WO2017121151A1 - 背光模组、显示装置及其驱动方法 - Google Patents

背光模组、显示装置及其驱动方法 Download PDF

Info

Publication number
WO2017121151A1
WO2017121151A1 PCT/CN2016/101551 CN2016101551W WO2017121151A1 WO 2017121151 A1 WO2017121151 A1 WO 2017121151A1 CN 2016101551 W CN2016101551 W CN 2016101551W WO 2017121151 A1 WO2017121151 A1 WO 2017121151A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light guide
backlight module
display device
Prior art date
Application number
PCT/CN2016/101551
Other languages
English (en)
French (fr)
Inventor
武延兵
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/540,338 priority Critical patent/US10459260B2/en
Publication of WO2017121151A1 publication Critical patent/WO2017121151A1/zh
Priority to US16/574,130 priority patent/US10816834B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133626Illuminating devices providing two modes of illumination, e.g. day-night

Definitions

  • the present application relates to the field of display technologies, and in particular, to a backlight module, a display device, and a driving method thereof.
  • the display device is applied to all aspects of people's daily work and life, and the display device has a large viewing angle when the screen is normally displayed, and the displayed screen can be seen from both the front and the side of the display device.
  • people often encounter the need to display the device for confidential display, for example, when working in public, the user does not want other people to see the screen information displayed on their laptop screen from the side.
  • the term "secure display” means that the viewing angle range of the display device is small, and the displayed clear picture can be seen from the front side of the display device, and the displayed clear picture cannot be seen from the side of the display device.
  • the confidential display can effectively prevent other people from maliciously stealing user information and avoid leakage of user information.
  • the anti-peeping film can switch the display device between the normal display mode and the secret display mode.
  • the anti-peeping film has an ultra-fine louver structure Q, when the display device needs to be switched from the normal display mode to the secure display mode.
  • the anti-peeping film is covered on the display surface of the display device, and the ultra-fine louver structure Q in the anti-peeping film can block the light emitted from the pixels P of the display device to both sides, but does not affect the light emitted from the front side of the pixel P. Conduction, thereby reducing the viewing angle of the display device and achieving a confidential display.
  • the anti-peeping film is removed from the display device to achieve normal display.
  • the anti-peeping film is used to switch between the normal display mode and the secret display mode, and the anti-peeping film needs to be fixed on the display device, or the anti-peeping film is removed from the display device, and the anti-peeping film is removed from the display device.
  • the voyeur film needs to be carried around, causing inconvenience in switching between the two display modes.
  • the embodiment of the present application provides a backlight module, a display device, and a driving method thereof.
  • the structure of the backlight module in the display device is improved, so that the display device can be conveniently switched between the normal display mode and the secure display mode.
  • a first aspect of the present application provides a backlight module, including a first light guide plate and a second light guide plate, a first light source and a second light source disposed opposite to each other;
  • the surface of the second light guide plate is a light exit surface of the first light guide plate;
  • the first light source is disposed at a light incident surface of the first light guide plate;
  • the second light source is disposed at the second light guide plate
  • the first light guide plate includes a light guiding element that conducts light in a direction perpendicular to a light emitting surface of the first light guiding plate;
  • the second light guiding plate includes a scattering element.
  • the degree of divergence of light emitted from the first light source and emitted through the first light guide plate is smaller than the degree of divergence of light emitted from the second light source and emitted through the second light guide plate.
  • the scattering element is a recess or a protrusion disposed on a surface of the second light guide plate away from the first light guide plate; or the scattering element is disposed on the second light guide plate Facing a depression or a protrusion on the surface of the first light guide plate.
  • the light guiding element includes a plurality of optical fibers, each of the plurality of optical fibers extending from a surface of the first light guiding plate away from the second light guiding plate to the first light guiding plate a light-emitting surface; a surface of the first light guide plate away from the second light guide plate is a light-incident surface of the first light guide plate.
  • each of the fibers is perpendicular to a light exiting surface of the first light guide.
  • the vertical projection of the scattering element on the light-emitting surface of the first light guide plate and the end of the optical fiber extending to the light-emitting surface of the first light guide plate are offset from each other.
  • the first source is a surface source.
  • the light incident surface of the first light guide plate is one side of the first light guide plate;
  • the light guiding element includes a plurality of optical fibers, each of the optical fibers from the first light guide plate The light-incident surface extends and extends parallel to the light-emitting surface of the first light guide plate;
  • each of the optical fibers has a plurality of light-emitting openings on a sidewall thereof, and the plurality of light-emitting openings are located in a light-emitting surface of the first light guide plate .
  • the vertical projection of the scattering element on the light-emitting surface of the first light guide plate and the light exit opening are offset from each other.
  • the reflector further includes a reflector disposed on a side of the first light guide plate away from the second light guide plate.
  • the plurality of optical fibers are arranged at zero intervals or equally spaced inside the first light guide plate; a plurality of light exit ports on each of the optical fibers are equally spaced; or each of the optical fibers
  • the distribution density of the plurality of light exit openings increases as the optical path of the first light source increases.
  • the first source is a strip light source.
  • the first light guide plate includes a light guide plate body, and a narrow viewing angle structure disposed on a light emitting surface of the light guide plate body, wherein the narrow viewing angle structure can be reduced from the first light source and The degree of divergence of light emitted by the light guide body.
  • the narrow viewing angle structure includes a plurality of flaps that are parallel to each other, the plurality of flaps being equally spaced and perpendicular to a light exiting surface of the light guide body.
  • a vertical projection of the scattering element on a light exit surface of the light guide body overlaps with a vertical projection of the shutter on a light exit surface of the light guide body.
  • the narrow viewing angle structure includes a plurality of concentrating lenses arranged in an array on a light emitting surface of the light guide body.
  • a vertical projection of the scattering element on a light-emitting surface of the light guide body and a vertical projection of the condensing lens on a light-emitting surface of the light guide body are offset from each other.
  • the surface of the first light guide plate body away from the second light guide plate is a light incident surface of the first light guide plate; or the side surface of the light guide plate body is the first light guide plate
  • the backlight module further includes a reflective plate disposed on a side of the light guide plate body away from the second light guide plate.
  • the size of the scattering elements is on the order of nanometers.
  • the scattering element is a recess and nanoparticles are disposed within the recess.
  • the second light guide plate is made of glass.
  • the first light guide plate and the second light guide plate are in a unitary structure.
  • the first light guide plate has a refractive index smaller than the second light guide The refractive index of the plate.
  • the second aspect of the present application provides a display device, including a display panel, and a backlight module superimposed on a light incident surface of the display panel, the backlight module A backlight module provided by the first aspect of the present application.
  • a third aspect of the present application provides a driving method of a display device, which is used to drive a display device according to the second aspect of the present application, the driving method includes: Opening the first light source in the display device when the display device performs the security display; opening the second light source in the display device when the display device performs normal display, or opening the display device The first light source and the second light source.
  • the brightness of the first light source is adjusted to superimpose the first light guide plate and the second light guide plate.
  • the brightness is equal to the set value of the brightness required when the display device is normally displayed.
  • two light guide plates are disposed in the backlight module, and the two light guide plates are opposite to each other, and the two light guide plates respectively correspond to independent light sources, and the light emitted from the first light source and emitted through the first light guide plate is diverged.
  • the extent is less than the degree of divergence of light emitted from the second source and exiting through the second light guide.
  • the backlight module is used to provide light to the display panel of the display device.
  • the first light source is turned on, and the light emitted by the first light source is emitted through the first light guide plate, and the emitted light has a small degree of divergence.
  • the bottom surface of the two light guide plates is incident, so that a large degree of divergence does not occur after passing through the second light guide plate, so that the display panel can be passed through with a small degree of divergence, so that the viewing angle when the display panel is displayed is small, thereby achieving a secret display;
  • the second light source is turned on, or the two light sources are turned on at the same time, and the light emitted by the second light source is emitted through the second light guide plate, and the emitted light has a large degree of divergence, so that the viewing angle of the display panel is large, thereby Achieve normal display.
  • the display device can be switched between the normal display mode and the secret display mode only by selectively turning on or off the two light sources in the backlight module, without using anti-peeping
  • the membrane improves the convenience of switching between the two display modes.
  • 1 is an optical path diagram of a prior art using an anti-peeping film to realize a secret display
  • FIG. 2 is a schematic structural diagram of a display device in at least one embodiment of the present application.
  • Figure 3 is an enlarged view of the M area of Figure 2;
  • FIG. 4 is a light path diagram when the display device shown in FIG. 2 performs a confidential display
  • FIG. 5 is a light path diagram of the display device shown in FIG. 2 when it is normally displayed;
  • 6a is a schematic structural diagram of a display device in at least one embodiment of the present application.
  • 6b is a schematic structural diagram of a display device in at least one embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a display device in at least one embodiment of the present application.
  • Figure 8 is a plan view of the first light guide plate and the first light source in the display device shown in Figure 7;
  • Figure 9 is a cross-sectional structural view of the first light guide plate of Figure 8 taken along line OO';
  • FIG. 10 is a schematic structural view 1 of a display device in at least one embodiment of the present application.
  • FIG. 11 is a view showing a structure of a narrow viewing angle structure of a display device in at least one embodiment of the present application.
  • FIG. 12 is a view showing a structure of a narrow viewing angle structure of a display device in at least one embodiment of the present application
  • FIG. 13 is a schematic structural diagram of a display device in at least one embodiment of the present application.
  • Figure 14 is a diagram showing the relationship between the light exit angle and the light intensity in at least one embodiment of the present application.
  • Figure 15 is a diagram showing the relationship between the light exit angle and the light intensity in at least one embodiment of the present application.
  • Figure 16 is a graph showing the relationship between the light exit angle and the light intensity in at least one embodiment of the present application.
  • A-fiber A-fiber; B-scattering element;
  • D1-substrate D2-block
  • D3-concentrating lens E-light guide body
  • A1-lighting surface a2-bottom surface
  • the “viewing angle” described in the following embodiments refers to an angle between the line of sight and the reference line, wherein the observer is located when the observer observes the screen displayed by the display device in front of the display device.
  • the line connecting the position to the center of the display device is a line of sight, and a perpendicular line passing through the center of the display device and perpendicular to the display plane of the display device is used as a reference line.
  • the "angle of view range” described in the following embodiments means that when the viewer observes the screen displayed by the display device at a certain angle of view in front of the display device, a clear picture is to be observed, and the range to which the angle of view belongs should be .
  • the observer can observe a clear view in the perspective of the "angle of view”; the observer can observe the view outside the "angle of view”, and can not observe the display or can only observe A blurred display was observed.
  • the backlight module 10 includes: a first light guide plate 11 and a second light guide plate 12, a first light source 13 and a second light source 14 disposed opposite to each other;
  • the surface of the first light guide plate 11 facing the second light guide plate 12 is the light exit surface of the first light guide plate 11;
  • the first light source 13 is disposed at the light incident surface of the first light guide plate 11;
  • the second light source 14 is disposed at a lateral side of the second light guide plate 12;
  • the first light guide plate 11 includes light that conducts light in a direction perpendicular to a light exit surface of the first light guide plate 11
  • the second light guiding plate 12 comprises a scattering element B.
  • the scattering element is specifically a light guiding microstructure.
  • the light guiding plate has a regular uneven structure, and more specifically, a spherical concave structure or a protruding structure disposed on the light emitting side of the light guiding plate.
  • the first light guide plate 11 Since the light emitted from the first light source 13 and emitted through the first light guide plate 11 has a small degree of divergence, when the first light source 13 is turned on and the second light source 14 is turned off, the first light guide plate is turned off. The light emitted by 11 has a small degree of divergence. In the process of the light passing upward through the second light guide plate 12, since the light is diverged to a small extent, it can be considered that the light emitted from the first light guide plate 11 is perpendicular or approximately perpendicular to the direction of the second light guide plate 12. It is incident on the second light guide plate 12, so that the second light guide plate 12 does not cause a large degree of scattering of these rays.
  • the light after passing through the second light guide plate 12, the light still maintains a small degree of divergence, that is, the light provided by the backlight module 10 has a small degree of divergence.
  • the backlight module 10 supplies the display panel 20 with light required for displaying a screen, so that the viewing angle range when the display panel 20 displays the screen is small. The user can see a clear picture from the front side of the display panel 20, and the other person can not see a clear picture from the side of the display panel 20, realizing a secret display.
