WO2017126618A1 - 磁性体、磁性トナー、及び磁性粉末 - Google Patents

磁性体、磁性トナー、及び磁性粉末 Download PDF

Info

Publication number
WO2017126618A1
WO2017126618A1 PCT/JP2017/001782 JP2017001782W WO2017126618A1 WO 2017126618 A1 WO2017126618 A1 WO 2017126618A1 JP 2017001782 W JP2017001782 W JP 2017001782W WO 2017126618 A1 WO2017126618 A1 WO 2017126618A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
iron oxide
mol
oxide particles
substituted
Prior art date
Application number
PCT/JP2017/001782
Other languages
English (en)
French (fr)
Inventor
慎一 大越
裕子 所
憲司 正田
俊彦 上山
Original Assignee
国立大学法人 東京大学
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, Dowaエレクトロニクス株式会社 filed Critical 国立大学法人 東京大学
Priority to EP17741495.0A priority Critical patent/EP3406567A4/en
Priority to JP2017562897A priority patent/JP6814750B2/ja
Priority to US16/070,902 priority patent/US20190035521A1/en
Priority to CN201780007296.1A priority patent/CN108698852A/zh
Publication of WO2017126618A1 publication Critical patent/WO2017126618A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0045Mixed oxides or hydroxides containing aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • G03G9/0831Chemical composition of the magnetic components
    • G03G9/0833Oxides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • G03G9/0836Other physical parameters of the magnetic components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • G03G9/0839Treatment of the magnetic components; Combination of the magnetic components with non-magnetic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Definitions

