WO2017126811A1 - 방향성 전기강판의 자구미세화 방법과 그 장치 - Google Patents

방향성 전기강판의 자구미세화 방법과 그 장치 Download PDF

Info

Publication number
WO2017126811A1
WO2017126811A1 PCT/KR2016/015161 KR2016015161W WO2017126811A1 WO 2017126811 A1 WO2017126811 A1 WO 2017126811A1 KR 2016015161 W KR2016015161 W KR 2016015161W WO 2017126811 A1 WO2017126811 A1 WO 2017126811A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
laser
grain
oriented electrical
laser beam
Prior art date
Application number
PCT/KR2016/015161
Other languages
English (en)
French (fr)
Inventor
홍성철
김재겸
민기영
박세민
천명식
이규택
권오열
박현철
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201680079807.6A priority Critical patent/CN109072328B/zh
Priority to JP2018538612A priority patent/JP6826606B2/ja
Priority to US16/072,143 priority patent/US11060163B2/en
Priority to EP16886654.9A priority patent/EP3406741B1/en
Publication of WO2017126811A1 publication Critical patent/WO2017126811A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • B23K26/048Automatically focusing the laser beam by controlling the distance between laser head and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • B23K26/0821Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head using multifaceted mirrors, e.g. polygonal mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • B23K26/0846Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt for moving elongated workpieces longitudinally, e.g. wire or strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/706Protective screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/047Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work moving work to adjust its position between soldering, welding or cutting steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/16Bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • the present invention relates to a method for minimizing magnetic domain of a grain-oriented electrical steel sheet and a device for irradiating a laser to the grain-oriented electrical steel sheet to permanently refine the magnetic domain of the steel sheet.
  • oriented electrical steel sheets having magnetic properties having low iron loss and high magnetic flux density are required.
  • the domain refinement method can be broadly classified into temporary domain micronization and permanent domain micronization according to whether or not to maintain the domain domain improvement effect after stress relief annealing.
  • Temporary magnetic micronization method has a disadvantage in that the magnetic micronization effect is lost after stress relief annealing.
  • the temporary magnetic domain miniaturization method refines the magnetic domain by forming a local compressive stress portion on the surface of the steel sheet.
  • this method requires recoating because it causes damage to the insulating coating layer on the surface of the steel sheet, and has a disadvantage in that manufacturing cost is high because the micronizing treatment is performed in an intermediate process instead of the final product.
  • Permanent magnetization can maintain the iron loss improvement after heat treatment.
  • a technique using an etching method, a roll method, or a laser method is mainly used.
  • the etching method it is difficult to control the depth or width of the groove formation, it is difficult to guarantee the iron loss characteristics of the final product, and it is not environmentally friendly because the acid solution is used.
  • a roll process there are disadvantages in that the stability, reliability and process for machining are complicated.
  • the magnetic domain can be refined by forming a molten groove on the surface of the steel sheet by irradiating a laser beam on the surface of the steel sheet while supporting the steel sheet and adjusting the tension.
  • a more effective process improvement and optimization is required in order to enable high-speed processing and to lower iron loss and increase magnetic flux density of electrical steel sheets.
  • the present invention provides a method and apparatus for magnetizing microstructured grain-oriented electrical steel sheet which can increase the micronization efficiency and improve workability to increase processing capacity.
  • the present invention provides a method and apparatus for magnetizing a grain-oriented electrical steel sheet capable of improving the iron loss improving efficiency and minimizing the decrease in magnetic flux density.
  • the present invention provides a method and apparatus for fine-grained grain-oriented electrical steel sheet which can effectively remove contaminants such as heel-up and spatter formed by laser irradiation to improve product quality.
  • a method and apparatus for magnetizing a grain-oriented electrical steel sheet capable of providing an optimal operating environment required for a process.
  • the magnetic domain miniaturization method may further include a meandering control step of allowing the steel sheet to move left and right along the center of the production line without bias.
  • the magnetic domain refinement method may further include a tension control step of applying tension to the steel sheet to maintain the steel sheet in a flat unfolded state.
  • the setting and maintaining step may include isolating the inside of the laser room from the outside to block the inflow of external contaminants, and controlling the temperature, pressure, and humidity inside the laser room.
  • the magnetic domain refinement method may further include a post-treatment step for removing heel up and spatter formed on the surface of the steel sheet through a laser irradiation step.
  • the post-treatment step may include a brush step of removing heel up and spatter on the surface of the steel sheet with a brush roll.
  • the post-treatment step includes a cleaning step of further removing the heel up and spatter remaining on the surface of the steel sheet by electrolytically reacting the steel sheet with an alkaline solution, and filtering foreign substances contained in the alkaline solution removed from the steel sheet in the cleaning step from the alkaline solution.
  • the method may further include a filtering step to bet.
  • the meandering control step includes a meandering amount measuring step of measuring a meandering amount at which the width center position of the steel sheet is out of the center of the production line, and a shaft of a steering roll according to the meandering amount of the steel sheet measured in the meandering amount measuring step. It may include a meandering amount control step of controlling the meandering amount of the steel sheet by rotating and moving to adjust the direction in which the steel sheet moves.
  • the meandering amount control step may control the meandering amount of the steel sheet within ⁇ 1mm.
  • the tension control step may include a steel sheet tension applying step of applying tension to the steel sheet by the tension bridle roll, a steel sheet tension measuring step of measuring tension of the steel sheet subjected to the steel sheet tension applying step, and The steel sheet tension control step of controlling the steel sheet tension by adjusting the speed of the tension bridal roll according to the tension of the steel sheet measured in the steel sheet tension measurement step.
  • the steel sheet support roll position adjusting step may include a steel sheet supporting step of supporting a steel sheet positioned in the laser irradiation step with a steel sheet supporting roll, a brightness measuring step of measuring brightness of a flame generated when laser irradiation is applied to the steel sheet in the laser irradiation step; Steel sheet support roll position control step of controlling the position of the steel sheet in the depth of focus by adjusting the position of the steel sheet support roll by the steel sheet support roll position control system according to the brightness of the flame measured in the brightness measurement step It may include.
  • the laser irradiation step by irradiating the surface of the steel sheet by the optical system receiving the laser beam irradiated from the laser oscillator to form grooves of the upper width, lower width and depth of less than 70 ⁇ m, less than 10 ⁇ m, 3-30 ⁇ m respectively
  • a laser irradiation and energy transfer step of delivering a laser beam energy density within a range of 1.0 to 5.0 J / mm 2 necessary for melting of the steel sheet to produce a resolidification portion remaining in the groove inner wall of the molten portion when the laser beam is irradiated. Can be.
  • the laser oscillator is turned on by the laser oscillator controller under normal working conditions, and the laser oscillator is turned off when the steel sheet has a meandering amount of 15 mm or more. It may include a beam oscillation control step.
  • the laser oscillator may oscillate a Gaussian energy distribution continuous wave laser beam.
  • the optical system may control the laser scanning speed to adjust the interval of the laser beam irradiation line to 2 to 30 mm in the rolling direction.
  • the laser irradiation step may further include an angle conversion step of converting the irradiation line angle of the laser beam irradiated onto the surface of the steel sheet.
  • the irradiation angle of the laser beam with respect to the width direction of the steel sheet can be converted into a range of ⁇ 4 °.
  • the laser irradiation step is a steel sheet at the reference point with respect to the surface of the steel sheet that is in contact with the surface of the steel sheet support roll in the form of an arc, the laser beam irradiation position when the irradiation direction of the laser beam passes through the central axis of the steel sheet support roll as a reference point
  • the laser beam may be irradiated at a position spaced from the center of the support roll along the outer circumferential surface at an angle.
  • the laser beam may be irradiated in a range of 3 to 7 ° along the outer circumferential surface at the center of the steel sheet support roll with respect to the reference point.
  • the laser irradiation step may further include a blocking step of blocking scattered light and heat of the laser beam from entering the optical system of the laser irradiation facility.
  • the laser irradiation step may further include a dust collecting step of sucking and removing a fume generated during laser beam irradiation and molten iron.
  • the dust collecting step may include a spraying step for removing the molten iron remaining in the grooves by spraying compressed dry air into the grooves of the steel sheet.
  • the steel sheet support roll position adjusting equipment for controlling the vertical position of the steel sheet while supporting the steel sheet, laser irradiation equipment for forming a groove on the surface of the steel sheet by melting the steel sheet by irradiating a laser beam, and It may include a laser room that accommodates the steel sheet support roll position adjusting device and the laser irradiation equipment from the outside and provides an operating environment for laser irradiation.
  • the magnetic domain micronizing device may further include a meandering control device for allowing the steel sheet to move without shifting from side to side along the center of the production line.
  • the magnetic domain micronizing device may further include a tension control device for imparting tension to the steel sheet to maintain the steel sheet in a flat unfolded state.
  • the laser room accommodates the laser irradiation equipment and the steel sheet support roll position control equipment to form an inner space to isolate the outside, the inlet and the outlet is formed on both sides along the traveling direction of the steel sheet, inside the laser room It may include a positive pressure device to increase the pressure than the outside, an optical system lower frame for separating the upper space in which the optical system of the laser irradiation equipment and the lower space passing through the steel sheet, and a constant temperature and humidity controller for controlling the temperature and humidity inside the laser room.
  • the apparatus may further include a post-treatment facility for removing a heel up and spatter formed on the surface of the steel sheet.
  • the aftertreatment facility may include a brush roll disposed at the rear end of the laser room to remove heel up and spatter of the steel sheet surface.
  • the post-treatment facility is disposed at the rear end of the brush roll and is electrolytically reacted with the alkaline solution to remove the heel up and spatter remaining on the surface of the steel sheet, and a cleaning unit connected to the cleaning unit and included in the alkaline solution of the cleaning unit. It may further include a filtering unit for filtering foreign matter from the alkaline solution.
  • the meandering control device includes a steering roll for switching the moving direction of the steel sheet, a meander measuring sensor for measuring the degree of deviation of the width center position of the steel sheet from the center of the production line, and the meandering measurement.
  • the steel sheet may include a strip center position control system for adjusting the direction in which the steel sheet moves by rotating and moving the axis of the steering roll according to the output value of the sensor.
  • the tension control device is a tension bridle roll for inducing movement while applying tension to the steel sheet, a steel plate tension measuring sensor for measuring the tension of the steel sheet passed through the tension bridle roll, and the steel sheet
  • the steel sheet may include a strip tension control system for adjusting the speed of the tension bridal roll according to the tension of the steel sheet measured by the tension measuring sensor.
  • the steel sheet support roll position adjusting device is a steel sheet support roll for supporting a steel sheet at the laser irradiation equipment position, a brightness sensor for measuring the brightness of the flame generated when the laser irradiation to the steel sheet in the laser irradiation equipment, and the brightness measurement It may include a steel sheet support roll position control system for controlling the position of the steel sheet support roll according to the brightness of the flame measured by the sensor.
  • the laser irradiation equipment is a laser oscillator for oscillating a continuous wave laser beam, the laser beam oscillated from the laser oscillator is irradiated on the surface of the steel sheet, the upper width, lower width and depth of each within 70 ⁇ m, within 10 ⁇ m, 3 to
  • the laser irradiation apparatus may further include a laser oscillator controller for controlling the laser oscillator to an off state when the laser oscillator is turned on under normal working conditions and the steel sheet meandering amount is 15 mm or more.
  • the laser oscillator may oscillate a Gaussian energy distribution continuous wave laser beam.
  • the optical system may control the laser scanning speed to adjust the interval of the laser irradiation line to 2 to 30 mm along the rolling direction.
  • the laser irradiation facility may have a structure in which an optical system for irradiating a laser beam onto a steel sheet is rotatable by a driving unit, and the optical system rotates with respect to the steel sheet to convert the angle of irradiation of the laser beam in the width direction of the steel sheet.
  • the laser irradiation equipment is a steel sheet at the reference point with respect to the surface of the steel sheet which is in contact with the surface of the steel sheet supporting roll in an arc shape, with the laser beam irradiation position when the irradiation direction of the laser beam passes through the central axis of the steel sheet supporting roll as a reference point.
  • the laser beam may be irradiated to a position spaced at an angle along the outer circumferential surface from the center of the support roll.
  • the laser irradiation facility may be a structure for irradiating a laser beam in a range of 3 to 7 degrees along the outer circumferential surface from the center of the steel sheet support roll with respect to the reference point.
  • the laser irradiation facility may further include a shielding unit for blocking laser scattered light and heat from entering the optical system.
  • the laser irradiation equipment may further include molten iron removal equipment for removing the fumes and spatter generated by the laser beam irradiation on the steel sheet.
  • the molten iron removal equipment may include an air knife for removing the molten iron remaining in the groove by injecting compressed dry air into the groove of the steel sheet, and a dust collecting hood for sucking and removing the fume and the molten iron.
  • the magnetic domain miniaturization process is stably performed by laser, and the iron loss improvement rates before and after heat treatment of the electrical steel sheet are respectively 5% or more and 10%. The above can be secured.
  • FIG. 1 is a view schematically showing the configuration of a magnetic domain micronizing device of a grain-oriented electrical steel sheet according to the present embodiment.
  • FIG. 2 is a schematic view showing a steel sheet microstructured according to the present embodiment.
  • FIG. 3 is a schematic diagram showing an optical system configuration of a laser irradiation apparatus according to the present embodiment.
  • the present embodiment will be described by way of example as a facility for permanent magnetization of the grain-oriented electrical steel sheet used in the transformer core material.
  • FIG. 1 schematically shows a magnetic domain micronizing apparatus of a grain-oriented electrical steel sheet according to this embodiment
  • FIG. 2 shows a magnetic domain micronized steel sheet according to this embodiment
  • the rolling direction or the steel plate moving direction means the x-axis direction in FIG. 2
  • the width direction means the y-axis direction in FIG. 2 in a direction perpendicular to the rolling direction
  • the width of the steel sheet with respect to the y-axis direction Means length.
  • reference numeral 31 denotes an irradiation line which is dug into a groove by a laser beam and is continuously formed on the surface of the steel sheet 1.
  • the magnetic domain micronizing apparatus of the grain-oriented electrical steel sheet according to the present embodiment stably performs permanent magnetization micromachining even when the steel sheet 1 proceeds at a high speed of 2 m / s or more.
  • the magnetic domain micronizing device of this embodiment supports a steel sheet support roll position adjusting device for controlling the vertical position of the steel sheet while supporting the steel sheet 1, and a laser irradiation facility for melting the steel sheet by irradiating a laser beam to form grooves on the surface of the steel sheet. And a laser room 20 that accommodates the steel sheet support roll position adjusting device and the laser irradiation facility from the outside and provides an operating environment for laser irradiation.
  • the magnetic domain micronizing device may further include a meandering control device for allowing the steel sheet 1 to move without deviating from side to side along the center of the production line.
  • the magnetic domain micronizing device may further include a tension control device for imparting tension to the steel sheet so that the steel sheet 1 is kept flat and unfolded.
  • the magnetic domain micronizing device may further include a post-treatment facility for removing hill up and spatter formed on the surface of the steel sheet in accordance with the laser beam irradiation.
  • Hill up refers to a portion in which the molten iron is formed by stacking a predetermined height or more on both sides of the groove portion when the groove is formed by irradiating a laser beam on the surface of the steel sheet.
  • Spatter refers to molten iron generated when the laser beam is irradiated and solidified on the surface of the steel sheet.
  • the meandering control device is a steering roll (2A, 2B) for switching the direction of movement of the steel sheet 1, the degree to which the center width position of the steel sheet 1 is out of the center of the production line (meandering amount) Steel plate center for adjusting the moving direction of the steel sheet 1 by calculating the meandering measurement sensor 4 for measurement and the detection signal of the meandering measurement sensor 4 to rotate and move the axes of the steering rolls 2A and 2B.
  • a position control system (Strip Center Position Control System) 3 may be included.
  • the meander measuring sensor 4 is disposed at the rear end of the steering roll 2B to detect the actual meandering amount of the steel sheet which has passed through the steering roll in real time.
  • the steel sheet is moved straight along the center of the production line without lateral shift, thereby forming grooves on the surface of the steel sheet over the entire width of the steel sheet.
  • the meandering amount of the steel sheet is measured by the meander measuring sensor 4 in the step before forming the steel sheet surface grooves by laser irradiation.
  • the value measured by the meander measuring sensor 4 is output to the steel sheet central position control system, and the steel sheet central position control system calculates the output value of the meander measuring sensor to rotate the axes of the steering rolls 2A and 2B according to the calculated meandering degree. Will be moved. As the steering rolls 2A and 2B are rotated and moved in this manner, the moving direction of the steel sheet wound and moved on the steering roll is adjusted.
  • the meandering amount of the steel sheet can be controlled to control the meandering amount of the steel sheet 1 within ⁇ 1 mm.
  • the tension control device is a tension bridle roll (TBR) (5A, 5B) for inducing movement while applying a fixed amount of tension to the steel sheet 1, the steel sheet passed through the tension bridle roll (TBR) (5A, 5B) for inducing movement while applying a fixed amount of tension to the steel sheet 1, the steel sheet passed through the tension bridle roll ( The speed of the tension bridal rolls 5A and 5B is adjusted according to the tension of the steel sheet tension measuring sensor 7 for measuring the tension of 1) and the steel sheet 1 measured by the steel sheet tension measuring sensor 7. It may include a steel plate (Strip) tension control system 6 for the purpose.
  • TBR tension bridle roll
  • Strip steel plate
  • the steel plate tension measuring sensor 7 is disposed at the rear end of the tension bridal roll 5B to measure in real time the actual tension of the steel sheet given tension through the tension bridal roll 5B.
  • the tension of the steel sheet can be set so that the steel sheet surface shape at the laser irradiation position of the laser irradiation equipment is made flat so that no breakage of the steel sheet occurs due to too much tension.
  • the tension control device is a tension bridle roll (Tension Bridle Roll) by the steel sheet (Stripe) tension control system 6 in accordance with the tension of the steel sheet measured by the steel sheet tension measuring sensor 7 in order to operate in the steel sheet tension within a set range: TBR) (5A, 5B) to adjust the speed.
  • TBR set range
  • the tension control device controls the tension error of the steel sheet 1 to be within the set range to impart tension to the steel sheet.
  • the steel sheet that has passed through the tension control equipment is introduced into the laser room 20 to be finely processed through the steel plate supporting roll position adjusting device and the laser irradiation facility, and then to the outside of the laser room 20.
  • the laser room will be described later.
  • the steel sheet support roll 9 is disposed directly below the laser irradiation equipment in the laser room 20, and deflector rolls 8A and 8B are disposed on both sides with the steel sheet support rolls interposed therebetween. Is placed.
  • the moving direction of the steel sheet 1 is switched so as to be directed to the steel sheet supporting roll 9 by deflector rolls 8A and 8B.
  • the steel sheet 1 is shifted toward the steel plate supporting roll 9 while passing through the deflector roll 8A to be in contact with the steel plate supporting roll 9, and then the direction of the steel sheet 1 is changed to the deflector roll 8B again to deflector roll 8B. Is moved past.
  • the steel sheet 1 is wound in an arc shape along the steel sheet supporting roll 9 and passes while being in surface contact with the steel sheet supporting roll.
  • the steel sheet In order to minimize the laser beam focal length fluctuation caused by the vibration and wave of the steel sheet during the laser beam irradiation, the steel sheet must pass through in sufficient surface contact with the steel sheet support roll, and in this state, the laser beam is applied to the steel sheet which is traveling along the steel sheet support roll. You should investigate.
  • the laser beam can be accurately irradiated onto the steel sheet.
  • the steel sheet supporting roll position adjusting device is a steel sheet supporting roll 9 for supporting the steel sheet 1 at the laser irradiation position of the laser irradiation equipment, and the brightness of the flame generated when laser irradiation is applied to the steel sheet 1 at the laser irradiation equipment.