  • the second light source 14 When the second light source 14 is turned on, the light emitted by the second light source 14 enters the second light guide plate 12 from the side of the second light guide plate 12. Under the light guiding action of the second light guiding plate 12, the light rays are emitted from the light emitting surface of the second light guiding plate 12 with a large degree of divergence. At this time, regardless of whether the first light source 13 is turned on, the degree of divergence of the light provided by the backlight module 10 can be made large. Further, when the backlight module 10 supplies the display panel 20 with light required for displaying a screen, the light emitted from the display panel 20 has a large degree of divergence. This makes the display panel 20 have a large viewing angle range when the screen is displayed, and the user can see a clear screen from the side of the front surface of the display panel 20, realizing normal display.
  • the backlight module 10 by selectively opening the first light source 13 and/or the second light source 14, the backlight module 10 is switched between providing light with a small divergence and providing light with a large divergence. Therefore, when the backlight module 10 provides the display panel 20 with the light required to display the screen, the display panel 20 can switch between the small viewing angle range and the large viewing angle range, thereby realizing the switching between the secret display mode and the normal display mode.
  • the use of anti-peeping films in the prior art is avoided.
  • the scattering element B is a recess or a protrusion disposed on a surface of the second light guide plate 12 away from the first light guide plate 11; or, the scattering element B is disposed in the The second light guide plate 12 faces a recess or a protrusion on a surface of the first light guide plate 11.
  • the first guide can be used in this embodiment.
  • the method of disposing the optical fiber A inside the light plate 11 is such that the light emitted from the first light source 13 through the first light guide plate 11 has a small degree of divergence.
  • the light guiding element includes a plurality of optical fibers A, and each of the plurality of optical fibers A extends from a surface of the first light guiding plate 11 away from the second light guiding plate 12 to the first a light-emitting surface of the light guide plate 11; a surface of the first light guide plate 11 away from the second light guide plate 12 is a light-incident surface of the first light guide plate 11.
  • the light emitted from the first light source 13 enters the optical fiber A from the bottom surface a2 of the first light guide plate 11, and is continuously totally reflected in the optical fiber A, and is transmitted to the first light guide plate 11.
  • the light surface a1 Since light is conducted in the optical fiber A, light is hardly scattered during conduction inside the first light guide plate 11. Thereby, the light can be emitted in a direction perpendicular to or nearly perpendicular to the light-emitting surface a1 of the first light guide plate 11, so that the light emitted from the first light guide plate 11 has a small degree of divergence.
  • the first light source 13 is a surface light source, so that the uniformity of the light emitted from the first light guide plate 11 can be further improved.
  • the surface light source can be arranged in an array by a plurality of point light sources, such as LED (Light Emitting Diode).
  • each of the optical fibers A is perpendicular to the light-emitting surface a1 of the first light guide plate 11, so that most of the light emitted from the first light guide plate 11 is perpendicular to the light-emitting surface a1 of the first light guide plate 11, and the degree of divergence is further reduced.
  • the viewing angle of the display panel 20 for displaying the security is small, and the confidentiality of the confidential display is effectively improved.
  • the vertical projection of the scattering element B on the light-emitting surface of the first light guide plate 11 and the end of the optical fiber A extending to the light-emitting surface of the first light guide plate 11 are offset from each other. Thereby, most of the light emitted from the first light guide plate 11 can pass through the region of the second light guide plate 12 where the scattering element B is not disposed during the passage of the second light guide plate 12, reducing the scattering element B to The scattering effect of light emitted from a light guide plate 11.
  • the viewing angle range in which the display panel 20 performs the security display may be optionally ⁇ 30°.
  • the angle of the light emitted from the first light guide plate 11 is within a range of 60 to 120 (based on the normal line of the light-emitting surface of the first light guide plate 11).
  • the inclination of the optical fiber A with respect to the light-emitting surface a1 of the first light guide plate 11 can be designed according to the angular range.
  • the first light guide plate 11 and the second light guide plate 12 may be integrally formed, thereby effectively reducing light conduction from the first light guide plate 11 to the second light guide plate.
  • the light leakage during the process of 12 improves the utilization of light; and the first light guide plate 11 and the second light guide plate 12 of the integrated structure reduce the assembly process of the backlight module 10, thereby improving production efficiency.
  • the main portions of the first light guide plate 11 and the second light guide plate 12 may be the same material, such as glass or acrylic.
  • a recess may be used as a scattering element, a recess is disposed on a side of the second light guide plate 12 facing the first light guide plate 11; and the first light guide plate 11 and the second The light guide plates 12 are attached together.
  • the recess creates an air gap between the two light guide plates, which prevents the light from being extracted from the first light guide plate 11 at the air gap position; at the same time, the other light guide plate 11 can be made at other positions around the air gap.
  • the beam of light passes straight through. In this arrangement, light from the first light guide plate 11 is not scattered by the scattering elements (i.e., depressions), so that a complicated alignment process or a special design is not required.
  • the first light source 13 may be disposed on any one of the plurality of side faces of the first light guide plate 11 to be thinned.
  • the light incident surface of the first light guide plate 11 is one side surface a3 of the first light guide plate;
  • the first light guiding element includes a plurality of optical fibers A, and each of the optical fibers A
  • the light incident surface a3 of the first light guide plate 11 extends and extends parallel to the light exit surface of the first light guide plate 11;
  • each of the side walls of the optical fiber A has a plurality of light exit ports C, and the plurality of light exit ports Located in the light emitting surface of the first light guide plate.
  • each of the optical fibers A is parallel to the light exiting surface of the first light guide plate 11. Thereby, light rays inside the optical fiber A can be emitted from the light exit surface of the first light guide plate 11 through the light exit ports C.
  • the light emitted by the first light source 13 enters the optical fiber A of the first light guide plate 11 from the first side surface a3 of the first light guide plate 11, and is continuously totally reflected in the optical fiber A, so that the light is The first side a3 is conducted to the second side a4. Moreover, in the process in which the light is transmitted from the first side surface a3 to the second side surface a4, the light reaching the light exiting opening C is emitted from the light exit opening C. Since the diameter of the optical fiber A is small, the diameter of the light exit opening C on the side wall of the optical fiber A is small.
  • the light exiting opening C is located on the light emitting surface of the first light guiding plate 11, so that the light is emitted in a direction perpendicular to or nearly perpendicular to the light emitting surface of the first light guiding plate 11, so that the light emitted from the first light guiding plate 11 is divergent. small.
  • each of the optical fibers A is from the light incident surface a3 of the first light guide plate 11.
  • the light exit surface extending and parallel to the first light guide plate 11 extends to the other side surface a4.
  • the optical fiber A can also be curved and extend along the light-emitting surface of the first light guide plate 11. Therefore, the number of optical fibers can also be one or more.
  • the vertical projection of the scattering element on the light-emitting surface of the first light guide plate and the light exit opening are offset from each other. Thereby, most of the light emitted from the first light guide plate 11 can pass through the region of the second light guide plate 12 where the scattering element B is not disposed during the passage of the second light guide plate 12, reducing the scattering element B to The scattering effect of light emitted from a light guide plate 11.
  • the backlight module further includes a reflective plate 15 disposed on a side of the first light guide plate 11 away from the second light guide plate 12, so that the reflection passes through the gap between the optical fibers A and Light rays reaching the reflecting plate 15.
  • the plurality of optical fibers A included in the first light guide plate 11 may be The inside of the first light guide plate 11 is arranged at zero intervals or at equal intervals.
  • the plurality of light exit ports C on the side walls of each of the optical fibers A may also be arranged at equal intervals.
  • the distribution density of the plurality of light exit ports C on the side walls of each of the optical fibers A is gradually increased.
  • the plurality of light exit ports C on each of the optical fibers A are more and more densely distributed. Since the light intensity at a position far from the first light source 13 in the first light guide plate 11 is small, the uniformity of the light emitted from the first light guide plate 11 can be further improved by the above design of the density of the light exit opening C. .
  • the first light source 13 is a strip light source; the first side surface a3 of the first light guide plate 11 is also strip-shaped.
  • the strip extending direction of the first light source 13 may be parallel to the strip extending direction of the first side surface a3 of the first light guiding plate 11.
  • the strip light source can be arranged in a straight line by a plurality of point light sources.
  • the first light guide plate 11 and the second light guide plate 12 may alternatively be an integral structure for improving the utilization of light.
  • the material of the main portion of the first light guide plate 11 and the second light guide plate 12 may further be of the same material, thereby effectively reducing light leakage during the process of conducting light from the first light guide plate 11 to the second light guide plate 12, and reducing the backlight mode. Assembly process of group 10.
  • the surface opposite to the light-emitting surface is referred to as a bottom surface.
  • the second light guide plate 12 has the following characteristics: for the second guide
  • the light incident on the side surface of the light plate 12 and the second light guide plate 12 have light guiding properties and uniformity, and can convert light incident from the side surface into a uniform surface light source, and the emitted light has a large degree of divergence.
  • the backlight module 10 can provide the emitted light with a large degree of divergence, which satisfies the requirement of the display panel 20 for normal display; for the light incident from the bottom surface of the second light guide plate 12, the incident light is mostly vertical.
  • the second light guide plate 12 does not cause a large degree of scattering of these light rays at or near the light incident surface perpendicular to the second light guide plate 12. Therefore, when the second light source 14 is turned off and the first light source 13 is turned on, the light having a small degree of divergence emitted from the first light guide plate 11 passes through the second light guide plate 12, and the change in the degree of divergence is small, and remains small.
  • the degree of divergence provides appropriate illumination for the display panel 20 to be displayed in a secure manner.
  • a plurality of scattering elements B may be provided on the light exit surface of the second light guide plate 12.
  • the scattering element B may be, for example, a protrusion or a recess. As shown in FIG. 2, a plurality of recesses are formed on the light-emitting surface of the second light guide plate 12. The light incident from the side of the second light guide plate 12 is totally reflected and scattered when the scattering element B is encountered, so that the light is conducted throughout the second light guide plate 12 and is capable of being emitted relative to the light-emitting surface of the second light guide plate 12.
  • the normal is emitted over a larger range of angles, allowing the backlight module 10 to provide light with a greater degree of divergence, as shown in FIG.
  • the light incident from the bottom surface of the second light guide plate 12 is mostly perpendicular or approximately perpendicular to the light exit surface of the second light guide plate 12, and a considerable portion of the light is directly passed through the light exit surface region of the scattering element B, so that the light is diverged. Will not expand a lot, as shown in Figure 4.
  • the scattering can be reduced under the premise that the second light guide plate 12 has the required light guiding property and uniformity for the light incident from the side surface thereof.
  • the size of the scattering element B can be reduced; on the basis of this, the number of the scattering elements B can also be reduced, so that most of the light incident from the bottom surface of the second light guide plate 12 can be provided with the scattering element B.
  • the illuminating area passes directly through.
  • the size of the scattering element B can be on the order of nanometers.
  • one end of the optical fiber A extends to the bottom surface a2 and the other end extends to the light exit surface a1, when the scattering element B on the second light guide plate 12 is disposed So that the scattering element B is on the light-emitting surface a1 of the first light guide plate
  • the vertical projection and the ends of the optical fiber A extending to the light-emitting surface a1 of the first light guide plate are offset from each other.
  • the light emitted from the end portion of the optical fiber A of the first light guide plate 11 passes through the second light guide plate 12 as much as possible, and passes through the light-emitting surface region of the second light guide plate 12 where the scattering element B is not disposed, thereby reducing the scattering element.
  • One end of the optical fiber A extends to the first side a3, the other end extends to the second side a4, and the side wall of the optical fiber A is provided with a first light guide plate 11 of the light exit C (as shown in FIGS. 8 and 9).
  • the vertical projection of the scattering element B on the light-emitting surface a1 of the first light guide plate and the light exit port C can be shifted from each other. Therefore, the light emitted from the light exit C of the first light guide plate 11 passes through the second light guide plate 12 as much as possible, and passes through the light exit surface region of the second light guide plate 12 where the scattering element B is not disposed, thereby reducing the scattering element.
  • B The scattering effect of the light emitted from the first light guide plate 11.
  • the scattering element B disposed on the light exit surface of the second light guide plate 12 may be a recess, and nanoparticles are disposed in the recess.
  • the nanoparticles refer to microscopic particles (also called quantum dots) of nanometer order, and the nanoparticles can reduce the loss of light and improve the utilization of light.
  • a scattering element B may be further disposed on other surfaces (eg, the bottom surface) of the second light guide plate 12 to further enhance the light guide plate 12 from the second light guide plate 12.
  • the uniformity of the emitted light may be further disposed on other surfaces (eg, the bottom surface) of the second light guide plate 12 to further enhance the light guide plate 12 from the second light guide plate 12.
