TW201232122A - Backlight device with angle adjustment - Google Patents

Backlight device with angle adjustment Download PDF

Info

Publication number
TW201232122A
TW201232122A TW100103793A TW100103793A TW201232122A TW 201232122 A TW201232122 A TW 201232122A TW 100103793 A TW100103793 A TW 100103793A TW 100103793 A TW100103793 A TW 100103793A TW 201232122 A TW201232122 A TW 201232122A
Authority
TW
Taiwan
Prior art keywords
light
plane
optical
backlight device
rays
Prior art date
Application number
TW100103793A
Other languages
Chinese (zh)
Inventor
Zhong-Hao Tian
Jian-Xiang Hong
Ming-Jin Jian
zhi-hong Lin
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW100103793A priority Critical patent/TW201232122A/en
Publication of TW201232122A publication Critical patent/TW201232122A/en

Links

Abstract

This invention relates to backlight device with angle adjustment, which includes a light source module, an optical member and a light guiding plate, wherein the optical member is equipped on one side of the light source and has a light-receiving surface and a light-leaving surface. The light source generates a plurality of first light rays to the optical member, and the light-receiving surface receives the plurality of first light rays according to a plurality of first optical paths synchronously. The optical member generates a plurality of second optical paths according to those first optical paths. The light-leaving surface, corresponding to the second optical paths, outputs a plurality of second light rays to the light guiding plate. Moreover, this invention can provide a multi-angle light source projected onto the light guiding plate by arranging a plurality of light sources in curved configuration on XY plane. Therefore, the backlight device of this invention can provide a backlight source of multiple view angles to simplify the optical structure of the backlight device.

Description

201232122 六、發明說明: 【發明所屬之技術領域】 _ι] 本發明係有關於一種發光裝置,特別是指一種具角 度調制之背光裝置。 【先前技術】 [0002]201232122 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a light-emitting device, and more particularly to a backlight device having an angle modulation. [Prior Art] [0002]

視角一直疋液晶顯示技術中重要的一環,除了藉由 視角的調變可增加顯示器出光後的利用率外,在各種應 用層面上,如發展廣視角的視聽劇院,或因保密與隱私 而設計的窄視角螢幕(ATM、手機、個人辦公)等,皆是利 用視角控制的技巧,而近來針對適應各種情況做寬窄視 角切換的文獻和專利逐漸增加W .也顯現^出此塊市場的需 求正快速成長。 , ί 一般而言,考慮到顯示器的使用情形,其外部的條 件如使用者的位置 '人數與觀賞環境的亮暗等,此時, 藉由顯示器的視角調變技術便能達到節能的目的。如第 一Α圖所示,在一明亮環境1()下,即燈源12為較明亮時, 顯示器14一般為提供多使用者(例如:使用者15、16、 17)觀賞’顯示器14必須提供一高亮度、廣視角之光場 142,才能提供每個使用者最佳的視覺感受,其即視覺感 受152、162與172 ’由視覺感受152、162與172可知, 顯示器14所提供之高亮度、廣視角之光場142供不同視角 的使用者15、16、17可同時看到顯示器14所顯示之影像 。如第一B圖所示,在一環境亮度較低或單一使用者之環 境20下’即燈源22之亮度較弱,顯示器24僅需提供一窄 視角的光場242,即能滿足單一使用者26的使用需求,而 100103793 對單一使用者來說,視覺感受262上雖然並沒有太大的差 表單編號A0101 第3頁/共43頁 1002006808-0 201232122 異’但視角之外的光卻因此被大幅節省下來,即如視覺 感受252與272 ’其非使用者26之視角内的視覺感受,因 此使用者26並未具有視覺感受252與272。 現今視角的調控技術主要分為兩種方式:第一種是加 一層視角變化面板(Viewing Angle Switching,VAS) 如:TRVL(thermally retardation variable layer) 液 晶層; 第 二種則 是利用 多光源和多層 幾何架構的光 學機制。如第二A圖與第二b圖所示,其揭示顯示裝置30 包含一第一偏振片31、一第二偏择片32、一液晶面板33 與一液晶層34 ’液晶面板33位於第一偏振片31與第二偏 振片3 2之間’:且液晶層3 4位於液ΐ晶面板3.3與第二偏振片 32之間,並利用液晶層34來控制視角·,其中如第二Α圖所 示,降低榮幕亮暗態對比度,以及如第二B圖所示,藉由 降低非正向視角的光穿透率(Outcome ..T.ransmi ttance) ,來達到視角控制的目的;但低對比度將造成灰階反轉 以及色彩偏移’使得顯示裝置30之影像難以辨識與閱讀 ,且就現有技術而言’降低非正向光強度較降低對比度 更易達到窄視角的目的’但除了原有液晶面板33之液晶 層外’必須再增加一層以上的液晶層(例如:上述液晶層 34)做灰階控制之用,而這卻會造成顯示裝置3〇之整體亮 度過暗。 如第三圖所示,其為一具多光源與多層幾何結構之 光學系統的光電裝置40,其具有一反射片41 ' 一第一光 源42、一第一導光板43、一擴散板44、一第二光源45、 一第二導光板46、一逆菱鏡47與一液晶面板48 ,其中反 射片41、第一導光板43、擴散板44、第二導光板46、逆 100103793 1002006808-0 表單編號A0101 第4頁/共43頁 201232122The viewing angle has always been an important part of the liquid crystal display technology, in addition to the use of viewing angle modulation to increase the utilization of the display after the light, in various application levels, such as the development of a wide viewing angle of the theater, or designed for privacy and privacy Narrow-view screens (ATM, mobile phones, personal office), etc., are all controlled by angle of view. Recently, the literature and patents for wide-angle switching have been gradually adapted to suit various situations. It is also apparent that the demand for this market is fast. growing up. In general, considering the use of the display, the external conditions such as the position of the user 'the number of people and the brightness of the viewing environment, etc., at this time, the viewing angle modulation technology of the display can achieve the purpose of energy saving. As shown in the first figure, in a bright environment 1 (), that is, when the light source 12 is relatively bright, the display 14 is generally provided for multiple users (eg, users 15, 16, 17) to view the 'display 14 must A high-brightness, wide-angle light field 142 is provided to provide the best visual experience for each user, that is, the visual perceptions 152, 162, and 172' are known by the visual perceptions 152, 162, and 172, and the display 14 provides the high The brightness, wide viewing angle light field 142 allows the users 15, 16, 17 of different viewing angles to simultaneously view the image displayed by the display 14. As shown in FIG. B, in a low ambient environment or a single user environment 20, that is, the brightness of the light source 22 is weak, and the display 24 only needs to provide a narrow viewing angle of the light field 242, which can satisfy a single use. User 26 needs to use, and 100103793 for a single user, although there is not much difference in visual perception 262 Form number A0101 Page 3 / Total 43 pages 1002006808-0 201232122 Different 'but the light outside the angle of view Significant savings have been made, such as visual perception of 252 and 272 'the visual perception within the perspective of the user 26, so the user 26 does not have visual perceptions 252 and 272. Today's viewing angle control technology is mainly divided into two ways: the first is to add a layer of Viewing Angle Switching (VAS) such as: TRVL (thermally retardation variable layer) liquid crystal layer; the second is to use multiple light sources and multiple layers The optical mechanism of the geometric architecture. As shown in FIG. 2A and FIG. 2B, the display device 30 includes a first polarizing plate 31, a second biasing plate 32, a liquid crystal panel 33, and a liquid crystal layer 34. The liquid crystal panel 33 is located at the first Between the polarizing plate 31 and the second polarizing plate 32: and the liquid crystal layer 34 is located between the liquid twinned panel 3.3 and the second polarizing plate 32, and uses the liquid crystal layer 34 to control the viewing angle, wherein, as in the second image As shown, the contrast of the bright and dark states is reduced, and as shown in the second B, the angle of view is controlled by reducing the light transmittance of the non-forward viewing angle (Outcome..T.ransmi ttance); Low contrast will cause grayscale inversion and color shifting' to make the image of the display device 30 difficult to recognize and read, and in the prior art, 'reducing the non-positive light intensity to lower the contrast is easier to achieve a narrow viewing angle' but except for the original Outside the liquid crystal layer of the liquid crystal panel 33, it is necessary to add more than one liquid crystal layer (for example, the above liquid crystal layer 34) for gray scale control, which causes the overall brightness of the display device 3 to be too dark. As shown in the third figure, it is an optoelectronic device 40 of an optical system with multiple light sources and a multi-layer geometry, which has a reflective sheet 41 ′ a first light source 42 , a first light guide plate 43 , a diffusion plate 44 , a second light source 45, a second light guide plate 46, a reverse mirror 47 and a liquid crystal panel 48, wherein the reflective sheet 41, the first light guide plate 43, the diffuser plate 44, the second light guide plate 46, and the reverse 100103793 1002006808-0 Form No. A0101 Page 4 of 43 201232122

