WO2017126533A1 - ガス捕集方法 - Google Patents

ガス捕集方法 Download PDF

Info

Publication number
WO2017126533A1
WO2017126533A1 PCT/JP2017/001500 JP2017001500W WO2017126533A1 WO 2017126533 A1 WO2017126533 A1 WO 2017126533A1 JP 2017001500 W JP2017001500 W JP 2017001500W WO 2017126533 A1 WO2017126533 A1 WO 2017126533A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
water
collection
methane
film
Prior art date
Application number
PCT/JP2017/001500
Other languages
English (en)
French (fr)
Inventor
千春 青山
大樹 青山
Original Assignee
千春 青山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千春 青山 filed Critical 千春 青山
Priority to RU2018130067A priority Critical patent/RU2698338C1/ru
Priority to CN201780007397.9A priority patent/CN108699900A/zh
Priority to US16/071,305 priority patent/US11370672B2/en
Priority to AU2017210423A priority patent/AU2017210423B2/en
Priority to EP17741410.9A priority patent/EP3428384B1/en
Priority to KR1020187024057A priority patent/KR20180102178A/ko
Publication of WO2017126533A1 publication Critical patent/WO2017126533A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • E21B43/0122Collecting oil or the like from a submerged leakage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature

Definitions

  • the present invention relates to a gas collecting method that collects a gas such as methane gas emitted from the sea bottom (hereinafter also including a lake bottom).
  • Patent Document 1 discloses a method for recovering seabed resources.
  • crude oil ejected from the seabed is collected by a dome-shaped frame, and is collected by a crude oil recovery ship on the sea surface via a pipe connected to the frame.
  • Patent Document 1 since the purpose of the method disclosed in Patent Document 1 is to recover crude oil, it is necessary to sink the dome-shaped frame and fix it stably. For this reason, the anchor which divides
  • An object of the present invention is to provide a gas collection method capable of efficiently collecting gas released from the seabed (lake bottom) without affecting marine resources on the seabed (lake bottom).
  • a feature of the present invention is a gas collection method for collecting a gas generated from a raw material existing on the seabed or lake bottom, which comprises a film body having a fixture connected to the lower end and extending downward from the top.
  • the film collecting is dropped into water, the three-dimensional position of the fixture in the water is grasped by a position maintainer provided in the fixture, and the three-dimensional position of the fixture is determined by autonomous navigation.
  • the lower end of the trapping membrane is higher than the seabed or the lake bottom, and the raw material is separated from a solid state into water and gas based on the vertical water temperature distribution obtained by CTD.
  • the lower end of the collection membrane is set at a position higher than the seabed (lake bottom) and shallower than the water depth at which the raw material separates into water and gas from the solid state. Can be collected. Furthermore, it is possible to prevent the fishery resources on the seabed (lake bottom) from being affected.
  • FIG. 1 is an explanatory diagram illustrating a basic configuration [fundamental configuration] of a gas collection device that performs a gas collection method.
  • FIG. 2 is a graph showing the relationship between seawater temperature and water depth at which methane hydrate is separated into water and methane.
  • FIG. 3 is a perspective view of the gas collecting device.
  • Drawing 4 is an explanatory view showing the composition of the gas collection device which performs the gas collection method concerning an embodiment.
  • FIG. 5 is a flowchart showing a collection procedure using the gas collection device.
  • FIG. 6 is an explanatory view showing a configuration of a modified example of the gas collection device.
  • the gas collecting device 10 is subtracted from a ship 21 floating on the sea toward the sea bottom (lake bottom) L1, and spreads downward [flare (s) downward] collecting membrane [collecting membrane] ] 11. That is, the collection film 11 is formed of a film body that spreads downward from the top T1. The distance from the lower end of the collection film
  • the collection film 11 is supported by four wires 12.
  • a weight 13 fixed to the seabed L1 is connected to each lower end of the wire 12. That is, the weight 13 is attached to the lower end of the collection film 11 and functions as a fixture for maintaining (fixing) the collection film 11 at a desired water depth.
  • the trapping film 11 supported by the wire 12 has the top T1 at the highest point.
  • gas plumes gas ⁇ plume (s)] PL formed by releasing gas and gas hydrate (raw material) grains (for example, methane gas and hydrate particles) from the seabed L1.
  • gas and gas hydrate raw material grains
  • methane gas and hydrate particles for example, methane gas and hydrate particles
  • a tube 14 (for example, a double spiral tube) is connected to the top T1 (or the vicinity thereof) of the collection film 11.
  • the other end of the tube 14 is connected to an onboard unit 22 provided on the ship 21. That is, the methane gas collected by the collection film 11 is supplied to the shipboard unit 22 via the tube 14.
  • the onboard unit 22 includes equipment such as a gas-liquid separator 30 connected to the tube 14 and a pressure accumulating tank 32 that accumulates recovered methane.
  • the onboard unit 22 takes out the methane gas from the methane gas collected via the tube 14 and the gas-liquid mixture collected along with the methane gas, and sends the methane gas to downstream equipment.
  • the extracted methane gas is sent to a gas storage tank via a pipeline.
  • the trapping film 11 is made of a material that can withstand long-term use without being stretched or deteriorated even when placed in seawater for a long time.
  • the lower end of the collecting film 11 is separated from the seabed L1 (see distance P1 in FIG. 1). That is, the weight 13 is sunk on the seabed L1, but the lower end of the collection film 11 is disposed at a position (shallow position) higher than the seabed L1. Moreover, the top part T1 of the collection film
  • membrane 11 is arrange
  • the water depth at which methane hydrate (raw material) separates into water and gas and the water depth at which the bubbles of methane gas disappear vary depending on the seawater temperature.
  • the relationship between the water depth at which methane hydrate is separated into water and gas and the seawater temperature will be described with reference to FIG.
  • the horizontal axis of the graph shown in FIG. 2 indicates the seawater temperature (° C.), and the vertical axis indicates the depth (m) from the sea surface.
  • the + mark indicated by the reference sign Q1 indicates the seawater temperature and water depth at which methane hydrate (solid) is separated into water and gas, which is obtained by calculation. Therefore, the (approximate) curve (Q1) obtained from the + mark indicated by the reference sign Q1 is a methane hydrate stable region curve [methane hydrate stability zone curve]. On the left side of this curve Q1, methane hydrate exists as a solid. On the right side of curve Q1, methane hydrate separates into water and methane gas.