  • the viewing angle range in which the display panel 20 performs normal display may be optionally ⁇ 90°, that is, the full viewing angle range.
  • the angular range of the light emitted from the second light guide plate 12 is 0-180° in some embodiments (based on the normal line of the light-emitting surface of the second light guide plate 12), according to The degree of divergence corresponds to the design of the scattering element B on the second light guide plate 12, so that the degree of divergence of the emitted light under the action of the scattering element B satisfies the requirement.
  • the material of the second light guide plate 12 is a material having a high transmittance such as glass in some embodiments. Thereby, it is ensured that the light can pass through the second light guide plate 12 with a large transmittance even when the second light source 14 is not turned on.
  • a method of providing a narrow viewing angle structure D on the light-emitting surface of the first light guide plate 11 may be adopted, so that the light emitted from the first light source 13 through the first light guide plate 11 is adopted.
  • the degree of divergence is small.
  • the first light guide plate 11 includes a light guide plate body E, and the light-emitting surface of the light guide plate body E is provided with a narrow viewing angle structure D, and the narrow viewing angle structure D
  • the degree of divergence of light emitted from the first light source 13 and emitted through the light guide plate body E of the first light guide plate 11 can be reduced.
  • the narrow viewing angle structure D having the characteristic of reducing the degree of divergence of light has various implementation structures, and two of them are exemplarily described below.
  • the narrow viewing angle structure D may include a plurality of flaps D2 that are parallel to each other. These flaps D2 are arranged at equal intervals, and these flaps D2 are perpendicular to the light-emitting surface of the light guide plate body E.
  • the shutter D2 can block the light scattered around, and does not affect the light emitted perpendicular to the light exit surface of the light guide body E, thereby reducing the light from the first guide.
  • the narrow viewing angle structure D may further include a substrate D1 to support the shutter D2.
  • the height and spacing of the flap D2 should also have a certain upper limit so that the degree of divergence of the emitted light is satisfactory, and the loss of light is within an acceptable range.
  • the vertical angle of the light passing through the center of the first light guide plate 11 and perpendicular to the light exit surface a1 of the first light guide plate 11 is taken as a reference line, and the angle of the light emitted from the first light guide plate 11 ranges from 60° to 120 in some embodiments. ° (based on the normal line of the light-emitting surface of the first light guide plate 11 as a reference line).
  • the height, spacing, and the like of each of the flaps D2 can be specifically designed according to the selectable range of angles.
  • a vertical projection of the scattering element on a light exit surface of the light guide body overlaps with a vertical projection of the shutter on a light exit surface of the light guide body.
  • the narrow viewing angle structure D may include a plurality of collecting lenses D3. These condensing lenses D3 are arranged in an array on the light-emitting surface of the light guide plate body E. When the light is conducted from the light guide plate body E to the narrow viewing angle structure D, the condensing lens D3 can refract light, thereby achieving the effect of concentrating the light, and reducing the degree of divergence of the light emitted from the first light guide plate 11.
  • a vertical projection of the scattering element on a light-emitting surface of the light guide body and a vertical projection of the condensing lens on a light-emitting surface of the light guide body are offset from each other. Thereby, most of the light emitted from the first light guide plate 11 passes through the second light guide. During the process of the board 12, it is possible to pass through the region of the second light guide plate 12 where the scattering element B is not provided, and to reduce the scattering effect of the scattering element B on the light emitted from the first light guide plate 11.
  • the vertical angle of the light passing through the center of the first light guide plate 11 and perpendicular to the light exit surface a1 of the first light guide plate 11 is taken as a reference line, and the angle of the light emitted from the first light guide plate 11 ranges from 60° to 120 in some embodiments. ° (based on the normal line of the light-emitting surface of the first light guide plate 11 as a reference line).
  • the number of the condensing lens D3 and the side length, the thickness, the focal length, and the like of each condensing lens D3 can be specifically designed according to the selectable angular range, so that the divergence of the emitted light under the action of the condensing lens D3 can be specifically designed. Meet the requirements.
  • the narrow viewing angle structure D can be directly formed on the light guide plate body E; or can be formed on the film substrate and pasted on the light guide plate body E by glue (for example, double-sided tape or other glue).
  • the side of the first light guide plate 11 opposite to the light exiting surface is referred to as a bottom surface.
  • the first light source 13 can be disposed on the bottom surface of the first light guide plate 11; for the arrangement of the first light source 13, the first light source 13 is a surface light source in some embodiments, and the structure of the surface light source can refer to the second embodiment. The corresponding part.
  • the first light source 13 can also be disposed on the side of the first light guide plate 11 to reduce the overall thickness of the backlight module 10; for the arrangement of the first light source 13, in some embodiments, the first light source 13 is strip
  • the corresponding portion of the second embodiment can be referred to; in addition, in order to improve the utilization of the light, a reflecting plate 15 may be disposed on the bottom surface of the first light guiding plate 11 to transmit the light to the reflecting plate 15. It is reflected back into the first light guide plate 11.
  • the scattering element B can be guided by the first light guide plate 11 when the scattering element B on the second light guide plate 12 is disposed.
  • the vertical projection on the light-emitting surface of the light guide body E overlaps with the vertical projection of the shutter D2 on the light-emitting surface of the light guide plate body E.
  • the scattering element B may be disposed on the light guide plate body of the first light guide plate 11 when the scattering element B on the second light guide plate 12 is disposed.
  • the vertical projection on the E light-emitting surface and the vertical projection of the condenser lens D3 on the light-emitting surface of the light guide plate body E are shifted from each other.
  • the light emitted from the condensing lens D3 passes through the second light guide plate 12 as much as possible from the light-emitting surface area of the second light guide plate 12 where the scattering element B is not disposed, and the scattering element B is emitted from the first light guide plate 11.
  • the scattering of light
  • the first light guide plate 11 and the second light guide plate 12 of the backlight module 10 in the embodiment may alternatively be an integrated structure. Thereby, the utilization of light is improved, and the assembly process of the backlight module 10 is reduced. Moreover, the main portions of the first light guide plate 11 and the second light guide plate 12 may be the same material.
  • the first light guide plate has a refractive index smaller than a refractive index of the second light guide plate. Thereby, the ability of the second light guide plate to extract light from the first light guide plate is further enhanced.
  • the present embodiment provides a display device.
  • the display device includes a display panel 20 and is superimposed on the back surface of the display panel 20 (the display panel 20 is displayed thereon)
  • the backlight module 10 is the backlight module 10
  • the backlight module 10 is any one of the backlight modules as described in the first embodiment, the second embodiment, and the third embodiment.
  • the backlight module 10 by selectively opening the first light source 13 and/or the second light source 14 of the backlight module 10, the backlight module 10 can be provided with a small divergence degree.
  • the light is switched between the light that provides a large divergence.
  • the display device displays a small range of viewing angles when the screen is displayed, thereby achieving a secret display; when the backlight module 10 provides a large divergence of light, the display device performs a screen display.
  • a wide range of viewing angles for normal display. Therefore, the display device provided in the embodiment can be switched between the two display modes of the secret display and the normal display by operating the first light source 13 and the second light source 14 only by a simple button or click action. The operation is very convenient.
  • a corresponding control circuit or program may be disposed on the chip of the display device, and the user selects to open by clicking a corresponding function button or icon on the display device. Or which light source is turned off; or, a corresponding switch button can be set on the display device, and the user selects which light source to turn on or off by touching, pressing, screwing or pulling.
  • the display device in this embodiment has a viewing angle range of -30° to +30° when performing security display and a range of ⁇ 90° to +90° when performing normal display, that is, a full viewing angle range.
  • the display panel 20 may include a first substrate 21 and a second substrate 22, which are superposed.
  • the display panel 20 is a liquid crystal display panel in some embodiments; thus, the first substrate 21 in the display panel 20 can be a color film substrate, and the second substrate 22 can be an array substrate.
  • a liquid crystal layer (not shown) is further disposed between the color filter substrate and the array substrate.
  • the display device may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the present embodiment provides a driving method for a display device, which is used to drive the display device as described in Embodiment 4, as shown in FIG. 2, FIG. 6, FIG. 7, FIG. 10 and FIG.
  • the driving method includes the following steps:
  • the display device When the display device performs a secure display, only the first light source 13 in the display device is turned on. When the light emitted by the first light source 13 enters the first light guide plate 11, the light emitted from the first light guide plate 11 is less diffused by the first light guide plate 11. In order to ensure that the light provided by the entire backlight module 10 has a small degree of divergence, the second light source 14 needs to be turned off, so that the light having a small degree of divergence emitted from the first light guide plate 11 passes through the second light guide plate 12 and enters the display device.
  • the display panel 20 has a small viewing angle range when the display panel 20 performs screen display, and realizes a secret display.
  • L1 in the figure is an exit angle-light intensity curve corresponding to the first light guide plate 11 during the security display, and it can be clearly seen from the L1 curve that the exit angle is 0° (to be separated by the first light guide plate 11).
  • the normal of the light-emitting surface is the reference line.
  • the amount of light on the left and right sides is large, that is, the outgoing light is mostly perpendicular to or nearly perpendicular to the light-emitting surface of the first light guide plate 11, so that the light intensity reaches a peak, so that the observer is from the front of the display device.
  • the second light source 14 in the display device When the display device performs normal display, the second light source 14 in the display device is turned on. When the light emitted by the second light source 14 enters the second light guide plate 12, the light emitted from the second light guide plate 12 is diffused to a greater extent by the second light guide plate 12. At this time, regardless of whether the first light source 13 is turned on, the divergence of the light provided by the entire backlight module 10 The degrees are large and the normal display is achieved. It should be noted that, when both the first light source 13 and the second light source 14 are turned on, the light emitted from the first light source 13 and passing through the first light guide plate 11 and the light emitted from the second light source 14 and passing through the second light guide plate 14 are superimposed.
  • the amount of light having an exit angle of about 0° is greater than the amount of light having an exit angle of approximately -90° or +90°, so that the observer observes from the front of the display device.
  • the brightness of the picture is brighter than the brightness of the picture as viewed from the side of the display device.
  • L1 in the figure is an exit angle-light intensity curve corresponding to the first light guide plate 11 in the normal display, and the exit angle is 0° (based on the normal line of the light exit surface of the first light guide plate 11 as a reference line).
  • the amount of light on the left and right is large, and the amount of light whose exit angle is close to -90° or +90° is drastically reduced;
  • L2 in Fig. 15 is the exit angle-light intensity curve corresponding to the second light guide plate 12 in the normal display. In the range of the exit angle of -90° to +90°, the light amount distribution corresponding to each exit angle is uniform.
  • the light emitted from the first light source 13 and emitted through the first light guide plate 11 and the light emitted from the second light source 14 and emitted through the second light guide plate 12 are superimposed, so that in the range of the exit angle of -90° to +90°,
  • Each of the exit angles corresponds to a certain amount of light
  • the range of the angle of incidence near 0° corresponds to the maximum amount of light, so that the observer can observe a clear picture from the front and the side of the display device, and the picture viewed from the front.
  • the brightness is higher than the brightness of the picture viewed from the side.
  • the brightness of the screen observed by the observer depends on the result of superimposing the brightness of the first light guide plate 11 and the brightness of the second light guide plate 12, and Most of the light emitted from the first light guide plate 11 is light having an exit angle of about 0°. If the brightness of the first light guide plate 11 is high (for example, the brightness of the first light guide plate 11 while still maintaining a confidential display), the brightness of the screen observed by the observer from the front of the display device may be too bright, even exceeding the display device. The set value of the brightness required for normal display, thereby stimulating the observer's eyes.
  • the driving method provided in this embodiment further includes the following steps: adjusting the brightness of the first light source 13 to adjust the brightness of the first light guide plate 11 when the first light source 13 and the second light source 14 are turned on for normal display,
  • the brightness of the first light guide plate 11 after adjustment should be smaller than the brightness of the first light guide plate 11 during the security display, so that the first light guide plate 11 and the second light guide plate 12 can be brightened after being superimposed.
  • the degree is equal to or approximately equal to the set value of the brightness required when the display device is normally displayed.
  • the curve in the figure shows the exit angle corresponding to the light emitted from the first light source 13 and emitted through the first light guide plate 11 and the light emitted from the second light source 14 and emitted through the second light guide plate 12.
  • - Light intensity curve As can be seen from the graph, the brightness of the screen observed by the observer from the front of the display device is the brightest, but the brightness is substantially the same as the brightness of the screen viewed from the front of the display device at the time of the security display. This indicates that the brightness of the first light guide plate 11 is lower than that of the first light guide plate 11 at the time of the security display, and the amount of decrease is approximately equal to the brightness of the second light guide plate 12.