菱鏡47與液晶面板48依序堆疊設置,第一光源42設於第 —導光板43之一側,第二光源45設於第二導光板46之一 侧,藉由利用不同光源(即第一光源42與第二光源45)對 應到不同光路(即第一光線422至第一輸出光424與第二光 線452至第二輸出光454)的方式,使得光源出光角度(即 第一輸出光424與第二輸出光454之出光角度)能有效控制 在特定範圍’像是疊加了兩個獨立供光的側光式背光系 統’便可藉由光路設計的不同來達到寬窄視角切換的目 的’當單獨開啟上層具有微溝槽的導光板時,背光會提 供一乍視角光場以供正向觀賞,反之,若開啟下層一般 網點印刷導光板’則能供給一廣視角光場至各個觀賞方 向。除了仍然是各方向無差昶供給先威外,可明顯看出 這種多層光學架構的缺失,亦即多層導光板的設計容易 造成較下層的導光板出光效率過低的情況,而這無疑造 成了不必要的能源浪費。The prisms 47 and the liquid crystal panel 48 are sequentially stacked, the first light source 42 is disposed on one side of the first light guide plate 43, and the second light source 45 is disposed on one side of the second light guide plate 46 by using different light sources (ie, A light source 42 and a second light source 45) correspond to different optical paths (ie, the first light 422 to the first output light 424 and the second light 452 to the second output light 454) such that the light source emits light (ie, the first output light) 424 and the output angle of the second output light 454 can be effectively controlled in a specific range 'such as an edge-lit backlight system in which two independent light sources are superimposed', and the wide-angle switching can be achieved by the difference in optical path design. When the upper light guide plate with micro-grooves is separately turned on, the backlight provides a viewing angle light field for forward viewing, and vice versa, if the lower common dot printing printed light guide plate is turned on, a wide viewing angle light field can be supplied to each viewing direction. . In addition to the fact that there is no difference in the supply of the first direction, it is obvious that the lack of such a multilayer optical structure, that is, the design of the multilayer light guide plate is likely to cause the light-emitting efficiency of the lower-layer light guide plate to be too low, which undoubtedly causes Unnecessary energy waste.