  • the lower the seawater temperature the shallower the water depth that exists as methane hydrate (solid).
  • methane hydrate is separated into water and gas.
  • methane hydrate is separated into water and gas.
  • a curve Q2 shown in FIG. 2 shows a typical water temperature change in the sea area of Japan.
  • the water temperature rises rapidly when the water depth is shallower than 300 m. That is, based on the correspondence between the curve Q2 of the target sea area (here, the Japan Sea area) and the methane hydrate stable area curve Q1, the water depth at which methane gas disappears can be obtained.
  • the target sea area here, the Japan Sea area
  • the methane hydrate stable area curve Q1 the water depth at which methane gas disappears can be obtained.
  • methane gas is generated from methane hydrate in the vicinity of a water depth of 300 m. Therefore, if the collection film 11 is installed so that the lower end of the collection film 11 is at a position shallower than the water depth of 300 m, methane gas generated from methane hydrate can be collected.
  • the ship 21 is moved to the sea level above the methane plume PL.
  • the weight 13 is sunk on the seabed, and the weight 13 is moved to a desired position using a robot operating in the sea. Specifically, the weight 13 is moved by remote control by the robot so that the methane plume PL is positioned at the approximate center of the spread collection film 11.
  • Various robots that operate in the sea are known, and detailed description of the configuration and operation of the robot is omitted.
  • a wire 12 is connected to the weight 13, and a collecting film 11 is attached to the wire 12. Accordingly, the trapping film 11 spreads downward in a quadrangular pyramid shape from the top T1 (see FIG. 3).
  • the collection film 11 was expanded in a quadrangular pyramid shape using four weights 13.
  • the collection film 11 may be spread in a polygonal pyramid shape using three or five or more weights 13.
  • membrane 11 is a polygonal cone shape or a cone-shaped cone shape, it is not limited to these shapes.
  • the collection film 11 only needs to be expanded in a shape that expands downward and has the top portion T1 as the uppermost point.
  • the lower end of the collection film 11 is arranged at a position higher than the seabed L1. Therefore, as indicated by the distance P1 (see FIG. 1), a gap is formed between the seabed L1 and the lower end of the trapping film 11, so that the influence on marine resources that inhabit the seabed can be reduced.
  • the top portion T1 of the collection membrane 11 is disposed at a position deeper than the water depth at which methane gas is mixed with seawater and cannot be confirmed by acoustic sonar. Methane gas separated from methane hydrate is mixed with seawater while ascending about 100 to 200 m and cannot be confirmed with acoustic sonar.
  • the top T1 of the collection film 11 is disposed at a position deeper than the water depth at which methane gas is mixed with seawater and cannot be confirmed by acoustic sonar. For this reason, methane gas can be collected by the collection film
  • the collected methane gas is introduced into the tube 14 connected to the top portion T ⁇ b> 1 of the collection film 11, and supplied to the onboard unit 22 provided on the ship 21.
  • the supplied methane gas is separated by the gas-liquid separator 30 and stored in the pressure accumulation tank 32.
  • the methane gas is collected by the collection film 11 spreading downward, so that the methane gas generated from the methane plume PL can be collected efficiently.
  • the lower end of the collection film 11 is disposed at a position higher (shallow) than the seabed L1, it is possible to prevent the marine resources of the seabed L1 from being affected. Furthermore, since the lower end of the collection film 11 is disposed at a position shallower than the water depth at which the methane hydrate is separated into water and methane gas, the methane gas can be collected efficiently.
  • methane gas generated from the methane plume PL is collected. Can be moved. Moreover, since the movement is easy, it is possible to easily collect methane gas released from the surface layer type methane hydrate.
  • the gas collection method gas collection device 50
  • the weight 13 is sunk to the seabed L 1, and the collection film 11 is spread by the wire 12 connected to the weight 13.
  • the end of the wire 12 is connected to a non-cable type (non-cable type) underwater robot 31 that functions as a weight.
  • the underwater robot 31 is placed at a desired depth in the sea, and the collection film 11 is spread through the wire 12. That is, the underwater robot 31 functions as a fixture for maintaining the collection film 11 at a desired water depth. Furthermore, the underwater robot 31 also functions as a position maintainer for maintaining the position of the fixture.
  • the gas collection device 50 in the present embodiment includes a collection film 11 that hangs down from the ship 21 floating on the sea toward the sea bottom L1 and spreads downward.
  • the collection film 11 has a configuration including a film body that spreads downward from the top T1.
  • the trapping film 11 is supported by four wires 12, and an underwater robot 31 for holding at a desired position in the sea is connected to the lower end of each wire 12.
  • One end side of the tube 14 is connected to the top portion T ⁇ b> 1 of the collecting film 11, and the other end side of the tube 14 is connected to an onboard unit 22 provided on the ship 21. That is, the methane gas collected by the collection film 11 is supplied to the onboard unit 22 via the tube 14.
  • the underwater robot 31 has a function of grasping its own position, and can navigate in the direction of 360 degrees autonomously. That is, if the coordinates of the target position are set, the underwater robot 31 recognizes the target position by the above function, autonomously navigates to the target position, and maintains the target position. Therefore, even if a force acts from the lateral direction of the collection film 11 due to the influence of the tidal current or the like, the underwater robot 31 autonomously navigates against the tidal current and maintains the target position. Therefore, the trapping film 11 can be maintained at a desired position without causing the weight 13 to sink to the seabed L1 as in the basic configuration described above.
  • step S10 the ship 21 is moved to the sea level above the methane plume PL.
  • step S50 the underwater robot 31 is moved so that the methane plume PL is positioned at the approximate center of the spread collection film 11.
  • the position of the underwater robot 31 can be grasped by radio or sonar.
  • the wire 12 is connected to the underwater robot 31, and the collecting film 11 is attached to the wire 12. Accordingly, the trapping film 11 spreads downward in a quadrangular pyramid shape from the top portion T1 (see FIG. 4).
  • the target position of the underwater robot 31 is determined (step S40)
  • the underwater robot 31 is made to recognize the coordinates of the target position.