  • the present invention relates to a magnetic material, a magnetic toner, and a magnetic powder using a substituted ⁇ -type iron oxide magnetic powder.
  • Development methods used in electrophotographic image forming apparatuses include two-component development methods that use a carrier such as toner and iron powder, and magnetic materials that contain magnetic powder inside the toner without using a carrier.
  • a one-component development system using toner is known.
  • the one-component development method has an advantage that it is compact and low-cost because no carrier is used.
  • Non-Patent Document 1 ⁇ iron oxide ( ⁇ -Fe 2 O 3 ), which is expected to be applied to high recording density magnetic recording media, other magnetic uses, or radio wave absorption uses. It has been developed (for example, Non-Patent Document 1).
  • Non-Patent Document 1 exhibits a huge coercive force (Hc).
  • Hc coercive force
  • a magnetic toner having high magnetic properties is required.
  • the fog phenomenon can be suppressed. Therefore, it is expected that a magnetic toner having excellent development characteristics can be provided by using such ⁇ iron oxide.
  • magnetic powder has a specific color, and particularly when it contains magnetic powder as a toner of a one-component developing system, it is colored black, brown, reddish brown (hereinafter collectively referred to as “brown”).
  • brown reddish brown
  • the ⁇ iron oxide described in the above document still shows a slight brown color, it is desirable that it can be made lighter in color when used as a magnetic toner in a one-component development system.
  • the present invention has been made under the above-mentioned circumstances, and the problem to be solved is a magnetic material including substitutional ⁇ iron oxide particles applicable as a magnetic toner of a one-component development system and related technology. Is to provide.
  • the present inventor has intensively studied. As a result, it was found that a substance having a predetermined absorbance (molar extinction coefficient) at a predetermined wavelength can be used as a magnetic toner. And if it is a magnetic substance which substituted a part (iron element) of epsilon iron oxide mentioned later in this specification, it will become possible for the first time to suppress coloration to such an extent that it can be sufficiently applied to a one-component development system. It became clear.
  • the first invention for solving the above-described problem is A magnetic body including substituted ⁇ iron oxide particles in which a part of ⁇ iron oxide is substituted with a metal element other than iron, and satisfying at least one of the following conditions.
  • the molar extinction coefficient at a wavelength of 450 nm of the dispersion liquid of the magnetic material is less than 770 dm 3 mol ⁇ 1 cm ⁇ 1 .
  • the molar extinction coefficient of the dispersion liquid of the magnetic substance is less than 430 dm 3 mol ⁇ 1 cm ⁇ 1 when the wavelength is 500 nm.
  • the molar extinction coefficient at a wavelength of 450 nm of the dispersion is 400 dm 3 mol ⁇ 1 cm ⁇ 1 or less.
  • the molar extinction coefficient when the wavelength of the dispersion is 500 nm is 250 dm 3 mol ⁇ 1 cm ⁇ 1 or less.
  • the metal element is at least one of aluminum, gallium, and indium.
  • a fifth invention in any one of the first to fourth inventions, It is a magnetic material for magnetic toners using a one-component development system.
  • a sixth invention is a magnetic toner containing the substitutional ⁇ iron oxide particles and a binder resin in the magnetic material of any one of the first to fifth inventions.
  • the seventh invention is a magnetic powder composed of the substitutional ⁇ iron oxide particles in the magnetic material of any one of the first to fifth inventions.
  • Embodiments for carrying out the present invention will be described in the order of (1) substituted ⁇ iron oxide particles, (2) mixed solvent and vehicle, and (3) colloid of substituted ⁇ iron oxide particles.
  • substitution type ⁇ iron oxide particles used in the present invention are not particularly limited as long as a part of ⁇ iron oxide (iron element) is substituted with a metal element other than iron.
  • the metal element used for substitution is preferably at least one of aluminum (Al), gallium (Ga) and indium (In).
  • M is any one of aluminum (Al), gallium (Ga), and indium (In)
  • the mixed solvent used in the present invention is a mixed solution of toluene and methyl ethyl ketone as shown in the examples described later.
  • the vehicle used in the present invention is one in which a urethane resin and a vinyl chloride resin are dissolved in a mixed solution of acetylacetone, n-butyl stearate, and cyclohexane, as will be described later in Examples.
  • the substituted ⁇ iron oxide particles are dispersed in a mixed solution of the mixed solvent and the vehicle to form a colloid (dispersion, dispersion).
  • a colloid of substituted ⁇ iron oxide particles is prepared by using a shaker type stirring device and using the substituted ⁇ iron oxide particles as a predetermined solvent. Disperse to obtain a colloid.
  • a substitution type ⁇ iron oxide particle, a mixed solvent, a vehicle, and a mixing ball are loaded into a container such as a centrifuge tube.
  • the colloid is obtained by shaking the container at a shaking speed of 100 to 3000 times / min, an amplitude of 1 to 10 mm, and 0.5 to 10 hours.
  • the ultraviolet visible absorption spectrum was also measured with respect to said colloid (FIGS. 1 and 2).
  • the molar extinction coefficient indicating the turbidity of the liquid was significantly reduced as compared with the comparative examples described later.
  • the UV-visible absorption spectrum it can be said that a value having a low molar extinction coefficient is as low as possible. Therefore, it is preferable that the value be as low as possible.
  • molar extinction coefficient at a wavelength of 450nm of the dispersion of the magnetic body comprising a substituted ⁇ -iron oxide particles is less than 770dm 3 mol -1 cm -1, 400dm 3 mol -1 cm - It is more preferably 1 or less, and still more preferably 360 dm 3 mol ⁇ 1 cm ⁇ 1 or less.
  • molar absorption coefficient at a wavelength of 500nm of the dispersion of the magnetic body comprising a substituted ⁇ -iron oxide particles is less than 430dm 3 mol -1 cm -1, 250dm 3 mol -1 cm -1 More preferably, it is 210 dm 3 mol ⁇ 1 cm ⁇ 1 or less.
  • the absorbance is less than 1500 dm 3 mol ⁇ 1 cm ⁇ 1 , preferably less than 1250 dm 3 mol ⁇ 1 cm ⁇ 1 , more preferably less than 1000 dm 3 mol ⁇ 1 cm ⁇ 1 . Is good. It is preferable to use particles having such properties because a toner with suppressed coloration can be obtained over a so-called visible light range (wavelength: 380 to 780 nm).
  • the present inventor is diligently investigating the mechanism that brings about these effects, but mainly, the light absorption wavelength is changed to the ultraviolet region by element substitution for ⁇ -iron oxide as shown in this embodiment or the examples described later. The shift effect occurred. As a result, it is inferred that the coloration is greatly reduced.