對於環保意識高涨的現今社會來說,視角的可調性 疋一項值得發展的綠色技術,但目前針對視角的可調性 的技術仍有許多缺失待克服例如··以液晶架構來說,雖 然可藉由液晶排列方式的改變,達到漸變的多視角切換 ’但由於液晶分子運動的特性,難以做到高速切換視角 的计,此外,通常這種液晶架構需配合直下式背光模 組,使得身光厚度無法有效降低,若以光學效率來看, 多層的光學結構設計不僅會讓整體出光效率降低,也會 增加背光厚度,而寬視角的光場和窄視角大幅重疊的部 分,使得面板出光後的利用率亦無法有效提升。 100103793 有鑑於此,本發明提出_種具角度調制之背光裝置 表單編號A0101 第5頁/共43頁 1002006808-0 201232122 ,其改善習知多視角之顯示裝置的視角切換效率問題, 並改善出光效率,以使顯示裝置的顯示效率提升。 【發明内容】 [0003] 本發明之主要目的,在於提供一種具角度調制之背 光裝置及其製造方法,其藉由透過光學路徑改變使背光 裝置於輸出光線時能有效控制在特定角度内,進而達成 多方向性背光的目的。 本發明之次要目的,在於提供一種具角度調制之背 光裝置及其製造方法,其利用光源搭配光學元件設計簡 化之光學結構,以減少背光裝置之結構厚度。 本發明之另一目的,在於提供一種具角度調制之背 光裝置及其製造方法,其利用光源搭配光學元件改變光 學路徑,以改變背光源之出光角度。 本發明之另一目的,在於提供一種具角度調制之背 光裝置及其製造方法,其利用光學元件之切面角變化調 整光學路徑,以增加背光裝置之出光角度。 本發明係提供一種具角度調制之背光裝置,其包含 一光源模組、一光學件與一導光板,光學件設於光源之 一侧,導光板設於光學件之一側,光學件具有一接收面 與一出光面。光源產生具複數第一光學路徑之複數第一 光線至光學件之接收面,接收面係接收該些第一光線並 折射,光學件係依據該些第一光學路徑產生複數第二光 學路徑,出光面即依據該些第二光學路徑輸出複數第二 光線至導光板,導光板接收該些第二光線,該導光板並 對應輸出該些第三光線,且第二光線與第三光線位於不 同相位。如此藉由該些第二光線提供多方向性光源,以 100103793 表單編號A0101 第6頁/共43頁 1002006808-0 201232122 及藉由接收面與出光面減少光學結構的使用,以減少光 學結構的厚度。 本發明另提供一種具角度調制之背光裝置,其包含 複數光源與一導光板,導光板設置於該些光源之一側。 其中該些光源於χγ平面上呈弧形排列,該些光源所產生 之複數第一光線於XY平面上具複數光學路徑,該些光源 之設置位置對應於該些光學路徑,該些第一光線入射至 導光板後,導光板係對應輸出複數第二光線,該些第二 光線於XZ平面具該些光學路徑。如此藉由該些第二光線 〇 提供多方向性光源,以及藉由接收面與出光面減少光學 結構的使用,以減少光學結構的厚度。 茲為使貴審查委員對本發明之結構特徵及所達成 之功效更有進一步之瞭解與認識,謹佐以較佳之實施例 圖及配合詳細之說明,說明如後: 【實施方式】 [0004] 本發明為一種背光裝置,其為一種非成像光學系統 之應用,也就是不考慮物體和影像的問題,取而代之的 > 是光源和接收面,目前非成像出光面的設計發展已曰趨 成熟且繁複,其中較廣為運用的是自由形出光面的光學 設計方法,主要是因為此光學設計的方法有較大的設計 維度和自由度。當光線進入一二維的二次光學架構後, 係如第四A圖與第四B圖所示, 請參閱第四A圖與第四B圖·,其為本發明之一較佳實 施例的俯視圖與侧視圖。如第四A圖所示,其為本實施例 之背光裝置50的俯視圖,如第四B圖所示,其為本實施例 之背光裝置50之側視圖。本實施例之背光裝置50為一側 100103793 表單編號 A0101 第 7 頁/共 43 頁 1002006808-0 201232122 光型背光裝置,其包含一光源模組52、一光學件54與一 導光板56。光學件54設置於光源模組52之一側,也就是 光學件54之一第一侧面向該光源模組52之出光面,導光 板56設置於光學件54之一第二側。 本實施例之光源模組52係設置複數光源522,光源 模組52更可僅利用一光源作為光源,或依據使用需求而 增設更多光源,如附件一所示,其採用發光二極體(LED )作為光源,並將發光二極體(LED)係呈弧形排列並位 於光學件(Lens)之一側,光學件(Lens)緊鄰導光板 (LGP),由於弧形排列之光源使光源入射至光學件 (Lens)的入射面積增加,藉此提高背光裝置之出光角度( 如附件二所示)。此外,本實施例之該些光源522除了呈 等距排列之外,更可呈非等距排列,例如:光源模組52設 置複數光源,該些光源之間隙自XY平面之一光軸L由5釐 米向外縮減至1釐米,也就是該些光源越接近導光板56之 邊界間隙越密。 舉例來說,當本發明之複數光源522呈弧狀排列時, 即如第四C圖至第四F圖所示,背光裝置50之光源模組52 於設置複數光源522時,該些光源522呈等距排列或非等 距排列。如第四C圖至第四D圖所示,其中呈等距排列之 該些光源5 2 2係依據X Y平面之一光軸向外維持相等間隔距 離D1,該光學件54之接收面542具複數單位法向量N1, 該些單位法向量N1依據該光軸L呈相等間隔距離D2。如第 四E圖至第四F圖所示,呈非等距排列之該些光源522係依 據XY平面之一光軸L向外遞減間隔距離,如第四E圖之間 隔距離D3、D31,且該光學件54之該接收面542具複數單 100103793 表單編號A0101 第8頁/共43頁 1002006808-0 201232122 位法向量N 2 ’該些單位法向量N 2依據該光轴L向外遞減間 隔距離,如第四F圖之間隔距離D4、D41,其中該些單位 法向量N2之遞減間隔距離變化更可藉由接收面之切面角 之遞增或遞減實現。第四C圖至第四F圖之光軸L與單位法 向量Nl、N2為簡化標示,以舉例說明,但本發明並不限 於此。 光學件54之第一側具_一接收面542,光學件54之 一第二側具有一出光面544,且該接收面542與該出光面 544可為凸面或凹面,但本發明不限於此,例如:光學件 54係為一光學透鏡,例如:一非尼爾透鏡或其他二次光學 透鏡,其如附件一所示,以同步接收光線並同步輸出光 線,除此之外,光學件54更可為逆介質結構,其如附件 二與附件三所示。附件一為利用空氣(Air)與透鏡 (Lens)之折射係數差異,而呈現光疏介質(Air)入射至 光密介質(Lens),再由光密介質(Lens)入射至光疏 介質(Air)的介質轉換,因而實現同步接收並同步輸出, 其中透鏡(Lens)為樹脂(PMMA),光疏介質(Air)入射 至光密介質(Lens)使光線接近法線折射,光密介質( Lens)入射至光疏介質(Air)使光線偏離法線折射;附 件二至附件三為空氣(Air)與樹脂(PMMA)對調,亦即 光學件54調整光學路徑之結構轉為空氣所取代,因而呈 現光密介質(PMMA)入射至光疏介質(Air),再由光疏 介質(Air)入射至光密介質(PMMA),以實現同步接收 並同步輸出。 導光板56設有複數光學微結構562,且該些光學微 結構562係位於導光板56中,該些光學微結構562係呈對 100103793 表單編號A0101 第9頁/共43頁 1002006808-0 201232122 稱性排列或非對稱性排列。此外,本實施例之背光裝置 50更包含一反射層564,其設置於導光板56之底部,以反 射向導光板56底部傳導之光線。 因此,光源模組52之第一光源522至第三光源526所 產生之複數第一光線(本實施例係以第三光源526所發出 之第一光線571、572、573作為舉例)。該些第一光線 係由光學件54所接收,並由光學件54經接收面542,光學 件54依據該些第一光學路徑產生複述第二光學路徑,再 由出光面544依據第二光學路徑對應輸出複數第二光線, 以進一步調整該些第一光線之光路,因而讓第二光線( 本實施例係以第一光線571、572、573所對應之第二光 線574、575、576作為舉例)入射至導光板56。復參閱 附件一並一併參閱第四A圖,當接收面542與出光面544皆 為凸面時,該些第一光線於一相位上(其為XY平面或XZ平 面)依據該些第一光學路徑擴散,該些第二光線於該相位 上依據該些第二光學路徑交叉傳導,且該接收面542依據 一光軸向外遞增切面角,而該出光面依據該光軸向外遞 減切面角,其中該些第一光線與該些第二光線於該XY平 面上之角度變化量相差40度,而該些第一光線與該些第 二光線於該XZ平面上的角度變化量僅增加10度;復參閱 附件二與附件三,並一併參閱第四A圖,當接收面542與 出光面544由凸面更換為凹面時,該些第一光線於一相位 上(其為XY平面或XZ平面)依據該些第一光學路徑擴散, 該些第二光線於該相位上依據該些第二光學路徑平行傳 導,由於凹面之接收面542可增加收光角度,因而增加出 光角度,亦即第一光線依據第一光學路徑擴散之角度更 100103793 表單編號A0101 第10頁/共43頁 1002006808-0 201232122 大’而第二光學路徑所對應之輸出角度亦相對增加。 導光板56即依據該些第二光學路經接收該些第二光 線,其中該些第二光線之XY平面方向的光路係以第四八圖 所示之第二光線574、575、576作為舉例,同時如第四B 圖所示,該些第二光線之XZ平面方向的的光路係以第_ 光線574作為舉例,由於該些光學微結構562係用以導弓丨 導光板56之入射光至背光裝置50之一出光面,因而向上 輸出複數第二光線(本實施例係以第四B圖之第三光線57? 為例),其中該些光學微結構562導引該些第二光線,由For today's society with a high awareness of environmental protection, the adjustability of the perspective is a green technology worthy of development, but there are still many shortcomings to overcome the tunability of the technology. For example, in the case of liquid crystal architecture, The gradual multi-view switching can be achieved by changing the arrangement of the liquid crystals. However, due to the characteristics of the movement of the liquid crystal molecules, it is difficult to switch the viewing angle at a high speed. In addition, generally, the liquid crystal structure needs to be matched with a direct-type backlight module to make the body The thickness of the light cannot be effectively reduced. In terms of optical efficiency, the multilayer optical structure design not only reduces the overall light extraction efficiency, but also increases the thickness of the backlight, and the wide viewing angle of the light field and the narrow viewing angle greatly overlap, so that the panel is lighted out. The utilization rate cannot be effectively improved. 100103793 In view of this, the present invention proposes an angle-modulated backlight device form number A0101, page 5 of 43 pages 1002006808-0 201232122, which improves the viewing angle switching efficiency of a conventional multi-view display device and improves light extraction efficiency. In order to improve the display efficiency of the display device. SUMMARY OF THE INVENTION [0003] The main object of the present invention is to provide a backlight device with angle modulation and a method for fabricating the same, which can effectively control a backlight device to a specific angle when outputting light by changing an optical path. Achieve the purpose of multi-directional backlighting. A secondary object of the present invention is to provide an angle modulated backlight device and a method of fabricating the same that utilizes a light source with an optical component to simplify the optical structure to reduce the structural thickness of the backlight device. Another object of the present invention is to provide an angle modulated backlight device and a method of fabricating the same that utilizes a light source in conjunction with an optical component to change an optical path to change the exit angle of the backlight. Another object of the present invention is to provide an angle modulated backlight device and a method of fabricating the same that utilizes a change in the face angle of the optical element to adjust the optical path to increase the angle of illumination of the backlight. The invention provides a backlight device with angle modulation, comprising a light source module, an optical component and a light guide plate, the optical component is disposed on one side of the light source, the light guide plate is disposed on one side of the optical component, and the optical component has a The receiving surface and a light emitting surface. The light source generates a plurality of first light rays having a plurality of first optical paths to the receiving surface of the optical member, the receiving surface receives the first light rays and is refracted, and the optical device generates a plurality of second optical paths according to the first optical paths, and the light is emitted. The surface outputs a plurality of second light rays to the light guide plate according to the second optical paths, and the light guide plate receives the second light rays, and the light guide plate correspondingly outputs the third light rays, and the second light rays and the third light rays are in different phases . Thus, by using the second light to provide a multi-directional light source, the use of the optical structure is reduced by the use of the receiving surface and the light-emitting surface to reduce the thickness of the optical structure by 100103793 Form No. A0101, Page 6 / Total 43 pages, 1002006808-0 201232122 . The present invention further provides a backlight device with an angle modulation, comprising a plurality of light sources and a light guide plate, the light guide plate being disposed on one side of the light sources. The light sources are arranged in an arc on the χγ plane, and the plurality of first rays generated by the light sources have a plurality of optical paths on the XY plane, and the light sources are disposed at positions corresponding to the optical paths, and the first rays are After being incident on the light guide plate, the light guide plate outputs a plurality of second light rays, and the second light rays have the optical paths in the XZ plane. The multi-directional light source is provided by the second light ray, and the use of the optical structure is reduced by the receiving surface and the light-emitting surface to reduce the thickness of the optical structure. In order to give the review board members a better understanding and understanding of the structural features and the efficacies of the present invention, the preferred embodiment and the detailed description are as follows: [Embodiment] [0004] The invention is a backlight device, which is a non-imaging optical system application, that is, regardless of the object and the image, and is replaced by a light source and a receiving surface. The design development of the non-imaged light surface has become mature and complicated. Among them, the optical design method of freely forming the light surface is widely used, mainly because the optical design method has a large design dimension and degree of freedom. When the light enters a two-dimensional secondary optical structure, as shown in FIG. 4A and FIG. 4B, please refer to FIG. 4A and FIG. 4B, which is a preferred embodiment of the present invention. Top view with side view. As shown in FIG. 4A, it is a plan view of the backlight device 50 of the present embodiment, as shown in FIG. 4B, which is a side view of the backlight device 50 of the present embodiment. The backlight device 50 of the present embodiment is a side 100103793 Form No. A0101 Page 7 of 43 1002006808-0 201232122 The light type backlight device comprises a light source module 52, an optical member 54 and a light guide plate 56. The optical member 54 is disposed on one side of the light source module 52, that is, the first side of the optical member 54 faces the light emitting surface of the light source module 52, and the light guide plate 56 is disposed on one of the second sides of the optical member 54. The light source module 52 of the embodiment is provided with a plurality of light sources 522. The light source module 52 can use only one light source as a light source, or add more light sources according to the use requirements, as shown in the attached one, which uses a light-emitting diode ( LED as a light source, and the light emitting diodes (LEDs) are arranged in an arc and located on one side of the optical element (Lens), and the optical element (Lens) is adjacent to the light guide plate (LGP), and the light source is made by the light source arranged in an arc shape The incident area incident on the optical element (Lens) is increased, thereby increasing the light exit angle of the backlight (as shown in Annex II). In addition, the light sources 522 of the embodiment may be arranged in an equidistant manner, for example, the light source module 52 is provided with a plurality of light sources, and the gaps of the light sources are from the optical axis L of one of the XY planes. The 5 cm is outwardly reduced to 1 cm, that is, the closer the light source is to the boundary of the light guide plate 56, the denser the gap. For example, when the plurality of light sources 522 of the present invention are arranged in an arc shape, that is, as shown in FIGS. 4C to 4F, the light source modules 52 of the backlight device 50 are disposed when the plurality of light sources 522 are disposed, the light sources 522. Arranged equidistantly or non-equidistantly. As shown in the fourth C to fourth D, the light sources 52 2 arranged equidistantly maintain an equal spacing distance D1 according to one of the optical directions of the XY plane, and the receiving surface 542 of the optical member 54 has The complex unit normal vector N1 is equidistantly spaced apart by a distance D2 according to the optical axis L. As shown in the fourth E to the fourth F, the light sources 522 arranged in a non-equal distance are spaced apart outward according to the optical axis L of one of the XY planes, such as the distances D3 and D31 of the fourth E diagram. And the receiving surface 542 of the optical member 54 has a plurality of singles 100103793 Form No. A0101 Page 8 / Total 43 pages 1002006808-0 201232122 Bit normal vector N 2 'The unit normal vectors N 2 are spaced outward according to the optical axis L The distance, such as the distance D4, D41 of the fourth F map, wherein the decreasing interval distance of the unit normal vectors N2 can be realized by increasing or decreasing the face angle of the receiving surface. The optical axis L and the unit normal vectors N1, N2 of the fourth to fourth F pictures are simplified indications for exemplification, but the present invention is not limited thereto. The first side of the optical member 54 has a receiving surface 542, and the second side of the optical member 54 has a light emitting surface 544, and the receiving surface 542 and the light emitting surface 544 may be convex or concave, but the invention is not limited thereto. For example, the optical member 54 is an optical lens, such as an unilluminated lens or other secondary optical lens, as shown in Annex 1, to simultaneously receive light and simultaneously output light, in addition to the optical member 54. It can also be an inverse dielectric structure, as shown in Annex II and Annex III. Annex 1 uses the difference in refractive index between air (Air) and lens (Lens), and the light is exposed to the light-tight medium (Lens), and then the light-tight medium (Lens) is incident on the light-diffusing medium (Air). Medium conversion, thus achieving simultaneous reception and simultaneous output, wherein the lens (Lens) is a resin (PMMA), and the light-off medium (Air) is incident on the optically dense medium (Lens) to refract light close to the normal, and the optically dense medium (Lens) Incident to the light-draining medium (Air) causes the light to refract from the normal; Annexes 2 to 3 are the air (Air) and resin (PMMA), that is, the structure of the optical member 54 to adjust the optical path is replaced by air, thus The present optically dense medium (PMMA) is incident on the optical medium (Air), and then incident on the optically dense medium (PMMA) by the optical medium (Air) to achieve synchronous reception and synchronous output. The light guide plate 56 is provided with a plurality of optical microstructures 562, and the optical microstructures 562 are located in the light guide plate 56. The optical microstructures 562 are in the form of 100103793 Form No. A0101 Page 9 of 43 pages 1002006808-0 201232122 Sexual arrangement or asymmetrical arrangement. In addition, the backlight device 50 of the embodiment further includes a reflective layer 564 disposed at the bottom of the light guide plate 56 to reflect the light guided through the bottom of the light guide plate 56. Therefore, the first light rays generated by the first light source 522 to the third light source 526 of the light source module 52 (this embodiment is exemplified by the first light rays 571, 572, and 573 emitted by the third light source 526). The first light rays are received by the optical member 54 and passed through the receiving surface 542 by the optical member 54. The optical member 54 generates a second optical path according to the first optical paths, and then the light emitting surface 544 is used according to the second optical path. Corresponding to output a plurality of second rays to further adjust the optical paths of the first rays, thereby allowing the second rays (in this embodiment, the second rays 574, 575, and 576 corresponding to the first rays 571, 572, and 573 are taken as an example ) is incident on the light guide plate 56. Referring to the attached figure, referring to FIG. 4A, when the receiving surface 542 and the light emitting surface 544 are both convex, the first rays are on a phase (which is an XY plane or an XZ plane) according to the first optics. The path is diffused, and the second light rays are cross-conducted according to the second optical paths on the phase, and the receiving surface 542 increases the face angle according to an optical axis, and the light-emitting surface decreases the face angle according to the light axis. The angle of change between the first ray and the second ray in the XY plane is 40 degrees, and the amount of change of the first ray and the second ray in the XZ plane is increased by only 10 Referring to Annexes 2 and 3, and referring to FIG. 4A together, when the receiving surface 542 and the light-emitting surface 544 are replaced by a convex surface into a concave surface, the first light rays are in a phase (which is an XY plane or an XZ). According to the diffusion of the first optical paths, the second light rays are conducted in parallel according to the second optical paths in the phase, and the receiving surface 542 of the concave surface can increase the light collecting angle, thereby increasing the light output angle, that is, the first a light according to the first The diffusion path angle learning more Form Number A0101 100 103 793 Page 10/43 Total 201 232 122 1002006808-0 large 'and outputs an angle corresponding to the second optical path is also relatively increased. The light guide plate 56 receives the second light rays according to the second optical paths, wherein the optical paths of the second light rays in the XY plane direction are exemplified by the second light rays 574, 575, and 576 shown in FIG. At the same time, as shown in FIG. 4B, the optical paths in the XZ plane direction of the second rays are exemplified by the first light ray 574, because the optical microstructures 562 are used to guide the incident light of the light guide plate 56. Up to one of the light-emitting surfaces of the backlight device 50, thereby outputting a plurality of second light rays upwards (in this embodiment, the third light ray 57 of the fourth B-picture is taken as an example), wherein the optical microstructures 562 guide the second light rays ,by