  • the acquisition of the water temperature distribution (step S30) and the determination of the target position based on the water temperature distribution (step S40) will be described later.
  • the target position may be set in advance before the underwater robot 31 is dropped into the sea, or may be set wirelessly. Since the underwater robot 31 performs autonomous navigation so as to remain at the target position, the trapping film 11 can stably collect methane gas from the methane plume PL (step S60).
  • the metagas of the methane plume released from the seabed L1 is collected by the collection film 11 and collected by the tube 14.
  • the advantages of the basic configuration described above are also brought about in this embodiment. Further, in the present embodiment, the use of the underwater robot 31 capable of autonomous navigation instead of the weight 13 provides further advantages.
  • the underwater robot 31 is connected to the end of the wire 12, and the collection film 11 is maintained at a desired target position by autonomous navigation of the underwater robot 31. Therefore, it is not necessary to sink the weight 13 to the sea bottom L1 as in the basic configuration, and the collection film 11 can be installed at a desired depth even when the water depth of the sea bottom L1 is deep. As a result, methane gas can be reliably collected without being affected by the topography of the seabed L1.
  • the lower end of the collection film 11 is disposed at a position (shallow) higher than the depth at which the solid methane hydrate is separated into water and methane gas, the methane gas can be collected efficiently.
  • the top portion T1 of the collection membrane 11 is disposed at a position deeper than the water depth at which methane gas is mixed with seawater and cannot be confirmed by acoustic sonar. Methane gas separated from methane hydrate is mixed with seawater while ascending about 100 to 200 m and cannot be confirmed with acoustic sonar.
  • the top portion T1 of the collection film 11 is disposed at a position deeper than the water depth at which methane gas is mixed with seawater and cannot be confirmed by acoustic sonar. For this reason, methane gas can be collected by the collection film
  • the collected methane gas is introduced into the tube 14 connected to the top portion T ⁇ b> 1 of the collection film 11, and supplied to the onboard unit 22 provided on the ship 21.
  • the supplied methane gas is separated by the gas-liquid separator 30 and stored in the pressure accumulation tank 32.
  • the underwater robot 31 is connected to each end of the wire 12.
  • a weight can be connected together with the underwater robot 31 in order to obtain a desired weight.
  • the gas collection device 51 is a collection that hangs down from the ship 21 floating on the sea toward the sea bottom (lake bottom) L1 and spreads downward.
  • a membrane 11 is provided. That is, the collection film 11 is formed of a film body that spreads downward from the top T1.
  • the collection film 11 is supported by four wires 12.
  • a cabled underwater robot 41 for maintaining the collecting film 11 at a desired position in the sea is connected to each lower end of the wire 12.
  • a plurality of support vessels 42 for maintaining the position of each underwater robot 41 in the sea floats on the sea surface.
  • Each support ship 42 is connected to the underwater robot 41 by a support wire 43.
  • FIG. 6 only two sets of the underwater robot 41 and the support ship 42 are shown, but the collection film 11 is expanded by the four sets of the underwater robot 41 and the support ship 42.
  • Each support ship 42 has a function of grasping its own position, and can recognize the position (latitude / longitude) of the underwater robot 41 based on the relative positional relationship with the underwater robot 41. Therefore, the underwater robot 41 can be maintained at a desired target position by controlling the position of the support ship 42 even if the underwater robot 41 itself does not have an autonomous navigation function or a function of grasping its own position.
  • the target position may be set in advance before dropping the underwater robot 41 into the sea, may be set wirelessly, or may be set by wire via the support wire 43. Also, the position of the underwater robot 31 can be grasped by wire, wireless or sonar.
  • a roped underwater robot 41 is connected to the end of the wire 12, and the underwater robot 41 is connected to the support ship 42.
  • the underwater robot 41 is moved by the navigation of the support ship 42 to maintain the collection film 11 at a desired target position. Therefore, it is not necessary to sink the weight 13 to the sea bottom L1 as in the basic configuration, and the collection film 11 can be installed at a desired depth even when the water depth of the sea bottom L1 is deep. As a result, methane gas can be reliably collected without being affected by the topography of the seabed L1.
  • the underwater robot 41 since the underwater robot 41 is connected to the support ship 42 by the support wire 43, it is not necessary for the underwater robot 41 to have an autonomous navigation function. Therefore, the configuration of the underwater robot 41 can be simplified, and the apparatus scale can be reduced.
  • the water temperature distribution in the vertical direction of the sea area is acquired in advance using a measuring device 23 such as CTD (Conductivity Temperature Depth profiler) (step S30).
  • CTD Conductivity Temperature Depth profiler
  • the water depth at the target position of the collection membrane 11 is determined based on the water depth at the intersection of the curve Q2 in the middle) and the methane hydrate stable region curve (see the curve Q1 in FIG. 2). Further, the horizontal coordinate of the target position of the collection film 11 is determined in consideration of the position (path) of the methane plume PL.
  • the lower end of the collection film 11 is set at a position higher than the seabed and shallower than the water depth at which methane hydrate is separated into water and gas, and the top T1 of the collection film 11 is filled with seawater.
  • the position of the collection film 11 that is set at a position deeper than the water depth at which the bubbles disappear is mixed as the target position (step S40).
  • the gas collection method of the present invention is not limited to the above embodiment (and its modifications).
  • the configuration of each part can be replaced with any configuration having the same function.
  • methane gas released from methane hydrate existing under the seabed is collected.
  • the present invention can also be applied to collecting gas hydrates other than methane hydrate, for example, gas released from ethane hydrate or butane hydrate.
  • the acquisition of the water temperature distribution may be performed before the determination of the target position (step S40). Further, the determination of the target position (step S40) may be performed before the underwater robot 31 (41) is dropped into the sea, or may be performed after the drop. However, the determination of the target position (step S40) must be performed before maintaining (moving) the underwater robot 31 (41) at the target position (step S50).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