  • a steel plate support roll (SPR) position control system 12 for controlling the position of the steel plate support roll 9 according to the brightness of the flame measured by the brightness measurement sensor 10 and the brightness measurement sensor 10. ) May be included.
  • the steel sheet supporting roll position adjusting device supports the steel sheet 1 at the laser irradiation part position by the steel sheet supporting roll 9, and the steel sheet is positioned in the depth of focus with high laser steel sheet irradiation efficiency.
  • the position of the steel plate supporting roll 9 is adjusted up and down as a whole so that the brightness of the spark generated during laser irradiation is the best.
  • the brightness of the flame generated when the laser is irradiated on the steel sheet is measured using the luminance measuring sensor 10.
  • the steel sheet support roll position adjusting device may further include a distance measuring sensor 11 for measuring the actual distance between the surface of the steel sheet from the optical system of the laser irradiation equipment.
  • the steel sheet supporting roll position control system 12 calculates the distance between the optical system and the surface of the steel sheet actually measured by the brightness of the flame detected by the luminance measuring sensor 10 and the distance measuring sensor 11 and the position of the steel sheet supporting roll 9. Control more precisely.
  • the meandering control device, the tension control device, and the steel sheet support roll position adjusting device serve to create a steel sheet condition at the laser irradiation position so that the laser groove can be precisely formed on the steel sheet by the laser irradiation facility.
  • the steel sheet at the laser irradiation position should be at the center position of the production line and the distance from the optical system should be maintained at the set value.
  • the laser irradiation equipment may include a laser oscillator controller 13, a laser oscillator 14 for oscillating the continuous wave laser beam 16, and an optical system 15.
  • the optical system 15 is rotatably installed to provide a module plate 37 that provides an angle of the laser beam irradiation line with respect to the steel plate width direction, and a driving unit for rotating the module plate 37.
  • a header (39) installed in the module plate (37) and emitting a laser beam applied from the laser oscillator (14) into the optical system (15), and rotatably installed in the module plate (37).
  • the values may include a shutter 38 for selectively blocking the module plate 37, depending on whether the laser beam irradiation.
  • the optical system 15 forms a body in which a header 39, a polygon mirror 32, a condenser mirror 35, and a shutter are arranged in a module plate 37 constituting an optical box.
  • the laser oscillator 14 and the header 39 are connected by an optical cable 41, for example. Accordingly, the laser from the laser oscillator 14 is sent to the header 39 via the optical cable 41.
  • the header 39, the polygon mirror 32, and the condenser mirror 35 are disposed in place to reflect the laser beam 16 to a desired position.
  • the header 39 may be disposed at both sides with the polygon mirror 32 interposed therebetween, and each may emit a laser beam toward the polygon mirror 32.
  • Two condensing mirrors 35 are arranged for each laser beam reflected from the polygon mirror 32.
  • the laser beam emitted from the header 39 is reflected by the rotating polygon mirror 32 in accordance with the driving of the rotary motor 33 and sent to the condensing mirror 35.
  • the laser beam 16 reflected by the condenser mirror 35 is reflected from the condenser mirror 35 through the shutter 38 toward the steel sheet and condensed on the surface of the steel sheet 1. Accordingly, the laser beam is periodically irradiated on the surface of the steel sheet to form a continuous groove in the width direction.
  • the overall focal length of the laser beam 16 by the optical system 15 is adjusted by the vertical movement of the steel sheet support roll 9, and the misalignment of the left and right focal lengths is a drive motor 34 connected to the condensing mirror 35. Adjusted by).
  • the shutter 38 is installed below the module plate 37 to open and close the module plate 37.
  • the shutter 38 is opened when the laser beam is irradiated downward from the condensing mirror 35 to prevent interference with the laser beam, and is closed when the laser beam is not irradiated so that an external fume or a foreign substance is inside the optical system 15. To prevent ingress.
  • the laser oscillator controller 13 turns on the laser oscillator under normal operation conditions and controls the laser oscillator off when the steel sheet meandering amount is 15 mm or more. do.
  • the laser oscillator 14 may oscillate a Gaussian energy distribution continuous wave laser beam and transmit it to the optical system 15.
  • the laser oscillator 14 may oscillate a single mode continuous wave laser beam.
  • the optical system 15 irradiates the surface of the steel sheet with the transmitted laser beam 16.
  • the laser oscillator 14 and the optical system 15 irradiate the surface of the steel sheet with a laser beam to form grooves having an upper width, a lower width and a depth of less than 70 ⁇ m, less than 10 ⁇ m, and 3 to 30 ⁇ m, respectively.
  • the laser energy density in the range of 1.0 to 5.0 J / mm 2 necessary for melting the steel sheet may be transmitted to the steel sheet so that the resolidification portion remaining on the groove inner wall of the molten portion during irradiation is generated.
  • the optical system 15 has a function of controlling the laser scanning speed so that the interval of the laser irradiation line (31 in FIG. 2) can be adjusted to 2 to 30 mm in the rolling direction.
  • the iron loss of the steel sheet can be improved by minimizing the influence of the heat affected zone (HAZ, Heat Affected Zone) by the laser beam.
  • the laser irradiation facility may be a structure for converting the angle of the irradiation line of the laser beam irradiated on the surface of the steel sheet with respect to the width direction of the steel sheet.
  • the laser irradiation equipment can convert the angle of irradiation of the laser beam in the range of ⁇ 4 ° with respect to the width direction of the steel sheet.
  • the laser irradiating device has a structure in which the optical system 15 for irradiating a laser beam to the steel sheet is rotatable by the driving unit 36 to convert the irradiation angle of the laser beam formed on the surface of the steel sheet with respect to the width direction of the steel sheet. It may be a structure.
  • the irradiation line angle of the laser beam by the optical system in this manner, the irradiation line 31 by the laser beam is inclined in a range of ⁇ 4 ° with respect to the direction perpendicular to the rolling direction of the steel sheet. Therefore, it is possible to minimize the decrease in magnetic flux density due to the groove formation by the laser.
  • the laser irradiation equipment controls the irradiation position of the laser beam to the steel sheet 1, to prevent the back reflection phenomenon that the laser beam irradiated to the steel sheet is reflected from the steel sheet to enter the optical system or the laser oscillator It is structured.
  • the laser irradiation apparatus supports the steel sheet irradiating direction of the laser beam irradiated from the optical system 15 with respect to the surface of the steel sheet which is brought into contact with the surface of the steel sheet supporting roll 9 in an arc shape.
  • an angle along the outer circumferential surface from the center of the steel plate supporting roll 9 from the reference point P may be a structure for irradiating a laser beam at a position spaced apart.
  • the reference point P is a point where the line passing through the central axis of the steel plate supporting roll 9 and the steel plate meet in FIG. 3.
  • the laser irradiation apparatus irradiates the laser beam at a position spaced apart from the reference point P by the separation angle R, such that the laser beam reflected back from the steel sheet is not incident to the optical system. Therefore, the back reflection phenomenon can be prevented and the quality of the groove shape formed by the laser beam can be maintained.
  • the separation angle R may be set in the range of 3 to 7 ° along the outer circumferential surface at the center of the steel plate support roll 9 with respect to the reference point (P).
  • the separation angle R which is the position at which the laser beam is irradiated, is smaller than 3 °, a part of the laser beam reflected back from the steel sheet may flow into the optical system or the laser oscillator.
  • the separation angle R exceeds 7 °, grooves may not be properly formed by the laser beam, and groove formation defects may occur.
  • the laser irradiation equipment of the present embodiment prevents back reflection phenomenon and does not interfere with the incident light path when the laser beam is reflected by irradiating the laser onto the steel sheet at a predetermined angle spaced from the reference point P.
  • the quality of the groove shape formed by this can be stably maintained.
  • the laser irradiation equipment may further include molten iron removal equipment for removing the fumes and spatter generated by the laser beam irradiation on the steel sheet.
  • the molten iron removal equipment sprays compressed dry air into the grooves of the steel sheet to remove an air knife (17) for removing molten iron remaining in the grooves, and dust collecting hoods (19A, 19B) for sucking and removing fumes and molten iron. It may include.
  • the fume generated during laser irradiation through the air knife and the dust collecting hood is removed to prevent the fume from flowing into the optical system.
  • the air knife 17 removes molten iron remaining in the grooves by spraying compressed dry air having a predetermined size of pressure Pa into the grooves of the steel plate 1.
  • the compressed dry air preferably has a pressure Pa of 0.2 kg / cm 2 or more.
  • the laser irradiation equipment may further include a shielding portion 18 for blocking the reflection of the laser beam, scattered light and radiant heat from entering the optical system.
  • the shield 18 blocks the reflected light and the scattered light flowing into the optical system by the reflection and scattering of the laser beam 16 irradiated onto the steel sheet, thereby preventing the optical system from being heated and thermally deformed by the radiant heat caused by the reflected light and the scattered light. do.
  • the laser room 20 is a room structure having an internal space, and accommodates the laser irradiation facility and the steel sheet support roll position control device therein to isolate the outside from the outside, and provides an appropriate operating environment for smooth driving thereof.
  • Inlets and outlets are formed at the entrance and exit sides of the laser room 20 along the steel plate traveling direction, respectively.
  • the laser room 20 is provided with a facility for blocking the inflow of pollutants so that the internal space is not contaminated by external dust or the like.
  • the laser room 20 is provided with a positive pressure device 23 for increasing the internal pressure than the outside.
  • the positive pressure device 23 maintains the pressure inside the laser room 20 relatively higher than the external pressure. As a result, it is possible to prevent foreign substances from flowing into the laser room 20.
  • air curtains 22A, 22B, 22C, and 22D are installed at the inlet and the outlet through which the steel sheet enters and exits.
  • the air curtain forms a film by injecting air into the inlet and the outlet, which are the passages through which the steel sheet enters and exits the laser room 20, thereby preventing dust and the like from flowing through the inlet and the outlet.
  • a shower booth 21 may be installed at a door that is an entrance and exit of the laser room 20. The shower booth 21 removes foreign substances from the body of the person coming into the laser room 20.
  • the laser room 20 is a space where the process of refining the steel sheet domain by the laser beam is substantially performed, and it is necessary to minimize the change of the internal environment and maintain a proper environment.
  • the laser room 20 is an optical system lower frame 24 that separates the upper space in which the laser oscillator 14 and the optical system 15, etc. of the laser irradiation equipment and the lower space through which the steel sheet 1 passes, and the laser Room 20 is provided with a constant temperature and humidity controller 25 for controlling the temperature and humidity inside.
  • the optical system lower frame 24 allows for more thorough management of the main equipment operating environment such as the laser oscillator 14 and the optical system 15.
  • the optical system lower frame 24 is installed to separate the optical system lower space through which the steel sheet passes in the laser room 20 and the optical system upper space in which the laser oscillator and the optical mirrors are located.
  • the upper space of the optical system is separately separated inside the laser room 20 by the optical system lower frame 24, so that pollution prevention and temperature and humidity control for main equipment such as a laser oscillator or an optical system can be more easily performed.
  • the constant temperature and humidity controller 25 controls the temperature and humidity inside the laser room 20 to provide an appropriate environment.
  • the constant temperature and humidity controller 25 may maintain the internal temperature of the laser room 20 at 20 to 25 ° C., and the humidity at 50% or less.
  • the internal space of the laser room 20 is continuously maintained at a temperature and humidity suitable for the working environment, so that the magnetic domain refinement process may be performed on the steel sheet in an optimal state.
  • the magnetic domain refinement process may be performed on the steel sheet in an optimal state.
  • the magnetic domain refiner of the present embodiment may further include a post-treatment facility for removing heel up and spatter formed on the surface of the steel sheet.
  • the aftertreatment facility may include brush rolls 26A and 26B disposed at the rear end of the laser room 20 along the moving direction of the steel sheet to remove heel-up and spatter on the surface of the steel sheet.
  • the brush rolls 26A and 26B are rotated at a high speed by the drive motor, and the current control system controls the current value of the drive motor generated during operation to the set target value, and the brush position is controlled by adjusting the distance between the brush roll and the steel sheet.
  • the distance between the rotational speed and the steel sheet is controlled by the control system.
  • the brush roll may be disposed on only one surface of the steel sheet in which the groove is formed by the laser beam, or may be disposed on both sides of the steel sheet.
  • the brush rolls 26A and 26B are in close contact with the surface of the steel sheet and rotate at high speed to remove heel up, spatter, etc. attached to the surface of the steel sheet.
  • a dust collection hood 19C for discharging the heel up and the spatter removed by the brush roll in close proximity to the brush rolls 26A and 26B is further provided.
  • the dust collecting hood 19C sucks molten iron such as heel up and spatter separated from the steel sheet by brush rolls 26A and 26B and discharges them to the outside.
  • connection unit may further include a filtering unit 30 for filtering foreign substances contained in the alkaline solution of the cleaning unit from the alkaline solution.
  • the steel sheet is first removed through the brush roll (26A, 26B) and the heel up and spatter is removed, and the remaining heel up and spatter is removed secondly through the cleaning unit (29).
  • the heel up and spatter attached to the surface of the steel sheet can be more completely removed to improve product quality.
  • the cleaning unit 29 is filled with an alkaline solution therein, the filtering unit 30 is connected to one side.
  • the heel up and spatter which are removed from the steel sheet is accumulated in the internal alkaline solution, thereby degrading the clean performance of the steel sheet.
  • the filtering unit 30 removes the heel and spatter contained in the alkaline solution while circulating the alkaline solution of the clean unit.
  • the filtering unit 30 controls the iron content of the alkaline solution to 500 ppm or less by removing the heel up and the spatter. In this way, it is possible to prevent the degradation of the cleaning performance of the cleaning unit and to process the steel sheet continuously.
  • the steel sheet continuously transferred enters the laser room through the meandering control device and the tension control device and proceeds at a speed of 2 m / sec or more, and is finely processed.
  • the steel sheet entering the laser room is drawn out of the laser room after the permanent magnetization is processed through the laser irradiation equipment.
  • the steel sheet drawn out of the laser room is passed through a post-treatment facility to remove heel ups and spatters remaining on the surface.
  • the laser room where the laser irradiation on the surface of the steel sheet proceeds to properly set and maintain an internal operating environment so as to provide an optimal environment for miniaturization of magnetic domains.
  • the laser room isolates the inside from the outside to block inflow of external contaminants, and controls the laser room internal temperature, pressure, and humidity according to an operating environment for forming magnetic domains.
  • the laser room is set to maintain the internal pressure higher than the outside, thereby preventing foreign matters such as dust from entering the laser room.
  • the laser room is set to maintain the internal pressure higher than the outside, thereby preventing foreign matters such as dust from entering the laser room.
  • the constant temperature and humidity controller installed in the laser room maintains the temperature inside the laser room at 20 to 25 ° C and maintains the humidity at 50% or less, thereby providing optimum conditions for the magnetic domain refinement treatment by laser irradiation.
  • the laser room provides an optimal environment for the laser beam irradiation, and the steel sheet is precisely positioned at the laser irradiation position while passing through the meandering control device, the tension control device, and the steel plate support roll position adjusting device.
  • the steel sheet is moved for straightening of the steel sheet through the meandering control equipment without any bias from side to side along the center of the production line.
  • the meander measuring sensor continuously detects the meandering amount of the steel sheet, and when the steel sheet meanders, it calculates the signal detected by the meander measuring sensor so that the steel sheet central position control system rotates and moves the axis of the steering roll to move the steel sheet to the correct position. do. By continuously controlling the steering roll according to the position of the steel sheet, the steel sheet can be continuously moved without leaving the center of the production line.
  • the steel sheet is moved past the steering roll and the tension bridle roll for tension adjustment.
  • the tension of the steel sheet past the tension bridal roll is detected by the tension measuring sensor.
  • the steel plate tension control system calculates the measured value detected by the tension measuring sensor to control the speed of the tension bridal roll in addition to the set tension. Thus, it is possible to continuously maintain the tension of the steel sheet being moved in accordance with the set range.
  • the steel sheet passed through the tension bridal roll is introduced into the laser room through the entrance of the laser room.
  • the steel sheet is shifted by the bridle roll in the laser room and moved in close contact with the steel plate supporting roll positioned between the two bridal rolls.
  • the steel sheet supporting roll moves the steel sheet up and down to position the steel sheet within the depth of focus of the laser beam.
  • the luminance sensor detects the flame brightness of the surface of the steel sheet in real time, and the steel sheet supporting roll position control system moves the steel sheet supporting roll up and down according to the measured value detected by the luminance measuring sensor.
  • the steel sheet is positioned within the depth of focus of the laser beam.
  • the laser oscillator controller turns on / off the laser oscillator according to the degree of meandering of the steel sheet.
  • the laser oscillator controller is connected to the meander measuring sensor, and when the meandering amount of the steel sheet measured from the meander measuring sensor becomes 15 mm or more, for example, the laser oscillator is turned off by determining that the steel sheet is deviated from the steel sheet supporting roll too much.
  • the laser beam is irradiated to the surface of the steel sheet support roll past the meandered steel sheet to prevent the roll from being damaged.
  • the laser beam generated by the laser oscillator is irradiated onto the surface of the steel sheet through the optical system.
  • the laser oscillator oscillates and transmits the TEM 00 continuous wave laser beam to the optical system.
  • the optical system switches the direction of the laser beam and irradiates a laser onto the surface of the steel sheet, thereby forming molten grooves continuously on the surface of the steel sheet to perform magnetic domain refinement.
  • a molten groove is formed along the irradiation line.
  • the laser oscillator and the optical system transmit the laser energy density within the range of 1.0 to 5.0 J / mm 2 necessary for melting the steel sheet to the steel sheet so that the remaining resolidification portion is produced.
  • the laser beam reflected back from the steel sheet is not incident to the optical system. Therefore, it is possible to prevent the back reflection phenomenon and maintain the quality of the groove shape formed by the laser beam because the incident light path of the laser beam is not interrupted by the reflected light.
  • the optical system has a function of controlling the laser scanning speed so that the interval of the laser irradiation line can be adjusted with respect to the rolling direction.
  • the optical system has a rotation function to change the angle of the laser irradiation line.
  • the distance of the laser irradiation line to 2 to 30mm in the rolling direction by the optical system, the iron loss of the steel sheet can be improved by minimizing the influence of the heat affected zone (HAZ) by the laser beam. have.
  • HZ heat affected zone
  • the optical system may convert the irradiation angle of the laser beam into a range of ⁇ 4 ° with respect to the width direction of the steel sheet. That is, in FIG. 2, the radiation line 31 of the laser beam may be formed by tilting in a range of ⁇ 4 ° with respect to the y-axis direction. Accordingly, the irradiation line formed on the surface of the steel sheet may be inclined in the range of 86 to 94 ° with respect to the rolling direction. Thus, by forming the irradiation line inclined with respect to the y-axis direction, it is possible to minimize the decrease in magnetic flux density due to the groove formation by the laser.
  • the magnetic domain micronization process is performed, and the magnetic domain micronized steel plate is continuously moved and discharged to the outside through the exit of the laser room.
  • the steel sheet discharged from the laser room is subjected to a post-treatment process to remove the heel up and spatter attached to the surface of the steel sheet.
  • the steel sheet first passes through the brush roll disposed outside the laser room, and the heel up and the spatter are firstly removed by the brush roll that is in close contact with the steel sheet and rotates at high speed.
  • the steel rolls which have undergone brush rolls, are secondarily passed through a clean unit, and the remaining heel-ups and spatters are finally removed through the electrolysis reaction between the steel sheets and the alkaline solution.
  • the steel plate from which the heel up and the spatter are removed while passing through the clean unit is transferred to the post process.
  • Table 1 shows the iron loss improvement rate of the grain-oriented electrical steel sheet by the groove formed on the steel sheet surface of 0.27mm thickness by continuous wave laser beam irradiation according to the present embodiment. As shown in Table 1, in the case of the magnetic domain micronized steel sheet through the present embodiment it can be seen that the iron loss is improved both after the laser irradiation and after the magnetic domain micronized and heat treated with a laser.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