於本實施例之光學碑結轉562使該些第二光線轉為正交之 第三光線。The optical monument turn 562 in this embodiment converts the second rays into orthogonal third rays.

再者’本實施例之該導光板56之剖面係為矩形,除 此之外,更可為橢圓形、多邊形或不規則柱狀;本實施 例之該些光學微結構562為V形凸出結構,再者,如第五八 圖至第五C圖所示,該些光學微結構562更可為半球形結 構、角錐形結構、V形辑或具光發散切面之幾何結構,且 該些光學微結構562之光發散切面係呈^、於9〇度,此外, 導光板56更可設置一光學膜片,以供設置該些光學微結 構562 ’且,導光板56更可設置光搞合粒子。光學調製元 件54之材料係選自於PMMA、石英、玻璃、pvc、pc或其 他透光性材料,導光板56之材料係選自於PMMA、石英、 玻璃、PVC、PC或其他透光性材料。反射層564之材料係 選自於銘、銀、水銀或其他反射係數大於8〇%之材料。 此外’本實施例之第一光源522至第三光源526更可 如第六A圖與第六b圖所示。第六a圖之光源53係設有一發 光元件532與一透鏡534,透鏡534係設於發光元件532之 100103793 表單編號A0101 第11頁/共43頁 1002006808-0 201232122 出光面,本實施例之透鏡5 3 4係以罩設於發光元件5 3 2作 為舉例說明’發光元件5 3 2係產生第一白光5 3 3,該透鏡 534係接收並放大第一白光533之XZ平面出光角度’以形 成複數第一光線59,該透鏡534將該些第一光線59輸出至 光學件54之接收面542 ;第六B圖之光源53係設有一發光 元件532、一反射座536與一封裝體538,發光元件532設 置於反射座536上’封裝體538覆蓋發光元件532並設於 反射座536上,反射座536係反射第一白光533,以形成 一第二白光537 ’封裝體538傳導並輸出第一白光533與 第二白光537,而形成該些第一光線59,封裝體538將該 些第一光線59輸出至光學件54之接收面542,該其中該第 一白光與該第二白光具不同XZ平面出光角度〇其中第六A 圖與第六B圖之差異在於第六A圖之光源53為SMD式封裝’ 第六B圖之光源5 3為燈泡式封裝。 請參閱第七圖,其為本發明之另一較佳實施例之多 視角視覺的示意圖。如圖所示,本實施例之背光裝置50 對應於一光電裝置(圖未示),且提供多重視角,如第 一視角60、第二視角62、第三視角64,本實施例之背光 裝置50係由光源模組52之複數光源522、524、526產生 複數第一光線581、582、583,經光學件54同步接收第 一光線581、582、583並同步輸出第二光線584、585、 586,並同時依據第一光線581、582、583之入射角度調 整第二光線584、585、586之出光角度,以入射至導光 板56,藉此由導光板56傳導出第二光線584、585、586 ’以供該光電裝置可針對不同視角提供對應之視覺感受 〇 100103793 表單編號A0101 第12頁/共43頁 1002006808-0 201232122 此外,本發明之光源模組52可藉由控制第一光源 522、第二光源524與第三光源526之開啟/關閉,因此’ 本發明更可依使用需求調整光源之開啟/關閉。例如:背 光裝置50於窄視角狀態僅由光源模組52之第二光源524開 啟,其餘光源關閉,以僅供第二視角62之觀賞者使用光 電裝置;背光裝置50於廣視角狀態僅由光源模組52之第 一光源522與第三光源526開啟,第二光源524關閉,以Furthermore, the light guide plate 56 of the present embodiment has a rectangular cross section, and may be elliptical, polygonal or irregularly shaped. The optical microstructures 562 of the embodiment are V-shaped. Structures, further, as shown in FIG. 85 to FIG. 5C, the optical microstructures 562 may be a hemispherical structure, a pyramidal structure, a V-shaped or a divergent section, and these The light divergence section of the optical microstructure 562 is at 9 degrees. In addition, the light guide plate 56 may further be provided with an optical film for providing the optical microstructures 562 'and the light guide plate 56 may be provided with light. Combine particles. The material of the optical modulation element 54 is selected from PMMA, quartz, glass, pvc, pc or other light transmissive materials, and the material of the light guide plate 56 is selected from PMMA, quartz, glass, PVC, PC or other light transmissive materials. . The material of the reflective layer 564 is selected from the group consisting of Ming, silver, mercury or other materials having a reflection coefficient greater than 8%. Further, the first to third light sources 522 to 526 of the present embodiment can be further illustrated as shown in Figs. 6A and 6B. The light source 53 of the sixth figure is provided with a light-emitting element 532 and a lens 534, and the lens 534 is disposed on the light-emitting element 532. 100103793 Form No. A0101 Page 11 / 43 page 1002006808-0 201232122 Light-emitting surface, the lens of this embodiment 5 3 4 is exemplified by the light-emitting element 5 3 2 as an example. 'The light-emitting element 5 3 2 generates a first white light 533, and the lens 534 receives and amplifies the XZ plane light-emitting angle of the first white light 533' to form The first light ray 59 is outputted to the receiving surface 542 of the optical member 54. The light source 53 of the sixth drawing is provided with a light emitting element 532, a reflective seat 536 and a package 538. The light-emitting element 532 is disposed on the reflective seat 536. The package 538 covers the light-emitting element 532 and is disposed on the reflective seat 536. The reflective seat 536 reflects the first white light 533 to form a second white light 537. The package 538 conducts and outputs the first. a first light ray 59 is formed by the white light 533 and the second white light 537, and the package 538 outputs the first light rays 59 to the receiving surface 542 of the optical member 54, wherein the first white light and the second white light Different XZ plane light angles The difference between the sixth picture A and the sixth picture B is that the light source 53 of the sixth A picture is an SMD type package. The light source 53 of the sixth picture B is a bulb type package. Please refer to the seventh figure, which is a schematic diagram of multi-view vision according to another preferred embodiment of the present invention. As shown in the figure, the backlight device 50 of the present embodiment corresponds to an optoelectronic device (not shown), and provides multiple viewing angles, such as a first viewing angle 60, a second viewing angle 62, and a third viewing angle 64. The backlight device of this embodiment The plurality of first light rays 581, 582, and 583 are generated by the plurality of light sources 522, 524, and 526 of the light source module 52. The first light rays 581, 582, and 583 are synchronously received by the optical member 54 and the second light rays 584, 585 are synchronously output. 586, and simultaneously adjusting the light exit angle of the second light ray 584, 585, 586 according to the incident angle of the first light ray 581, 582, 583 to be incident on the light guide plate 56, whereby the second light ray 584, 585 is conducted by the light guide plate 56. 586 ', for the optoelectronic device to provide a corresponding visual experience for different viewing angles 〇100103793 Form No. A0101 Page 12 / Total 43 pages 1002006808-0 201232122 In addition, the light source module 52 of the present invention can control the first light source 522 The second light source 524 and the third light source 526 are turned on/off, so that the invention can adjust the opening/closing of the light source according to the needs of use. For example, the backlight device 50 is only turned on by the second light source 524 of the light source module 52 in a narrow viewing angle state, and the remaining light sources are turned off to use the photoelectric device only for the viewer of the second viewing angle 62; the backlight device 50 is only used by the light source in the wide viewing angle state. The first light source 522 and the third light source 526 of the module 52 are turned on, and the second light source 524 is turned off to