海底(L1)又は湖底に存在する原料(PL)から発生するガスを捕集するガス捕集方法では、[1]下端に固定具(31)が接続された、頂部(T1)から下方に向けて広がる膜体からなる捕集膜(11)を、水中に投下し、[2]固定具(31)に設けられた位置維持器(31)によって固定具(31)の水中での三次元位置を把握して、自律航行によって固定具(31)の三次元位置を目標位置に維持し、[3]CTDによって取得される鉛直方向の水温分布に基づいて、捕集膜(11)の下端を、海底(L1)又は湖底よりも高く、かつ、原料(PL)が固体状態から水とガスとに分離する水深よりも浅い位置に設定すると共に、捕集膜(11)の頂部(T1)を、ガスが海水又は湖水に混じってガスの気泡が消失する水深よりも深い位置に設定し、[4]海底(L1)又は湖底より放出されるガスを捕集膜(11)で捕集する。

Description

ガス捕集方法
 本発明は、海底[sea bottom](以下、湖底[lake bottom]も含む)より放出されるメタンガス等のガスを捕集するガス捕集方法[gas collecting method]に関する。
 近年、海底下に存在するメタンハイドレート[methane hydrate]等の各種ガスハイドレートから放出されるガスを捕集することが試みられている。海底下に埋設されているガスハイドレートは温度や気圧等の条件に応じて水とガスに分かれ、分離したガスは海面に向けて上昇する。ガスが海面へ上昇する際に海水に混ざって[mix with seawater]しまうことがある。従って、ガスハイドレートから分離したガスを捕集するためには、ガスが海水に混じる以前に捕集する必要がある。
 下記特許文献1は、海底資源を回収する方法を開示している。特許文献1に開示された方法では、海底から噴出する原油は、ドーム状の枠体で収集され、該枠体に連結されたパイプを経由して海面の原油回収船に回収される。
日本国特開2012-21357号公報
 しかし、特許文献1に開示された方法の目的は原油回収であるので、ドーム状の枠体を沈めて安定的に固定する必要がある。このため、海底に円形状の領域を区画するアンカーが設置され、エビやカニ等の海底の水産資源に影響を与えるおそれがある。
 本発明の目的は、海底(湖底)の水産資源に影響を与えることなく海底(湖底)から放出されるガスを効率良く捕集することのできるガス捕集方法を提供することにある。
 本発明の特徴は、海底又は湖底に存在する原料から発生するガスを捕集するガス捕集方法であって、下端に固定具が接続された、頂部から下方に向けて広がる膜体からなる捕集膜を、水中に投下し、前記固定具に設けられた位置維持器によって前記固定具の前記水中での三次元位置を把握して、自律航行によって前記固定具の前記三次元位置を目標位置に維持し、CTDによって取得される鉛直方向の水温分布に基づいて、前記捕集膜の前記下端を、前記海底又は前記湖底よりも高く、かつ、前記原料が固体状態から水とガスとに分離する水深よりも浅い位置に設定すると共に、前記捕集膜の前記頂部を、前記ガスが海水又は湖水に混じって前記ガスの気泡が消失する水深よりも深い位置に設定し、前記海底又は前記湖底より放出されるガスを前記捕集膜で捕集する、ガス捕集方法を提供する。
 上記特徴によれば、捕集膜の下端を、海底(湖底)よりも高く、かつ、原料が固体状態から水とガスとに分離する水深よりも浅い位置に設定するので、ガスを効率良く捕集することができる。更に、海底(湖底)の漁業資源に影響を与えることを防止できる。
図1は、ガス捕集方法を行うガス捕集装置の基本構成[fundamental configuration]を示す説明図である。 図2は、海水温度とメタンハイドレートが水及びメタンに分離する水深との関係を示すグラフである。 図3は、上記ガス捕集装置の斜視図である。 図4は、実施形態に係るガス捕集方法を行うガス捕集装置の構成を示す説明図である。 図5は、上記ガス捕集装置を用いた捕集手順を示すフローチャートである。 図6は、上記ガス捕集装置の変形例の構成を示す説明図である。
 以下、図面を参照しつつ、実施形態について説明する。
[基本構成]
 まず、実施形態に先立って、ガス捕集方法を行うガス捕集装置の基本構成について説明する。図1に示されるように、ガス捕集装置10は、海上に浮く船21から海底(湖底)L1に向けて沈下され、下方に向けて広がる[flare(s) downward]捕集膜[collecting membrane]11を備えている。即ち、捕集膜11は、その頂部T1から下方に向けて広がる膜体で構成されている。捕集膜11の下端から頂部T1までの距離は、例えば100mである。捕集膜11は4本のワイヤー12によって支持されている。ワイヤー12の各下端には、海底L1に固定される錘13が連結されている。即ち、錘13は、捕集膜11の下端に取り付けられ、捕集膜11を所望の水深に維持する(固定する)固定具[fixture]として機能する。
 ワイヤー12の各下端に取り付けられた錘13が矩形状領域の隅部に位置するように錘13を海底L1に沈下させると、ワイヤー12によって支持された捕集膜11は、頂部T1を最上点として四角錐状に広げられる。海底L1からガス及びガスハイドレート(原料)の粒[grains](例えば、メタンガス及びメタンハイドレートの粒)が放出されて形成されたガスプルーム[gas plume(s)]PLが存在する領域に四角錐状の捕集膜11を沈下させると、海底面から放出されたガス及びガスハイドレートを捕集膜11によって捕集できる。なお、以下では、ガスハイドレートとしてメタンハイドレート、捕集するガスとしてメタンガスを例に挙げて説明する。
 捕集膜11の頂部T1(又は、その近傍)には、チューブ14(例えば、二重螺旋状チューブ)の一端が接続されている。チューブ14の他端は、船21に設けられた船上ユニット22に接続されている。即ち、捕集膜11によって捕集されたメタンガスは、チューブ14を経由して船上ユニット[shipboard unit]22に供給される。
 船上ユニット22は、チューブ14に接続された気液分離機[gas liquid separator]30や、回収メタンを蓄積する蓄圧タンク32等の設備を備えている。船上ユニット22は、チューブ14を経由して回収されたメタンガスと該メタンガスに付随して回収された気液混合物とからメタンガスを取り出して、下流の設備に送出する。例えば、取り出されたメタンガスは、パイプラインを経由してガス貯留用タンクに送出される。
 捕集膜11は、海水中に長時間置かれていても伸縮や劣化することなく、長時間の使用に耐えられる材質で作られている。
 捕集膜11の下端は、海底L1から離されている(図1中の距離P1参照)。即ち、錘13は海底L1上に沈下されているが、捕集膜11の下端は、海底L1よりも高い位置(浅い位置)に配置されている。また、捕集膜11の頂部T1は、メタンガスが海水に混じって気泡が消失する水深よりも深い位置に配置される。この構成によって、メタンハイドレート(原料)が水とメタンガスとに分離した状態で該メタンガスを捕集することができる。更に、メタンガスが海水に混じる場合であっても、完全に混ざる以前にメタンガスを捕集できる。
 ここで、メタンハイドレート(原料)が水とガスとに分離する水深と、メタンガスの気泡が消失する水深とは、海水温度によって変化する。以下、メタンハイドレートが水とガスとに分離する水深と、海水温度との関係を、図2を参照しつつ説明する。