설비와 공정을 최적화함으로써, 이를 통해 자구 미세화 효율을 높이고 작업성을 개선하여 처리 능력을 증대시킬 수 있도록, 강판을 지지하면서 상기 강판의 상하 방향 위치를 제어하는 강판지지롤 위치 조절단계, 레이저빔을 조사하여 상기 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사단계, 및 레이저 조사가 진행되는 레이저룸의 내부 동작 환경을 설정하고 유지하는 설정유지단계를 포함하는 방향성 전기강판의 자구미세화 방법을 제공한다.

Description

방향성 전기강판의 자구미세화 방법과 그 장치
방향성 전기강판에 레이저를 조사하여 영구적으로 강판의 자구를 미세화 처리하는 방향성 전기강판의 자구미세화 방법과 그 장치에 관한 것이다.
예를 들어, 변압기와 같은 전기기기의 전력손실을 줄이고 효율을 향상시키기 위해, 철손이 낮고 자속밀도가 높은 자기적 특성을 지닌 방향성 전기강판이 요구된다.
방향성 전기강판의 철손을 줄이기 위해, 강판 표면에 기계적 방법이나 레이저 빔을 조사하여 압연 방향에 대해 수직방향으로 자구를 미세화함으로써, 철손을 감소시키는 기술이 개시되어 있다.
자구 미세화 방법은 응력 제거 소둔 후 자구 미세화 개선 효과를 유지하는지 여부에 따라 일시 자구미세화와 영구 자구미세화로 크게 구분할 수 있다.
일시 자구미세화 방법은 응력 제거 소둔 후 자구미세화 효과를 상실하는 단점이 있다. 일시 자구미세화 방법은, 강판 표면에 국부적인 압축 응력부를 형성시킴으로써 자구를 미세화시킨다. 그러나, 이러한 방법은 강판 표면의 절연 코팅층 손상을 일으키기 때문에 재코팅이 요구되며, 최종 제품이 아닌 중간 공정에서 자구미세화 처리를 하기 때문에 제조 비용이 높은 단점이 있다.
영구 자구미세화 방법은 열처리 후에도 철손 개선 효과를 유지할 수 있다. 영구 자구미세화 처리를 위해, 에칭 공법이나 롤 공법, 레이저 공법을 이용한 기술이 주로 사용되고 있다. 에칭 공법의 경우 홈 형성 깊이나 폭 제어가 어렵고, 최종 제품의 철손 특성의 보증이 어려우며 산용액을 사용하기 때문에 환경친화적이지 못한 단점이 있다. 롤을 이용한 공법의 경우, 기계 가공에 대한 안정성, 신뢰성 및 프로세스가 복잡한 단점이 있다.
레이저를 이용하여 강판을 영구 자구미세화하는 공법은, 강판을 지지하고 장력을 조절한 상태에서 강판의 표면에 레이저빔을 조사하여 강판 표면에 용융 홈을 형성하여 자구를 미세화시킬 수 있다. 이와 같이, 레이저를 이용하여 자구를 미세화함에 있어서, 고속 처리가 가능하면서, 전기강판의 철손을 낮추고 자속밀도를 높일 수 있도록 보다 효과적인 공정의 개선과 최적화가 요구된다.
설비와 공정을 최적화함으로써, 이를 통해 자구 미세화 효율을 높이고 작업성을 개선하여 처리 능력을 증대시킬 수 있도록 된 방향성 전기강판의 자구미세화 방법과 그 장치를 제공한다.
철손 개선 효율을 보다 높이고 자속밀도 저하를 최소화할 수 있도록 된 방향성 전기강판의 자구미세화 방법과 그 장치를 제공한다.
레이저 조사에 따라 형성된 힐업과 스패터 등의 오염물질을 보다 효과적으로 제거하여 제품의 품질을 높일 수 있도록 된 방향성 전기강판의 자구미세화 방법과 그 장치를 제공한다.
공정에 필요한 최적의 동작 환경을 제공할 수 있도록 된 방향성 전기강판의 자구미세화 방법과 그 장치를 제공한다.
본 구현예의 자구 미세화 방법은, 강판을 지지하면서 상기 강판의 상하 방향 위치를 제어하는 강판지지롤 위치 조절단계, 레이저빔을 조사하여 상기 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사단계, 및 레이저 조사가 진행되는 레이저룸의 내부 동작 환경을 설정하고 유지하는 설정유지단계를 포함할 수 있다.
상기 자구 미세화 방법은, 강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 이동하게 하는 사행 제어단계를 더 포함할 수 있다.
상기 자구 미세화 방법은, 상기 강판을 평평하게 펼쳐진 상태로 유지되게 상기 강판에 장력을 부여하는 장력 제어단계를 더 포함할 수 있다.
상기 설정유지단계는, 레이저룸 내부를 외부와 격리시켜 외부 오염물질의 유입을 차단하는 단계와, 레이저룸 내부 온도와 압력 및 습도를 제어하는 단계를 포함할 수 있다.
상기 자구 미세화 방법은, 레이저 조사단계를 거쳐 상기 강판의 표면에 형성된 힐업(hill up)과 스패터(spatter)를 제거하기 위한 후처리 단계를 더 포함할 수 있다.
상기 후처리 단계는 브러쉬롤로 강판 표면에 묻은 힐업과 스패터를 제거하는 브러쉬 단계를 포함할 수 있다.
상기 후처리 단계는, 강판을 알칼리용액과 전기분해반응시켜 강판 표면에 잔존하는 힐업과 스패터를 추가 제거하는 청정단계와, 청정 단계에서 강판으로부터 제거되어 알칼리용액 내에 포함된 이물질을 알칼리용액으로부터 걸러내기 위한 필터링 단계를 더 포함할 수 있다.
상기 사행 제어단계는, 강판의 폭 중앙위치가 생산라인 중앙에서 벗어난 사행량을 측정하는 사행량 측정단계, 및 상기 사행량 측정단계에서 측정된 강판의 사행량에 따라 스티어링 롤(Steering Roll)의 축을 회전 및 이동시켜 강판이 움직이는 방향을 조정하여 강판의 사행량을 제어하는 사행량 제어단계를 포함할 수 있다.
상기 사행량 제어단계는 강판의 사행량을 ±1mm 이내로 제어할 수 있다.
상기 장력 제어단계는, 상기 텐션 브라이들 롤(Tension Bridle Roll)에 의하여 강판에 장력을 인가하는 강판 장력 인가단계, 상기 강판 장력 인가단계를 행한 상기 강판의 장력을 측정하기 위한 강판 장력 측정단계, 및 상기 강판 장력 측정단계에서 측정된 강판의 장력에 따라 상기 텐션 브라이들 롤의 속도를 조정하여 강판 장력을 제어하는 강판 장력 제어단계를 포함할 수 있다.
상기 강판지지롤 위치 조절단계는, 상기 레이저 조사단계에 위치하는 강판을 강판지지롤로 지지하는 강판 지지단계, 상기 레이저 조사단계에서 강판에 레이저 조사 시 발생하는 불꽃의 밝기를 측정하는 휘도 측정 단계, 및 상기 휘도 측정 단계에서 측정된 불꽃의 밝기에 따라 강판지지롤 위치 제어계에 의하여 강판지지롤의 위치를 조정하여 레이저의 초점심도(Depth of Focus) 내에 강판이 위치하도록 제어하는 강판지지롤 위치 제어단계를 포함할 수 있다.
상기 레이저 조사단계는, 레이저 발진기에서 조사된 레이저 빔을 전달받은 광학계에 의하여 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3 내지 30㎛의 홈을 형성시킴과 동시에 레이저 빔 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 강판의 용융에 필요한 1.0 내지 5.0 J/㎟ 범위내의 레이저 빔 에너지 밀도를 강판에 전달하는 레이저 조사 및 에너지 전달단계를 포함할 수 있다.
상기 레이저 조사단계는, 레이저 발진기 제어기에 의하여 정상적인 작업조건 하에서는 레이저 빔을 발진하는 레이저 발진기를 온(On) 상태로 하고 강판의 사행량이 15mm 이상 발생되면 레이저 발진기를 오프(Off) 상태로 제어하는 레이저 빔 발진 제어단계를 포함할 수 있다.
상기 레이저 조사단계에서 레이저 발진기는 가우시안 에너지분포(Gaussian energydistribution) 연속파 레이저 빔을 발진할 수 있다.
상기 레이저 조사단계에서 광학계는 레이저 주사속도를 제어하여 레이저 빔 조사선의 간격을 압연방향으로 2 내지 30 mm로 조정할 수 있다.
상기 레이저 조사단계는, 강판 표면에 조사되는 레이저빔의 조사선 각도를 변환하는 각도 변환 단계를 더 포함할 수 있다.
상기 각도 변환 단계는, 강판의 폭방향에 대해 레이저 빔의 조사선 각도를 ±4°의 범위로 변환할 수 있다.
상기 레이저 조사단계는, 강판지지롤 표면에 원호형태로 접하여 진행되는 강판의 표면에 대해, 레이저 빔의 조사방향이 강판지지롤의 중심축을 지날 때의 레이저 빔 조사 위치를 기준점으로 하여 상기 기준점에서 강판지지롤 중심에서 외주면을 따라 각도를 두고 이격된 위치에, 레이저 빔을 조사할 수 있다.
상기 레이저 조사단계에서, 레이저 빔은 상기 기준점에 대해 강판지지롤 중심에서 외주면을 따라 3 내지 7°이격된 범위에서 조사될 수 있다.
상기 레이저 조사 단계는 레이저 빔의 산란광과 열이 레이저 조사설비의 광학계로 유입되는 것을 차단하는 차단 단계를 더 포함할 수 있다.
상기 레이저 조사 단계는, 레이저 빔 조사시 발생된 흄(fume)과 용융철을 흡입하여 제거하는 집진단계를 더 포함할 수 있다.
상기 집진 단계는 강판의 홈 내부로 압축 건조공기를 분사하여 홈 내부에 잔존하는 용융철을 제거하기 위한 분사 단계를 포함할 수 있다.
본 구현예의 자구 미세화 장치는, 강판을 지지하면서 강판의 상하 방향 위치를 제어하는 강판지지롤 위치 조절설비, 레이저 빔을 조사하여 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사설비, 및 상기 강판지지롤 위치 조절설비와 레이저조사설비를 외부로부터 격리 수용하며 레이저 조사를 위한 동작 환경을 제공하는 레이저룸을 포함할 수 있다.
상기 자구 미세화 장치는 강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 이동하게 하는 사행 제어설비를 더 포함할 수 있다.
상기 자구 미세화 장치는 강판을 평평하게 펼쳐진 상태로 유지되게 강판에 장력을 부여하는 장력 제어설비를 더 포함할 수 있다.
상기 레이저룸은 상기 레이저 조사설비와 강판지지롤 위치 제어설비를 수용하여 외부와 격리시키도록 내부 공간을 형성하고, 강판의 진행방향을 따라 양 측면에는 입구와 출구가 형성되고, 내부에는 레이저룸 내부 압력을 외부보다 높이기 위한 양압장치, 레이저 조사설비의 광학계가 위치한 상부공간을 강판이 지나가는 하부공간과 분리시키는 광학계 하부프레임, 및 레이저룸 내부 온도와 습도를 제어하는 항온항습제어기를 포함할 수 있다.
상기 강판의 표면에 형성된 힐업(hill up)과 스패터(spatter)를 제거하기 위한 후처리 설비를 더 포함할 수 있다.
상기 후처리 설비는 레이저룸 후단에 배치되어 강판 표면의 힐업과 스패터를 제거하는 브러쉬롤을 포함할 수 있다.
상기 후처리 설비는 브러쉬롤 후단에 배치되어 강판을 알칼리용액과 전기분해반응시켜 강판 표면에 잔존하는 힐업과 스패터를 추가 제거하는 청정유닛과, 청정유닛에 연결되어 청정유닛의 알칼리용액 내에 포함된 이물질을 알칼리용액으로부터 걸러내기 위한 필터링부를 더 포함할 수 있다.
상기 사행 제어설비는 상기 강판의 이동 방향을 전환하기 위한 스티어링 롤(Steering Roll), 상기 강판의 폭 중앙위치가 생산라인 중앙에서 벗어난 정도(사행량)를 측정하기 위한 사행 측정센서, 및 상기 사행 측정센서의 출력값에 따라 상기 스티어링 롤의 축을 회전 및 이동시켜 강판이 움직이는 방향을 조정하기 위한 강판 중앙위치 제어계(Strip Center Position Control System)를 포함할 수 있다.
상기 장력 제어설비는 상기 강판에 장력을 인가하면서 이동을 유도하는 텐션 브라이들 롤(Tension Bridle Roll), 상기 텐션 브라이들 롤을 통과한 상기 강판의 장력을 측정하기 위한 강판 장력 측정센서, 및 상기 강판 장력 측정센서에서 측정된 강판의 장력에 따라 상기 텐션 브라이들 롤의 속도를 조정하기 위한 강판(Strip) 장력 제어계를 포함할 수 있다.
상기 강판지지롤 위치 조절설비는, 상기 레이저 조사설비 위치에서 강판을 지지하는 강판지지롤, 상기 레이저 조사설비에서 강판에 레이저 조사 시 발생하는 불꽃의 밝기를 측정하기 위한 휘도 측정센서, 및 상기 휘도 측정센서에서 측정된 불꽃의 밝기에 따라 상기 강판지지롤의 위치를 제어하기 위한 강판지지롤 위치 제어계를 포함할 수 있다.