Abstract

一种背光模组(10)、显示装置及其驱动方法。所述背光模组(10)包括相对设置的第一导光板(11)和第二导光板(12)、第一光源(13)和第二光源(14);所述第一导光板(11)面对所述第二导光板(12)的面是所述第一导光板(11)的出光面(a1);所述第一光源(13)设置于所述第一导光板(11)的入光面处;所述第二光源(14)设置于所述第二导光板(12)的侧面处;所述第一导光板(11)包括沿着垂直于所述第一导光板(11)的出光面(a1)的方向传导光的导光元件(A);所述第二导光板(12)包括散射元件(B)。上述背光模组(10)用于显示装置中,使显示装置能够便利地在正常显示模式与保密显示模式之间切换。

Description

背光模组、显示装置及其驱动方法
本申请要求保护在2016年1月15日提交的申请号为201610029351.4的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本申请涉及显示技术领域,尤其涉及一种背光模组、显示装置及其驱动方法。
背景技术
显示装置应用于人们日常工作和生活的方方面面,显示装置正常显示画面时的视角范围较大,从显示装置的正面和侧面均能够看到所显示的画面。然而在日常生活和工作中,人们经常会遇到需要显示装置进行保密显示的时候,例如:在公共场合办公时,用户不希望其他人从侧面看到自己的笔记本电脑屏幕所显示的画面信息。所谓“保密显示”是指显示装置的视角范围较小,从显示装置正面能够看到所显示的清晰的画面,从显示装置的侧面不能看到所显示的清晰的画面。通过保密显示能够有效防止其他人恶意窃取用户信息,避免用户信息的泄露。
采用防偷窥膜能够使显示装置在正常显示模式与保密显示模式之间切换,如图1所示,防偷窥膜具有超细微百叶窗结构Q,在需要显示装置由正常显示模式切换为保密显示模式时,将防偷窥膜覆盖在显示装置的显示面上,防偷窥膜中的超细微百叶窗结构Q能够阻挡显示装置的像素P向两侧出射的光线,但并不影响像素P向正面出射的光线的传导,从而使显示装置的视角范围缩小,实现保密显示。反之,在需要显示装置由保密显示模式切换为正常显示模式时,将防偷窥膜从显示装置上取下,即可实现正常显示。
但是,在实际应用过程中,采用防偷窥膜实现正常显示模式与保密显示模式之间的切换,需要将防偷窥膜固定在显示装置上,或者将防偷窥膜从显示装置上取下,并且防偷窥膜需要随身携带,造成两种显示模式之间切换的不便利。
发明内容
本申请实施例提供一种背光模组、显示装置及其驱动方法,通过对显示装置中背光模组进行结构上的改进,使显示装置能够便利地在正常显示模式与保密显示模式之间切换。
为达到上述目的,本申请实施例提供如下技术方案。
本申请的第一方面提供了一种背光模组,所述背光模组包括相对设置的第一导光板和第二导光板、第一光源和第二光源;所述第一导光板面对所述第二导光板的面是所述第一导光板的出光面;所述第一光源设置于所述第一导光板的入光面处;所述第二光源设置于所述第二导光板的侧面处;所述第一导光板包括沿着垂直于所述第一导光板的出光面的方向传导光的导光元件;所述第二导光板包括散射元件。
利用上述布置,从所述第一光源发出且经所述第一导光板出射的光线的发散程度小于从所述第二光源发出且经所述第二导光板出射的光线的发散程度。
在一些实施方式中,所述散射元件是布置在所述第二导光板远离所述第一导光板的面上的凹陷或凸起;或者,所述散射元件是布置在所述第二导光板面对所述第一导光板的面上的凹陷或凸起。
在一些实施方式中,所述导光元件包括多个光纤,所述多个光纤中的每一个从所述第一导光板远离所述第二导光板的面延伸至所述第一导光板的出光面;所述第一导光板远离所述第二导光板的面是所述第一导光板的入光面。
在一些实施方式中,每根所述光纤垂直于所述第一导光板的出光面。
在一些实施方式中,所述散射元件在所述第一导光板出光面上的垂直投影与所述光纤延伸至所述第一导光板出光面的端部相互错开。
在一些实施方式中,所述第一光源为面光源。
在一些实施方式中,所述第一导光板的入光面为所述第一导光板的一个侧面;所述导光元件包括多个光纤,每根所述光纤从所述第一导光板的入光面延伸并且平行于所述第一导光板的出光面延伸;每根所述光纤的侧壁上具有多个出光口,所述多个出光口位于所述第一导光板的出光面内。
在一些实施方式中,所述散射元件在所述第一导光板出光面上的垂直投影与所述出光口相互错开。
在一些实施方式中,还包括设置于所述第一导光板远离所述第二导光板一侧的反射板。
在一些实施方式中,所述多根光纤在所述第一导光板的内部零间隔排列或等间隔排列;每根所述光纤上的多个出光口等间隔排列;或者,每根所述光纤上的多个出光口的分布密度随与所述第一光源的光程的增大而增大。
在一些实施方式中,所述第一光源为条形光源。
在一些实施方式中,所述第一导光板包括导光板本体,及设置于所述导光板本体的出光面上的窄视角结构,所述窄视角结构能够缩小从所述第一光源发出且经所述导光板本体出射的光线的发散程度。
在一些实施方式中,所述窄视角结构包括相互平行的多个挡片,所述多个挡片等间隔排列且垂直于所述导光板本体的出光面。
在一些实施方式中,所述散射元件在所述导光板本体的出光面上的垂直投影与所述挡片在所述导光板本体的出光面上的垂直投影交叠。
在一些实施方式中,所述窄视角结构包括阵列式排布于所述导光板本体的出光面上的多个聚光透镜。
在一些实施方式中,所述散射元件在所述导光板本体的出光面上的垂直投影与所述聚光透镜在所述导光板本体的出光面上的垂直投影相互错开。
在一些实施方式中,所述第一导光板本体远离所述第二导光板的面为所述第一导光板的入光面;或者,所述导光板本体的侧面为所述第一导光板的入光面,且所述背光模组还包括设置于所述导光板本体远离所述第二导光板一侧的反射板。
在一些实施方式中,所述散射元件的尺寸的量级为纳米级。
在一些实施方式中,所述散射元件为凹陷,并且所述凹陷内设有纳米颗粒。
在一些实施方式中,所述第二导光板的材质为玻璃。
在一些实施方式中,所述第一导光板与所述第二导光板为一体结构。
在一些实施方式中,所述第一导光板的折射率小于所述第二导光 板的折射率。
基于上述背光模组的技术方案,本申请的第二方面提供了一种显示装置,所述显示装置包括显示面板,及叠加于所述显示面板入光面的背光模组,所述背光模组为本申请的第一方面所提供的背光模组。
基于上述显示装置的技术方案,本申请的第三方面提供了一种显示装置的驱动方法,所述驱动方法用于驱动如本申请的第二方面所提供的显示装置,所述驱动方法包括:当所述显示装置进行保密显示时,仅打开所述显示装置中的第一光源;当所述显示装置进行正常显示时,打开所述显示装置中的第二光源,或者打开所述显示装置中的第一光源和第二光源。
在一些实施方式中,在打开所述第一光源和所述第二光源进行正常显示时,调节所述第一光源的亮度,使所述第一导光板和所述第二导光板叠加后的亮度等于所述显示装置正常显示时所要求的亮度的设定值。
本申请实施例在背光模组中设置两个导光板,两个导光板相互对置,且两个导光板各自对应独立的光源,从第一光源发出且经第一导光板出射的光线的发散程度小于从第二光源发出且经第二导光板出射的光线的发散程度。利用该背光模组为显示装置的显示面板提供光线,当需要保密显示时,打开第一光源,第一光源发出的光线经第一导光板出射,出射光线的发散程度较小,这些光线由第二导光板的底面入射,因此经过第二导光板后不会发生较大程度的发散,从而能够以较小的发散程度经过显示面板,使显示面板显示时的视角较小,从而实现保密显示;当需要正常显示时,打开第二光源,或者同时打开两个光源,第二光源发出的光线经第二导光板出射,出射光线的发散程度较大,因此显示面板显示时的视角较大,从而实现正常显示。本申请实施例所提供的技术方案中,仅通过对背光模组中两个光源进行选择性地打开或关闭,就能够使显示装置在正常显示模式和保密显示模式之间切换,无需使用防偷窥膜,提高了两种显示模式之间切换的便利性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面 将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为现有技术中采用防偷窥膜实现保密显示时的光路图;
图2为本申请至少一个实施例中的显示装置的结构示意;
图3为图2中M区的放大图;
图4为图2所示出的显示装置进行保密显示时的光路图;
图5为图2所示出的显示装置进行正常显示时的光路图;
图6a为本申请至少一个实施例中的显示装置的结构示意图;
图6b为本申请至少一个实施例中的显示装置的结构示意;
图7为本申请至少一个实施例中的显示装置的结构示意;
图8为图7所示出的显示装置中第一导光板和第一光源的俯视图;
图9为图8中的第一导光板沿OO′线的剖面结构图;
图10为本申请至少一个实施例中的显示装置的结构示意图一;
图11为本申请至少一个实施例中的显示装置的窄视角结构的结构;
图12为本申请至少一个实施例中的显示装置的窄视角结构的结构;
图13为本申请至少一个实施例中的显示装置的结构示意;
图14为本申请至少一个实施例中光线出射角度与光强的关系;
图15为本申请至少一个实施例中光线出射角度与光强的关系;
图16为本申请至少一个实施例中光线出射角度与光强的关系。
附图标记说明:
P-像素;           Q-超微细百叶窗结构;
10-背光模组;      11-第一导光板;
A-光纤;           B-散射元件;
C-出光口;         D-窄视角结构;
D1-基材;          D2-挡片;
D3-聚光透镜;      E-导光板本体;
12-第二导光板;    13-第一光源;
14-第二光源;      15-反射板;
a1-出光面;        a2-底面;
a3-第一侧面;      a4-第二侧面;
20-显示面板;      21-第一基板;
22-第二基板。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本申请保护的范围。
需要说明的是,以下实施例中所述的“视角”是指:视线与基准线之间的夹角,其中,当观察者在显示装置前方观察显示装置所显示的画面时,观察者所处位置与显示装置的中心的连线为视线,经过显示装置的中心且垂直于显示装置的显示平面的垂线为基准线。基于此,以下实施例中所述的“视角范围”是指:观察者在显示装置前方以某一视角观察显示装置所显示的画面时,要观察到清晰的画面,该视角所应属于的范围。简言之,观察者以在“视角范围”内的视角进行观察,就能够观察到清晰的显示画面;观察者以在“视角范围”外的视角进行观察,就不能观察到显示画面或者只能观察到模糊的显示画面。