  • a magnetic toner can be obtained by mixing the substitution type ⁇ iron oxide particles and a binder resin.
  • a specific method for obtaining the magnetic toner may be employed.
  • the type of the binder resin may be polystyrene resin, styrene-acrylic resin, polyester resin, epoxy resin, polyamide resin, or the like.
  • Example 1-1 (1) Preparation of Al-Substitution Type ⁇ Iron Oxide Particles
  • Al-substitution type ⁇ -Fe 2 O 3 crystal particles ( ⁇ -Al 0.66 Fe 1.34 O 3 ) were prepared as follows. 3524 mL of pure water was placed in a 5 L beaker, and 346.7 g of iron (III) nitrate nonahydrate and 185.4 g of aluminum (III) nitrate nonahydrate were added and stirred to dissolve. While stirring the solution, 363.6 mL of a 25% strength aqueous ammonia solution was added and stirred for 30 minutes.
  • TEOS tetraethoxysilane
  • the magnetic properties of the obtained Al-substituted ⁇ iron oxide particle samples were measured. Specifically, the measurement was performed using a SQUID (superconducting quantum interferometer) of MPMS7 manufactured by Quantum Design Co., Ltd. at a maximum applied magnetic field of 50 kOe and a temperature of 300K. As a result, the saturation magnetization of the Al-substituted ⁇ iron oxide particle sample was 17.3 emu / g, and it was confirmed that the obtained Al-substituted ⁇ iron oxide particle sample was a magnetic substance.
  • SQUID superconducting quantum interferometer
  • composition analysis of the obtained Al-substituted ⁇ iron oxide particles revealed that a nanomagnetic particle powder sample having a composition of ⁇ -Al 0.66 Fe 1.34 O 3 was obtained.
  • a 5.039 ⁇
  • b 8.662 ⁇
  • c 9.343 ⁇
  • a particle of the crystal volume 424.2 ⁇ 3.
  • the centrifuge tube is placed on a shaker, shaken at 2000 times / min, amplitude of 3 mm, and stirred for 4 hours to disperse the Al-substituted ⁇ iron oxide particles in the mixed solvent.
  • An ⁇ iron oxide particle dispersion (colloid) was obtained.
  • the colloid was filled in a quartz cell, and the measurement was performed using JASCO V-670 manufactured by JASCO.
  • Example 1-2 As Al-substituted ⁇ iron oxide particles, ⁇ -Al 0.48 Fe 1.52 O 3 was obtained instead of ⁇ -Al 0.66 Fe 1.34 O 3 by adjusting the addition amount of aluminum and iron.
  • Example 1-1 was repeated except for the above.
  • a spectrum diagram obtained by subjecting the obtained colloid liquid to spectroscopic measurement is also shown in FIG.
  • Example 1-3 As Al-substituted ⁇ iron oxide particles, ⁇ -Al 0.75 Fe 1.25 O 3 was used instead of ⁇ -Al 0.66 Fe 1.34 O 3 by adjusting the addition amount of aluminum and iron. Example 1-1 was repeated except for the above. A spectrum diagram obtained by subjecting the obtained colloid liquid to spectroscopic measurement is also shown in FIG.
  • Ga-substitution type ⁇ -Fe 2 O 3 crystal particles ( ⁇ -Ga 0.67 Fe 1.33 O 3 ) were prepared as follows. 1988 mL of pure water was placed in a 5 L beaker, and 174.5 g of iron (III) nitrate nonahydrate and 102.6 g of gallium (III) nitrate octahydrate were added and stirred to dissolve. While stirring the solution, 199.1 mL of a 25% strength aqueous ammonia solution was added and stirred for 30 minutes.
  • TEOS tetraethoxysilane
  • the magnetic properties of the obtained Ga-substituted ⁇ iron oxide particle samples were measured. Specifically, the measurement was performed using a SQUID (superconducting quantum interferometer) of MPMS7 manufactured by Quantum Design Co., Ltd. at a maximum applied magnetic field of 90 kOe and a temperature of 300K. As a result, the saturation magnetization of the Ga-substituted ⁇ iron oxide particle sample was 17.0 emu / g, and it was confirmed that the obtained Ga-substituted ⁇ iron oxide particle sample was a magnetic substance.
  • SQUID superconducting quantum interferometer
  • Example 2-2 As Ga-substituted ⁇ iron oxide particles, ⁇ -Ga 0.29 Fe 1.71 O 3 was used instead of ⁇ -Ga 0.67 Fe 1.33 O 3 by adjusting the addition amount of gallium and iron.
  • Example 2-1 was repeated except for the above.
  • a spectrum diagram obtained by subjecting the obtained colloidal solution to spectroscopic measurement is also shown in FIG.
  • Example 2-3 As Ga-substituted ⁇ iron oxide particles, ⁇ -Ga 0.94 Fe 1.06 O 3 was used instead of ⁇ -Ga 0.67 Fe 1.33 O 3 by adjusting the addition amount of gallium and iron.
  • Example 2-1 was repeated except for the above.
  • a spectrum diagram obtained by subjecting the obtained colloidal solution to spectroscopic measurement is also shown in FIG.
  • the precipitate was separated by centrifugation, washed with pure water, transferred to a petri dish, dried at 60 ° C. overnight, and pulverized in an agate mortar. And it heat-processed for 4 hours at 1020 degreeC in the furnace of an atmospheric condition. Thereafter, etching treatment was performed with a 5M aqueous sodium hydroxide (NaOH) solution for 24 hours to obtain ⁇ -Fe 2 O 3 particles from which silica was removed.
  • NaOH sodium hydroxide
  • the ultraviolet-visible absorption spectra (vertical axis: molar absorption coefficient, horizontal axis: wavelength) obtained in Examples 1-1 to 1-3 and Comparative Examples are shown in FIG. 1, and Examples 2-1 to 2-3 and The ultraviolet-visible absorption spectrum (vertical axis: molar extinction coefficient, horizontal axis: wavelength) obtained in the comparative example is shown in FIG.
  • FIGS. 1 and 2 compared to the comparative example ( ⁇ -Fe 2 O 3 ), the light absorption is considerably suppressed in the case of the colloid of substituted ⁇ iron oxide particles as in each example. The coloration was very low and very close to transparency.
  • Table 1 summarizes the measurement results of molar extinction coefficients of Examples and Comparative Examples.
  • Example 1-1 ( ⁇ In Al 0.66 Fe 1.34 O 3 ), 359 dm 3 mol ⁇ 1 cm ⁇ 1
  • Example 2-1 ( ⁇ -Ga 0.67 Fe 1.33 O 3 ), 377 dm 3 mol ⁇ 1 cm ⁇ 1 . there were.
  • the molar extinction coefficient of the dispersion at a wavelength of 450 nm is less than 774 dm 3 mol ⁇ 1 cm ⁇ 1 , more preferably 770 dm 3 mol ⁇ 1 cm ⁇ 1 or less (preferably less). , more preferably at most 400dm 3 mol -1 cm -1, and even more preferably less 360dm 3 mol -1 cm -1.
  • the molar extinction coefficient of the dispersion at a wavelength of 500 nm is preferably 430 dm 3 mol ⁇ 1 cm ⁇ 1 or less (preferably less), more preferably 427 dm 3 mol ⁇ 1 cm ⁇ 1 , preferably 250 dm. 3 mol -1 cm -1 at more preferably from less, and even more preferably less 210dm 3 mol -1 cm -1.
  • Example 1-1 ( ⁇ -Al 0.66 Fe 1.34 O 3 ), 813 dm as compared with 1531 dm 3 mol ⁇ 1 cm ⁇ 1 in the comparative example ( ⁇ -Fe 2 O 3 ). 3 mol ⁇ 1 cm ⁇ 1 , and in Example 2-1 ( ⁇ -Ga 0.67 Fe 1.33 O 3 ), it was 830 dm 3 mol ⁇ 1 cm ⁇ 1 .
  • the molar extinction coefficient of the dispersion at a wavelength of 400 nm is 1500 dm 3 mol ⁇ 1 cm ⁇ 1 or less (preferably less), 1250 dm 3 mol ⁇ 1 cm ⁇ 1 or less (preferably less), 1000 dm 3. More preferably, it is mol ⁇ 1 cm ⁇ 1 or less (preferably less).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