 図2に示されるグラフの横軸は海水温度(℃)を示し、縦軸は海面からの深さ(m)を示している。符号Q1によって示される+印は、計算により求められた、メタンハイドレート(固体)が水とガスとに分離する海水温度及び水深を示している。従って、符号Q1によって示される+印から得られる(近似)曲線(Q1)は、メタンハイドレート安定領域曲線[methane hydrate stability zone curve]である。この曲線Q1の左側では、メタンハイドレートは固体として存在する。曲線Q1の右側では、メタンハイドレートは水とメタンガスとに分離する。従って、曲線Q1から分かるように、海水温度が低くなるほど、メタンハイドレート(固体)として存在する水深は浅くなる。例えば、水深500mでは、水温が5℃を上回ると、メタンハイドレートは水とガスとに分離する。また、水深300mでは、水温が2℃を上回ると、メタンハイドレートは水とガスとに分離する。
 なお、図2中に示される曲線Q2は、日本海海域での典型的な水温変化を示している。曲線Q2から分かるように、水深300mよりも浅いと水温は急激に上昇する。即ち、対象海域(ここでは日本海海域)の曲線Q2とメタンハイドレート安定領域曲線Q1との対応関係に基づいて、メタンガスが消失する水深を求めることができる。図2に示される例では、水深300m近傍でメタンハイドレートからメタンガスが発生することが判る。従って、捕集膜11の下端が水深300mよりも浅い位置となるように捕集膜11を設置すれば、メタンハイドレートから発生するメタンガスを捕集することができる。
 更に、捕集膜11の下端の水深が、より浅い位置であると、メタンガスが海水に混ざってしまうので、メタンガスを効率良く捕集できない。従って、曲線Q1と曲線Q2との交点近傍の水深に、捕集膜11の下端を配置するのが好ましい。
 次に、上述したガス捕集装置10を用いて、海底L1から放出されるメタンプルームPLからメタンガスを捕集する手順について説明する。初めに、海底L1からメタンガスが放出されるメタンプルームPLの存在が確認されてメタンプルームPLに含まれるメタンガスを捕集する場合には、船21をメタンプルームPL上方の海面に移動させる。次に、錘13を海底に沈下させ、海中で作動するロボットを用いて錘13を所望の位置に移動させる。具体的には、広げられた捕集膜11のほぼ中央にメタンプルームPLが位置するように、ロボットによって錘13を遠隔操作で移動する。なお、海中で作動するロボットとしては種々のものが知られており、ロボットについての構成や動作についての詳細な説明は省略する。
 錘13にはワイヤー12が接続されており、ワイヤー12には捕集膜11が取り付けられている。従って、捕集膜11は、頂部T1を基点として下方が四角錐状に広がる(図3参照)。ここでは、4個の錘13を用いて捕集膜11を四角錐状に広げた。しかし、3個や5個以上の錘13を用いて捕集膜11を多角錐状に広げてもよい。また、広げられた捕集膜11の形状は、多角錐状や円錐状の錐体状であることが好ましいが、これらの形状に限定されない。捕集膜11は、下方に向けて広がり、かつ、頂部T1が最上点となる形状に広げられればよい。
 捕集膜11の下端は、海底L1よりも高い位置に配置される。従って、距離P1(図1参照)によって示されるように、海底L1と捕集膜11の下端との間には隙間が形成されるので、海底に生息する水産資源への影響を低減できる。
 また、捕集膜11の頂部T1は、メタンガスが海水に混ざって音響ソナーで確認できなくなる水深よりも深い位置に配置されている。メタンハイドレートから分離したメタンガスは、100~200m程度浮上している間に海水に混じってしまい、音響ソナーで確認できなくなる。
 しかし、ここでは、メタンガスが海水に混じって音響ソナーで確認できなくなる水深よりも深い位置に捕集膜11の頂部T1が配置される。このため、海水に混じる以前にメタンガスを捕集膜11によって捕集できる。捕集されたメタンガスは、捕集膜11の頂部T1に接続されたチューブ14に導入され、船21に設けられた船上ユニット22に供給される。供給されたメタンガスは気液分離機30で分離され、蓄圧タンク32内に収容される。
 このようにして、基本構成を備えたガス捕集装置10では、下方に広がる捕集膜11でメタンガスを捕集するので、メタンプルームPLから発生するメタンガスを効率良く捕集できる。
 また、捕集膜11の下端が海底L1より高い(浅い)位置に配置されるので、海底L1の水産資源に影響を与えることを防止できる。更に、捕集膜11の下端がメタンハイドレートが水とメタンガスとに分離する水深よりも浅い位置に配置されるので、効率良くメタンガスを捕集できる。
 更に、基本構成を備えたガス捕集装置10では、従来より実施されている掘削リグを用いて捕集する方法とは異なり、メタンプルームPLより発生するメタンガスを捕集するので、装置を容易に移動させることができる。また、移動が容易であることから、点在する表層型メタンハイドレートより放出されるメタンガスの捕集を容易に実行できる。
[実施形態]
 次に、実施形態に係るガス捕集方法(ガス捕集装置50)について説明する。上述した基本構成では、錘13を海底L1に沈下させ、錘13に接続されたワイヤー12で捕集膜11が広げられた。本実施形態では、ワイヤー12の端部は錘として機能する無索の[non-cable type](紐付されていない[untethered])水中ロボット31に接続されている。水中ロボット31を海中の所望の水深に配置して、ワイヤー12を介して捕集膜11を広げる。即ち、水中ロボット31は、捕集膜11を所望の水深に維持する固定具として機能する。更に、水中ロボット31は、固定具の位置を維持するための位置維持器[position maintainer]としても機能する。
 図4に示されるように、本実施形態におけるガス捕集装置50は、海上に浮く船21から海底L1に向けて垂下され、下方に向けて広がる捕集膜11を備えている。即ち、捕集膜11は、頂部T1から下方に向けて広がる膜体からなる構成を有している。捕集膜11は4本のワイヤー12にて支持され、各ワイヤー12の下端には、海中の所望位置に保持するための水中ロボット31が接続されている。
 捕集膜11の頂部T1には、チューブ14の一端側が接続され、該チューブ14の他端側は、船21に設けられる船上ユニット22に接続されている。即ち、捕集膜11で捕集されたメタンガスは、チューブ14を経由して船上ユニット22に供給される。
 水中ロボット31は、自身の位置を把握する機能を備えており、自律式で360度の方向に航行可能である。即ち、目標位置の座標が設定されていれば、水中ロボット31は、上記機能によって目標位置を認識して、目標位置へと自律航行して目標位置を維持する。従って、潮流等の影響によって捕集膜11の横方向から力が作用しても、潮流に抗して水中ロボット31が自律航行して目標位置を維持する。従って、上述した基本構成のように錘13を海底L1に沈下させなくても、捕集膜11を所望の位置に維持することができる。
 次に、上述したガス捕集装置50を用いて、海底L1から放出されるメタンプルームPLからメタンガスを捕集する手順について説明する(図5参照)。メタンプルームPLの存在が確認されてメタンプルームPLに含まれるメタンガスを捕集する場合には、船21をメタンプルームPL上方の海面に移動させる。次に、水中ロボット31を海中に投下して(ステップS10)、水中ロボット31の位置を把握(ステップS20)した後に、水中ロボット31を目標位置に移動させる(ステップS50)。具体的には、広げられた捕集膜11のほぼ中央にメタンプルームPLが位置するように、水中ロボット31を移動させる。水中ロボット31の位置を把握は、無線やソナーによって把握できる。