实施例一
本实施例提供了一种背光模组,如图2所示,该背光模组10包括:相对设置的第一导光板11和第二导光板12、第一光源13和第二光源14;所述第一导光板11面对所述第二导光板12的面是所述第一导光板11的出光面;所述第一光源13设置于所述第一导光板11的入光面处;所述第二光源14设置于所述第二导光板12的侧面(lateral side)处;所述第一导光板11包括沿着垂直于所述第一导光板11的出光面的方向传导光的导光元件A;所述第二导光板12包括散射元件B。该散射元件具体为导光微结构,比如,导光板上具有规则凹凸不平状结构,更具体的可以是导光板上出光侧设置的球面状凹陷结构或凸出结构。
由于从第一光源13发出且经第一导光板11出射的光线的发散程度较小,因此打开第一光源13,并关闭第二光源14时,从第一导光板 11出射的光线的发散程度较小。在这些光线在向上经过第二导光板12的过程中,由于这些光线的发散程度较小,可以认为从第一导光板11出射的光线是以垂直于或近似垂直于第二导光板12的方向入射至第二导光板12上的,因此第二导光板12不会使这些光线发生较大程度的散射。从而经过第二导光板12后,光线仍然保持较小的发散程度,即背光模组10所提供的光线的发散程度较小。进而在背光模组10为显示面板20提供显示画面所需要的光线时,从显示面板20出射的光线的发散程度较小,使得显示面板20显示画面时的视角范围较小。用户从显示面板20的正面能够看到清晰的画面,其他人从显示面板20的侧面不能看到清晰的画面,实现了保密显示。
当打开第二光源14时,第二光源14发出的光线从第二导光板12的侧面进入第二导光板12。在第二导光板12的导光作用下,这些光线以较大的发散程度从第二导光板12的出光面出射。此时无论第一光源13是否打开,均能够使背光模组10所提供的光线的发散程度较大。进而在背光模组10为显示面板20提供显示画面所需要的光线时,从显示面板20出射的光线的发散程度较大。这使得显示面板20显示画面时的视角范围较大,用户从显示面板20的正面的侧面均能够看到清晰的画面,实现了正常显示。
可见,本实施例中通过选择性地打开第一光源13和/或第二光源14,使背光模组10在提供小发散程度的光线与提供大发散程度的光线之间切换。从而当背光模组10为显示面板20提供显示画面所需要的光线时,显示面板20能够在小视角范围与大视角范围之间的切换,实现了保密显示模式与正常显示模式之间的切换,避免了现有技术中防偷窥膜的使用。仅通过简单的按键或者点击动作对第一光源13和第二光源14进行操作,就能够实现两种显示模式之间的切换,提高了两种显示模式之间切换的便利性。
在一些实施方式中,所述散射元件B是布置在所述第二导光板12远离所述第一导光板11的面上的凹陷或凸起;或者,所述散射元件B是布置在所述第二导光板12面对所述第一导光板11的面上的凹陷或凸起。
实施例二
基于实施例一,如图2和图3所示,本实施例中可采用在第一导 光板11内部设置光纤A的方法,使从第一光源13经第一导光板11出射的光线的发散程度较小。
在一些实施方式中,所述导光元件包括多个光纤A,所述多个光纤A中的每一个从所述第一导光板11远离所述第二导光板12的面延伸至所述第一导光板11的出光面;所述第一导光板11远离所述第二导光板12的面是所述第一导光板11的入光面。
如图4所示,打开第一光源13后,从第一光源13发出的光线由第一导光板11的底面a2进入光纤A中,在光纤A中不断全反射,传导至第一导光板11的出光面a1。由于光线在光纤A中传导,因此光线在第一导光板11内部传导的过程中几乎不会发生散射。从而光线能够以垂直于或接近垂直于第一导光板11的出光面a1的方向出射,使得从第一导光板11出射的光线的发散程度很小。
在一些实施方式中,所述第一光源13为面光源,从而可进一步提高从第一导光板11所出射的光线的均匀度。面光源可由多个点光源,如:LED(Light Emitting Diode,发光二极管)灯珠,呈阵列式排布而成。
通过调节光纤A相对于第一导光板11的出光面a1的倾斜度,可实现对出射光线发散程度的调整,进而实现对保密显示的视角范围的调整。可选地,每根光纤A均垂直于第一导光板11的出光面a1,从而从第一导光板11出射的光线绝大部分垂直于第一导光板11的出光面a1,发散程度进一步缩小,使显示面板20进行保密显示的视角范围较小,有效地提高了保密显示的保密性。
在一些实施方式中,所述散射元件B在所述第一导光板11出光面上的垂直投影与所述光纤A延伸至所述第一导光板11出光面的端部相互错开。由此,从第一导光板11出射的大部分光线在经过第二导光板12的过程中,能够从第二导光板12的未设置散射元件B的区域穿过,减少散射元件B对从第一导光板11出射的光线的散射作用。
显示面板20进行保密显示的视角范围可选的可为±30°。根据该可选的视角范围,从第一导光板11出射的光线的角度在60°~120°(以由第一导光板11的出光面的法线为基准线)的范围之内。可以根据该角度范围,来对应设计光纤A相对于第一导光板11的出光面a1的倾斜度。
如图6a所示,为了提高光线的利用率,第一导光板11和第二导光板12可选的可为一体结构,从而有效地减少了光线由第一导光板11传导至第二导光板12的过程中的漏光,提高了光线的利用率;并且一体结构的第一导光板11和第二导光板12使得背光模组10的装配工序减少,从而提高了生产效率。进一步地,第一导光板11和第二导光板12的主体部分可为同一种材料,如:玻璃或亚克力等材料。
如图6b所示,可以使用凹陷作为散射元件,将凹陷布置在所述第二导光板12面对所述第一导光板11的一侧;并且所述第一导光板11和所述第二导光板12贴合在一起。所述凹陷造成了两个导光板之间的气隙,恰好阻止了在气隙位置处从第一导光板11提取光;同时,在气隙周围的其他位置处能够使来自第一导光板11的光束直接通过。在该布置中,来自第一导光板11的光线不会被所述散射元件(即,凹陷)散射,因此无需复杂的对准工艺或特别的设计。
对于内部设置光纤A的第一导光板11,如图7、图8和图9所示,可将第一光源13设置于第一导光板11的多个侧面中的任意一个侧面,以减薄背光模组10的整体厚度。在一些实施方式中,所述第一导光板11的入光面为所述第一导光板的一个侧面a3;所述第一导光元件包括多个光纤A,每根所述光纤A从所述第一导光板11的入光面a3延伸并且平行于所述第一导光板11的出光面延伸;每根所述光纤A的侧壁上具有多个出光口C,所述多个出光口位于所述第一导光板的出光面内。并且在一些实施方式中,每根光纤A与第一导光板11的出光面相平行。由此,光纤A内部的光线能够经这些出光口C从第一导光板11的出光面出射。
在上述第一导光板11中,第一光源13发出的光线从第一导光板11的第一侧面a3进入第一导光板11的光纤A内,并在光纤A内不断全反射,从而光线由第一侧面a3传导至第二侧面a4。并且,在光线由第一侧面a3传导至第二侧面a4的过程中,达到出光口C的光线会从出光口C中出射。由于光纤A的直径很小,因此光纤A侧壁上的出光口C的直径很小。出光口C位于第一导光板11的出光面上,因此光线会以垂直于或接近垂直于第一导光板11的出光面的方向出射,使得从第一导光板11出射的光线的发散程度很小。
在附图8中,每根所述光纤A从所述第一导光板11的入光面a3 延伸并且平行于所述第一导光板11的出光面延伸至另一侧面a4。本领域技术人员能够理解,所述光纤A还可以是弯曲的,并且沿着所述第一导光板11的出光面延伸。因此,光纤的数量也可以是一根或多根。
在一些实施方式中,所述散射元件在所述第一导光板出光面上的垂直投影与所述出光口相互错开。由此,从第一导光板11出射的大部分光线在经过第二导光板12的过程中,能够从第二导光板12的未设置散射元件B的区域穿过,减少散射元件B对从第一导光板11出射的光线的散射作用。
在一些实施方式中,所述背光模组还包括设置于所述第一导光板11远离所述第二导光板12一侧的反射板15,从而反射从各光纤A之间的缝隙穿过并到达反射板15上的光线。
为了提高从第一导光板11所出射的光线的均匀度,进而提高显示面板20所显示的画面的亮度均匀性,在一些实施方式中,第一导光板11所包括的多根光纤A可在第一导光板11的内部零间隔排列或等间隔排列。每根光纤A的侧壁上的多个出光口C也可等间隔排列。或者,由第一导光板11的第一侧面a3至第二侧面a4,每根光纤A的侧壁上的多个出光口C的分布密度逐渐增大。即,随着与第一光源13的光程的增大,每根光纤A上的多个出光口C分布越来越密集。由于在第一导光板11中与第一光源13距离较远的位置的光强较小,因此通过上述对出光口C密度的设计能够进一步提高从第一导光板11所出射的光线的均匀度。
在一些实施方式中,所述第一光源13为条形光源;第一导光板11的第一侧面a3也为条形。第一光源13的条形延伸方向可与第一导光板11的第一侧面a3的条形延伸方向相互平行。条形光源可由多个点光源呈直线排布而成。
对于以上所述的光纤A平行于出光面的第一导光板11,为了提高光线的利用率,第一导光板11和第二导光板12可选的也可为一体结构。第一导光板11和第二导光板12的主体部分的材料进一步可为同一种材料,从而有效地减少光线由第一导光板11传导至第二导光板12的过程中的漏光,减少背光模组10的装配工序。
如图2和图4-图7所示,在第二导光板12的各个表面中,称与其出光面相对的面为底面。第二导光板12具有以下特性:对于从第二导 光板12的侧面入射的光线,第二导光板12具有导光性和匀光性,能够将从侧面入射的光线转变为均匀的面光源,且使出射光线具有较大的发散程度。从而第二光源14打开时,背光模组10能够提供发散程度较大的出射光线,满足显示面板20进行正常显示的需要;对于从第二导光板12的底面入射的光线,入射光线大部分垂直于或接近垂直于第二导光板12的入光面,第二导光板12不会使这些光线发生较大程度的散射。从而,在第二光源14关闭,第一光源13打开时,从第一导光板11出射的发散程度较小的光线经过第二导光板12后,其发散程度的变化很小,仍然保持较小的发散程度,为显示面板20进行保密显示提供了适当的光线。
为了使第二导光板12具有上述特性,可在第二导光板12的出光面设置多个散射元件B。所述散射元件B例如可为凸起或凹陷,参见图2所示,第二导光板12的出光面上设置有多个凹陷。从第二导光板12的侧面入射的光线在遇到散射元件B时会发生全反射和散射,从而这些光线在整个第二导光板12内传导,并能够相对于第二导光板12的出光面的法线在较大的角度范围内出射,使背光模组10提供具有较大发散程度的光线,如图5所示。从第二导光板12的底面入射的光线大部分垂直或近似垂直于第二导光板12的出光面,并且相当一部分光线从未设置散射元件B的出光面区域直接穿过,因此光线的发散程度不会扩大很多,如图4所示。