一成分現像方式の磁性トナーとして適用可能な置換型ε酸化鉄粒子を含む磁性体及びその関連技術を提供する。ε酸化鉄の一部を鉄以外の金属元素で置換した置換型ε酸化鉄粒子を含む磁性体であって、以下の条件のうち少なくともいずれかを満たす、磁性体及びその関連技術を提供する。(条件1)磁性体の分散液の波長450nmのときのモル吸光係数が770dmmol-1cm-1未満である。(条件2)磁性体の分散液の波長500nmのときのモル吸光係数が430dmmol-1cm-1未満である。

Description

磁性体、磁性トナー、及び磁性粉末
 本発明は、置換型ε型酸化鉄磁性粉末を用いた磁性体、磁性トナー及び磁性粉末に関する。
 複写機やプリンターなどの電子写真方式の画像形成装置に採用される現像方法としては、トナー及び鉄粉等のキャリアを用いる二成分現像方式と、キャリアを用いずトナー内部に磁性粉を含有した磁性トナーを用いる一成分現像方式とが知られている。一成分現像方式は、キャリアを使用しない分、コンパクトで低コストであるというメリットを有する。 
 そのような状況がある一方で、本発明者は、高記録密度の磁気記録媒体その他の磁性用途、あるいは電波吸収用途への適用が期待されているε酸化鉄(ε-Fe)を開発している(例えば非特許文献1)。
S. Ohkoshi, A. Namai, K. Imoto, M. Yoshikiyo, W. Tarora, K. Nakagawa, M. Komine, Y. Miyamoto, T. Nasu, S. Oka and H. Tokoro, Scientific Reports, 5, 14414 (2015).
 上記の非特許文献1において開示したε酸化鉄は巨大な保磁力(Hc)を示す。一般的に、磁性トナーとしては磁気特性が高いものが求められている。なかでも、保磁力の高いものを用いれば、かぶり現象を抑制できるので、こうしたε酸化鉄を利用すれば、現像特性に優れた磁性トナーを提供することが可能になると期待できる。しかしながら、磁性粉には特有の色目があり、特に、一成分現像方式のトナーとして磁性粉を含有する場合、黒色、茶褐色、赤褐色など(以降、総称して「褐色など」という)に呈色しやすくなってしまい、鮮明なカラー写真が得られにくいという課題がある。つまり、一成分現像方式においては、トナーとして使用した時に褐色などに呈色しにくい磁性材料を使用する必要がある。
 ところが、上記の文献に記載のε酸化鉄では、未だ若干の褐色が見られることから、一成分現像方式の磁性トナーとして使用するには、より薄色化できることが望ましい。
 本発明は上述の状況の下で為されたものであり、その解決しようとする課題は、一成分現像方式の磁性トナーとして適用可能な置換型ε酸化鉄粒子を含む磁性体及びその関連技術を提供することである。
 上記の課題を解決すべく、本発明者は鋭意検討を行った。その結果、所定の波長において所定の吸光度(モル吸光係数)を持つ物質ならば磁性トナーとして使用可能であるという知見を得た。そして、本明細書にて後述する、ε酸化鉄の一部(鉄元素)を置換した磁性体ならば、一成分現像方式に十分に適用可能な程度に呈色を抑えることが初めて可能となることが、明らかとなった。
 即ち、上述の課題を解決する第1の発明は、
 ε酸化鉄の一部を鉄以外の金属元素で置換した置換型ε酸化鉄粒子を含む磁性体であって、以下の条件のうち少なくともいずれかを満たす、磁性体である。
(条件1)磁性体の分散液の波長450nmのときのモル吸光係数が770dmmol-1cm-1未満である。
(条件2)磁性体の分散液の波長500nmのときのモル吸光係数が430dmmol-1cm-1未満である。
 第2の発明は、第1の発明において、
 分散液の波長450nmのときのモル吸光係数が400dmmol-1cm-1以下である。
 第3の発明は、第1又は第2の発明において、
 分散液の波長500nmのときのモル吸光係数が250dmmol-1cm-1以下である。
 第4の発明は、第1~第3のいずれかの発明において、
 前記金属元素は、アルミニウム、ガリウム及びインジウムの少なくともいずれかである。
 第5の発明は、第1~第4のいずれかの発明において、
 一成分現像方式の磁性トナー用途の磁性体である。
 第6の発明は、第1~第5のいずれかの発明の前記磁性体における前記置換型ε酸化鉄粒子と結着樹脂とを含有する、磁性トナーである。
 第7の発明は、第1~第5のいずれかの発明の前記磁性体における前記置換型ε酸化鉄粒子により構成される、磁性粉末である。
 本発明によれば、一成分現像方式の磁性トナーとして適用可能な置換型ε酸化鉄粒子を含む磁性体及びその関連技術を提供できる。
各実施例1-1~1-3及び比較例にて得られた紫外可視吸収スペクトルを示す図である。 各実施例2-1~2-3及び比較例にて得られた紫外可視吸収スペクトルを示す図である。
 本発明を実施するための形態について、(1)置換型ε酸化鉄粒子、(2)混合溶媒とビヒクル、(3)置換型ε酸化鉄粒子のコロイド、の順で説明する。
(1)置換型ε酸化鉄粒子
 本発明にて用いる置換型ε酸化鉄粒子は、ε酸化鉄の一部(鉄元素)を鉄以外の金属元素で置換したものであれば特に限定はないが、後述の実施例の項目で示すように、置換に使用する金属元素は、アルミニウム(Al)、ガリウム(Ga)及びインジウム(In)の少なくともいずれか一種であるのが好ましい。置換量としては、ε-MFe2-xとした場合(Mはアルミニウム(Al)、ガリウム(Ga)及びインジウム(In)のいずれか)、0<x<2、好ましくは0.25<x<2、より好ましくは0.5<x<2である。この範囲とすることで、より透明性の高いものとすることが出来るので好ましい。
(2)混合溶媒とビヒクル
 本発明において、混合溶媒とビヒクルについて説明する。
 本発明において用いる混合溶媒は、後述の実施例で示すように、トルエンとメチルエチルケトンの混合溶液である。
 そして、本発明において用いるビヒクルは、同じく後述の実施例が示すように、アセチルアセトン、ステアリン酸n-ブチル、シクロヘキサンの混合溶液に対してウレタン樹脂、塩化ビニル樹脂を溶解したものである。
 本実施形態においては、上記の混合溶媒とビヒクルとの混合溶液に対し、上記の置換型ε酸化鉄粒子を分散させ、コロイド(分散液、分散体)とする。
(3)置換型ε酸化鉄粒子のコロイド
 本発明において置換型ε酸化鉄粒子のコロイドを作製する際の手法としては、振盪式の撹拌装置を用い、置換型ε酸化鉄粒子を所定の溶媒に分散させてコロイドを得る。一例を挙げると、遠沈管等の容器内へ、置換型ε酸化鉄粒子、混合溶媒、ビヒクル、混合用ボール(例えば、0.3mmφのジルコニアボール)を装填する。そして、当該容器を振盪数100~3000回/min、振幅1~10mm、0.5~10時間、振盪させることで、上記のコロイドが得られる。
 また、後述の実施例の項目においては、上記のコロイドに対して紫外可視吸光スペクトルも測定した(図1及び2)。その結果、後述の比較例よりも、液の濁度を示すモル吸光係数が大幅に減少していることが確認された。
 詳しくは後述するが、紫外可視吸光スペクトルにおいては出来るだけモル吸光係数が低い値である方が透明性の高いものであることはいえるので、可能な限り低い値を示す方が好ましい。具体的には、置換型ε酸化鉄粒子を含む磁性体の分散液の波長450nmのときのモル吸光係数が770dmmol-1cm-1未満であるのが好ましく、400dmmol-1cm-1以下であるのがより好ましく、360dmmol-1cm-1以下であるのが更に好ましい。
 また同様に、置換型ε酸化鉄粒子を含む磁性体の分散液の波長500nmのときのモル吸光係数が430dmmol-1cm-1未満であるのが好ましく、250dmmol-1cm-1以下であるのがより好ましく、210dmmol-1cm-1以下であるのが更に好ましい。
 一般的に、測定波長を低波長(短波長)側に移した場合、急速に吸光度の増大がおきることが知られており、低波長側でより吸光度が低くなるような粒子の場合には、測定サンプルはより濁度が低いすなわち、液の透明度が高いことを表す。したがって、より低波長側である400nmにおいて、吸光度が1500dmmol-1cm-1未満、好ましくは1250dmmol-1cm-1未満、より好ましくは1000dmmol-1cm-1未満とするのが良い。かような性質を有する粒子とすることで、いわゆる可視光範囲(波長:380~780nm)の部分にわたって、呈色が抑制されたトナーを得ることが出来るので好ましい。
 これらの効果をもたらすメカニズムについては本発明者が鋭意検討中であるが、主としては、本実施形態又は後述の実施例が示すようにε酸化鉄に対する元素置換により、光の吸収波長を紫外領域へとシフトさせる作用が生じた。その結果、呈色が大幅に減少したものと推察される。
 なお、この置換型ε酸化鉄粒子と結着樹脂とを混合することにより磁性トナーが得られる。磁性トナーを得るための具体的な手法は、公知のものを採用しても構わない。例えば結着樹脂の種類は、ポリスチレン樹脂、スチレン-アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリアミド樹脂などであっても構わない。
 なお、上記のように呈色を低減した磁性体を実現可能としたきっかけは一成分現像方式であるが、もちろんその他の用途にも当該磁性体を適用することは妨げない。