僅供第一視角60與第三視角64之觀賞者使用光電裝置; 且背光裝置5〇於多視角狀態由光源模組52將第一光源522 、第二光源5與第::三·.先源526通通開啟,以供多視角之 觀賞者使用光電裝置,也就是提供第一視角60、第二視 角62、第三視角64之觀賞者皆可使用禾電裝置。 以上所述’本發明之背光裝置50雀藉由光學件54搭 配導光板56向上導出光源所產生之光線,不僅提供多視 角視覺,更滅少光學結構之厚度,使應用本發明背光裝 置50之光電裝置可更加輕薄化,且出光效率有效地改善 出光效率,同時提供多視角之視覺感受。The viewers of only the first viewing angle 60 and the third viewing angle 64 use the optoelectronic device; and the backlight device 5 is in the multi-view state, and the first light source 522 and the second light source 5 are separated by the light source module 52: The source 526 is turned on for the viewer of the multi-view to use the optoelectronic device, that is, the viewer providing the first view 60, the second view 62, and the third view 64 can use the device. The backlight device 50 of the present invention extracts the light generated by the light source by the optical member 54 and the light guide plate 56, and not only provides multi-view vision, but also reduces the thickness of the optical structure, so that the backlight device 50 of the present invention is applied. The photoelectric device can be made lighter and thinner, and the light-emitting efficiency can effectively improve the light-emitting efficiency while providing a multi-view visual experience.