为了减少第二导光板12对从其底面入射的光线的散射,可在保证第二导光板12对从其侧面入射的光线具有符合要求的导光性和匀光性的前提下,减小散射元件B在第二导光板12的出光面上所占的面积比。比如:可以减小散射元件B的尺寸;在此基础上,还可减少散射元件B的数目,以使从第二导光板12的底面入射的光线中的大部分能够从未设置散射元件B的出光面区域直接穿过。由此,保证在打开第一光源13以进行保密显示时,从第一导光板11出射的发散程度较小的光线经过第二导光板12后发散程度几乎不变。其中,在一些实施方式中,散射元件B的尺寸的量级可为纳米级。
基于上述技术方案,对于光纤A的一端延伸至底面a2,另一端延伸至出光面a1的第一导光板11(如图3所示),可以在设置第二导光板12上的散射元件B时,使散射元件B在第一导光板出光面a1上的 垂直投影与光纤A延伸至第一导光板出光面a1上的端部相互错开。从而使从第一导光板11的光纤A端部出射的光线在经过第二导光板12的过程中,尽量从第二导光板12的未设置散射元件B的出光面区域穿过,减少散射元件B对从第一导光板11出射的光线的散射作用。
对于光纤A的一端延伸至第一侧面a3,另一端延伸至第二侧面a4,且光纤A的侧壁上设有出光口C的第一导光板11(如图8和图9所示),可以在设置第二导光板12上的散射元件B时,使散射元件B在第一导光板出光面a1上的垂直投影与出光口C相互错开。从而,使从第一导光板11的出光口C出射的光线在经过第二导光板12的过程中,尽量从第二导光板12的未设置散射元件B的出光面区域穿过,减少散射元件B对从第一导光板11出射的光线的散射作用。
为了提高第二光源14打开时第二导光板12的亮度,设置于第二导光板12的出光面上的散射元件B可为凹陷,并且凹陷内设置有纳米颗粒。所述纳米颗粒是指纳米量级的微观颗粒(也称量子点),纳米颗粒能够减少光线的损失,提高光线利用率。
此外,在第二导光板12的出光面设置散射元件B的基础上,还可在第二导光板12的其它表面(如:底面)上设置散射元件B,以进一步提高从第二导光板12出射的光线的均匀度。
显示面板20进行正常显示的视角范围可选的可为±90°,即全视角范围。根据该可选的视角范围,从第二导光板12出射的光线的角度范围在一些实施方式中为0~180°(以由第二导光板12的出光面的法线为基准线),根据该发散程度,来对应设计第二导光板12上的散射元件B,使在散射元件B的作用下出射光线的发散程度满足要求。
为了提高光线的透过率,第二导光板12的材质在一些实施方式中为玻璃等高透过率的材质。从而,保证了即便在第二光源14未打开时,光线也能够以较大的透过率穿过第二导光板12。
实施例三
基于实施例一,如图10所示,本实施例中可采用在第一导光板11的出光面上设置窄视角结构D的方法,使从第一光源13经第一导光板11出射的光线的发散程度较小。
在一些实施方式中,在该实施例中,第一导光板11包括导光板本体E,导光板本体E的出光面上设有窄视角结构D,该窄视角结构D 能够缩小从第一光源13发出且经第一导光板11的导光板本体E出射的光线的发散程度。具有能够缩小光线的发散程度这一特性的窄视角结构D有多种实现结构,下面示例性地介绍其中的两种。
如图11所示,在该实施例中,在一些实施方式中,窄视角结构D可包括相互平行的多个挡片D2。这些挡片D2等间隔排列,且这些挡片D2垂直于导光板本体E的出光面。当光线从导光板本体E传导至窄视角结构D上时,挡片D2能够阻挡向四周散射的光线;同时不影响垂直于导光板本体E的出光面出射的光线,从而缩小了从第一导光板11出射的光线的发散程度。此外,窄视角结构D还可包括基材D1,以支撑挡片D2。
挡片D2的高度越高、间隔越小,在挡片D2的作用下出射光线的发散程度越小。但是,由于挡片D2是依靠遮挡光线来缩小出射光线的发散程度的,因此挡片D2会造成光线的损失。因此,挡片D2的高度和间隔也应当有一定的上限,以使出射光线的发散程度符合要求,并且光线的损失在可接受的范围之内。
以过第一导光板11的中心且垂直于第一导光板11的出光面a1的垂线为基准线,从第一导光板11出射的光线的角度范围在一些实施方式中为60°~120°(以由第一导光板11的出光面的法线为基准线)。可依据该可选的角度范围来对各挡片D2的高度、间隔等进行具体设计。
在一些实施方式中,所述散射元件在所述导光板本体的出光面上的垂直投影与所述挡片在所述导光板本体的出光面上的垂直投影交叠。由此,从第一导光板11出射的大部分光线在经过第二导光板12的过程中,能够从第二导光板12的未设置散射元件B的区域穿过,减少散射元件B对从第一导光板11出射的光线的散射作用。
如图12所示,在一些实施方式中,在该实施例中,窄视角结构D可包括多个聚光透镜D3。这些聚光透镜D3阵列式排布于导光板本体E的出光面上。当光线从导光板本体E传导至窄视角结构D上时,聚光透镜D3能够使光线折射,进而达到使光线汇聚的作用,缩小了从第一导光板11出射的光线的发散程度。
在一些实施方式中,所述散射元件在所述导光板本体的出光面上的垂直投影与所述聚光透镜在所述导光板本体的出光面上的垂直投影相互错开。由此,从第一导光板11出射的大部分光线在经过第二导光 板12的过程中,能够从第二导光板12的未设置散射元件B的区域穿过,减少散射元件B对从第一导光板11出射的光线的散射作用。
以过第一导光板11的中心且垂直于第一导光板11的出光面a1的垂线为基准线,从第一导光板11出射的光线的角度范围在一些实施方式中为60°~120°(以由第一导光板11的出光面的法线为基准线)。可依据该可选的角度范围来对聚光透镜D3的数目,及各聚光透镜D3的边长、厚度、焦距等进行具体设计,以使在聚光透镜D3的作用下出射光线的发散程度符合要求。
窄视角结构D可直接制作在导光板本体E上;也可制作在薄膜基材上,通过胶(例如双面胶或其他胶)粘贴于导光板本体E上。
本实施例中,称第一导光板11的与其出光面相对的一面为底面。可将第一光源13设置于第一导光板11的底面;对于第一光源13的这种设置方式,第一光源13在一些实施方式中为面光源,面光源的结构可参照实例二中的相应部分。也可将第一光源13设置于第一导光板11的侧面,以减薄背光模组10的整体厚度;对于第一光源13的这种设置方式,在一些实施方式中第一光源13为条形光源,条形光源的结构可参照实例二中的相应部分;此外,为了提高光线的利用率,可在第一导光板11的底面设置反射板15,以将传导至反射板15上的光线反射回第一导光板11内。
本实施例所提供的背光模组10中的第二导光板12的结构可参照实施例二中关于第二导光板12的部分。
需要指出的是,对于窄视角结构D包括多个挡片D2的第一导光板11,可以在设置第二导光板12上的散射元件B时,使散射元件B在第一导光板11的导光板本体E出光面上的垂直投影与挡片D2在导光板本体E出光面上的垂直投影交叠。从而,使得从第一导光板11的挡片D2之间的间隙出射的光线在经过第二导光板12的过程中,尽量从第二导光板12的未设置散射元件B的出光面区域穿过,减少散射元件B对从第一导光板11出射的光线的散射作用。
此外,对于窄视角结构D包括多个聚光透镜D3的第一导光板11,可以在设置第二导光板12上的散射元件B时,使散射元件B在第一导光板11的导光板本体E出光面上的垂直投影与聚光透镜D3在导光板本体E出光面上的垂直投影相互错开。从而,使得从第一导光板11的 聚光透镜D3出射的光线在经过第二导光板12的过程中,尽量从第二导光板12的未设置散射元件B的出光面区域穿过,减少散射元件B对从第一导光板11出射的光线的散射作用。
如图13所示,与实施例二相类似的,为了提高光线的利用率,本实施例中背光模组10的第一导光板11和第二导光板12可选的也可为一体结构,从而提高了光线的利用率,减少背光模组10的装配工序。并且,第一导光板11和第二导光板12的主体部分可为同一种材料。
在一些实施方式中,所述第一导光板的折射率小于所述第二导光板的折射率。由此,进一步增强了第二导光板从第一导光板提取光的能力。
实施例四
本实施例提供了一种显示装置,如图2、图6、图7、图10和图13所示,该显示装置包括显示面板20,及叠加于显示面板20背面(显示面板20的与其显示面相对的一面)的背光模组10,其中背光模组10为如实施例一、实施例二和实施例三中所述的任意一种背光模组。
根据实施例一、实施例二和实施例三中的描述可知,通过选择性地打开背光模组10的第一光源13和/或第二光源14,能够使背光模组10在提供小发散程度的光线与提供大发散程度的光线之间切换。当背光模组10提供小发散程度的光线时,显示装置进行画面显示时的视角范围较小,从而实现保密显示;当背光模组10提供大发散程度的光线时,显示装置进行画面显示时的视角范围较大,从而实现正常显示。因此仅通过简单的按键或者点击动作对第一光源13和第二光源14进行操作,就能够使本实施例中所提供的显示装置在保密显示与正常显示这两种显示模式之间的切换,操作十分便利。
为了实现对背光模组10的第一光源13和第二光源14的操作,可在显示装置的芯片上设置相应的控制电路或程序,用户通过在显示装置上点击相应的功能按键或图标选择打开或关闭哪一个光源;或者,可在显示装置上设置相应的开关按钮,用户通过触摸、按压、旋拧或扳动等动作选择打开或关闭哪一个光源。
可选的,本实施例中的显示装置在进行保密显示时的视角范围为-30°~+30°;在进行正常显示时的视角范围为-90°~+90°,即全视角范围。
在本实施例所提供的显示装置中,显示面板20可以包括第一基板21和第二基板22,二者叠加在一起。显示面板20在一些实施方式中为液晶显示面板;因而显示面板20中的第一基板21可为彩膜基板,第二基板22可为阵列基板。本领域技术人员能够理解,彩膜基板和阵列基板之间还设有液晶层(图中未示出)。
需要说明的是,本实施例所提供的显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
实施例五
基于实施例四,本实施例提供了一种显示装置的驱动方法,该驱动方法用于驱动如实施例四所述的显示装置,如图2、图6、图7、图10和图13所示,该驱动方法包括以下步骤:
当所述显示装置进行保密显示时,仅打开所述显示装置中的第一光源13。当第一光源13发出的光线进入第一导光板11后,在第一导光板11的作用下,从第一导光板11出射的光线的发散程度较小。为了保证整个背光模组10所提供的光线的发散程度较小,需要关闭第二光源14,从而从第一导光板11出射的发散程度较小的光线穿过第二导光板12,进入显示装置的显示面板20,使得显示面板20进行画面显示时的视角范围较小,实现了保密显示。