 以下、実施例を参照しながら、本発明をより具体的に説明する。
[実施例1-1]
(1)Al置換型ε酸化鉄粒子の調製
 Al置換タイプのε-Fe結晶粒子(ε-Al0.66Fe1.34)を、以下のように調製した。
 5Lビーカーに純水3524mLを入れ、硝酸鉄(III)9水和物346.7gと、硝酸アルミニウム(III)9水和物185.4gを添加して撹拌し溶解させた。当該溶液を撹拌しながら、濃度25%アンモニア水溶液363.6mLを添加し、30分間攪拌した。さらに撹拌を継続しながら、混合液にテトラエトキシシラン(TEOS)395.4mLを滴下し、20時間攪拌した。
 得られた混合液をろ過し、沈殿物を純水で洗浄した後に乾燥し、乳鉢で粉砕し粉砕粉とした。得られた粉砕粉は炉内で、大気雰囲気下、1100℃、4時間の熱処理を施し熱処理粉とした。
 得られた熱処理粉を乳鉢で解粒処理したのち、0.8モル/Lの水酸化ナトリウム(NaOH)水溶液に添加した。そして、液温65℃で24時間攪拌することにより、熱処理粉からシリコン酸化物を除去した。次いで、遠心分離処理してシリコン酸化物が除去された熱処理粉を沈殿させ、上澄み液を廃棄した後、純水を追加して洗浄し、再度遠心分離処理を行った。
 洗浄された沈殿物をろ過、回収した後に乾燥して、Al置換型ε酸化鉄粒子を得た。
 得られたAl置換型ε酸化鉄粒子試料の磁気特性を測定した。具体的には、カンタムデザイン社製MPMS7のSQUID(超伝導量子干渉計)を用い、最大印加磁界50kOe、温度300Kで測定した。
 その結果、Al置換型ε酸化鉄粒子試料の飽和磁化は17.3emu/gであり、得られたAl置換型ε酸化鉄粒子試料が磁性体であることを確認した。
 得られたAl置換型ε酸化鉄粒子について組成分析を行ったところ、ε-Al0.66Fe1.34の組成を有する、ナノ磁性粒子粉試料が得られていることがわかった。リードベルト解析によって結晶解析したところ、a=5.039Å、b=8.662Å、c=9.343Å、結晶体積=424.2Åの粒子であった。このときのε-FeにおけるAサイトは27%、Bサイトが8%、Cサイトが31%、Dサイトが67%それぞれアルミニウムによって置換されていると算出されるものだった。
(2)Al置換型ε酸化鉄粒子のコロイドの調製
 ε-Al0.66Fe1.34ナノ微粒子粉末10mgを、混合溶媒(トルエン:メチルエチルケトン=1:1)1.4mlと、ビヒクル(アセチルアセトン0.25gと、ステアリン酸n-ブチル0.25g、シクロヘキサン97.9mLとの混合溶媒へ、ウレタン樹脂(東洋紡社製UR-8200)34.9gと、塩化ビニル樹脂(日本ゼオン社製MR-555)15.8gとを溶解したもの)0.5mLと、0.3mmφのジルコニアボール20gとを、50mLの遠沈管に装填した。
 そして、当該遠沈管を振盪機に設置し、振盪数2000回/min、振幅3mm、4時間の振盪撹拌を実施して、Al置換型ε酸化鉄粒子を混合溶媒中へ分散させ、Al置換型ε酸化鉄粒子分散液(コロイド)を得た。
 最終的に、混合溶媒(トルエン:メチルエチルケトン=1:1)を加えて濃度を調整し、0.02mol/Lのε酸化鉄粒子分散液(コロイド)の紫外可視吸光スペクトルを得るべく分光測定にかけた。なお、分光測定においては、当該コロイドを石英セルに充填し、日本分光製のJASCO V-670を用いて測定を行った。
[実施例1-2]
 Al置換型ε酸化鉄粒子として、アルミニウムと鉄の添加量を調整することで、ε-Al0.66Fe1.34に変えてε-Al0.48Fe1.52とした以外は実施例1-1を繰り返した。得られたコロイド液を分光測定に付して得られたスペクトル図を図1に併せて示す。
[実施例1-3]
 Al置換型ε酸化鉄粒子として、アルミニウムと鉄の添加量を調整することで、ε-Al0.66Fe1.34に変えてε-Al0.75Fe1.25とした以外は実施例1-1を繰り返した。得られたコロイド液を分光測定に付して得られたスペクトル図を図1に併せて示す。
 図1に示すように、アルミニウム置換量が増えるのに伴って、モル吸光係数が小さくなることが確認された。
[実施例2-1]
(1)Ga置換型ε酸化鉄粒子の調製
 Ga置換タイプのε-Fe結晶粒子(ε-Ga0.67Fe1.33)を、以下のように調製した。
 5Lビーカーに純水1988mLを入れ、硝酸鉄(III)9水和物174.5gと、硝酸ガリウム(III)8水和物102.6gを添加して撹拌し溶解させた。溶液を撹拌しながら、濃度25%アンモニア水溶液199.1mLを添加し、30分間攪拌した。さらに撹拌を継続しながら、混合液にテトラエトキシシラン(TEOS)225.5mLを滴下し、20時間攪拌した。
 得られた混合液をろ過し、沈殿物を純水で洗浄した後に乾燥し、乳鉢で粉砕し粉砕粉とした。得られた粉砕粉は炉内で、大気雰囲気下、1150℃、6時間の熱処理を施し熱処理粉とした。
 得られた熱処理粉を乳鉢で解粒処理したのち、0.4モル/Lの水酸化ナトリウム(NaOH)水溶液に添加した。そして、液温65℃で24時間攪拌することにより、熱処理粉からシリコン酸化物を除去した。次いで、遠心分離処理してシリコン酸化物が除去された熱処理粉を沈殿させ、上澄み液を廃棄した後、純水を追加して洗浄し、再度遠心分離処理を行った。
 洗浄された沈殿物をろ過、回収した後に乾燥して、Ga置換型ε酸化鉄粒子を得た。
 得られたGa置換型ε酸化鉄粒子試料の磁気特性を測定した。具体的には、カンタムデザイン社製MPMS7のSQUID(超伝導量子干渉計)を用い、最大印加磁界90kOe、温度300Kで測定した。
 その結果、Ga置換型ε酸化鉄粒子試料の飽和磁化は17.0emu/gであり、得られたGa置換型ε酸化鉄粒子試料が磁性体であることを確認した。
 また、得られたGa置換型ε酸化鉄粒子を組成分析したところ、ε-Ga0.67Fe1.33の組成を有する、ナノ磁性粒子粉試料が得られていることがわかった。加えてリートベルト解析によって結晶解析したところ、a=5.085Å、b=8.755Å、c=9.410Å、結晶体積=418.4Åの粒子であった。このとき、ε-Feの結晶構造におけるAサイトのFeは置換されておらず、Bサイトが9%、Cサイトが28%、Dサイトが98%それぞれガリウムによって置換されていると算出されるものだった。
(2)Ga置換型ε酸化鉄粒子のコロイドの調製
 実施例1と同様の手法でGa置換型ε酸化鉄粒子のコロイドの調製を行い、紫外可視吸光スペクトルを得るべく分光測定にかけた。
[実施例2-2]
 Ga置換型ε酸化鉄粒子として、ガリウムと鉄の添加量を調整することで、ε-Ga0.67Fe1.33に代えてε-Ga0.29Fe1.71とした以外は実施例2-1を繰り返した。得られたコロイド液を分光測定に付して得られたスペクトル図を図2に併せて示す。
[実施例2-3]
 Ga置換型ε酸化鉄粒子として、ガリウムと鉄の添加量を調整することで、ε-Ga0.67Fe1.33に代えてε-Ga0.94Fe1.06とした以外は実施例2-1を繰り返した。得られたコロイド液を分光測定に付して得られたスペクトル図を図2に併せて示す。
 図2に示すように、ガリウム置換量が増えるのに伴って、モル吸光係数が小さくなることが確認された。
[比較例]
 本比較例においては、本発明者が開示するε酸化鉄粒子(無置換)の製法に係る特開2014-224027号公報に記載の手法を採用した。
(1)ε酸化鉄粒子(無置換)の調製
 1L三角フラスコに、純水420mLと平均粒径6nmの酸化水酸化鉄(III)(β-FeO(OH))ナノ微粒子のゾル8.0gを入れ、均一溶液となるまで撹拌した。ここに、25%アンモニア(NH)水溶液19.2mLを1~2滴/secで滴下し、50℃のオイルバス(又は水浴中)で30分攪拌した。さらにこの溶液に、テトラエトキシシラン(Si(OC)24mLを2~3滴/secで滴下した。50℃で20時間攪拌した後、室温まで放冷し、硫酸アンモニウム((NHSO)20gを加えて沈殿を析出させた。
 沈殿物は、遠心分離処理で分離した上、純水で洗浄し、シャーレに移して60℃で一晩乾燥させた後、メノウ乳鉢で粉砕した。そして、大気雰囲気の炉内1020℃で4時間の熱処理を施した。その後、5Mの水酸化ナトリウム(NaOH)水溶液で24時間エッチング処理を行い、シリカを取り除いたε-Fe粒子を得た。
(2)ε酸化鉄粒子(無置換)のコロイドの調製
 実施例1と同様の手法でε酸化鉄粒子(無置換)のコロイドの調製を行い、紫外可視吸光スペクトルを得るべく分光測定にかけた。
[検証]
 以下、各実施例及び比較例について検証を行った。
(紫外可視吸光スペクトルの結果)
 実施例1-1~1-3及び比較例にて得られた紫外可視吸収スペクトル(縦軸:モル吸光係数、横軸:波長)を図1に示し、実施例2-1~2-3及び比較例にて得られた紫外可視吸収スペクトル(縦軸:モル吸光係数、横軸:波長)を図2に示す。図1及び2が示すように、比較例(ε-Fe)に比べて、各実施例のように置換型ε酸化鉄粒子のコロイドだと、光の吸収が相当抑えられているため、呈色は非常に抑えられ、極めて透明に近かった。
 以下の表1に、実施例ならびに比較例のモル吸光係数の測定結果をまとめた。
Figure JPOXMLDOC01-appb-T000001
 