상기 레이저 조사설비는, 연속파 레이저 빔을 발진하기 위한 레이저 발진기, 상기 레이저 발진기로부터 발진된 상기 레이저 빔을 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3 내지 30㎛의 홈을 형성시킴과 동시에 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 강판의 용융에 필요한 1.0 내지 5.0 J/㎟ 범위내의 레이저 에너지 밀도를 강판에 전달하는 광학계를 포함할 수 있다.
상기 레이저 조사설비는, 정상적인 작업조건 하에서는 레이저 발진기를 온(On) 상태로 하고 강판 사행량이 15mm 이상 발생되면 레이저 발진기를 오프(Off) 상태로 제어하는 레이저 발진기 제어기를 더 포함할 수 있다.
상기 레이저 발진기는 가우시안 에너지분포(Gaussian energydistribution) 연속파 레이저 빔을 발진할 수 있다.
상기 광학계는 레이저 주사속도를 제어하여 레이저 조사선의 간격을 압연방향을 따라 2 내지 30 mm로 조정할 수 있다.
상기 레이저 조사설비는 강판에 레이저 빔을 조사하는 광학계가 구동부에 의해 회전 가능한 구조로 이루어져, 상기 광학계가 강판에 대해 회전하여 강판의 폭방향에 대해 레이저빔의 조사선 각도를 변환하는 구조일 수 있다.
상기 레이저 조사설비는 강판지지롤 표면에 원호형태로 접하여 진행되는 강판의 표면에 대해, 레이저 빔의 조사방향이 강판지지롤의 중심축을 지날 때의 레이저 빔 조사 위치를 기준점으로 하여, 상기 기준점에서 강판지지롤 중심에서 외주면을 따라 각도를 두고 이격된 위치에 레이저 빔이 조사하는 구조일 수 있다.
상기 레이저 조사설비는 레이저 빔을 상기 기준점에 대해 강판지지롤 중심에서 외주면을 따라 3 내지 7°이격된 범위에 조사하는 구조일 수 있다.
상기 레이저 조사설비는 레이저 산란광과 열이 광학계로 유입되는 것을 차단하는 차폐부를 더 포함할 수 있다.
상기 레이저 조사설비는, 상기 강판에 레이저빔 조사에 따라 생성된 흄과 스패터를 제거하기 위한 용융철 제거설비를 더 포함할 수 있다.
상기 용융철 제거설비는 강판의 홈 내부로 압축 건조공기를 분사하여 홈 내부에 잔존하는 용융철을 제거하는 에어나이프, 흄과 용융철을 흡입하여 제거하는 집진후드를 포함할 수 있다.
이상 설명한 바와 같이 본 구현예에 의하면, 강판을 2m/sec 이상의 고속으로 진행시키면서도, 안정적으로 레이저에 의한 자구 미세화 공정을 진행하여, 전기강판의 열처리 전,후의 철손 개선율을 각각 5% 이상, 10% 이상 확보할 수 있다.
또한, 자구 미세화 효율을 높이고 작업성을 개선하여 자구 미세화 처리 능력을 증대시킬 수 있게 된다.
또한, 철손 개선 효율을 보다 높이고 자속밀도 저하를 최소화할 수 있게 된다.
또한, 레이저 조사에 따라 형성된 힐업과 스패터 등의 오염물질을 보다 효과적으로 제거하여 제품의 품질을 높일 수 있게 된다.
또한, 공정에 필요한 최적의 동작 환경을 제공함으로써, 고품질의 제품을 대량으로 생산할 수 있게 된다.
도 1은 본 실시예에 따른 방향성 전기강판의 자구미세화 장치의 구성을 개략적으로 도시한 도면이다.
도 2는 본 실시예에 따라 자구 미세화 처리된 강판을 도시한 개략적인 도면이다.
도 3은 본 실시예에 따른 레이저 조사설비의 광학계 구성을 도시한 개략적인 도면이다.
이하에서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있는 바와 같이, 후술하는 실시예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 이에, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
이하 설명에서 본 실시예는 변압기 철심 소재 등에 사용되는 방향성 전기강판의 영구 자구미세화를 위한 설비를 예로서 설명한다.
도 1은 본 실시예에 따른 방향성 전기강판의 자구미세화 장치를 개략적으로 도시하고 있고, 도 2는 본 실시예에 따라 자구 미세화 처리된 강판을 도시하고 있다. 이하 설명에서, 압연방향 또는 강판 이동방향은 도 2에서 x축 방향을 의미하며, 폭방향은 압연방향에 직각인 방향으로 도 2에서 y축 방향을 의미하고, 폭은 y축 방향에 대한 강판의 길이를 의미한다. 도 2에서 도면부호 31은 레이저 빔에 의해 홈 형태로 파여져 강판(1) 표면에 연속적으로 형성된 조사선을 가리킨다.
도 1을 참고하면, 본 실시예에 따른 방향성 전기 강판의 자구 미세화 장치는 강판(1)이 2m/s 이상의 고속으로 진행되더라도 안정적으로 영구 자구미세화 처리를 수행한다.
본 실시예의 자구 미세화 장치는 강판(1)을 지지하면서 강판의 상하 방향 위치를 제어하는 강판지지롤 위치 조절설비, 레이저 빔을 조사하여 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사설비, 및 상기 강판지지롤 위치 조절설비와 레이저조사설비를 외부로부터 격리 수용하며 레이저 조사를 위한 동작 환경을 제공하는 레이저룸(20)을 포함할 수 있다.
또한, 상기 자구 미세화 장치는 강판(1)이 생산라인 중앙을 따라 좌우로 치우침이 없이 이동하게 하는 사행 제어설비를 더 포함할 수 있다.
또한, 상기 자구 미세화 장치는 강판(1)이 쳐지지 않고 평평하게 펼쳐진 상태로 유지되도록 강판에 장력을 부여하는 장력 제어설비를 더 포함할 수 있다.
또한, 상기 자구 미세화 장치는 레이저 빔 조사에 따라 상기 강판의 표면에 형성된 힐업(hill up)과 스패터(spatter)를 제거하기 위한 후처리 설비를 더 포함할 수 있다.
힐업(hill up)은 강판 표면에 레이저 빔을 조사하여 홈을 형성할 때, 강판에서 용융된 철이 홈 부위의 양 옆에 일정 높이 이상으로 쌓여 형성되는 부분을 의미한다. 스패터(spatter)는 레이저 빔 조사시 발생되어 강판 표면에 응고된 용융철을 의미한다.
상기 사행 제어설비는 상기 강판(1)의 이동 방향을 전환하기 위한 스티어링 롤(Steering Roll)(2A, 2B), 상기 강판(1)의 폭 중앙위치가 생산라인 중앙에서 벗어난 정도(사행량)를 측정하기 위한 사행 측정센서(4), 상기 사행 측정센서(4)의 검출 신호를 연산하여 상기 스티어링 롤(2A, 2B)의 축을 회전 및 이동시켜 강판(1)이 움직이는 방향을 조정하기 위한 강판 중앙위치 제어계(Strip Center Position Control System)(3)를 포함할 수 있다.
사행 측정센서(4)는 스티어링 롤(2B) 후단에 배치되어 스티어링 롤을 거친 강판의 실제 사행량을 실시간으로 검출하게 된다.
상기 사행 제어설비에 의해 강판이 생산라인의 중앙을 따라 좌우 치우침 없이 똑바로 이동됨으로써, 강판의 전 폭에 걸쳐서 강판 표면에 홈을 형성할 수 있게 된다.
상기 사행 제어설비는 레이저 조사에 의한 강판 표면 홈 형성 전 공정에서, 사행 측정센서(4)에 의해 강판의 사행량이 측정된다. 사행 측정센서(4)에 의해 측정된 값은 강판 중앙위치 제어계로 출력되고, 강판 중앙위치 제어계는 사행 측정센서의 출력값을 연산하여 연산된 사행 정도에 따라 스티어링 롤(2A, 2B)의 축을 회전 및 이동시키게 된다. 이와 같이, 스티어링 롤(2A, 2B)이 회전 및 이동됨으로써, 스티어링 롤에 감겨져 이동되는 강판의 움직이는 방향이 조정된다. 이에, 상기 강판의 사행량이 제어되어 강판(1)의 사행량을 ±1mm 이내로 제어할 수 있다.
상기 장력 제어설비는 상기 강판(1)에 일정한 크기의 장력을 인가하면서 이동을 유도하는 텐션 브라이들 롤(Tension Bridle Roll: TBR)(5A, 5B), 상기 텐션 브라이들 롤을 통과한 상기 강판(1)의 장력을 측정하기 위한 강판 장력 측정센서(7), 및 상기 강판 장력 측정센서(7)에서 측정된 강판(1)의 장력에 따라 상기 텐션 브라이들 롤(5A, 5B)의 속도를 조정하기 위한 강판(Strip) 장력 제어계(6)를 포함할 수 있다.
상기 강판 장력 측정센서(7)는 텐션 브라이들롤(5B) 후단에 배치되어 텐션 브라이들롤(5B)을 거쳐 장력이 부여된 강판의 실제 장력을 실시간으로 측정한다.
본 실시예에서, 강판의 장력은 레이저 조사설비의 레이저 조사 위치에서의 강판 표면 형상을 평평하게 만들게 하면서 너무 과도한 장력으로 인해 강판의 파단이 발생되지 않도록 설정될 수 있다.
상기 장력 제어설비는 설정된 범위 내의 강판 장력으로 조업하기 위해, 강판 장력 측정센서(7)에서 측정된 강판의 장력에 따라 강판(Strip) 장력 제어계(6)에 의하여 텐션 브라이들 롤(Tension Bridle Roll: TBR)(5A, 5B)의 속도를 조정한다. 이에, 상기 장력 제어설비는 강판(1)의 장력오차가 상기 설정 범위 이내가 되도록 제어하여 강판에 장력을 부여한다.
상기 장력 제어설비를 통과한 강판은 레이저룸(20) 내부로 유입되어 강판지지롤 위치 조절설비와 레이저 조사설비를 거쳐 자구 미세화 가공된 후 레이저룸(20) 외부로 빠져나가게 된다. 상기 레이저룸에 대해서는 뒤에서 다시 설명하도록 한다.
본 실시예에서, 레이저룸(20) 내부에는 레이저 조사설비 바로 아래쪽에 강판지지롤(9)이 배치되고, 강판지지롤을 사이에 두고 양쪽에 각각 디플렉터롤(Deflector Roll)(8A, 8B)이 배치된다.
강판(1)의 이동방향은 디플렉터 롤(Deflector Roll)(8A, 8B)에 의해 강판지지롤(9)로 향하도록 전환된다. 강판(1)은 디플렉터 롤(8A)를 지나면서 강판지지롤(9)쪽으로 이동방향이 전환되어 강판지지롤(9)에 접한 후 다시 디플렉터 롤(8B)쪽으로 방향이 전환되어 디플렉터 롤(8B)를 지나 이동된다.
디플렉터 롤에 의해 강판(1)은 강판지지롤(9)을 따라 원호형태로 감겨져 강판지지롤에 면접촉되면서 지나가게 된다. 레이저 빔 조사시 강판의 진동 및 웨이브에 의한 레이저 빔 초점 거리 변동을 최소화하기 위해서는, 강판이 강판지지롤에 충분히 면접촉되어 지나가야 하고, 이 상태에서 강판지지롤을 따라 진행되는 강판에 레이저 빔을 조사해야 한다. 본 실시예에서는 상기와 같이 강판지지롤에 강판이 면접촉됨에 따라 강판에 대해 레이저빔을 정확히 조사할 수 있게 된다.
상기 강판지지롤 위치 조절설비는, 상기 레이저 조사설비의 레이저 조사 위치로 강판(1)을 지지하는 강판지지롤(9), 상기 레이저 조사설비에서 강판(1)에 레이저 조사 시 발생하는 불꽃의 밝기를 측정하기 위한 휘도 측정센서(10), 및 상기 휘도 측정센서(10)에서 측정된 불꽃의 밝기에 따라 상기 강판지지롤(9)의 위치를 제어하기 위한 강판지지롤(SPR) 위치 제어계(12)를 포함할 수 있다.
상기 강판지지롤 위치 조절설비는, 강판지지롤(9)에 의하여 레이저 조사부 위치로 강판(1)을 지지하고, 레이저 강판조사 효율이 높은 초점심도(Depth of Focus)내에 강판이 위치하도록, 강판에 레이저 조사 시 발생하는 불꽃의 밝기가 가장 좋은 상태가 되게 강판지지롤(9) 위치를 전체적으로 상하로 조정한다. 또한, 강판에 레이저 조사 시 발생하는 불꽃의 밝기는 휘도 측정센서(10)를 이용하여 측정한다.
본 실시예에서 상기 강판지지롤 위치 조절설비는 레이저 조사설비의 광학계로부터 강판 표면 사이의 실제 거리를 측정하기 위한 거리측정센서(11)를 더 포함할 수 있다. 상기 강판지지롤 위치 제어계(12)는 휘도 측정센서(10)로부터 검출된 불꽃의 밝기와 거리측정센서(11)로부터 실제 측정된 광학계와 강판 표면간의 거리를 연산하여 강판지지롤(9)의 위치를 보다 정밀하게 제어한다.
상기 사행 제어설비, 장력 제어설비 및 강판지지롤 위치조절설비는 레이저 조사설비에 의해 정밀하게 강판에 레이저 홈을 형성시킬 수 있도록 레이저 조사 위치에서의 강판 조건을 만들어주는 역할을 한다. 레이저 조사 위치에서의 강판은 강판 중앙위치가 생산라인의 중앙 위치에 있어야 하고 광학계와의 거리가 설정된 값으로 유지되어야 한다.