 また、水中ロボット31にはワイヤー12が接続されており、ワイヤー12には捕集膜11が取り付けられている。従って、捕集膜11は頂部T1を基点として下方が四角錐状に広がる(図4参照)。また、水中ロボット31の目標位置が決定した場合(ステップS40)には、目標位置の座標を水中ロボット31に認識させる。水温分布の取得(ステップS30)及び水温分布に基づく目標位置の決定(ステップS40)に関しては後述する。また、目標位置は、水中ロボット31の海中への投下前に予め設定してもよいし、無線で設定してもよい。水中ロボット31は、目標位置にとどまるように自律航行を行うので、捕集膜11によってメタンプルームPLからのメタンガスを安定的に捕集することができる(ステップS60)。
 上述した基本構成と同様に、海底L1より放出されるメタンプルームのメタガスは捕集膜11にて捕集され、チューブ14にて回収される。上述した基本構成による利点は、本実施形態でも同様にもたらされる。さらに、本実施家形態では、錘13に代えて自律航行可能な水中ロボット31を用いることによって、更なる利点ももたらされる。
 本実施形態におけるガス捕集装置50では、ワイヤー12の端部に水中ロボット31が接続され、水中ロボット31の自律航行によって捕集膜11を所望の目標位置に維持する。従って、基本構成のように錘13を海底L1に沈下させる必要がなく、海底L1の水深が深くても、所望の深さに捕集膜11を設置できる。その結果、海底L1の地形に影響されず、メタンガスを確実に捕集できる。
 また、捕集膜11の下端が固体のメタンハイドレートが水とメタンガスとに分離する水深よりも高い(浅い)位置に配置されているので、メタンガスを効率良く捕集できる。
 また、捕集膜11の頂部T1は、メタンガスが海水に混じって音響ソナーで確認できなくなる水深よりも深い位置に配置されている。メタンハイドレートから分離したメタンガスは、100~200m程度浮上している間に海水に混じってしまい、音響ソナーで確認できなくなる。
 しかし、本実施形態では、メタンガスが海水に混じって音響ソナーで確認できなくなる水深よりも深い位置に捕集膜11の頂部T1が配置される。このため、海水に混じる以前にメタンガスを捕集膜11によって捕集できる。捕集されたメタンガスは、捕集膜11の頂部T1に接続されたチューブ14に導入され、船21に設けられた船上ユニット22に供給される。供給されたメタンガスは気液分離機30で分離され、蓄圧タンク32内に収容される。
 なお、本実施形態では、ワイヤー12の各端部に水中ロボット31が接続された。しかし、所望の重さとするために、水中ロボット31と共に錘も接続することも可能である。
[変形例]
 次に、上記実施形態の変形例について説明する。上記実施形態では、無索の水中ロボット31の自律航行によって、捕集膜11が所望の目標位置に維持された。これに対して、本変形例では、有索の[cable type](紐付されている[tethered])水中ロボット41によって、捕集膜11が所望の目標位置に維持される。以下、図6を参照して変形例を詳細に説明する。
 図6に示されるように、本変形例におけるガス捕集装置51は、上記実施形態と同様に、海上に浮く船21から海底(湖底)L1に向けて垂下され、下方に向けて広がる捕集膜11を備えている。即ち、捕集膜11は、その頂部T1から下方に向けて広がる膜体で構成されている。捕集膜11は4本のワイヤー12によって支持されている。ワイヤー12の各下端には、海中の所望位置に捕集膜11を維持するための有索の水中ロボット41が接続されている。
 海面には、各水中ロボット41の海中での位置を維持するための複数の支持用船42が浮いている。各支持用船42は、支持用ワイヤー43によって水中ロボット41に連結されている。なお、図6では、2組の水中ロボット41及び支持用船42のみが示されているが、4組の水中ロボット41及び支持用船42によって捕集膜11が広げられている。
 各支持用船42は、自身の位置を把握する機能を備えており、水中ロボット41との相対的な位置関係に基づいて、水中ロボット41の位置(緯度・経度)を認識できる。従って、水中ロボット41自体が自律航行機能や自身の位置を把握する機能を備えていなくても、支持用船42の位置を制御することによって水中ロボット41を所望の目標位置に維持できる。なお、目標位置は、水中ロボット41の海中への投下前に予め設定してもよいし、無線で設定してもよいし、支持用ワイヤー43を介して有線で設定してもよい。また、水中ロボット31の位置を把握も、有線や無線やソナーによって把握できる。
 変形例におけるガス捕集装置51では、ワイヤー12の端部に有索の水中ロボット41が接続され、かつ、水中ロボット41が支持用船42と連結されている。支持用船42の航行によって水中ロボット41を移動させて捕集膜11を所望の目標位置に維持する。従って、基本構成のように錘13を海底L1に沈下させる必要がなく、海底L1の水深が深くても、所望の深さに捕集膜11を設置できる。その結果、海底L1の地形に影響されず、メタンガスを確実に捕集できる。また、支持用ワイヤー43によって水中ロボット41が支持用船42に連結されているので、水中ロボット41に自律航行機能を持たせる必要が無い。従って、水中ロボット41の構成を簡素化でき、装置規模を縮小化できる。
 上述した目標位置の決定(ステップS40)に関して、CTD(Conductivity Temperature Depth profiler)等の測定機器23を利用して海域の鉛直方向の水温分布を予め取得し(ステップS30)、この水温分布(図2中の曲線Q2参照)とメタンハイドレート安定領域曲線(図2中の曲線Q1参照)との交点の水深に基づいて、捕集膜11の目標位置の水深が決定される。また、メタンプルームPLの位置(経路)を考慮して、捕集膜11の目標位置の水平座標が決定される。即ち、捕集膜11の下端を、海底よりも高く、かつ、メタンハイドレートが水とガスとに分離する水深よりも浅い位置に設定すると共に、捕集膜11の頂部T1を、メタンガスが海水に混じってその気泡が消失する水深よりも深い位置に設定する、捕集膜11の位置が、目標位置として設定される(ステップS40)。
 本発明のガス捕集方法は、上記実施形態(及びその変形例)に限定されない。各部の構成は、同様の機能を有する任意の構成に置き換えることができる。
 例えば、上記実施形態では、海底(上述したように、湖底を含む)下に存在するメタンハイドレートより放出されるメタンガスを捕集した。しかし、メタンハイドレート以外のガスハイドレート、例えば、エタンハイドレートやブタンハイドレートより放出されるガスを捕集する場合にも、本発明を適用できる。
 また、水温分布の取得(ステップS30)は目標位置の決定(ステップS40)より以前に行われていればよい。さらに、目標位置の決定(ステップS40)は、水中ロボット31(41)海中への投下前に行われてもよいし、投下後に行われてもよい。ただし、目標位置の決定(ステップS40)は、水中ロボット31(41)を目標位置に(移動)維持する(ステップS50)以前に行わなければならない。