 なお、表1の一例を挙げると、波長450nmでは比較例(ε-Fe)の分散液のモル吸光係数774dmmol-1cm-1に比べて、実施例1-1(ε-Al0.66Fe1.34)では359dmmol-1cm-1、実施例2-1(ε-Ga0.67Fe1.33)では377dmmol-1cm-1であった。
 上述の内容を鑑みると、分散液の波長450nmのときのモル吸光係数が774dmmol-1cm-1未満、さらには770dmmol-1cm-1以下(好ましくは未満)であるのが好ましく、400dmmol-1cm-1以下であるのがより好ましく、360dmmol-1cm-1以下であるのが更に好ましい。
 また、波長500nmでは、比較例(ε-Fe)の427dmmol-1cm-1に比べて、実施例1-1(ε-Al0.66Fe1.34)では193dmmol-1cm-1、実施例2-1(ε-Ga0.67Fe1.33)では204dmmol-1cm-1であった。
 それを鑑みると、分散液の波長500nmのときのモル吸光係数が430dmmol-1cm-1以下(好ましくは未満)、さらには427dmmol-1cm-1未満であるのが好ましく、250dmmol-1cm-1以下であるのがより好ましく、210dmmol-1cm-1以下であるのが更に好ましい。
 また、波長400nmでは、比較例(ε-Fe)の1531dmmol-1cm-1に比べて、実施例1-1(ε-Al0.66Fe1.34)では813dmmol-1cm-1、実施例2-1(ε-Ga0.67Fe1.33)では830dmmol-1cm-1であった。
 それを鑑みると、分散液の波長400nmのときのモル吸光係数が1500dmmol-1cm-1以下(好ましくは未満)、また1250dmmol-1cm-1以下(好ましくは未満)、1000dmmol-1cm-1以下(好ましくは未満)であるのが更に好ましい。
[まとめ]
 以上の結果、各実施例においては、比較例に比べ、褐色の呈色が抑えられていることが明らかとなった。その結果、各実施例は、一成分現像方式の磁性トナーとして適用可能であることがわかった。
 