상기 레이저 조사설비는, 레이저 발진기 제어기(13), 연속파 레이저 빔(16)을 발진하기 위한 레이저 발진기(14), 광학계(15)를 포함할 수 있다.
도 3에 도시된 바와 같이, 상기 광학계(15)는 회전가능하게 설치되어 강판 폭방향에 대한 레이저빔 조사선의 각도를 부여하는 모듈 플레이트(37)와, 상기 모듈 플레이트(37)를 회전시키기 위한 구동부(36), 상기 모듈 플레이트(37)에 설치되고 레이저 발진기(14)로부터 인가된 레이저 빔을 광학계(15) 내부로 출사하는 헤더(39), 모듈 플레이트(37)에 회전가능하게 설치되어 헤더(39)로부터 출사된 레이저 빔을 반사시키는 폴리곤 미러(32), 상기 폴리곤 미러(32)를 회전 구동시키는 회전모터(33), 상기 모듈 플레이트(37)에 설치되어 상기 폴리곤 미러(32)에서 반사된 레이저 빔(16)을 강판 쪽으로 반사시켜 강판에 집광시키는 집광 미러(35), 상기 집광 미러(35)에 연결되어 집광 미러(35)를 이동시켜 레이저 빔의 초점 거리를 조절하는 구동모터(34), 상기 모듈 플레이트(37)에 설치되어 레이저 빔 조사 여부에 따라 모듈 플레이트(37)를 선택적으로 차단하는 셔터(38)를 포함할 수 있다.
상기 광학계(15)는 광학 박스를 이루는 모듈 플레이트(37) 내에 헤더(39), 폴리곤 미러(32), 집광 미러(35) 및 셔트가 배치되어 한 몸체를 이룬다. 레이저 발진기(14)와 헤더(39)는 예를 들어 광케이블(41)로 연결된다. 이에, 레이저 발진기(14)에서 나온 레이저는 광케이블(41)을 타고 헤더(39)로 보내진다. 상기 광학박스를 이루는 모듈 플레이트(37) 내부에서 헤더(39)와 폴리곤 미러(32) 및 집광 미러(35)는 레이저 빔(16)을 원하는 위치로 반사시키기 위해 정 위치에 배치된다. 도 3에 도시된 바와 같이, 예를 들어 상기 헤더(39)는 폴리곤 미러(32)를 사이에 두고 양 쪽에 배치되어 각각 폴리곤 미러(32)를 향해 레이저 빔을 각각 출사하는 구조일 수 있다. 폴리곤 미러(32)에서 반사되는 각각의 레이저 빔에 맞춰 두 개의 집광 미러(35)가 배치된다. 헤더(39)에서 출사된 레이저 빔은 회전모터(33)의 구동에 따라 회전하는 폴리곤 미러(32)에서 반사되어 집광 미러(35)로 보내진다. 집광 미러(35)로 반사된 레이저 빔(16)은 집광 미러(35)에서 셔터(38)를 통해 강판쪽으로 반사되고 강판(1) 표면에 집광된다. 이에, 강판 표면에 레이저 빔이 주기적으로 조사되어 폭방향으로 연속홈을 형성하게 된다.
광학계(15)에 의한 레이저 빔(16)의 전체적인 초점 거리는 강판지지롤(9)의 상하 이동에 의해 조정되며, 좌우 초점거리가 맞지 않는 것은 집광 미러(35)에 연결설치되어 있는 구동모터(34)에 의해 조정된다.
상기 셔터(38)는 모듈 플레이트(37) 하부에 설치되어 모듈 플레이트(37)를 개폐한다. 상기 셔터(38)는 집광 미러(35)로부터 레이저 빔이 하부로 조사될 때 개방되어 레이저 빔과 간섭을 방지하며, 레이저 빔이 조사되지 않을 때는 폐쇄되어 외부의 흄이나 이물질이 광학계(15) 내부로 유입되는 것을 차단한다.
강판 사행량이 과도하면 강판이 레이저 조사위치에서 벗어나게 되어 강판지지롤(9)에 레이저가 조사되면서 손상이 발생한다. 이에, 강판지지롤 손상을 방지하기 위해, 상기 레이저 발진기 제어기(13)는 정상적인 작업조건 하에서는 레이저 발진기를 온(On) 상태로 하고 강판 사행량이 15mm 이상 발생되면 레이저 발진기를 오프(Off) 상태로 제어한다.
상기 레이저 발진기(14)는 가우시안 에너지분포(Gaussian energydistribution) 연속파 레이저 빔을 발진하여 상기 광학계(15)에 전달할 수 있다. 상기 레이저 발진기(14)는 싱글모드 연속파 레이저 빔을 발진할 수 있다. 광학계(15)는 전달된 레이저 빔(16)을 강판 표면에 조사한다.
레이저 발진기(14)와 광학계(15)는, 레이저 빔을 강판 표면에 조사하여 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3 내지 30㎛의 홈을 형성시킴과 동시에, 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록 강판의 용융에 필요한 1.0 내지 5.0 J/㎟ 범위내의 레이저 에너지 밀도를 강판에 전달할 수 있다.
상기 광학계(15)는 레이저 주사속도를 제어하는 기능이 있어 레이저 조사선(도 2의 31)의 간격을 압연방향으로 2 내지 30 mm로 조정할 수 있다. 이에, 레이저 빔에 의한 열영향부(HAZ, Heat Affected Zone)의 영향을 최소화하여 강판의 철손을 개선할 수 있다.
상기 레이저 조사설비는 강판 표면에 조사되는 레이저빔의 조사선 각도를 강판의 폭방향에 대해 변환하는 구조일 수 있다. 본 실시예에서 상기 레이저 조사설비는 강판의 폭방향에 대해 레이저 빔의 조사선 각도를 ±4°의 범위로 변환할 수 있다.
이를 위해, 상기 레이저 조사설비는 강판에 레이저 빔을 조사하는 광학계(15)가 구동부(36)에 의해 회전 가능한 구조로 이루어져, 강판 표면에 형성되는 레이저빔의 조사선 각도를 강판의 폭방향에 대해 변환하는 구조일 수 있다. 이와 같이 광학계에 의한 레이저빔의 조사선 각도가 변환됨으로써, 레이저빔에 의한 조사선(31)은 강판의 압연 방향에 대해 직각인 방향에 대해 ±4°의 범위로 기울어져 형성된다. 따라서, 레이저에 의한 홈 형성에 따른 자속밀도 저하를 최소화할 수 있게 된다.
또한, 본 실시예에서, 상기 레이저 조사설비는 강판(1)에 대한 레이저 빔의 조사 위치를 제어하여, 강판에 조사되는 레이저빔이 강판에서 반사되어 광학계나 레이저 발진기로 들어가는 백 리플렉션 현상을 방지하는 구조로 되어 있다.
이를 위해, 도 3에 도시된 바와 같이 상기 레이저 조사설비는 강판지지롤(9) 표면에 원호형태로 접하여 진행되는 강판의 표면에 대해, 광학계(15)에서 조사되는 레이저 빔의 조사방향이 강판지지롤(9)의 중심축을 지날 때의 레이저 빔 조사 위치를 기준점(P)으로 하여, 상기 기준점(P)으로부터 강판지지롤(9) 중심에서 외주면을 따라 각도(이하 설명의 편의를 위해 이격각도(R)이라 한다)를 두고 이격된 위치에 레이저 빔을 조사하는 구조일 수 있다.
상기 기준점(P)이란 도 3에서 강판지지롤(9) 중심축을 지나는 선과 강판이 만나는 지점이다. 레이저 빔의 조사방향이 강판지지롤(9)의 중심축을 지나는 경우 레이저 빔의 초점은 기준점(P)에 맞춰진다. 이 경우, 레이저 빔의 조사방향이 기준점(P)에서의 강판지지롤(9) 접선과 직각을 이룸에 따라, 강판에 맞아 반사되는 레이저 빔이 그대로 광학계와 레이저 발진기로 들어가 손상을 입히는 백 리플렉션 현상이 발생된다.
본 실시예에 따른 레이저 조사설비는 상기와 같이, 기준점(P)에서 이격각도(R) 만큼 이격된 위치에 레이저 빔을 조사함으로써, 강판에서 되반사되는 레이저 빔이 광학계로 입사되지 않게 된다. 따라서, 상기한 백 리플렉션 현상을 방지하고 레이저 빔에 의해 형성되는 홈 형상의 품질을 유지할 수 있게 된다.
본 실시예에서, 상기 이격 각도(R)는 상기 기준점(P)에 대해 강판지지롤(9) 중심에서 외주면을 따라 3 내지 7°의 범위로 설정될 수 있다.
상기 레이저 빔이 조사되는 위치인 이격 각도(R)가 3°보다 작은 경우에는 강판에서 되반사 되는 레이저 빔의 일부가 광학계나 레이저 발진기로 유입될 수 있다. 상기 이격각도(R)가 7°를 넘게 되면 레이저 빔에 의한 홈 형성 제대로 이루어지지 않고 홈의 형성 불량이 발생할 수 있다.
이와 같이, 본 실시에의 레이저 조사설비는 기준점(P)을 중심으로 소정 각도 이격된 지점에서 강판에 레이저를 조사함으로써, 백 리플렉션 현상을 방지하고 레이저 빔 반사시 입사 광로와 간섭되지 않으며 레이저 빔에 의해 형성되는 홈 형상의 품질을 안정적으로 유지할 수 있게 된다.
상기 레이저 조사설비는 상기 강판에 레이저빔 조사에 따라 생성된 흄과 스패터를 제거하기 위한 용융철 제거설비를 더 포함할 수 있다.
상기 용융철 제거설비는 강판의 홈 내부로 압축 건조공기를 분사하여 홈 내부에 잔존하는 용융철을 제거하는 에어나이프(17), 흄과 용융철을 흡입하여 제거하는 집진후드(19A, 19B)를 포함할 수 있다. 상기 에어나이프와 집진후드를 통해 레이저 조사시 생성된 흄이 제거되어 광학계 내부로 흄이 유입되는 것을 방지할 수 있다. 상기 에어나이프(17)는 상기 강판(1)의 홈 내부로 일정한 크기의 압력(Pa)을 갖는 압축 건조공기를 분사하여 홈 내부에 잔존하는 용융철을 제거한다. 상기 에어 나이프(17)에서 상기 압축 건조공기는 0.2 kg/cm2 이상의 압력(Pa)을 가지는 것이 바람직하다. 상기 압축 건조공기의 압력이 0.2 kg/cm2보다 작은 경우에서는 홈 내부의 용융철 제거가 불가하여 철손 개선 효과를 확보할 수 없기 때문이다. 에어나이프에 의해 제거된 흄과 스패터는 레이저 조사 위치 전후에 배치된 집진 후드(19A, 19B)에 의해 제거된다.
또한, 상기 레이저 조사설비는 레이저 빔의 반사광과 산란광 및 복사열이 광학계로 유입되는 것을 차단하는 차폐부(18)를 더 포함할 수 있다. 상기 차폐부(18)는 강판에 조사된 레이저 빔(16)의 반사와 산란에 의해 광학계로 유입되는 반사광과 산란광을 차단함으로써, 반사광과 산란광에 의한 복사열에 의해 광학계가 가열되어 열변형되는 것을 방지한다.
상기 레이저룸(20)은 내부 공간을 갖는 룸 구조물로, 내부에는 상기 레이저 조사설비와 강판지지롤 위치 제어설비를 수용하여 외부와 격리시키고, 이들의 원활한 구동을 위한 적절한 동작 환경을 제공한다.
강판 진행방향을 따라 상기 레이저룸(20)의 입측과 출측에는 각각 입구와 출구가 형성된다. 상기 레이저룸(20)은 외부의 먼지 등에 의해 내부 공간이 오염되지 않도록 오염물질 유입을 차단하는 시설을 구비한다. 이를 위해, 상기 레이저룸(20)은 내부 압력을 외부보다 높이기 위한 양압장치(23)를 구비한다. 상기 양압장치(23)는 레이저룸(20) 내부 압력을 외부 압력보다 상대적으로 높게 유지한다. 이에, 외부의 이물질이 레이저룸(20) 내부로 유입되는 것을 방지할 수 있게 된다. 또한, 강판이 출입되는 상기 입구와 출구에는 에어커튼(22A,22B,22C,22D)이 설치된다. 상기 에어커튼은 강판이 레이저룸(20)으로 들어오고 빠져나가는 통로인 입구와 출구에 공기를 분사하여 막을 형성함으로써, 입구와 출구를 통해 먼지 등이 유입되는 것을 차단한다. 또한, 상기 레이저룸(20) 내부 오염을 방지하기 위해, 레이저룸(20)의 출입구인 도어에는 샤워부스(21)가 설치될 수 있다. 상기 샤워부스(21)는 레이저룸(20)으로 들어오는 출입자의 몸에 묻은 이물질을 제거하게 된다.
상기 레이저룸(20)은 실질적으로 레이저 빔에 의한 강판 자구 미세화 공정이 진행되는 공간으로, 내부 환경의 변화를 최소화하고 적정 환경을 유지시킬 필요가 있다. 이를 위해, 상기 레이저룸(20)은 레이저 조사설비의 레이저 발진기(14)와 광학계(15) 등이 위치한 상부공간을 강판(1)이 지나가는 하부공간과 분리시키는 광학계 하부프레임(24), 및 레이저룸(20) 내부 온도와 습도를 제어하는 항온항습제어기(25)를 구비한다.
상기 광학계 하부프레임(24)은 레이저 발진기(14)와 광학계(15) 등의 주요 설비 동작 환경을 보다 철저히 관리할 수 있도록 한다. 상기 광학계 하부프레임(24)은 레이저룸(20) 내부에서 강판이 지나가는 광학계 하부 공간과 레이저 발진기와 광학계 미러 들이 위치한 광학계 상부 공간을 분리하도록 설치된다. 광학계 하부프레임(24)에 의해 레이저룸(20) 내부에서도 광학계 상부 공간이 별도로 분리되어 레이저 발진기나 광학계 등의 주요 설비에 대한 오염 방지와 온도 및 습도 제어가 보다 용이해진다.
