WO2017121138A1 - 全向轮、运动装置和运动装置的控制方法 - Google Patents

全向轮、运动装置和运动装置的控制方法 Download PDF

Info

Publication number
WO2017121138A1
WO2017121138A1 PCT/CN2016/098567 CN2016098567W WO2017121138A1 WO 2017121138 A1 WO2017121138 A1 WO 2017121138A1 CN 2016098567 W CN2016098567 W CN 2016098567W WO 2017121138 A1 WO2017121138 A1 WO 2017121138A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
peripheral
omnidirectional
motion device
control
Prior art date
Application number
PCT/CN2016/098567
Other languages
English (en)
French (fr)
Inventor
张莹
张忆非
赵凯
谷玉
丁洪利
刘帅
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/537,920 priority Critical patent/US10406854B2/en
Publication of WO2017121138A1 publication Critical patent/WO2017121138A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/003Multidirectional wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/12Roller-type wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/04Braking mechanisms; Locking devices against movement

Definitions

  • Embodiments of the present invention relate to a method of controlling an omnidirectional wheel, a motion device, and a motion device.
  • the omnidirectional wheel includes a center wheel and a plurality of peripheral wheels arranged in a circumferential array about the axis of the center wheel, the peripheral wheel being rotatable (rotating along its own axis) and having a certain axis between the axis of the peripheral wheel and the axis of the center wheel Angle (any angle other than 90 degrees).
  • a moving device comprising four omnidirectional wheels.
  • the power generated by the four omnidirectional wheels can be finally combined into a resultant force in any desired direction. So that the moving device can move in the direction of the final resultant force.
  • the motion device can achieve the braking effect by increasing the resistance when the center wheel of the omnidirectional wheel rotates.
  • the above-described exercise device may have uncontrollable motion due to other reasons during braking, and the braking performance is low.
  • the embodiment of the present invention provides an omnidirectional wheel, a motion device, and a motion device control method. .
  • a center wheel and a plurality of peripheral wheels the plurality of peripheral wheels being circumferentially arranged about an axis of the center wheel;
  • a peripheral wheel brake assembly is disposed on the center wheel, and the peripheral wheel brake assembly is configured to control resistance when the peripheral wheel rotates.
  • the peripheral wheel brake assembly includes:
  • the axis of the adjustment rod coincides with the axis of the center wheel
  • the plurality of expansion members are evenly arranged around the adjustment rod, and are configured to move toward the peripheral wheel and come into contact with the peripheral wheel under the driving of the adjustment rod.
  • the adjustment rod is provided with a tapered structure, the adjustment rod is movable along the length of the adjustment rod and pushes the plurality of expansion members toward the peripheral wheel by the tapered structure ;
  • the center wheel includes:
  • the peripheral wheel brake assembly is disposed in the two hubs.
  • one of the two hubs is provided with a through hole in which a plurality of compression springs having an axis perpendicular to an axis of the hub are disposed, and any one of the plurality of compression springs One end of a compression spring abuts against an inner wall of the through hole and the other end abuts against a first one of the plurality of expansion members, the first expansion member being any one of the plurality of expansion members Expansion pieces.
  • the first expansion member includes a friction surface that faces at least one of the plurality of peripheral wheels, and the other end of any of the compression springs abuts the friction surface.
  • a motion device comprising a control assembly and at least four omnidirectional wheels of the first aspect, the control assembly being configured to control the omnidirectional wheel.
  • the motion device further includes a power assembly configured to provide power to the omnidirectional wheel.
  • a method of controlling a motion device comprising:
  • the resistance of the omnidirectional wheel when the center wheel is rotated is increased, and the resistance of the peripheral wheel when it is rotated by the peripheral wheel brake assembly on the omnidirectional wheel is increased.
  • the motion device further includes a pressure sensing component, the method further comprising:
  • the peripheral wheel brake assembly solves the problem that the motion device may have uncontrollable motion and low braking performance due to other reasons during braking, and the peripheral wheel brake assembly can be used to increase the peripheral wheel.
  • FIG. 1 is a schematic structural view of an omnidirectional wheel according to an embodiment of the present invention.
  • FIG. 2A is a schematic structural view of another omnidirectional wheel according to an embodiment of the present invention.
  • FIG. 2B is a schematic structural view of an adjusting rod in the omnidirectional wheel provided in the embodiment shown in FIG. 2A;
  • FIG. 2C is a schematic structural view of another adjusting rod in the omnidirectional wheel provided by the embodiment shown in FIG. 2B;
  • FIG. 2D is a schematic structural view of an omnidirectional wheel provided by the embodiment shown in FIG. 2B;
  • Figure 2E is a right side view of the omnidirectional wheel shown in Figure 2D;
  • FIG. 3 is a schematic structural diagram of a motion device according to an embodiment of the present invention.
  • 4B is a flowchart of a method for controlling another motion device according to an embodiment of the present invention.
  • FIG. 4C is a top plan view of the exercise device shown in FIG. 3A.
  • N-user oriented direction 10a, 10b, 10c and 10d-4 omnidirectional wheels.
  • the omnidirectional wheel may include a center wheel 11 and a plurality of peripheral wheels 12 circumferentially arranged about an axis x of the center wheel 11, the peripheral wheel 12 being rotatable.