 

Claims (7)

  1.  ε酸化鉄の一部を鉄以外の金属元素で置換した置換型ε酸化鉄粒子を含む磁性体であって、以下の条件のうち少なくともいずれかを満たす、磁性体。
    (条件1)磁性体の分散液の波長450nmのときのモル吸光係数が770dmmol-1cm-1未満である。
    (条件2)磁性体の分散液の波長500nmのときのモル吸光係数が430dmmol-1cm-1未満である。
  2.  分散液の波長450nmのときのモル吸光係数が400dmmol-1cm-1以下である、請求項1に記載の磁性体。
  3.  分散液の波長500nmのときのモル吸光係数が250dmmol-1cm-1以下である、請求項1又は2に記載の磁性体。
  4.  前記金属元素は、アルミニウム、ガリウム及びインジウムの少なくともいずれかである、請求項1~3のいずれかに記載の磁性体。
  5.  一成分現像方式の磁性トナー用途の磁性体であって、請求項1~4のいずれかに記載の磁性体。
  6.  請求項1~5のいずれかの前記磁性体における前記置換型ε酸化鉄粒子と結着樹脂とを含有する、磁性トナー。
  7.  請求項1~5のいずれかの前記磁性体における前記置換型ε酸化鉄粒子により構成される、磁性粉末。
     
PCT/JP2017/001782 2016-01-20 2017-01-19 磁性体、磁性トナー、及び磁性粉末 WO2017126618A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17741495.0A EP3406567A4 (en) 2016-01-20 2017-01-19 MAGNETIC SUBSTANCE, MAGNETIC TONER AND MAGNETIC POWDER
JP2017562897A JP6814750B2 (ja) 2016-01-20 2017-01-19 磁性トナー
US16/070,902 US20190035521A1 (en) 2016-01-20 2017-01-19 Magnetic substance, magnetic toner, and magnetic powder
CN201780007296.1A CN108698852A (zh) 2016-01-20 2017-01-19 磁性材料、磁性调色剂、和磁性粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-009190 2016-01-20
JP2016009190 2016-01-20

Publications (1)

Publication Number Publication Date
WO2017126618A1 true WO2017126618A1 (ja) 2017-07-27

Family

ID=59362423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001782 WO2017126618A1 (ja) 2016-01-20 2017-01-19 磁性体、磁性トナー、及び磁性粉末

Country Status (5)

Country Link
US (1) US20190035521A1 (ja)
EP (1) EP3406567A4 (ja)
JP (1) JP6814750B2 (ja)
CN (1) CN108698852A (ja)
WO (1) WO2017126618A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187356A1 (ja) * 2018-03-29 2019-10-03 国立大学法人東京大学 記録方法、記録装置、再生方法、再生装置、及び、高速応答素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11626494B2 (en) 2020-06-17 2023-04-11 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial backside contact