상기 항온항습제어기(25)는 레이저룸(20) 내부의 온도와 습도를 조절하여 적정 환경을 제공한다. 본 실시예에서 상기 항온항습제어기(25)는 레이저룸(20)의 내부 온도를 20 내지 25℃로 유지하고, 습도를 50% 이하로 유지할 수 있다.
이와 같이, 레이저룸(20)의 내부 공간은 작업 환경에 적합한 온도와 습도로 계속 유지되어, 최적의 상태에서 강판에 대해 자구 미세화 공정이 진행될 수 있게 된다. 따라서, 공정에 필요한 최적의 동작 환경하에서 고품질의 제품을 대량으로 생산할 수 있게 된다.
본 실시예의 자구 미세화 장치는, 상기 강판의 표면에 형성된 힐업(hill up)과 스패터(spatter)를 제거하기 위한 후처리 설비를 더 포함할 수 있다.
힐업과 스패터는 제품의 절연성과 점적률 저하의 원인이 되므로, 상기 후처리 설비를 통해 완전히 제거함으로써 제품의 품질을 높일 수 있다.
상기 후처리 설비는 강판 이동방향을 따라 레이저룸(20) 후단에 배치되어 강판 표면의 힐업과 스패터를 제거하는 브러쉬롤(26A,26B)을 포함할 수 있다. 상기 브러쉬롤(26A,26B)은 구동모터에 의해 고속으로 회전되며, 동작시 발생되는 구동모터의 전류치를 설정된 목표치로 제어하는 전류제어계와, 브러쉬롤과 강판 사이의 간격을 조절하여 제어하는 브러쉬 위치제어계에 의해 회전속도와 강판과의 간격이 제어된다. 상기 브러쉬롤은 레이저 빔에 의한 홈이 형성된 강판의 일면에만 배치되거나, 강판의 양면에 배치될 수 있다. 상기 브러쉬롤(26A,26B)은 강판 표면에 밀착되어 고속으로 회전하면서 강판 표면에 부착되어 있는 힐업과 스패터 등을 제거하게 된다. 도 1에 도시된 바와 같이, 상기 브러쉬롤(26A,26B)에 근접하여 브러쉬롤에 의해 제거된 힐업과 스패터를 배출하기 위한 집진후드(19C)가 더 설치된다. 상기 집진후드(19C)는 브러쉬롤(26A,26B)에 의해 강판에서 떨어져나간 힐업과 스패터 등의 용융철을 흡입하여 외부로 배출하게 된다.
또한, 상기 후처리 설비는 브러쉬롤(26A,26B) 후단에 배치되어 강판을 알칼리용액과 전기분해반응시켜 강판 표면에 잔존하는 힐업과 스패터를 추가 제거하는 청정유닛(29)과, 청정유닛에 연결되어 청정유닛의 알칼리용액 내에 포함된 이물질을 알칼리용액으로부터 걸러내기 위한 필터링부(30)를 더 포함할 수 있다.
강판은 브러쉬롤(26A,26B)을 거쳐 1차적으로 힐업과 스패터가 제거되고, 청정유닛(29)을 지나면서 2차적으로 잔존 힐업과 스패터가 제거된다. 이에, 강판 표면에 부착된 힐업과 스패터를 보다 완벽하게 제거하여 제품 품질을 높일 수 있게 된다.
상기 청정유닛(29)은 내부에 알칼리용액이 채워지고, 일측에 필터링부(30)가 연결된다. 상기 청정유닛을 통해 강판을 처리함에 따라 내부 알칼리용액에 강판에서 제거된 힐업과 스패터가 누적되어, 강판의 청정 성능이 떨어지게 된다. 상기 필터링부(30)는 청정유닛의 알칼리용액을 순환시키면서 알칼리용액에 포함되어 있는 힐업과 스패터를 제거한다. 상기 필터링부(30)는 힐업과 스패터를 제거하여 알칼리용액의 철분 함유량을 500ppm 이하로 관리한다. 이와 같이, 청정 유닛의 청정 성능 저하를 방지하여 연속적으로 강판을 처리할 수 있게 된다.
이하, 본 실시예에 따른 전기강판의 자구 미세화 과정에 대해 설명하면 다음과 같다.
연속적으로 이송되는 강판은 사행제어설비와 장력제어설비를 거쳐 레이저룸 내부로 진입되어 2m/sec 이상의 속도로 진행되며, 자구 미세화 처리된다. 레이저룸 내부로 진입된 강판은 레이저 조사설비를 통해 영구 자구 미세화 처리 된 후 레이저룸 밖으로 인출된다. 레이저룸 외부로 인출된 강판은 후처리 설비를 거쳐 표면에 잔존하는 힐업과 스패터 등이 제거되어 후 공정으로 보내진다.
이 과정에서, 강판 표면에 대한 레이저 조사가 진행되는 레이저룸은 자구 미세화를 위한 최적의 환경을 제공할 수 있도록 내부 동작 환경을 알맞게 설정하고 유지하게 된다.
상기 레이저룸은 내부를 외부와 격리시켜 외부 오염물질의 유입을 차단하고, 레이저룸 내부 온도와 압력 및 습도를 자구 미세화 형성을 위한 동작 환경에 맞춰 제어하게 된다.
레이저룸은 내부의 압력을 외부와 비교하여 높게 설정하여 유지함으로써, 외부의 먼지 등 이물질이 레이저룸 내부로 유입되는 것을 방지할 수 있다. 또한, 강판이 이동되는 통로인 입구와 출구에 공기에 의한 막을 형성함으로써, 입구와 출구를 통해서 강판이 진행하는 과정에서 먼지 등 이물질이 레이저룸 내부로 유입되는 것을 차단할 수 있게 된다.
또한, 레이저룸에 설치된 항온항습제어기는 레이저룸 내부의 온도를 20 내지 25℃로 유지하고, 습도를 50% 이하로 유지함으로써, 레이저 조사에 의한 자구 미세화 처리에 최적의 조건을 제공한다.
이와 같이 레이저룸에 의해 레이저 빔 조사를 위한 최적의 환경이 제공되며, 강판은 사행 제어설비, 장력 제어설비, 그리고 강판지지롤 위치 조절설비를 거치면서 레이저 조사 위치에 정확히 위치하게 된다.
먼저, 자구 미세화 처리를 위해 강판은 사행제어설비를 통해 진행 방향이 제어되어 생산라인 중앙을 따라 좌우로 치우침없이 똑바로 이동하게 된다.
사행 측정센서는 강판의 사행량을 지속적으로 검출하며, 강판이 사행하게 되면, 사행 측정센서에서 검출된 신호를 연산하여 강판 중앙위치 제어계가 스티어링롤의 축을 회전 및 이동시켜 강판을 정위치로 이동시키게 된다. 이와 같이 강판의 위치에 따라 지속적으로 스티어링 롤을 제어함으로써, 강판을 계속해서 생산라인 중앙을 벗어나지 않고 연속적으로 이동시킬 수 있게 된다.
강판은 스티어링 롤을 지나 장력 조절을 위한 텐션 브라이들롤을 거쳐 이동하게 된다. 텐션 브라이들롤을 지난 강판의 장력은 장력 측정센서에 의해 검출된다. 강판 장력 제어계는 장력 측정센서에 의해 검출된 측정값을 연산하여 설정된 장력에 맙춰 텐션 브라이들롤의 속도를 제어한다. 이에, 이동되는 강판의 장력을 설정된 범위에 맞춰 지속적으로 유지할 수 있게 된다.
텐션 브라이들롤을 거친 강판은 레이저룸의 입구를 통해 레이저룸 내부로 유입된다. 강판은 레이저룸 내부에서 브라이들롤에 의해 방향이 전환되어 두 개의 브라이들롤 사이에 위치한 강판지지롤에 밀착된 상태로 이동된다.
상기 강판지지롤은 강판을 상하로 이동시켜 레이저 빔의 초점심도 내에 강판을 위치시키게 된다.
레이저 조사설비로부터 강판에 레이저 빔이 조사되면 휘도 측정센서는 강판 표면의 불꽃 밝기를 실시간으로 검출하고, 휘도 측정센서에서 검출된 측정값에 따라 강판지지롤 위치 제어계가 강판지지롤을 상하로 이동시켜 레이저 빔의 초점 심도 내에 강판이 위치하도록 한다. 이에, 강판 표면에 레이저 빔이 효과적으로 조사되어 고품질의 조사선을 형성할 수 있게 된다.
상기 레이저 발진기 제어기는 강판의 사행 정도에 따라 레이저 발진기를 온/오프 시킨다. 상기 레이저 발진기 제어기는 사행 측정센서와 연결되어 사행 측정센서로부터 측정된 강판의 사행량이 예를 들어, 15mm 이상이 되면 강판이 강판지지롤에서 너무 많이 벗어난 것으로 판단하여 레이저 발진기를 오프(off)시킨다. 이에, 레이저 빔이 사행된 강판을 지나 강판지지롤 표면에 조사되어 롤이 손상되는 것을 방지할 수 있다.
레이저 발진기 제어기의 명령에 따라 레이저 발진기에서 생성된 레이저 빔은 광학계를 거쳐 강판 표면에 조사된다. 레이저 발진기는 TEM00 연속파 레이저빔을 발진하여 광학계로 전달한다.
광학계는 레이저 빔의 방향을 전환하여 강판의 표면에 레이저를 조사함으로써, 강판 표면에 연속적으로 용융 홈을 형성하여 자구 미세화 처리한다.
광학계를 거쳐 강판에 조사되는 레이저 빔에 의해 강판 표면이 용융되면서 조사선을 따라 용융 홈이 형성된다. 본 실시예에서, 레이저 빔 조사를 통해 강판 표면에 상부폭, 하부폭과 깊이가 각각 70㎛ 이내, 10㎛ 이내, 3 내지 30㎛인 홈을 형성시킴과 동시에 레이저 조사 시 용융부의 홈 내부 벽면에 잔류시키는 재응고부가 생성되도록, 레이저 발진기와 광학계는 강판의 용융에 필요한 1.0 내지 5.0J/㎟ 범위내의 레이저 에너지 밀도를 강판에 전달한다.
또한, 광학계를 통한 레이저빔 조사 과정에서 기준점에서 이격된 위치에 레이저 빔을 조사함으로써, 강판에서 되반사되는 레이저 빔이 광학계로 입사되지 않게 된다. 따라서, 상기한 백 리플렉션 현상을 방지하고 반사광에 의해 레이저 빔의 입사 광로가 간섭받지 않아 레이저 빔에 의해 형성되는 홈 형상의 품질을 유지할 수 있게 된다.
상기 광학계는 레이저 주사속도를 제어하는 기능이 있어 압연 방향에 대해 레이저 조사선의 간격을 조정할 수 있다. 또한, 광학계는 회전기능을 구비하여 레이저 조사선의 각도를 변경할 수 있다. 본 실시예에서, 광학계에 의해 레이저 조사선의 간격을 압연방향으로 2 내지 30mm로 조정 가능하게 함으로써 레이저 빔에 의한 열영향부 (HAZ, Heat Affected Zone)의 영향을 최소화하여 강판의 철손을 개선할 수 있다. 또한、레이저 빔 조사 과정에서 상기 광학계의 회전을 통해 강판 표면에 조사되는 레이저빔의 조사선 각도를 변환할 수 있다. 본 실시예에서, 상기 광학계는 레이저 빔의 조사선 각도를 강판의 폭방향에 대해 ±4°의 범위로 변환할 수 있다. 즉, 도 2에서 y축 방향에 대해 ±4°범위에서 기울어지도록 하여 레이저 빔의 조사선(31)을 형성할 수 있다. 이에 강판 표면에 형성되는 조사선은 압연 방향에 대해 86 내지 94°의 범위에서 기울어져 형성될 수 있다. 이와 같이 조사선을 y축 방향에 대해 기울어지게 형성함으로써, 레이저에 의한 홈 형성에 따른 자속밀도 저하를 최소화할 수 있게 된다.
상기 레이저 빔 조사 과정에서, 강판이 레이저 빔에 의해 용융되면서 다량의 흄과 용융철인 스패터가 발생된다. 흄과 스패터는 광학계를 오염시키며, 홈 내부에 용융철이 잔존하는 경우 정확한 홈의 형성이 어렵고 철손의 개손이 이루어지지 않아 제품 품질을 저해하게 된다. 이에, 강판의 홈 내부로 압축 건조공기를 분사하여 홈 내부에 잔존하는 용융철을 제거하고, 집진후드를 통해 흄과 용융철을 바로 흡입하여 제거한다. 따라서, 강판 자구 미세화 과정에서 흄이 광학계 쪽으로 유입되는 것을 차단하고, 흄과 스패터를 신속하게 제거하여 자구 미세화 처리 효율을 높일 수 있게 된다. 또한, 상기 레이저 빔 조사 과정에서 레이저 빔의 산란광과 열이 레이저 조사설비의 광학계로 유입되는 것을 더 차단할 수 있다.
레이저 빔 조사를 통해 강판 표면에 홈이 형성되면서 자구 미세화 처리되고, 자구 미세화 처리된 강판은 연속적으로 이동되어 레이저룸의 출구를 통해 외부로 배출된다.
레이저룸에서 배출된 강판은 후처리 과정을 거쳐 강판 표면에 부착된 힐업과 스패터를 제거하는 과정을 거치게 된다.
강판은 먼저 레이저룸 외측에 배치된 브러쉬롤을 지나면서, 강판에 밀착되어 고속으로 회전하는 브러쉬롤에 의해 일차적으로 힐업과 스패터가 제거된다.
브러쉬롤을 거친 강판은 이차적으로 청정 유닛을 거치면서 강판과 알칼리용액과의 전기분해반응을 통해 잔존하는 힐업과 스패터가 최종적으로 제거된다. 청정유닛을 거치면서 힐업과 스패터가 제거된 강판은 후공정으로 이송된다.
철손개선율(%)
레이저 조사후 열처리후
9.5 11.6
9.7 12.9
11.5 13.5
8.4 11.6
8.6 11.8
8.5 11.7
상기 표 1은 본 실시예에 따른 연속파 레이저 빔 조사에 의해 0.27mm 두께의 강판 표면에 형성된 홈에 의한 방향성 전기강판의 철손 개선율을 나타내고 있다. 표 1에 도시된 바와 같이, 본 실시예를 통해 자구 미세화 처리된 강판의 경우 레이저 조사 후와, 레이저로 자구 미세화하고 열처리한 후 모두 철손이 개선됨을 확인할 수 있다.
이상 설명한 바와 같이 본 발명의 예시적인 실시예가 도시되어 설명되었지만, 다양한 변형과 다른 실시예가 본 분야의 숙련된 기술자들에 의해 행해질 수 있을 것이다. 이러한 변형과 다른 실시예들은 첨부된 청구범위에 모두 고려되고 포함되어, 본 발명의 진정한 취지 및 범위를 벗어나지 않는다 할 것이다.