如图14所示,图中L1为保密显示时第一导光板11所对应的出射角度-光强曲线,从L1曲线能够明显看出:出射角度为0°(以由第一导光板11的出光面的法线为基准线)左右的光线量较多,即出射光线大部分垂直于或接近垂直于第一导光板11的出光面,因此光强达到峰值,从而观察者从显示装置的正面能够观察到清晰的画面;出射角度偏离0°的光线量急剧减少,因此光强急剧降低,几乎为零,从而其他人从显示装置的侧面不能观察到清晰的画面。需要说明的是,由于保密显示时第二光源14未打开,因此图中并未示出第二导光板12所对应的出射角度-光强曲线。
当所述显示装置进行正常显示时,打开所述显示装置中的第二光源14。当第二光源14发出的光线进入第二导光板12后,在第二导光板12的作用下,从第二导光板12出射的光线的发散程度较大。此时不论第一光源13是否打开,整个背光模组10所提供的光线的发散程 度都是较大的,实现了正常显示。需要指出的是,在第一光源13和第二光源14均打开,从第一光源13发出且经第一导光板11的光线和从第二光源14发出且经第二导光板14的光线叠加,使得背光模组10所提供的光线中,出射角度为0°左右的光线的量比出射角度接近-90°或+90°的光线的量更多,从而观察者从显示装置正面所观察到的画面的亮度比从显示装置侧面所观察到的画面的亮度更亮。
以正常显示时第一光源13和第二光源14均打开的情况为例。如图15所示,图中L1为正常显示时第一导光板11所对应的出射角度-光强曲线,出射角度为0°(以由第一导光板11的出光面的法线为基准线)左右的光线量较多,出射角度靠近-90°或+90°的光线量急剧减少;图15中L2为正常显示时第二导光板12所对应的出射角度-光强曲线。在-90°~+90°的出射角度范围内,各出射角度对应的光线量分布均一。从第一光源13发出且经第一导光板11出射的光线和从第二光源14发出且经第二导光板12出射的光线叠加,因此在-90°~+90°的出射角度范围内,各出射角度均对应一定的光线量,并且0°附近的出射角度范围所对应的光线量最多,从而观察者从显示装置的正面和侧面均能够观察到清晰的画面,并且从正面观察到的画面的亮度高于从侧面观察到的画面的亮度。
对于正常显示时第一光源13和第二光源14均打开的情况,观察者所观察到的画面的亮度取决于第一导光板11的亮度和第二导光板12的亮度叠加后的结果,而从第一导光板11出射的光线大部分为出射角度为0°左右的光线。如果第一导光板11的亮度较高(比如:第一导光板11仍然保持保密显示时的亮度),则可能会导致观察者从显示装置正面观察到的画面的亮度过亮,甚至超出显示装置正常显示时所要求的亮度的设定值,从而刺激观察者的眼睛。
为了避免这一问题,要减少背光模组10所提供的光线中出射角度为0°左右的光线量,同时不减少背光模组10中出射角度为接近-90°或+90°的光线量,这就需要调节第一导光板11的亮度。具体的,本实施例所提供的驱动方法还包括以下步骤:在打开第一光源13和第二光源14进行正常显示时,调节第一光源13的亮度,以调节第一导光板11的亮度,调节后第一导光板11的亮度应小于保密显示时第一导光板11的亮度,从而可使第一导光板11和第二导光板12叠加后的亮 度等于或约等于显示装置正常显示时所要求的亮度的设定值。
如图16所示,图中曲线表示从第一光源13发出且经第一导光板11出射的光线与从第二光源14发出且经第二导光板12出射的光线叠加后所对应的出射角度-光强曲线。从该曲线中能够看出:观察者从显示装置正面观察到的画面的亮度最亮,但是该亮度与保密显示时从显示装置正面观察到的画面的亮度基本相同。这说明此时第一导光板11的亮度相比保密显示时第一导光板11的亮度降低,且降低的量约等于第二导光板12的亮度。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种背光模组,包括:相对设置的第一导光板和第二导光板、第一光源和第二光源;所述第一导光板面对所述第二导光板的面是所述第一导光板的出光面;所述第一光源设置于所述第一导光板的入光面处;所述第二光源设置于所述第二导光板的侧面处;所述第一导光板包括沿着垂直于所述第一导光板的出光面的方向传导光的导光元件;所述第二导光板包括散射元件。
  2. 根据权利要求1所述的背光模组,其中,所述散射元件是布置在所述第二导光板出光面上的凹陷或凸起;或者,所述散射元件是布置在所述第二导光板面对所述第一导光板的面上的凹陷或凸起。
  3. 根据权利要求1或2所述的背光模组,其中,所述导光元件包括多个光纤,所述多个光纤中的每一个从所述第一导光板远离所述第二导光板的面延伸至所述第一导光板的出光面;所述第一导光板远离所述第二导光板的面是所述第一导光板的入光面。
  4. 根据权利要求3所述的背光模组,其中,每根所述光纤垂直于所述第一导光板的出光面。
  5. 根据权利要求3所述的背光模组,其中,所述散射元件在所述第一导光板出光面上的垂直投影与所述光纤延伸至所述第一导光板出光面的端部相互错开。
  6. 根据权利要求3所述的背光模组,其中,所述第一光源为面光源。
  7. 根据权利要求1或2所述的背光模组,其中,所述第一导光板的入光面为所述第一导光板的一个侧面;
    所述导光元件包括多个光纤,每根所述光纤从所述第一导光板的入光面延伸并且平行于所述第一导光板的出光面延伸;每根所述光纤的侧壁上具有多个出光口,所述多个出光口位于所述第一导光板的出光面内。
  8. 根据权利要求7所述的背光模组,其中,所述散射元件在所述第一导光板出光面上的垂直投影与所述出光口相互错开。
  9. 根据权利要求7所述的背光模组,其中,还包括设置于所述第一导光板远离所述第二导光板一侧的反射板。
  10. 根据权利要求7所述的背光模组,其中,所述多根光纤在所述第一导光板的内部零间隔排列或等间隔排列;
    每根所述光纤上的多个出光口等间隔排列;或者,每根所述光纤上的多个出光口的分布密度随与所述第一光源的光程的增大而增大。
  11. 根据权利要求7所述的背光模组,其中,所述第一光源为条形光源。
  12. 根据权利要求1所述的背光模组,其中,所述第一导光板包括导光板本体,及设置于所述导光板本体的出光面上的窄视角结构,所述窄视角结构能够缩小从所述第一光源发出且经所述导光板本体出射的光线的发散程度。
  13. 根据权利要求12所述的背光模组,其中,所述窄视角结构包括相互平行的多个挡片,所述多个挡片等间隔排列且垂直于所述导光板本体的出光面。
  14. 根据权利要求13所述的背光模组,其中,所述散射元件在所述导光板本体的出光面上的垂直投影与所述挡片在所述导光板本体的出光面上的垂直投影交叠。
  15. 根据权利要求12所述的背光模组,其中,所述窄视角结构包括阵列式排布于所述导光板本体的出光面上的多个聚光透镜。
  16. 根据权利要求15所述的背光模组,其中,所述散射元件在所述导光板本体的出光面上的垂直投影与所述聚光透镜在所述导光板本体的出光面上的垂直投影相互错开。
  17. 根据权利要求12所述的背光模组,其中,所述第一导光板本体远离所述第二导光板的面为所述第一导光板的入光面;或者,
    所述导光板本体的侧面为所述第一导光板的入光面,且所述背光模组还包括设置于所述导光板本体远离所述第二导光板一侧的反射板。
  18. 根据权利要求1或2所述的背光模组,其中,所述散射元件的尺寸的量级为纳米级。
  19. 根据权利要求18所述的背光模组,其中,所述散射元件为凹陷,并且所述凹陷内设有纳米颗粒。
  20. 根据权利要求1或2所述的背光模组,其中,所述第二导光板的材质为玻璃。
  21. 根据权利要求1或2所述的背光模组,其中,所述第一导光 板与所述第二导光板为一体结构。
  22. 根据权利要求21所述的背光模组,其中,所述第一导光板的折射率小于所述第二导光板的折射率。
  23. 一种显示装置,包括:显示面板和叠加于所述显示面板入光面的背光模组,所述背光模组为如权利要求1~22任一项所述的背光模组。
  24. 一种用于驱动如权利要求23所述的显示装置的驱动方法,包括:
    当所述显示装置进行保密显示时,仅打开所述显示装置中的第一光源;
    当所述显示装置进行正常显示时,打开所述显示装置中的第二光源,或者,打开所述显示装置中的第一光源和第二光源。
  25. 根据权利要求24所述的驱动方法,其中,在打开所述第一光源和所述第二光源进行正常显示时,调节所述第一光源的亮度,使所述第一导光板和所述第二导光板叠加后的亮度等于所述显示装置正常显示时所要求的亮度的设定值。
PCT/CN2016/101551 2016-01-15 2016-10-09 背光模组、显示装置及其驱动方法 WO2017121151A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/540,338 US10459260B2 (en) 2016-01-15 2016-10-09 Backlight module, display device and driving method thereof
US16/574,130 US10816834B2 (en) 2016-01-15 2019-09-18 Backlight module, display device and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610029351.4 2016-01-15
CN201610029351.4A CN105487292A (zh) 2016-01-15 2016-01-15 背光模组、显示装置及其驱动方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/540,338 A-371-Of-International US10459260B2 (en) 2016-01-15 2016-10-09 Backlight module, display device and driving method thereof
US16/574,130 Division US10816834B2 (en) 2016-01-15 2019-09-18 Backlight module, display device and driving method thereof