請參間第八圖’其為本發明之另—較佳實施例之俯 視圖。如圖所示’本實施例之背光裝㈣係以複數光源 模組72、73、複數光學件74、75與複數導光板76、78作 為舉例說明,其中第一光源模組72包含—第一光源722、 100103793 -第二光源722與第一光源722,第二光源模組73包含 一第一光源732第—光源732與一第三光源732 ;第 -光學件74包含-光學件742、-光學件744,且光學件 744之一第一側具有一接收面746,光學件744之一第二 側具有一接收面748 ;第二光學件75包含一光學件752、 表單編號A0101 第13頁/共43頁 1002006808-0 201232122 一光學件754,且光學件754之一第一侧具有一接收面 756,光學件754之一第二侧具有一接收面;第一導 光板76設有複數光學微結構762 ’第二導光板78設有複數 光學微結構782。 第一光源模組72與第二光源模組73所產生第一光線 係以第一光線771、772、773、791、792、793作為舉 例,第一光線經第一光學件74與第二光學件75調整後即 輸出第二光線774、775、776、794、795、796。由於 第一光線至第二光線之調製方式係如前一實施例所示’ 因此本實施例不再贅述。 由上述可知,本發明更可應用於單片筹光板或多片 導光板之側光式背光裝置,籍此提供薄型化的背光裝置 ,且可應用於多導光板設計之背光設計,但本發明並不 限於此,本發明更可應用於直下式背光裝置。 以上所述,本發明之光源係以直線排列,但本發明 並不限於此,本發明之光源更可採用弧形排列,其如第 九A圖與第九B圖所示。 請參閱第九A圖與第九B圖,其為本發明之另—較佳 實施例之俯視圖與侧視圖。其中第八圖與第九A圖之差異 在於第八圖之背光裝置70係透過光源模組72搭配光學件 74提供具角度調制之出射光,第九A圖之背光震置8〇係利 用光源模組82提供弧形排列之光源,以提供可角度調制 之出射光。如第九A圖所示,背光裝置80係包含光源模組 82與導光板86,其中光源模組82包含一第—光源822、 一第一光源824、一第二光源826、一第四光源828斑·一 第五光源830 ’導光板86設有複數光學微結構862。此外 100103793 表單編號A0101 第14頁/共43頁 1002006808-0 201232122 ’如第七β圖所示’導光板86之底部更設有一反射層δ64 〇 光源模組82係藉由第一光源822、第二光源824、第 三光源826、第四光源828與第五光源830於ΧΥ平面上呈 弧形排列,以在ΧΥ平面上提供多角度之出射光,其中光 源模組82係依據一曲率呈弧狀排列,且該曲率與該光源 模組82之出光角度呈反比,也就是曲率越小,出光角度 越大,反之,曲率越大,出光角度越小。因此光源模組 82可如上述實施例供導光板86依據複數收光角度接收光 源模組82之出射光,並痛光緣模組g2之出射光於χγ平面 上的光學路經轉為XZ平面上的光學路徑,因此導光故86 依據複數XZ平面出光角度輸出背光源。此外,光源模組 82之出射光於該XY平面上交又傳導,導光板86之出射光 於該xz平面上交叉傳導,且光源模組82之出射光於該χγ 平面上的角度與導光板86之出射光於該χζ平面上的角度 相差4 0度。 明參閱第十Α圖离第十Β圖,其為本發明之另一較佳 實施例之不意圖。莫中第九A圖至第,九B圖與第十A圖至第 十B圖之差異在於第十a圖至第十B圖之背光裝置⑽更設置 一光學件84於光源模組82與導光板86之間,以進一步調 正背光裝置80之光路’其中光學件84具有__接收面842與 出光面844,接收面842面向光源模組82 ,出光面844 面向導光板86。*於光學件84之光路調製已揭露於第四A 圖與第四B圖之實施例中’因此本實施例不再贅述。 100103793 3再者’如第十-圖所示,其為本發明之另一實施例 ,先裝置9G,其中光源模組92、先學件94與導光板結 1002006808-0 塢鱿A0101 第15頁/共43頁 201232122 合為一體成形之結構,其中光學件94係包含光密介質942 與光疏介質944 ,而光疏介質944緊配設置導光板96, 使光源模組92所分布之光場擴散,本實施例之二介質係 以PMMA樹脂與空氣作為舉例,本發明並不限於,光疏介 質944更可為水,光密介質942更可為PVC、PC等透光性 樹脂。 綜上所述,本發明為一種具角度調制之背光裝置, 其利用光學件接收該些第一光線而藉由接收面依據複數 第一光學路徑接收該些第一光線,並經由出光面依據複 數第二光學路徑輸出複數第二光線,因此本發明即藉由 光學件調整該些光學路徑,因而藉由該些第二光學路徑 使該些第二光線入射至導光板,以供導光板對應輸出複 數第三光線,並呈現為多角線背光源。本發明藉由該些 第二光線提供多方向性光源,以及藉由光學件減少光學 結構的使用,以減少光學結構的厚度。此外,本發明更 可藉由複數光源於XY平面上呈弧形排列,藉此替代光學 件於XY平面上的光學角度調制,因而減少光學結構的使 用,以減少光學結構的厚度。 雖然本發明已以較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍内,當可作些許之更動與潤飾,因此本發明 之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 [0005] 第一A圖為習知視覺環境之示意圖; 第一B圖為習知視覺環境之示意圖; 100103793 第二A圖為習知光電裝置的示意圖; 表單編號A0101 第16頁/共43頁 1002006808-0 201232122 第二B圖為習知光電裝置的示意圖; 第一圖為習知光電裝置的侧視圖; 第四A圖為本發明之一較佳實施例之俯視圖; 第四B圖為本發明之一較佳實施例之側視圖; 第四C圖為本發明之另—較佳實施例之光源排列之示意圖 第四D圖為本發明之另一較佳實施例之法向量排列之示意 圖; 第四E圖為本發明之另一較佳實施例之光源排列之示意圖 〇 ; 第四F圖為本發明之另一較佳實施例之法向量排列之示意 SJ .:::·- . ..暑導请: .議 ® 震ϊ /f 第五A圖為本發明之另一較佳實施例‘之導光板之示意圖; 第五B圖為本發明之另一較佳實施例之導光板之示意圖; 第五C圖為本發明之另一較佳實施例之;毒光板之示意圖; 第六A圖為本發明之另一較植實施例之光源之示意圖; 第六B圖為本發明之另一較佳實施例之光源之示意圖; 第七圖為本發明之男一較佳實施例之多視角視覺的示意 圖; 第八圖為本發明之另一較佳實施例之俯視圖; 第九A圖為本發明之另一較佳實施例之俯視圖; 第九B圖為本發明之另一較佳實施例之側視圖; 第十A圖為本發明之另一較佳實施例之俯視圖; 第十B圖為本發明之另一較佳實施例之侧視圖;以及 第十一圖為本發明之另一較佳實施例之俯視圖。 【主要元件符號說明】 100103793 表單編號 A0101 第 17 頁/共 43 頁 1002006808-0 201232122 [0006] 10 環境 12 燈源 14 顯示器 142 光場 15 使用者 1 52 視覺感受 16 使用者 162 視覺感受 17 使用者 172 視覺感受 20 環境 22 燈泡 24 顯示器 242 光場 26 使用者 252 視覺感受 262 視覺感受 272 視覺感受 30 顯示裝置 31 第一偏振片 32 第二偏振片 33 液晶面板 34 液晶層 40 光電裝置 41 反射片 42 第一光源 100103793 表單編號A0101 第18頁/共43頁 1002006808-0 201232122 Ο 第一光線 第一輸出光 第一導光板 擴散板 第二光源 第二光線 第二輸出光 第二導光板 逆菱鏡 液晶面板 背光裝置 光源模組 第一光源 第二光源 第三光源 光源 發光元件 第一白光 透鏡 反射座 第二白光 封裝體 光學件 接收面 出光面 導光板 100103793 表單編號Α0101 第19頁/共43頁 1002006808-0 201232122 562 光學微結構 564 反射層 571 第一光線 572 第一光線 573 第一光線 574 第二光線 575 第二光線 576 第二光線 581 第一光線 582 第一光線 583 第一光線 584 第二光線 585 第二光線 586 第二光線 59 第一光線 60 第一視角 62 第二視角 64 第三視角 70 背光裝置 72 光源模組 722 第一光源 724 第二光源 726 第三光源 73 光源模組 732 第一光源 734 第二光源 表單編號A0101 100103793 第20頁/共43頁 1002006808-0 201232122 ❹ 第三光源 光學件 接收面 出光面 光學件 光學件 光學件 導光板 光學微結構 第一光線 第一光線 第一光線 第二光線 第二光線 第二光線 導光板 導光板 光學微結構 第一光線 第一光線 第一光線 第二光線 第二光線 第二光線 背光裝置 光源模組 100103793 表單編號A0101 第21頁/共43頁 1002006808-0 201232122 822 第一光源 824 第二光源 826 第三光源 828 第四光源 830 第五光源 84 光學件 842 接收面 844 出光面 86 導光板 862 光學微結構 864 反射層 90 背光裝置 92 光源模組 94 光學件 942 光密介質 944 光疏介質 96 導光板 100103793 表單編號A0101 第22頁/共43頁 1002006808-0Please refer to the eighth drawing, which is a further view of the preferred embodiment of the present invention. As shown in the figure, the backlight assembly (four) of the present embodiment is exemplified by a plurality of light source modules 72, 73, a plurality of optical members 74, 75, and a plurality of light guide plates 76, 78, wherein the first light source module 72 includes - first The light source 722, 100103793 - the second light source 722 and the first light source 722, the second light source module 73 includes a first light source 732 - a light source 732 and a third light source 732; the first optical member 74 comprises - an optical member 742, - The optical member 744, and one of the first sides of the optical member 744 has a receiving surface 746, and the second side of the optical member 744 has a receiving surface 748; the second optical member 75 includes an optical member 752, Form No. A0101, page 13 A total of 43 pages 1002006808-0 201232122 an optical member 754, and a first side of the optical member 754 has a receiving surface 756, and a second side of the optical member 754 has a receiving surface; the first light guiding plate 76 is provided with a plurality of optical The microstructure 762 'the second light guide plate 78 is provided with a plurality of optical microstructures 782. The first light source generated by the first light source module 72 and the second light source module 73 is exemplified by the first light rays 771, 772, 773, 791, 792, and 793, and the first light passes through the first optical member 74 and the second optical The second light 774, 775, 776, 794, 795, 796 is output after the adjustment of the member 75. Since the modulation method of the first light to the second light is as shown in the previous embodiment, the present embodiment will not be described again. It can be seen from the above that the present invention is more applicable to an edge-lit backlight device of a single-plate phosphor plate or a plurality of light guide plates, thereby providing a thinned backlight device and applicable to a backlight design of a multi-light guide plate design, but the present invention Without being limited thereto, the present invention is more applicable to a direct type backlight device. As described above, the light sources of the present invention are arranged in a straight line, but the present invention is not limited thereto, and the light source of the present invention can be further arranged in an arc shape as shown in Figs. 9A and IXB. Please refer to Figures 9A and IXB, which are top and side views of another preferred embodiment of the present invention. The difference between the eighth figure and the ninth A is that the backlight device 70 of the eighth figure provides the angle-modulated outgoing light through the light source module 72 and the optical member 74, and the backlight of the ninth A is used to illuminate the light. Module 82 provides a curved array of light sources to provide angularly modulated exit light. As shown in FIG. 9A, the backlight device 80 includes a light source module 82 and a light guide plate 86. The light source module 82 includes a first light source 822, a first light source 824, a second light source 826, and a fourth light source. 828. A fifth light source 830 'The light guide plate 86 is provided with a plurality of optical microstructures 862. In addition, 100103793 Form No. A0101 Page 14 / Total 43 Page 1002006808-0 201232122 'As shown in the seventh β diagram, the bottom of the light guide plate 86 is further provided with a reflective layer δ64. The light source module 82 is provided by the first light source 822, The two light sources 824, the third light source 826, the fourth light source 828, and the fifth light source 830 are arranged in an arc shape on the pupil plane to provide multi-angle outgoing light on the pupil plane, wherein the light source module 82 is arc according to a curvature. The shape is arranged, and the curvature is inversely proportional to the light exit angle of the light source module 82, that is, the smaller the curvature, the larger the light exit angle, and conversely, the larger the curvature, the smaller the light exit angle. Therefore, the light source module 82 can receive the light emitted by the light source module 82 according to the plurality of light receiving angles, and the optical path of the light edge module g2 on the χγ plane is converted into the XZ plane. The upper optical path, therefore the light guide 86 outputs the backlight according to the complex XZ plane exit angle. In addition, the light emitted from the light source module 82 is transmitted on the XY plane, and the light emitted from the light guide plate 86 is cross-conducted on the xz plane, and the angle of the light source module 82 on the χ γ plane is opposite to the light guide plate. The angle of the exit light of 86 on the pupil plane differs by 40 degrees. Referring to the tenth drawing from the tenth drawing, it is not intended to be another preferred embodiment of the present invention. The difference between the ninth A to the ninth, the ninth and the ninth to the tenth, and the ninth to tenth, the backlight device (10) is further provided with an optical member 84 in the light source module 82. Between the light guide plates 86, the light path of the backlight device 80 is further adjusted. The optical member 84 has a __receiving surface 842 and a light-emitting surface 844. The receiving surface 842 faces the light source module 82, and the light-emitting surface 844 faces the light guide plate 86. * The optical path modulation of the optical member 84 has been disclosed in the embodiments of the fourth A and fourth B drawings. Therefore, the present embodiment will not be described again. 100103793 3 Further, as shown in the tenth-figure, it is another embodiment of the present invention, the first device 9G, wherein the light source module 92, the pre-learning member 94 and the light guide plate 1002006808-0 Dock A0101 page 15 A total of 43 pages 201232122 are integrally formed structures, wherein the optical member 94 includes a light-tight medium 942 and a light-diffusing medium 944, and the light-dissipating medium 944 is closely arranged with the light guide plate 96 to distribute the light field of the light source module 92. Diffusion, the second medium of the embodiment is exemplified by PMMA resin and air. The present invention is not limited to the light permeable medium 944, and the light permeable medium 942 may be a light transmissive resin such as PVC or PC. In summary, the present invention is an angle-modulated backlight device that receives the first light rays by the optical member and receives the first light rays according to the plurality of first optical paths by the receiving surface, and according to the plurality of light-emitting surfaces. The second optical path outputs a plurality of second light rays. Therefore, the optical path is adjusted by the optical member, so that the second light rays are incident on the light guide plate by the second optical paths for corresponding output of the light guide plate. The third light is complex and appears as a polygonal backlight. The present invention provides a multi-directional light source by the second light, and reduces the use of the optical structure by the optical member to reduce the thickness of the optical structure. Furthermore, the present invention can be arranged in an arc shape on the XY plane by a plurality of light sources, thereby replacing the optical angle modulation of the optical member on the XY plane, thereby reducing the use of the optical structure to reduce the thickness of the optical structure. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0005] The first A diagram is a schematic diagram of a conventional visual environment; the first B diagram is a schematic diagram of a conventional visual environment; 100103793 A second diagram is a schematic diagram of a conventional optoelectronic device; Form No. A0101 16B / 43 pages 1002006808-0 201232122 The second B is a schematic view of a conventional optoelectronic device; the first view is a side view of a conventional optoelectronic device; the fourth A is a top view of a preferred embodiment of the present invention; 4B is a side view of a preferred embodiment of the present invention; FIG. 4C is a schematic view of a light source arrangement according to another preferred embodiment of the present invention. FIG. 4D is another preferred embodiment of the present invention. FIG. 4 is a schematic diagram of a light source arrangement according to another preferred embodiment of the present invention; and FIG. 4F is a schematic diagram of a normal vector arrangement according to another preferred embodiment of the present invention. :::·- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A schematic view of a light guide plate of a preferred embodiment; a fifth C diagram is another comparison of the present invention The embodiment of the present invention is a schematic diagram of a light source according to another embodiment of the present invention; and the sixth diagram is a schematic diagram of a light source according to another preferred embodiment of the present invention; FIG. 8 is a plan view of another preferred embodiment of the present invention; FIG. 9 is a plan view of another preferred embodiment of the present invention; 9B is a side view of another preferred embodiment of the present invention; FIG. 10A is a plan view of another preferred embodiment of the present invention; Side view; and Figure 11 is a plan view of another preferred embodiment of the present invention. [Main component symbol description] 100103793 Form No. A0101 Page 17 of 43 1002006808-0 201232122 [0006] 10 Environment 12 Light source 14 Display 142 Light field 15 User 1 52 Visual experience 16 User 162 Visual experience 17 User 172 Visual experience 20 Environment 22 Light bulb 24 Display 242 Light field 26 User 252 Visual experience 262 Visual experience 272 Visual experience 30 Display device 31 First polarizing plate 32 Second polarizing plate 33 Liquid crystal panel 34 Liquid crystal layer 40 Photoelectric device 41 Reflecting sheet 42 First Light Source 100103793 Form No. A0101 Page 18/Total 43 Page 1002006808-0 201232122 Ο First Light First Output Light First Light Guide Plate Diffuser Plate Second Light Source Second Light Second Output Light Second Light Guide Reverse Mirror Liquid Crystal Panel backlight device light source module first light source second light source third light source light source light element first white light lens reflection seat second white light package optical member receiving surface light surface light guide plate 100103793 Form No. 1010101 Page 19 / Total 43 Page 1002006808- 0 201232122 562 Optical microstructure 564 Reflective layer 571 First light 572 a ray 573 a first ray 574 a second ray 575 a second ray 576 a second ray 581 a first ray 582 a first ray 583 a first ray 584 a second ray 585 a second ray 586 a second ray 59 a first ray 60 a first ray 62 second viewing angle 64 third viewing angle 70 backlight device 72 light source module 722 first light source 724 second light source 726 third light source 73 light source module 732 first light source 734 second light source form number A0101 100103793 page 20 / total 43 pages 1002006808-0 201232122 ❹ Third light source optics receiving surface light-emitting surface optics optics optical member light guide plate optical microstructure first light first light first light second light second light second light guide light guide light plate optical microstructure First light first light first light second light second light second light backlight device light source module 100103793 Form No. A0101 Page 21 / Total 43 pages 1002006808-0 201232122 822 First light source 824 Second light source 826 Third light source 828 fourth light source 830 fifth light source 84 optics 842 receiving surface 844 light emitting surface 86 guide The optical plate 862 reflecting layer 90 microstructure 864 92 backlight 94 light source module 942 of the optical element 944 optically dense medium optically thinner medium 96 on the light guide plate 100 103 793 22 Form Number A0101 / 43 Total 1002006808-0