Claims (24)

  1. 상기 강판을 지지하면서 상기 강판의 상하 방향 위치를 제어하는 강판지지롤 위치 조절단계,
    레이저빔을 조사하여 상기 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사단계, 및
    레이저 조사가 진행되는 레이저룸의 내부 동작 환경을 설정하고 유지하는 설정유지단계
    를 포함하는 방향성 전기강판의 자구미세화 방법.
  2. 제 1 항에 있어서,
    강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 이동하게 하는 사행 제어단계를 더 포함하는 방향성 전기강판의 자구미세화 방법.
  3. 제 1 항에 있어서,
    상기 강판을 평평하게 펼쳐진 상태로 유지되게 상기 강판에 장력을 부여하는 장력 제어단계를 더 포함하는 방향성 전기강판의 자구미세화 방법.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 설정유지단계는, 레이저룸 내부를 외부와 격리시켜 외부 오염물질의 유입을 차단하는 단계, 및 레이저룸 내부 온도와 압력 및 습도를 제어하는 단계를 포함하는 방향성 전기강판의 자구미세화 방법.
  5. 제 4 항에 있어서,
    상기 레이저 조사단계를 거쳐 상기 강판의 표면에 형성된 힐업(hill up)과 스패터(spatter)를 제거하기 위한 후처리 단계를 더 포함하는 방향성 전기강판의 자구미세화 방법.
  6. 제 5 항에 있어서,
    상기 후처리 단계는 브러쉬롤로 강판 표면에 묻은 힐업과 스패터를 제거하는 브러쉬 단계를 포함하는 방향성 전기강판의 자구미세화 방법.
  7. 제 6 항에 있어서,
    상기 후처리 단계는, 강판을 알칼리용액과 전기분해반응시켜 강판 표면에 잔존하는 힐업과 스패터를 추가 제거하는 청정단계와, 청정 단계에서 강판으로부터 제거되어 알칼리용액 내에 포함된 이물질을 알칼리용액으로부터 걸러내기 위한 필터링 단계를 더 포함하는 방향성 전기강판의 자구미세화 방법.
  8. 제 4 항에 있어서,
    상기 레이저 조사단계는, 강판지지롤 표면에 원호형태로 접하여 진행되는 강판의 표면에 대해, 레이저 빔의 조사방향이 강판지지롤의 중심축을 지날 때의 레이저 빔 조사 위치를 기준점으로 하여 상기 기준점에서 강판지지롤 중심에서 외주면을 따라 각도를 두고 이격된 위치에, 레이저 빔을 조사하는 방향성 전기강판의 자구미세화 방법.
  9. 제 8 항에 있어서,
    상기 레이저 조사단계에서, 레이저 빔은 상기 기준점에 대해 강판지지롤 중심에서 외주면을 따라 3 내지 7°이격된 범위에서 조사되는 방향성 전기강판의 자구미세화 방법.
  10. 제 4 항에 있어서,
    상기 레이저 조사단계는, 강판 표면에 조사되는 레이저빔의 조사선 각도를 변환하는 각도 변환 단계를 더 포함하는 방향성 전기강판의 자구미세화 방법.
  11. 제 10 항에 있어서,
    상기 각도 변환 단계는, 강판의 폭방향에 대해 레이저 빔의 조사선 각도를 ±4°의 범위로 변환하는 방향성 전기강판의 자구미세화 방법.
  12. 제 4 항에 있어서,
    상기 레이저 조사 단계는, 레이저 빔 조사시 발생된 흄(fume)을 차단하는 차단 단계, 강판의 홈 내부로 압축 건조공기를 분사하여 홈 내부에 잔존하는 용융철을 제거하기 위한 분사 단계, 흄과 용융철을 흡입하여 제거하는 집진단계를 포함하는 방향성 전기강판의 자구미세화 방법.
  13. 제 4 항에 있어서,
    상기 레이저 조사 단계는 레이저 빔의 산란광과 열이 레이저 조사설비의 광학계로 유입되는 것을 차단하는 차단 단계를 포함하는 방향성 전기강판의 자구미세화 방법.
  14. 강판을 지지하면서 강판의 상하 방향 위치를 제어하는 강판지지롤 위치 조절설비,
    레이저 빔을 조사하여 강판을 용융시켜 상기 강판의 표면에 홈을 형성하는 레이저 조사설비, 및
    상기 강판지지롤 위치 조절설비와 레이저조사설비를 외부로부터 격리 수용하며 레이저 조사를 위한 동작 환경을 제공하는 레이저룸
    을 포함하는 방향성 전기강판의 자구미세화 장치.
  15. 제 14 항에 있어서,
    상기 강판이 생산라인 중앙을 따라 좌우로 치우침이 없이 이동하게 하는 사행 제어설비를 더 포함하는 방향성 전기강판의 자구미세화 장치.
  16. 제 14 항에 있어서,
    상기 강판을 평평하게 펼쳐진 상태로 유지되게 강판에 장력을 부여하는 장력 제어설비를 더 포함하는 방향성 전기강판의 자구미세화 장치.
  17. 제 14 항 내지 제 16 항 중 어느 한 항에 있어서,
    상기 레이저룸은 상기 레이저 조사설비와 강판지지롤 위치 제어설비를 수용하여 외부와 격리시키도록 내부 공간을 형성하고, 강판의 진행방향을 따라 양 측면에는 입구와 출구가 형성되며, 내부에는 레이저룸 내부 압력을 외부보다 높이기 위한 양압장치, 레이저 조사설비의 광학계가 위치한 상부공간을 강판이 지나가는 하부공간과 분리시키는 광학계 하부프레임, 및 레이저룸 내부 온도와 습도를 제어하는 항온항습제어기를 포함하는 방향성 전기강판의 자구미세화 장치.
  18. 제 17 항에 있어서,
    상기 강판의 표면에 형성된 힐업(hill up)과 스패터(spatter)를 제거하기 위한 후처리 설비를 더 포함하는 방향성 전기강판의 자구미세화 장치.
  19. 제 18 항에 있어서,
    상기 후처리 설비는 레이저룸 후단에 배치되어 강판 표면의 힐업과 스패터를 제거하는 브러쉬롤을 포함하는 방향성 전기강판의 자구미세화 장치.
  20. 제 19 항에 있어서,
    상기 후처리 설비는 브러쉬롤 후단에 배치되어 강판을 알칼리용액과 전기분해반응시켜 강판 표면에 잔존하는 힐업과 스패터를 추가 제거하는 청정유닛과, 청정유닛에 연결되어 청정유닛의 알칼리용액 내에 포함된 이물질을 알칼리용액으로부터 걸러내기 위한 필터링부를 더 포함하는 방향성 전기강판의 자구미세화 장치.
  21. 제 17 항에 있어서,
    상기 광학계는 구동부에 의해 회전 가능한 구조로 이루어져, 강판에 대해 회전하여 강판의 폭방향에 대해 레이저 빔의 조사선 각도를 변환하는 구조의 방향성 전기강판의 자구미세화 장치.
  22. 제 17 항에 있어서,
    상기 레이저 조사설비는, 상기 강판에 레이저빔 조사에 따라 생성된 흄과 스패터를 제거하기 위한 용융철 제거설비를 포함하는 방향성 전기강판의 자구미세화 장치.
  23. 제 17 항에 있어서,
    상기 레이저 조사설비는 레이저 반사광과 산란광이 광학계로 유입되는 것을 차단하는 차폐부를 포함하는 방향성 전기강판의 자구미세화 장치.
  24. 제 17 항에 있어서,
    상기 레이저 조사설비는 상기 강판의 홈 내부로 압축 건조공기를 분사하여 홈 내부에 잔존하는 용융철을 제거하는 에어나이프, 및 흄과 용융철을 흡입하여 제거하는 집진후드를 포함하는 방향성 전기강판의 자구미세화 장치.
PCT/KR2016/015161 2016-01-22 2016-12-23 방향성 전기강판의 자구미세화 방법과 그 장치 WO2017126811A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680079807.6A CN109072328B (zh) 2016-01-22 2016-12-23 取向电工钢板的磁畴细化方法及其装置
JP2018538612A JP6826606B2 (ja) 2016-01-22 2016-12-23 方向性電磁鋼板の磁区細分化方法とその装置
US16/072,143 US11060163B2 (en) 2016-01-22 2016-12-23 Method for refining magnetic domains of grain-oriented electrical steel plates, and apparatus therefor
EP16886654.9A EP3406741B1 (en) 2016-01-22 2016-12-23 Method for refining magnetic domains of grain-oriented electrical steel plates, and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0008390 2016-01-22
KR1020160008390A KR101739865B1 (ko) 2016-01-22 2016-01-22 방향성 전기강판의 자구미세화 방법과 그 장치