Publications (1)

Publication Number Publication Date
WO2017121151A1 true WO2017121151A1 (zh) 2017-07-20

Family

ID=55674365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101551 WO2017121151A1 (zh) 2016-01-15 2016-10-09 背光模组、显示装置及其驱动方法

Country Status (3)

Country Link
US (2) US10459260B2 (zh)
CN (1) CN105487292A (zh)
WO (1) WO2017121151A1 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017089482A1 (de) 2015-11-27 2017-06-01 Sioptica Gmbh Bildschirm für eine freie und eine eingeschränkte betriebsart
CN105487292A (zh) * 2016-01-15 2016-04-13 京东方科技集团股份有限公司 背光模组、显示装置及其驱动方法
CN105974663B (zh) 2016-06-17 2023-05-26 京东方科技集团股份有限公司 一种背光模组及其控制方法和控制装置、显示装置
CN107807472B (zh) * 2016-09-08 2020-06-16 台湾扬昕股份有限公司 光源模组以及显示装置
CN107065299A (zh) * 2016-12-31 2017-08-18 惠科股份有限公司 背光模块的制造方法
US10649248B1 (en) * 2017-01-17 2020-05-12 Apple Inc. Displays with adjustable privacy levels
FR3062485B1 (fr) * 2017-02-02 2021-01-08 Valeo Comfort & Driving Assistance Dispositif d'affichage
DE102017006285A1 (de) * 2017-06-30 2019-01-03 Sioptica Gmbh Bildschirm für einen freien und einen eingeschränkten Sichtmodus
JP2019029334A (ja) * 2017-07-31 2019-02-21 オムロン株式会社 導光板、面光源装置、表示装置及び電子機器
DE102017007669A1 (de) 2017-08-14 2019-02-14 Sioptica Gmbh Bildschirm für einen freien und einen eingeschränkten Sichtmodus und Verwendung desselben
TWI649592B (zh) * 2018-01-15 2019-02-01 友達光電股份有限公司 顯示裝置
JP6983674B2 (ja) 2018-01-19 2021-12-17 株式会社ジャパンディスプレイ 表示装置及び液晶表示装置
TWI657277B (zh) * 2018-03-06 2019-04-21 友達光電股份有限公司 顯示裝置
US10571690B2 (en) * 2018-06-29 2020-02-25 GM Global Technology Operations LLC Automotive window with transparent light guide display
CN109188769B (zh) * 2018-09-30 2021-08-17 合肥京东方显示光源有限公司 一种背光源、显示面板和显示装置
KR20200042580A (ko) * 2018-10-15 2020-04-24 삼성디스플레이 주식회사 표시 장치
CN111474619B (zh) * 2019-01-23 2022-02-18 诚屏科技股份有限公司 导光板与光源模块
CN109870836B (zh) * 2019-03-28 2021-02-12 合肥京东方光电科技有限公司 背光模组及其制造方法、显示装置及其控制方法
CN110966574A (zh) * 2019-11-28 2020-04-07 奥普家居股份有限公司 定向光照系统及定向与泛光共存的光照系统
CN110826543B (zh) * 2019-12-19 2022-07-12 厦门天马微电子有限公司 显示装置及电子设备
CN111176016B (zh) * 2020-01-07 2022-10-18 京东方科技集团股份有限公司 一种背光模组和显示装置
DE102020001232B3 (de) * 2020-02-18 2021-03-04 Sioptica Gmbh Beleuchtungseinrichtung für einen Bildschirm für einen freien und einen eingeschränkten Sichtmodus sowie Bildschirm mit derselben
DE102020002052A1 (de) 2020-03-26 2021-09-30 Sioptica Gmbh Verfahren und Anordnung zur Beeinflussung von Lichtausbreitungsrichtungen
DE102020002323B3 (de) 2020-04-07 2021-07-22 Sioptica Gmbh Optisches Element zur Beeinflussung von Lichtrichtungen und Bildschirm mit einem solchen optischen Element
DE102020002513B3 (de) 2020-04-23 2021-07-22 Sioptica Gmbh Beleuchtungseinrichtung mit mindestens zwei Betriebsarten
DE102020003830A1 (de) 2020-06-23 2021-12-23 Sioptica Gmbh Beleuchtungseinrichtung für einen Bildschirm
EP3954939A1 (en) * 2020-08-10 2022-02-16 Lumileds LLC Integrated optical system for dynamic diffuse and directional lighting
JP7418650B2 (ja) * 2020-07-02 2024-01-19 ルミレッズ リミテッド ライアビリティ カンパニー 照明システム及び照明方法
US11262048B2 (en) 2020-07-02 2022-03-01 Lumileds Llc Integrated optical system for dynamic diffuse and directional lighting
DE102020004094B3 (de) 2020-07-03 2021-12-09 Sioptica Gmbh Beleuchtungseinrichtung für einen Bildschirm, Bildschirm und Verwendung einer Beleuchtungseinrichtung oder eines Bildschirms
FI129780B (en) * 2020-10-26 2022-08-31 Teknologian Tutkimuskeskus Vtt Oy Optical arrangement to arrange privacy
KR20230148238A (ko) 2021-03-30 2023-10-24 시옵티카 게엠베하 개방 시야 모드 및 제한 시야 모드를 위한 조명 장치
DE102021110010A1 (de) 2021-04-20 2022-10-20 Sioptica Gmbh Optisches Element zur Beeinflussung von Lichtrichtungen, Anordnung zur Beleuchtung und besagtes optisches Element verwendender Bildschirm mit ein oder zwei Betriebsarten
CN113204070B (zh) * 2021-04-23 2023-11-03 伟时电子股份有限公司 背光模组及双视显示装置
DE102021110645B4 (de) 2021-04-26 2022-12-22 Sioptica Gmbh Bildschirm für einen freien und einen eingeschränkten Sichtmodus und Verwendung eines solchen Bildschirms
DE102021120469B3 (de) 2021-08-06 2022-11-24 Sioptica Gmbh Optisches Element zur wahlweisen Einschränkung von Lichtausbreitungsrichtungen sowie Beleuchtungseinrichtung und Bildwiedergabeeinrichtung für einen freien und einen eingeschränkten Sichtmodus mit einem solchen optischen Element
DE102021125687A1 (de) 2021-10-04 2023-04-06 Minebea Mitsumi Inc. Displayhintergrundbeleuchtung
DE102021128224B3 (de) 2021-10-29 2022-09-22 Sioptica Gmbh Verfahren und Anordnung sowie Verwendung einer Anordnung zur wahlweisen Beeinflussung der Ausbreitungsrichtungen von Licht
CN114415418A (zh) * 2021-12-30 2022-04-29 厦门天马微电子有限公司 背光模组及显示装置
DE102022110935A1 (de) 2022-05-04 2023-11-09 Sioptica Gmbh Bildschirm mit eingeschränkter Sichtbarkeit
CN114779390B (zh) * 2022-06-17 2022-10-28 惠科股份有限公司 显示装置与显示方法
US11835750B1 (en) * 2022-11-30 2023-12-05 Darwin Precisions Corporation Backlight module and display device thereof
KR102633731B1 (ko) * 2023-11-01 2024-02-06 주식회사 디지트론 좁은 시야각을 갖는 항공기 디스플레이용 광학 필름

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956107A (en) * 1996-09-20 1999-09-21 Sharp Kabushiki Kaisha Diffusion optical guide plate, and backlight source and liquid crystal display apparatus using the same
US5959711A (en) * 1995-06-07 1999-09-28 Xerox Corporation Enhanced off-axis viewing performance of liquid crystal display employing a fiberoptic faceplate having an opaquely masked front surface on the front face
US6123431A (en) * 1997-03-19 2000-09-26 Sanyo Electric Co., Ltd Backlight apparatus and light guide plate
CN1614476A (zh) * 2004-11-26 2005-05-11 友达光电股份有限公司 可调整视角的液晶显示器及其方法
US20060109396A1 (en) * 2004-11-19 2006-05-25 Au Optronics Corp. Viewing-angle adjustable liquid crystal display and method for adjusting the same
CN101261389A (zh) * 2007-03-06 2008-09-10 奇美电子股份有限公司 背光模块及其应用
CN101440919A (zh) * 2008-12-18 2009-05-27 上海广电光电子有限公司 侧入式背光模组
CN102853346A (zh) * 2012-09-28 2013-01-02 京东方科技集团股份有限公司 背光模组及显示装置
CN103562618A (zh) * 2011-05-31 2014-02-05 三菱电机株式会社 背光装置及液晶显示装置
CN104110650A (zh) * 2014-06-19 2014-10-22 京东方科技集团股份有限公司 一种导光板及其制备方法、背光模组
CN105487292A (zh) * 2016-01-15 2016-04-13 京东方科技集团股份有限公司 背光模组、显示装置及其驱动方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201232122A (en) 2011-01-31 2012-08-01 Univ Nat Chiao Tung Backlight device with angle adjustment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959711A (en) * 1995-06-07 1999-09-28 Xerox Corporation Enhanced off-axis viewing performance of liquid crystal display employing a fiberoptic faceplate having an opaquely masked front surface on the front face
US5956107A (en) * 1996-09-20 1999-09-21 Sharp Kabushiki Kaisha Diffusion optical guide plate, and backlight source and liquid crystal display apparatus using the same
US6123431A (en) * 1997-03-19 2000-09-26 Sanyo Electric Co., Ltd Backlight apparatus and light guide plate
US20060109396A1 (en) * 2004-11-19 2006-05-25 Au Optronics Corp. Viewing-angle adjustable liquid crystal display and method for adjusting the same
CN1614476A (zh) * 2004-11-26 2005-05-11 友达光电股份有限公司 可调整视角的液晶显示器及其方法
CN101261389A (zh) * 2007-03-06 2008-09-10 奇美电子股份有限公司 背光模块及其应用
CN101440919A (zh) * 2008-12-18 2009-05-27 上海广电光电子有限公司 侧入式背光模组
CN103562618A (zh) * 2011-05-31 2014-02-05 三菱电机株式会社 背光装置及液晶显示装置
CN102853346A (zh) * 2012-09-28 2013-01-02 京东方科技集团股份有限公司 背光模组及显示装置
CN104110650A (zh) * 2014-06-19 2014-10-22 京东方科技集团股份有限公司 一种导光板及其制备方法、背光模组
CN105487292A (zh) * 2016-01-15 2016-04-13 京东方科技集团股份有限公司 背光模组、显示装置及其驱动方法

Also Published As

Publication number Publication date
US20200012129A1 (en) 2020-01-09
US10816834B2 (en) 2020-10-27
US10459260B2 (en) 2019-10-29
US20180267344A1 (en) 2018-09-20
CN105487292A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2017121151A1 (zh) 背光模组、显示装置及其驱动方法
US11808965B2 (en) Optical waveguide for directional backlight
US10782466B2 (en) Backlight module and display apparatus
US10429679B2 (en) Display device
US7255456B2 (en) Direct backlight module
TWI334046B (en) Color filterless liquid crystal display device
TWI726251B (zh) 顯示模組
US20190101759A1 (en) Display device and head-mounted display
TWI481932B (zh) 顯示裝置及組合成之顯示系統
TWM595237U (zh) 背光模組及顯示裝置
TW201915982A (zh) 拼接顯示裝置
US9952373B2 (en) Light source module and display apparatus
CN111338105A (zh) 显示器
US20170160459A1 (en) Light source module and display apparatus
TW202303206A (zh) 照明裝置
JP2009059498A (ja) 照明装置および液晶表示装置
JP7161687B2 (ja) 光学構造体および表示装置
US11650456B2 (en) Display device having a privacy display mode and a normal display mode
TWI526742B (zh) 曲型背光模組
TWM628809U (zh) 背光模組及顯示裝置
US20110037923A1 (en) Light condensing film, backlight module and liquid crystal display
JP2014086245A (ja) 導光板、バックライト・ユニット及びディスプレイ装置
JP4626633B2 (ja) 照明装置および液晶表示装置
JP2013200971A (ja) 導光板、バックライト・ユニットおよび表示装置
TWM636685U (zh) 具有光學膜片的背光模組及顯示裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15540338

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884705

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16884705

Country of ref document: EP

Kind code of ref document: A1