Claims (1)

201232122 七、申請專利範圍·· 1 . 一種具角度調制之背光裝置,其包含: 一光源模組,其產生複數第一光線,該些第一光線位於一 第一相位並具有複數第一光學路徑; 一光學件,其設於該光源模組之一側,該光學件具有一接 收面與一出光面,該接收面同步接收該些第一光線,該光 學件依據該些第一光學路徑產生複數第二光學路徑,該出 光面依據該些第二光學路徑對應輸出複數第二光線;以及 一導光板,設置於該出光面之一第二側,該導光板接收該 Ο 些第二光線並對應輸出該些第三光線,該些第三光線位於 一第二相位。 2 .如申請專利範圍第1項所述之背光裝置,其中該光源模組 包含複數光源,該些光源呈等距排列或非等距排列。 3 .如申請專利範圍第2項所述之背光裝置,其中呈等距排列 之該些光源係依據X Y平面之一光种向外維持相等間隔距離 〇 4.如申請專利範圍第3項所述之背光裝置,其中該光學件之 Ο ^ 接收面具複數單位法向量,該些單位法向量依據該光軸呈 相等間隔距離 5 .如申請專利範圍第2項所述之背光裝置,其中呈非等距排 列之該些光源係依據XY平面之一光軸向外遞減間隔距離。 6.如申請專利範圍第5項所述之背光裝置,其中該光學件之 該接收面具複數單位法向量,該些單位法向量依據該光軸 向外遞減間隔距離。 7 .如申請專利範圍第2項所述之背光裝置,其中該些光源係 100103793 表單編號A0101 第23頁/共43頁 1002006808-0 201232122 依據χγ平面呈弧狀排列。 8 .如申請專利範圍第1項所述之背光裝置,其中該第一相位 為一ΧΥ平面或一 ΧΖ平面。 9.如申請專利範圍第8項所述之背光裝置,其中當該第一相 位為該ΧΥ平面時,該些第一光線於該^平面上依據該些 第一光學路徑擴散,該些第二光線於該^平面上依據該些 第二光學路徑交又傳導或平行傳導。 10 .如申請專利範圍第9項所述之背光裝置,其中當該些第二 光線於該ΧΥ平面上依據該些第二光學路徑交又傳導時,該 光學件之該接收面與該出光面係依據該巧平面分別呈一凸 Φ 〇 , r 11 ·如申請專利範圍第10項所述之背光裝置,其中該接收面於 該χγ平面上依據一光轴向外遞增切面角,該出光面依據該 光軸向外遞減切面角。 12 .如申請專利範圍第11項所述之背光裝置,其中該些第一光 線與該些第二光線於該XY平_上乏角度變也量相差4 〇度 0 13.如申請專利範圍第9項所述芝背光裝置,其中當該些第二 光線於該XY平面上依據該些第二光學路徑平行傳導時,該 光學件之該接收面與該出光面係依據該^平面分別呈一凹 面。 14 . 15 如申請專利範圍第13項所述之背域置,其巾該接收面於 该XY平面上依據一光軸向外遞減切面角,該出光面依據該 光軸向外遞增切面角。 如申請專利範圍第8項所述之背光裝置,其中當該第一相 100103793 位為该XZ平面時,該些第一光線於該以平面上依據該些 表單編號A0101 第24頁/共43頁 1002006808-0 201232122 第一光學路徑擴散,該些第二光線於該ΧΖ平面上依據該些 第二光學路徑交叉傳導或平行傳導。 16 ·如申請專利範圍第15項所述之背光裝置,其中當該些第二 光線於該ΧΖ平面上依據該些第二光學路徑交叉傳導時,該 光學件之該接收面與該出光面係依據該χζ平面分別呈一凸 面,當該些第二光線於該ΧΖ平面上依據該些第二光學路徑 平行傳導時,該光學件之該接收面與該出光面係依據該ΧΖ 平面分別呈一凹面。 17 .如申請專利範圍第16項所述之背光裝置,其中當該接收面 Ο201232122 VII. Patent Application Range 1. A backlight device with angle modulation, comprising: a light source module, which generates a plurality of first rays, wherein the first rays are located in a first phase and have a plurality of first optical paths An optical component is disposed on one side of the light source module, the optical component has a receiving surface and a light emitting surface, and the receiving surface synchronously receives the first light rays, and the optical component is generated according to the first optical paths a plurality of second optical paths, the light-emitting surface correspondingly outputting the plurality of second light rays according to the second optical paths; and a light guide plate disposed on a second side of the light-emitting surface, the light guide plate receiving the second light rays and Correspondingly outputting the third rays, the third rays are located in a second phase. 2. The backlight device of claim 1, wherein the light source module comprises a plurality of light sources, the light sources being arranged equidistantly or non-equidistantly. 3. The backlight device of claim 2, wherein the light sources arranged in an equidistant manner maintain an equal spacing distance 〇4 according to one of the XY planes. As described in claim 3 a backlight device, wherein the optical member receives a mask complex unit normal vector, and the unit normal vectors are equally spaced apart according to the optical axis. The backlight device according to claim 2, wherein the device is non-equal The light sources arranged in a distance are spaced apart from each other according to one of the XY planes. 6. The backlight device of claim 5, wherein the receiving member of the optical member has a plurality of unit normal vectors, the unit normal vectors decreasing the separation distance outward according to the optical axis. 7. The backlight device of claim 2, wherein the light sources are 100103793 Form No. A0101 Page 23 of 43 1002006808-0 201232122 Arranged in an arc according to the χγ plane. 8. The backlight device of claim 1, wherein the first phase is a meandering plane or a meandering plane. 9. The backlight device of claim 8, wherein when the first phase is the pupil plane, the first rays are diffused according to the first optical paths on the plane, and the second The light is conducted on the plane of the second optical path according to the second optical path. The backlight device of claim 9, wherein the receiving surface and the light emitting surface of the optical member are opposite when the second light rays are conducted on the pupil plane according to the second optical paths. The backlight device according to claim 10, wherein the receiving surface is increased in face angle according to an optical axis on the χ γ plane, the illuminating surface The tangent angle is reduced externally according to the optical axis. 12. The backlight device of claim 11, wherein the first light rays and the second light rays are different in the XY plane by an angle of 4 degrees. In the ninth backlight device, the receiving surface and the light emitting surface of the optical member are respectively formed according to the plane when the second light rays are parallelly guided according to the second optical paths on the XY plane. Concave. 14. The backing region of claim 13, wherein the receiving surface of the towel has a decreasing tangent angle according to an optical axis on the XY plane, and the light emitting surface increases the cutting angle according to the optical axis. The backlight device of claim 8, wherein when the first phase 100103793 is the XZ plane, the first rays are on the plane according to the form numbers A0101, page 24/total 43 pages. 1002006808-0 201232122 The first optical path is diffused, and the second light rays are conductively conducted in parallel or parallel according to the second optical paths. The backlight device of claim 15, wherein the receiving surface and the light emitting surface of the optical member are crossed when the second light rays are cross-conducted according to the second optical paths on the pupil plane The receiving surface and the light emitting surface of the optical member are respectively formed according to the plane of the pupil, when the second light rays are respectively guided in parallel according to the second optical paths. Concave. 17. The backlight device of claim 16, wherein the receiving surface is 與該出光面係依據該ΧΖ平面分別呈一凸面時,該接收面於 該ΧΥ平面上依據一光軸向外遞增切面角,該出光面依據該 光轴向外遞減切面角。 ν:|5* I I Γή-Κ ?-邊-..Ά 〆-广ρ Ά-,.寧: 麵i,替严g':j 18 ·如申請專利範圍第17項所述之背光裝置,其中該些第一光 線與該些第二光線於該XZ平面上的角度變化量增加1〇度 〇 19 .如申請專利範圍第16項所述之背光裝置’其中當該接收面 與該出光面係依據該XZ平面分匈呈一凹.面時,該接收面於 該XY平面上依據一光軸向外遽減切面角,該出光面依據該 光軸向外遞增切面角。 2〇 .如申請專利範圍第19項所述之背光裝置,其中該些第—光 線與該些第二光線於該XZ平面上的角度變化量增加1〇度 21 . —種具角度調制之背光裝置,其包含: 複數光源,其依據一χγ平面呈派狀排列’並產生複數第— 光線,該些第一光線於該χγ平面上具複數光學路徑,該此 光源之設置位置對應於該些光學路徑;以及 100103793 表單編號A0101 第25頁/共43頁 1002006808-0 201232122 一導光板,設置於該些光源之一側,該導光板依據該些光 學路徑接收該些第一光線,並對應輸出複數第二光線,該 些第二光線位於一 xz平面上並具該些光學路徑。 22 .如申請專利範圍第21項所述之背光裝置,其中該些光源係 於XY平面呈等距排列或非等距排列。 23 .如申請專利範圍第22項所述之背光裝置,其中呈等距排列 之該些光源係依據一光軸向外維持相等間隔距離。 24 .如申請專利範圍第22項所述之背光裝置,其中呈非等距排 列之該些光源係依據一光軸向外遞減間隔距離。 25 .如申請專利範圍第21項所述之背光裝置,其中該些第一光 線於該XY平面上交叉傳導,該些第二光線於該XZ平面上 交叉傳導。 26 .如申請專利範圍第25項所述之背光裝置,其中該些第一光 線於該XY平面上的角度與該些第二光線於該XZ平面上的 角度相差40度。 100103793 表單編號A0101 第26頁/共43頁 1002006808-0When the light-emitting surface is convex according to the plane of the pupil, the receiving surface increases the tangent angle according to an optical axis on the plane of the pupil, and the light-emitting surface decreases the tangent angle according to the optical axis. ν:|5* II Γή-Κ ?-边-..Ά 〆-广ρ Ά-,.Ning: face i, for the strict g': j 18 · as claimed in claim 17 of the backlight device, The amount of change in the angle between the first ray and the second ray in the XZ plane is increased by 1 degree 〇19. The backlight device of claim 16 wherein the receiving surface and the illuminating surface According to the XZ plane, when the HZ is a concave surface, the receiving surface reduces the tangent angle according to an optical axis on the XY plane, and the light emitting surface increases the tangent angle according to the optical axis. The backlight device of claim 19, wherein the angles of the first rays and the second rays on the XZ plane are increased by 1 degree 21 . The device includes: a plurality of light sources arranged in a χ-plane according to a χ plane and generating a plurality of first rays, wherein the first rays have a plurality of optical paths on the χ γ plane, and the set positions of the light sources correspond to the light rays Optical path; and 100103793 Form No. A0101 Page 25 of 43 1002006808-0 201232122 A light guide plate is disposed on one side of the light sources, and the light guide plate receives the first light rays according to the optical paths, and corresponding outputs A plurality of second rays are located on an xz plane and have the optical paths. The backlight device of claim 21, wherein the light sources are arranged equidistantly or non-equidistantly in the XY plane. The backlight device of claim 22, wherein the light sources arranged equidistantly maintain an equally spaced distance in accordance with an optical axis. The backlight device of claim 22, wherein the light sources that are non-equidistantly arranged are spaced apart from each other by an optical axis. The backlight device of claim 21, wherein the first light lines are cross-conducted in the XY plane, and the second light rays are cross-conducted in the XZ plane. The backlight device of claim 25, wherein an angle of the first light rays on the XY plane is different from an angle of the second light rays on the XZ plane by 40 degrees. 100103793 Form No. A0101 Page 26 of 43 1002006808-0
TW100103793A 2011-01-31 2011-01-31 Backlight device with angle adjustment TW201232122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100103793A TW201232122A (en) 2011-01-31 2011-01-31 Backlight device with angle adjustment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100103793A TW201232122A (en) 2011-01-31 2011-01-31 Backlight device with angle adjustment