Claims (2)

  1.  海底又は湖底に存在する原料から発生するガスを捕集するガス捕集方法であって、
     下端に固定具が接続された、頂部から下方に向けて広がる膜体からなる捕集膜を、水中に投下し、
     前記固定具に設けられた位置維持器によって前記固定具の前記水中での三次元位置を把握して、自律航行によって前記固定具の前記三次元位置を目標位置に維持し、
     CTDによって取得される鉛直方向の水温分布に基づいて、前記捕集膜の前記下端を、前記海底又は前記湖底よりも高く、かつ、前記原料が固体状態から水とガスとに分離する水深よりも浅い位置に設定すると共に、前記捕集膜の前記頂部を、前記ガスが海水又は湖水に混じって前記ガスの気泡が消失する水深よりも深い位置に設定し、
     前記海底又は前記湖底より放出されるガスを前記捕集膜で捕集する、ガス捕集方法。
  2.  請求項1に記載のガス捕集方法であって、
     前記原料が、メタンハイドレートであり、
     前記メタンハイドレートが水とガスとに分離する水深と水温との関係を示すメタンハイドレート安定領域曲線を取得し、
     前記水温分布と前記メタンハイドレート安定領域曲線との交点近傍の水深を、前記捕集膜の前記下端の位置として設定する、ガス捕集方法。
PCT/JP2017/001500 2016-01-21 2017-01-18 ガス捕集方法 WO2017126533A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2018130067A RU2698338C1 (ru) 2016-01-21 2017-01-18 Способ сбора газа
CN201780007397.9A CN108699900A (zh) 2016-01-21 2017-01-18 气体捕集方法
US16/071,305 US11370672B2 (en) 2016-01-21 2017-01-18 Gas collecting method
AU2017210423A AU2017210423B2 (en) 2016-01-21 2017-01-18 Gas Collecting Method
EP17741410.9A EP3428384B1 (en) 2016-01-21 2017-01-18 Gas collection method
KR1020187024057A KR20180102178A (ko) 2016-01-21 2017-01-18 가스 포집 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016009815A JP2017128950A (ja) 2016-01-21 2016-01-21 ガス捕集方法
JP2016-009815 2016-01-21

Publications (1)

Publication Number Publication Date
WO2017126533A1 true WO2017126533A1 (ja) 2017-07-27

Family

ID=59362136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001500 WO2017126533A1 (ja) 2016-01-21 2017-01-18 ガス捕集方法

Country Status (8)

Country Link
US (1) US11370672B2 (ja)
EP (1) EP3428384B1 (ja)
JP (1) JP2017128950A (ja)
KR (1) KR20180102178A (ja)
CN (1) CN108699900A (ja)
AU (1) AU2017210423B2 (ja)
RU (1) RU2698338C1 (ja)
WO (1) WO2017126533A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108190759A (zh) * 2017-12-22 2018-06-22 国家海洋局第海洋研究所 一种用于ctd海水取样设备的投放回收防护装置
JP7141653B1 (ja) 2022-05-21 2022-09-26 ▲昇▼ 蓮池 ガス採取装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631870A (zh) * 2018-06-21 2019-12-31 中国石油化工股份有限公司 一种适用海底游离气的取气装置及取气方法
CN112145133B (zh) * 2020-09-25 2021-12-14 中国石油大学(华东) 一种深海海底天然气水合物采集方法及生产大棚
CN112253058B (zh) * 2020-10-19 2021-07-27 青岛海洋地质研究所 人工富化开采深水浅层低丰度非常规天然气的系统及方法
CN112282707B (zh) * 2020-12-18 2021-11-19 福州大学 海域天然气水合物筒式开采装置及其方法
CN113431539A (zh) * 2021-07-05 2021-09-24 湖北茂思晟石油新技术开发有限公司 可投捞式无缆同心智能配水器装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926056A (en) * 1974-09-26 1975-12-16 Us Navy Conductivity, temperature and pressure measuring system
US4749254A (en) * 1985-04-03 1988-06-07 Seaver George A Optical sensor system
JPH1029785A (ja) * 1996-07-12 1998-02-03 Ishikawajima Harima Heavy Ind Co Ltd たるみ防止シーブを有する揚降装置
JP2000282775A (ja) * 1999-03-29 2000-10-10 Taiyo Kogyo Corp メタンハイドレートガスの採取方法及び装置
WO2006070577A1 (ja) * 2004-12-28 2006-07-06 Independent Administrative Institution, Japan Agency For Marine-Earth Science And Technology 浮沈フロートおよび浮沈フロートの使用方法
JP2012021357A (ja) 2010-07-16 2012-02-02 Taiyo Kogyo Corp 海底に噴出した原油の回収方法
JP3184629U (ja) * 2010-07-13 2013-07-11 スピリットステッサー,ウルフ 水域中に漏出する流体を回収するための防護装置
US20150354957A1 (en) * 2014-06-09 2015-12-10 Ocean University Of China Reciprocating ocean microstructure profiler

