01 | H.C.施塔克公司 | 难熔金属氧化物的金属热还原 |
CN101525700A (zh) * | 2009-04-28 | 2009-09-09 | 株洲硬质合金集团有限公司 | 废硬质合金的处理回收方法 |
CN102925692A (zh) * | 2012-09-29 | 2013-02-13 | 崇义章源钨业股份有限公司 | 处理废硬质合金的方法 |
US8430944B2 (en) * | 2008-12-22 | 2013-04-30 | Global Advanced Metals, Usa, Inc. | Fine particle recovery methods for valve metal powders |
CN104018190A (zh) * | 2014-06-17 | 2014-09-03 | 北京工业大学 | 一种回收废硬质合金的方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102300814B (zh) * | 2009-03-11 | 2016-10-26 | 联合材料公司 | 钨酸钠的制备方法、钨的收集方法、制备钨酸钠的装置、以及钨酸钠水溶液的制备方法 |
US20140291161A1 (en) * | 2011-11-04 | 2014-10-02 | Sumitomo Electric Industries, Ltd. | Method for producing metal by molten salt electrolysis and apparatus used for the production method |
JP6018958B2 (ja) * | 2013-03-15 | 2016-11-02 | 株式会社アライドマテリアル | タングステン酸ナトリウムの製造方法 |
-
2016
- 2016-01-27 CN CN201680001960.7A patent/CN106795580B/zh active Active
- 2016-01-27 WO PCT/CN2016/000058 patent/WO2017127950A1/zh active Application Filing
-
2017
- 2017-01-05 US US15/399,723 patent/US10369631B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB782371A (en) * | 1953-12-14 | 1957-09-04 | Horizons Titanium Corp | Improvements in fused salt baths for use in the electrodeposition of refractory metals |
CN1853830A (zh) * | 2001-05-04 | 2006-11-01 | H.C.施塔克公司 | 难熔金属氧化物的金属热还原 |
US8430944B2 (en) * | 2008-12-22 | 2013-04-30 | Global Advanced Metals, Usa, Inc. | Fine particle recovery methods for valve metal powders |
CN101525700A (zh) * | 2009-04-28 | 2009-09-09 | 株洲硬质合金集团有限公司 | 废硬质合金的处理回收方法 |
CN102925692A (zh) * | 2012-09-29 | 2013-02-13 | 崇义章源钨业股份有限公司 | 处理废硬质合金的方法 |
CN104018190A (zh) * | 2014-06-17 | 2014-09-03 | 北京工业大学 | 一种回收废硬质合金的方法 |
Also Published As
Publication number | Publication date |
---|---|
US10369631B2 (en) | 2019-08-06 |
US20170209933A1 (en) | 2017-07-27 |
CN106795580B (zh) | 2018-07-06 |
CN106795580A (zh) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017127950A1 (zh) | 一种熔盐化学法回收废硬质合金的方法 | |
US10519556B2 (en) | Process for recycling waste carbide | |
Fray | Novel methods for the production of titanium | |
CN101428348B (zh) | 一种水热处理制备球形超细金属粉末的工艺方法 | |
CN109628731B (zh) | 一种短流程处理含钒原料提取制备钒及合金粉末的方法 | |
US20200165703A1 (en) | Method of producing titanium and titanium alloy nanopowder from titanium-containing slag through shortened process | |
CN103911514B (zh) | 废旧硬质合金磨削料的回收处理方法 | |
CN102560100A (zh) | 一种利用铜钴铁合金制备高纯超细钴粉的工艺方法 | |
CN106048251A (zh) | 一种清洁高效处理砷冰铜的工艺方法 | |
CN105458284B (zh) | 一种熔盐中金属热还原合成纳米硬质合金粉末的方法 | |
Kang et al. | Cleaning method of vanadium precipitation from stripped vanadium solution using oxalic acid | |
CN108642522A (zh) | 一种含铟废料的回收方法 | |
Zhao et al. | Formation of Ti or TiC nanopowder from TiO 2 and carbon powders by electrolysis in molten NaCl–KCl | |
CN105110300B (zh) | 一种含硫化锰的复合锰矿提取锰及硫的方法 | |
CN109750163A (zh) | 一种三元正极材料和铁锂正极材料综合回收的方法 | |
CN105861822B (zh) | 一种钴铜混合氧化矿的还原浸出方法 | |
CN115744991B (zh) | 一种含钨废料制备氧化钨的方法 | |
CN111534699A (zh) | 从硬质合金废料回收有价值物质的方法 | |
CN115717254A (zh) | 熔盐电解制备高纯金属铌的方法 | |
CN110699552B (zh) | 从scr催化剂中选择性提取高纯金属钛的方法 | |
CN114057195A (zh) | 一种超细碳化钨的制备方法 | |
Zhao et al. | Zinc and cobalt recovery from Co-Ni residue of zinc hydrometallurgy by an ammonia process | |
Yasuda et al. | Oxidative Dissolution of Cemented Tungsten Carbides in Molten Sodium Carbonate by Addition of Copper (I) Oxide as Oxidizing Agent for Tungsten Recycling | |
Sknar et al. | PROCESSING OF W-Ni-Fe SCRAP TO RECEIVE TUNGSTEN POWDER | |
Giirmen et al. | Recovery of submicron cobalt-powder by acidic leaching of cemented carbide scrap |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16886837 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/10/2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16886837 Country of ref document: EP Kind code of ref document: A1 |