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269548A (ja) * 2006-03-31 2007-10-18 Univ Of Tokyo 磁性材料
JP2008060293A (ja) * 2006-08-31 2008-03-13 Univ Of Tokyo 磁性材料
JP2008174405A (ja) * 2007-01-16 2008-07-31 Univ Of Tokyo ε−Fe2O3結晶の製法
JP2008277726A (ja) * 2006-09-01 2008-11-13 Univ Of Tokyo 電波吸収材料用の磁性結晶および電波吸収体
JP2014224027A (ja) 2013-04-26 2014-12-04 国立大学法人 東京大学 酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0895285A (ja) * 1994-09-22 1996-04-12 Mita Ind Co Ltd 電子写真用トナー

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269548A (ja) * 2006-03-31 2007-10-18 Univ Of Tokyo 磁性材料
JP2008060293A (ja) * 2006-08-31 2008-03-13 Univ Of Tokyo 磁性材料
JP2008277726A (ja) * 2006-09-01 2008-11-13 Univ Of Tokyo 電波吸収材料用の磁性結晶および電波吸収体
JP2008174405A (ja) * 2007-01-16 2008-07-31 Univ Of Tokyo ε−Fe2O3結晶の製法
JP2014224027A (ja) 2013-04-26 2014-12-04 国立大学法人 東京大学 酸化鉄ナノ磁性粒子粉およびその製造方法、当該酸化鉄ナノ磁性粒子粉を含む酸化鉄ナノ磁性粒子薄膜およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. OHKOSHI; A. NAMAI; K. IMOTO; M. YOSHIKIYO; W. TARORA; K. NAKAGAWA; M. KOMINE; Y. MIYAMOTO; T. NASU; S. OKA, SCIENTIFIC REPORTS, vol. 5, 2015, pages 14414
See also references of EP3406567A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187356A1 (ja) * 2018-03-29 2019-10-03 国立大学法人東京大学 記録方法、記録装置、再生方法、再生装置、及び、高速応答素子
CN111902867A (zh) * 2018-03-29 2020-11-06 国立大学法人东京大学 记录方法、记录装置、再生方法、再生装置、以及高速响应元件
JPWO2019187356A1 (ja) * 2018-03-29 2021-02-12 国立大学法人 東京大学 記録方法、記録装置、再生方法、再生装置、及び、高速応答素子
JP7036323B2 (ja) 2018-03-29 2022-03-15 国立大学法人 東京大学 記録方法、記録装置、再生方法、及び、再生装置
US11315595B2 (en) 2018-03-29 2022-04-26 The University Of Tokyo Recording method, recording device, reproduction method, reproduction device, and high-speed response element

Also Published As

Publication number Publication date
EP3406567A1 (en) 2018-11-28
US20190035521A1 (en) 2019-01-31
JP6814750B2 (ja) 2021-01-20
CN108698852A (zh) 2018-10-23
JPWO2017126618A1 (ja) 2018-11-15
EP3406567A4 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
EP2990382B1 (en) Magnetic iron oxide nanoparticle powder, process for producing same, thin film of magnetic iron oxide nanoparticles comprising said magnetic iron oxide nanoparticle powder, and process for producing same
Dippong et al. Microstructure, porosity and magnetic properties of Zn0. 5Co0. 5Fe2O4/SiO2 nanocomposites prepared by sol-gel method using different polyols
Matijevic Uniform inorganic colloid dispersions. Achievements and challenges
Norberg et al. Giant excitonic Zeeman splittings in colloidal Co2+-doped ZnSe quantum dots
Dippong et al. Effect of nickel content on structural, morphological and magnetic properties of NixCo1-xFe2O4/SiO2 nanocomposites
Zhang et al. Synthesis and properties of γ-Fe2O3 nanoclusters within mesoporous aluminosilicate matrices
Gharagozlou Influence of calcination temperature on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in sol-gel silica matrix using tetrakis (2-hydroxyethyl) orthosilicate as precursor
Pathak et al. Spin dynamics investigations of multifunctional ambient scalable Fe3O4 surface decorated ZnO magnetic nanocomposite using FMR
Zheng et al. Quantum Phase Transition from Superparamagnetic to Quantum Superparamagnetic State in Ultrasmall Cd1–x Cr (II) x Se Quantum Dots?
Alejandro-Arellano et al. Silica-coated metals and semiconductors. Stabilization and nanostructuring
Roca et al. Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures
Gupta et al. Exploring the magnetic ground state of vanadium doped zinc sulphide
US11401170B2 (en) Iron based oxide magnetic powder and method for producing same
WO2017126618A1 (ja) 磁性体、磁性トナー、及び磁性粉末
Vinosha et al. Study on cobalt ferrite nanoparticles synthesized by co-precipitation technique for photo-fenton application
Praveena et al. Structural and magnetic properties of NiCuZn ferrite/SiO2 nanocomposites
CN106395914B (zh) 油酸包裹的超顺磁性纳米Fe3O4及其制备方法
Roy et al. Effects of Gd ions doping on the microstructural, magnetic and optical properties in ZnO nanocrystals
JP5102154B2 (ja) 磁性材スラリー、その磁性材スラリーの製造方法、磁性薄膜及び磁性体
Yuan et al. Highly luminescent CdTe/CdS/ZnO core/shell/shell quantum dots fabricated using an aqueous strategy
Kershi et al. Enhancement of Ni–Zn ferrite nanoparticles parameters via cerium element for optoelectronic and energy applications
Rapp et al. Superparamagnetic and light-emitting bifunctional nanocomposites of iron oxide and erbium or thulium doped yttrium orthovanadate
Carbone et al. Multifrequency EMR and magnetic characterization of synthetic powdered hematite
Zhang et al. Synthesis and Color Evolution of Silica‐Coated Hematite Nanoparticles
Jyothi et al. Biosynthesis of nanostructured ceria, its optical and magnetic studies for spintronic applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017741495

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741495

Country of ref document: EP

Effective date: 20180820