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2078199C1 (ru) 1994-06-16 1997-04-27 Флориан Александрович Шестаченко Способ добычи газа в открытом море
JP4261813B2 (ja) 2002-03-28 2009-04-30 三井造船株式会社 ガスハイドレートの海中生成方法、ガスハイドレート生成装置、および二酸化炭素の海中貯蔵システム
RO119637B1 (ro) 2002-06-03 2005-01-28 Petru Baciu Procedeu şi instalaţie de extragere a gazului metan de pe fundul mării
JP2004271326A (ja) * 2003-03-07 2004-09-30 Taisei Corp 海底地盤挙動計測システム
US7546880B2 (en) 2006-12-12 2009-06-16 The University Of Tulsa Extracting gas hydrates from marine sediments
JP5294110B2 (ja) 2008-07-07 2013-09-18 清水建設株式会社 メタンハイドレートからのメタンガス生産方法及びメタンハイドレートからのメタンガス生産装置
JP5523737B2 (ja) 2009-05-08 2014-06-18 一般財団法人電力中央研究所 二酸化炭素を利用したメタンハイドレート採掘方法
RU87263U1 (ru) 2009-05-25 2009-09-27 Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Устройство для определения местоположения источников газовых "факелов" на дне водоемов
JP5208862B2 (ja) 2009-06-12 2013-06-12 一般財団法人電力中央研究所 エマルジョンの製造・注入装置及び方法並びにメタンハイドレートの採掘方法
JP5365865B2 (ja) 2009-09-03 2013-12-11 清水建設株式会社 メタンハイドレートからのメタンガス生産装置及びこれを用いたメタンハイドレートからのメタンガス生産方法
JP5748985B2 (ja) 2010-11-24 2015-07-15 一般財団法人電力中央研究所 ガス・ハイドレートの生成促進方法並びにガス資源の増進回収法
US9574427B2 (en) * 2012-12-13 2017-02-21 Halliburton Energy Services, Inc. Assembly and method for subsea hydrocarbon gas recovery
EP2824276A1 (en) * 2013-07-09 2015-01-14 The European Union, represented by the European Commission A device for collecting methane gas
CN105019868B (zh) * 2015-07-30 2018-01-30 迈瑞尔实验设备(上海)有限公司 一种海底可燃冰的开采方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926056A (en) * 1974-09-26 1975-12-16 Us Navy Conductivity, temperature and pressure measuring system
US4749254A (en) * 1985-04-03 1988-06-07 Seaver George A Optical sensor system
JPH1029785A (ja) * 1996-07-12 1998-02-03 Ishikawajima Harima Heavy Ind Co Ltd たるみ防止シーブを有する揚降装置
JP2000282775A (ja) * 1999-03-29 2000-10-10 Taiyo Kogyo Corp メタンハイドレートガスの採取方法及び装置
WO2006070577A1 (ja) * 2004-12-28 2006-07-06 Independent Administrative Institution, Japan Agency For Marine-Earth Science And Technology 浮沈フロートおよび浮沈フロートの使用方法
JP3184629U (ja) * 2010-07-13 2013-07-11 スピリットステッサー,ウルフ 水域中に漏出する流体を回収するための防護装置
JP2012021357A (ja) 2010-07-16 2012-02-02 Taiyo Kogyo Corp 海底に噴出した原油の回収方法
US20150354957A1 (en) * 2014-06-09 2015-12-10 Ocean University Of China Reciprocating ocean microstructure profiler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3428384A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108190759A (zh) * 2017-12-22 2018-06-22 国家海洋局第海洋研究所 一种用于ctd海水取样设备的投放回收防护装置
CN108190759B (zh) * 2017-12-22 2019-12-13 自然资源部第一海洋研究所 一种用于ctd海水取样设备的投放回收防护装置
JP7141653B1 (ja) 2022-05-21 2022-09-26 ▲昇▼ 蓮池 ガス採取装置
JP2023171696A (ja) * 2022-05-21 2023-12-04 ▲昇▼ 蓮池 ガス採取装置

Also Published As

Publication number Publication date
RU2698338C1 (ru) 2019-08-26
JP2017128950A (ja) 2017-07-27
EP3428384A4 (en) 2019-09-18
US20210206659A1 (en) 2021-07-08
AU2017210423A1 (en) 2018-08-09
EP3428384B1 (en) 2023-06-14
CN108699900A (zh) 2018-10-23
KR20180102178A (ko) 2018-09-14
AU2017210423B2 (en) 2020-02-06
US11370672B2 (en) 2022-06-28
EP3428384A1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
WO2017126533A1 (ja) ガス捕集方法
US4643612A (en) Oil cleanup barge
WO2012004601A3 (en) Underwater oil and gas collection system
CA2918079A1 (en) Riser flow control
US20160077212A1 (en) Tracking buoy
WO2008105302A1 (ja) 泡回収装置及び泡回収システム
KR101487513B1 (ko) 문풀유동 소파장치
US20120000411A1 (en) Anchor device for coral rock
JP2017075469A (ja) 水底自噴メタンガス捕集装置及び同捕集方法
KR101472828B1 (ko) 해저계측장비용 플로팅모듈 및 플로팅장치
KR101563671B1 (ko) 부유식 해양구조물용 분리장치
KR101835154B1 (ko) 반잠수식 시추선의 유빙 충돌 방지구조
US20210405237A1 (en) Seismic data acquisition unit apparatus and positioning systems and methods
KR101335611B1 (ko) 해상지리정보 데이터베이스를 이용한 부유식 구조물의 위치유지 시스템 및 방법
US20110293377A1 (en) Collapsible High-Volume Oil Containment Device, and Deepwater Oil Containment Methods
AU2014259119B2 (en) A method of installing pin piles into a seabed
KR101753968B1 (ko) 해양구조물
KR101722079B1 (ko) 무어링장치
GB2482470A (en) Underwater oil storage system
KR101750962B1 (ko) 해저 프로세스를 위한 원통형 강구조물
KR101556187B1 (ko) 문풀유동 소파장치
KR20160057959A (ko) 해양구조물
KR102372850B1 (ko) 버블형 스킴 파일
JP3121471U (ja) プレジャーボートなどの海中漂流用網目籠
JP4155945B2 (ja) 水底清掃・探索方法および同装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017210423

Country of ref document: AU

Date of ref document: 20170118

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187024057

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024057

Country of ref document: KR

Ref document number: 2017741410

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741410

Country of ref document: EP

Effective date: 20180821