Publications (1)

Publication Number Publication Date
WO2017126811A1 true WO2017126811A1 (ko) 2017-07-27

Family

ID=59050945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015161 WO2017126811A1 (ko) 2016-01-22 2016-12-23 방향성 전기강판의 자구미세화 방법과 그 장치

Country Status (6)

Country Link
US (1) US11060163B2 (ko)
EP (1) EP3406741B1 (ko)
JP (1) JP6826606B2 (ko)
KR (1) KR101739865B1 (ko)
CN (1) CN109072328B (ko)
WO (1) WO2017126811A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101739868B1 (ko) * 2016-01-22 2017-05-25 주식회사 포스코 방향성 전기강판의 자구미세화 방법과 그 장치
KR101739866B1 (ko) * 2016-01-22 2017-05-25 주식회사 포스코 방향성 전기강판의 자구미세화 방법과 그 장치
KR102175847B1 (ko) * 2018-12-11 2020-11-06 주식회사 포스코 방향성 전기강판의 자구 미세화 장치
CN115747445B (zh) * 2022-11-15 2023-09-12 国网智能电网研究院有限公司 一种超薄冷轧取向硅钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200204905Y1 (ko) * 1996-12-24 2000-12-01 이구택 주행강판의 사이드 가이드장치
KR20120073913A (ko) * 2010-12-27 2012-07-05 주식회사 포스코 방향성 전기강판의 자구미세화 장치 및 자구미세화 방법
KR20130074098A (ko) * 2011-12-26 2013-07-04 주식회사 포스코 냉연 탈지라인의 필터링장치
KR20140021915A (ko) * 2012-08-13 2014-02-21 삼성전기주식회사 클린룸 시스템
KR101395800B1 (ko) * 2012-11-30 2014-05-20 주식회사 포스코 전기강판의 자구 미세화 방법 및 이에 의해 제조되는 방향성 전기강판
KR20140087126A (ko) * 2012-12-27 2014-07-09 주식회사 포스코 방향성 전기강판 및 방향성 전기강판의 자구미세화 방법

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585968B2 (ja) 1977-05-04 1983-02-02 新日本製鐵株式会社 超低鉄損一方向性電磁鋼板の製造方法
JPS5518566A (en) 1978-07-26 1980-02-08 Nippon Steel Corp Improving method for iron loss characteristic of directional electrical steel sheet
JPS5826405B2 (ja) 1979-10-03 1983-06-02 新日本製鐵株式会社 鉄損特性の優れた電機機器用電磁鋼板の製造方法
JPS5839207B2 (ja) 1981-06-06 1983-08-29 新日本製鐵株式会社 電磁鋼板の処理方法
JPS61157631A (ja) 1984-12-28 1986-07-17 Nippon Steel Corp 方向性電磁鋼帯の鉄損改善用ひずみ導入方法
JPH0772300B2 (ja) 1985-10-24 1995-08-02 川崎製鉄株式会社 低鉄損方向性珪素鋼板の製造方法
JPH0657857B2 (ja) 1986-08-06 1994-08-03 川崎製鉄株式会社 低鉄損方向性電磁鋼板の製造方法
JPH0663037B2 (ja) 1987-12-12 1994-08-17 新日本製鐵株式会社 鉄損の低い方向性電磁鋼板の製造方法
JPH0222423A (ja) * 1988-07-12 1990-01-25 Kawasaki Steel Corp 一方向性けい素鋼板の鉄損低減連続処理設備
JPH0522547A (ja) 1991-07-16 1993-01-29 Sharp Corp 画像形成装置
JPH0522547U (ja) * 1991-09-05 1993-03-23 川崎製鉄株式会社 電子ビーム照射装置
JP2592740B2 (ja) 1992-01-27 1997-03-19 新日本製鐵株式会社 超低鉄損一方向性電磁鋼板およびその製造方法
JP2562252B2 (ja) 1992-04-10 1996-12-11 新日本製鐵株式会社 低鉄損方向性電磁鋼板の製造方法
WO1997024466A1 (fr) 1995-12-27 1997-07-10 Nippon Steel Corporation Tole d'acier magnetique ayant d'excellentes proprietes magnetiques, et son procede de fabrication
JP2002361450A (ja) 2001-06-01 2002-12-18 Nippei Toyama Corp レーザ加工方法及びその装置
JP2004122218A (ja) 2002-10-07 2004-04-22 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板の製造装置および方法
ITBO20060586A1 (it) * 2006-08-03 2006-11-02 El En Spa Dispositivo per il taglio laser di un nastro continuo.
CN104099458B (zh) * 2010-09-09 2016-05-11 新日铁住金株式会社 方向性电磁钢板的制造方法
KR101286247B1 (ko) 2010-12-27 2013-07-15 주식회사 포스코 방향성 전기강판의 자구미세화 장치 및 자구미세화 방법
CN202007259U (zh) 2011-01-28 2011-10-12 宝山钢铁股份有限公司 一种可自动调节激光刻痕线板宽方向均匀度的装置
JP2012162757A (ja) 2011-02-03 2012-08-30 Nippon Steel Corp 金属帯の連続電解洗浄方法及び連続電解洗浄装置
CN202226886U (zh) 2011-08-17 2012-05-23 武汉钢铁(集团)公司 St机组激光刻痕除尘系统
KR102090708B1 (ko) * 2013-01-22 2020-04-16 삼성디스플레이 주식회사 레이저 어닐링 장치
KR20150000927A (ko) 2013-06-25 2015-01-06 주식회사 포스코 방향성 전기강판의 자구 미세화 장치
KR102362753B1 (ko) 2015-07-24 2022-02-11 주식회사 포스코 집진 장치 및 이를 구비한 방향성 전기강판의 자구미세화 설비
KR101739868B1 (ko) * 2016-01-22 2017-05-25 주식회사 포스코 방향성 전기강판의 자구미세화 방법과 그 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200204905Y1 (ko) * 1996-12-24 2000-12-01 이구택 주행강판의 사이드 가이드장치
KR20120073913A (ko) * 2010-12-27 2012-07-05 주식회사 포스코 방향성 전기강판의 자구미세화 장치 및 자구미세화 방법
KR20130074098A (ko) * 2011-12-26 2013-07-04 주식회사 포스코 냉연 탈지라인의 필터링장치
KR20140021915A (ko) * 2012-08-13 2014-02-21 삼성전기주식회사 클린룸 시스템
KR101395800B1 (ko) * 2012-11-30 2014-05-20 주식회사 포스코 전기강판의 자구 미세화 방법 및 이에 의해 제조되는 방향성 전기강판
KR20140087126A (ko) * 2012-12-27 2014-07-09 주식회사 포스코 방향성 전기강판 및 방향성 전기강판의 자구미세화 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3406741A4 *

Also Published As

Publication number Publication date
JP6826606B2 (ja) 2021-02-03
KR101739865B1 (ko) 2017-05-25
EP3406741A1 (en) 2018-11-28
CN109072328A (zh) 2018-12-21
US20190062866A1 (en) 2019-02-28
EP3406741B1 (en) 2022-06-08
US11060163B2 (en) 2021-07-13
JP2019511630A (ja) 2019-04-25
EP3406741A4 (en) 2018-11-28
CN109072328B (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2017126810A1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
WO2017126811A1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
JP6826605B2 (ja) 方向性電磁鋼板の磁区細分化方法とその装置
WO2017126814A1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
WO2018117510A2 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR101739870B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR102427574B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR102466498B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR101693511B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR101693513B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR102011767B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR20180074388A (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR101892230B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR102046496B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR102428853B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR102012887B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR101885326B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR102538119B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR102024548B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR102319540B1 (ko) 방향성 전기 강판의 자구 미세화 장치와 그 방법
KR102125840B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR101739869B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016886654

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016886654

Country of ref document: EP

Effective date: 20180822