Publications (1)

Publication Number Publication Date
TW201232122A true TW201232122A (en) 2012-08-01

Family

ID=47069504

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103793A TW201232122A (en) 2011-01-31 2011-01-31 Backlight device with angle adjustment

Country Status (1)

Country Link
TW (1) TW201232122A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI573123B (en) * 2015-11-27 2017-03-01 揚昇照明股份有限公司 Backlight module, driving method therefore, and display apparatus having the backlight module
US10429572B2 (en) 2016-05-12 2019-10-01 Coretronic Corporation Light source module and display device
US10459260B2 (en) 2016-01-15 2019-10-29 Boe Technology Group Co., Ltd. Backlight module, display device and driving method thereof
CN111176016A (en) * 2020-01-07 2020-05-19 京东方科技集团股份有限公司 Backlight module and display device
US10782466B2 (en) 2016-03-16 2020-09-22 Coretronic Corporation Backlight module and display apparatus
TWI709798B (en) * 2019-08-14 2020-11-11 中強光電股份有限公司 Electrically controllable viewing angle switch device and display apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI573123B (en) * 2015-11-27 2017-03-01 揚昇照明股份有限公司 Backlight module, driving method therefore, and display apparatus having the backlight module
US10036846B2 (en) 2015-11-27 2018-07-31 Young Lighting Technology Inc. Backlight module, driving method thereof, and display apparatus using the backlight module
US10459260B2 (en) 2016-01-15 2019-10-29 Boe Technology Group Co., Ltd. Backlight module, display device and driving method thereof
US10816834B2 (en) 2016-01-15 2020-10-27 Boe Technology Group Co., Ltd. Backlight module, display device and driving method thereof
US10782466B2 (en) 2016-03-16 2020-09-22 Coretronic Corporation Backlight module and display apparatus
US10429572B2 (en) 2016-05-12 2019-10-01 Coretronic Corporation Light source module and display device
TWI709798B (en) * 2019-08-14 2020-11-11 中強光電股份有限公司 Electrically controllable viewing angle switch device and display apparatus
US11709385B2 (en) 2019-08-14 2023-07-25 Coretronic Corporation Electronically-controlled viewing angle switching device and display device
CN111176016A (en) * 2020-01-07 2020-05-19 京东方科技集团股份有限公司 Backlight module and display device
CN111176016B (en) * 2020-01-07 2022-10-18 京东方科技集团股份有限公司 Backlight module and display device

Similar Documents

Publication Publication Date Title
US10393941B2 (en) Display with reflective spatial light modulator and a film-based lightguide frontlight folded behind the modulator to receive light from a light source positioned on an electrical display connector
US9557473B2 (en) Reflective spatial light modulator display with stacked light guides and method
CA2796515C (en) Front illumination device comprising a film-based lightguide
US8950902B2 (en) Light emitting device with light mixing within a film
US7255456B2 (en) Direct backlight module
EP2558775B1 (en) Illumination device comprising a film-based lightguide
RU2624598C2 (en) Backlight device
JP2016505870A (en) Reflective or transflective autostereoscopic display with reduced banding effect
WO2007020966A1 (en) Planar illuminating device
TW201232122A (en) Backlight device with angle adjustment
WO2017164117A1 (en) Display device and head mounted display
WO2019090139A1 (en) Light emitting device with film-based lightguide and added reflecting surfaces
US10073207B2 (en) Display device having liquid crystal layer sealed between sealing member, first substrate, and second substrate
TWI428639B (en) Diffuser plate, backlight unit and liquid crystal display having the same
US20230288724A1 (en) Aerial floating image information display system and light source apparatus used in the same
TW201245631A (en) An illuminating device without a light guide board
KR20170015300A (en) Temporally multiplexing backlight with asymmetric turning film
JP2010123551A (en) Surface light source and liquid crystal display device
EP2553521A2 (en) Enhanced viewing brightness for surface display
CN213457973U (en) Image forming apparatus with a plurality of image forming units
JP2020013067A (en) Optical structure and display device
US20110037923A1 (en) Light condensing film, backlight module and liquid crystal display
Käläntär 32.4 L: Late‐News Paper: Frontlighting Reflective Display and Enhancing Image using Optical Noise Filtering‐Multilayer LGP
JP2004227856A (en) Surface light-emitting device
TWM324224U (en) Flat panel display device and backlight module thereof