  • the omnidirectional wheel provided by the embodiment of the present invention solves the problem that the moving device is braked by providing a peripheral wheel brake assembly capable of controlling the resistance of the peripheral wheel around the center wheel when the center wheel is rotated.
  • a peripheral wheel brake assembly capable of controlling the resistance of the peripheral wheel around the center wheel when the center wheel is rotated.
  • uncontrollable motion and low braking performance may occur due to other reasons, and the effect of the peripheral wheel brake assembly to increase the resistance when the peripheral wheel rotates and prevent the peripheral wheel from rotating freely is achieved.
  • FIG. 2A there is shown a structural schematic diagram of another omnidirectional wheel according to an embodiment of the present invention.
  • the omnidirectional wheel adds additional components to the omnidirectional wheel shown in FIG.
  • the omnidirectional wheel provided by the embodiment has better performance.
  • the peripheral wheel brake assembly 13 includes an adjustment rod 131 and a plurality of expansion members 132.
  • the axis of the adjustment rod 131 coincides with the axis of the center wheel 11, both of which are x, and the plurality of expansion members 132
  • the circumference of the adjustment rod 131 is evenly arranged around the axis x and can be moved toward the peripheral wheel 12 and brought into contact with the peripheral wheel 12 by the adjustment rod 131.
  • the omnidirectional wheel provided by the embodiment of the present invention is a Mecanum wheel.
  • the adjustment rods in the omnidirectional wheel provided by the embodiments of the present invention may have various embodiments. Two of the structures will be described below with reference to FIGS. 2B-2C, but embodiments of the present invention are not limited thereto.
  • FIG. 2B is a schematic cross-sectional view of the plane of the axis x of the omnidirectional wheel shown in FIG. 2A.
  • the adjusting rod 131 is provided with a tapered structure, such as the tapered end portion shown in FIG. 2B.
  • the adjustment lever 131 is movable in the longitudinal direction of the adjustment lever 131 (which may be the longitudinal direction of the axis x of the adjustment lever 131), and pushes the plurality of expansion members 132 toward the peripheral wheel 12 through the tapered structure.
  • FIG. 2B shows that the shaft of the adjusting rod 131 is only partially tapered.
  • the adjustment rod 131 can also be tapered on the entire shaft, which is not limited in the embodiment of the present invention.
  • the adjustment rod 131 can also be provided with a locking thread that can cooperate with other components of the center wheel such that the thread can be locked after the adjustment rod 131 pushes the expansion member 132 toward the peripheral wheel 12 and contacts the peripheral wheel 12. Adjustment lever 131.
  • the second structure is shown in Fig. 2C, which is a schematic cross-sectional view of a plane perpendicular to the axis x in the omnidirectional wheel shown in Fig. 2A.
  • the adjustment rod 131 is provided with a cam structure 131a which can be rotated, for example, about the axis x.
  • the plurality of expansion members 132 are urged to move toward the peripheral wheel 12.
  • the cam structure 131a can be rotated by itself (e.g., by a drive), or the cam structure 131a can be rotated by the adjustment lever 131.
  • adjustment rod 131 can also be any other structure that can push the expansion member to the peripheral wheel, which is not limited by the embodiment of the present invention.
  • the center wheel 11 includes two hubs 111 that are equal in size and coincident with the axes; the peripheral wheel brake assembly 13 is disposed in the two hubs 111.
  • one of the two hubs 111 is provided with a through hole g, and the through hole g is provided with a plurality of compression springs t having an axis perpendicular to the axis of the hub 11, and more One end of any one of the compression springs t abuts against the inner wall of the through hole g, and the other end abuts against the first expansion member k of the plurality of expansion members, the first expansion member k being a plurality of expansion members Any expansion piece.
  • the first expansion member k includes a friction surface facing at least one of the plurality of peripheral wheels (not shown in FIG.
  • the other of the two hubs 111 not provided with the through hole may be provided with a blind hole, and the expansion member may abut in the blind hole to ensure that the expansion member moves toward the peripheral wheel. Stability.
  • 131 is an adjustment rod
  • k is a first expansion member
  • c is a friction surface on the first expansion member k
  • 12 is a peripheral wheel. To clearly show the friction surface c, a portion of the peripheral wheel is not shown in Figure 2E.
  • the omnidirectional wheel provided by the embodiment of the present invention adjusts the friction between the expansion member and the peripheral wheel through the adjustment rod provided with the tapered structure, and then controls the resistance of the rotation of the peripheral wheel to prevent the periphery. The effect of the wheel turning freely.
  • the omnidirectional wheel provided by the embodiment of the present invention adjusts the friction between the expansion member and the peripheral wheel through the adjustment rod provided with the cam structure, and then controls the resistance of the rotation of the peripheral wheel to achieve the prevention of the peripheral wheel. The effect of free rotation.
  • the omnidirectional wheel provided by the embodiment of the present invention achieves the effect that the expansion member does not affect the free rotation of the peripheral wheel when the omnidirectional wheel is rotated normally by providing a compression spring between the expansion member and the hub. .
  • the omnidirectional wheel provided by the embodiment of the present invention solves the related art in the related art by providing a peripheral wheel brake assembly for controlling the resistance of the peripheral wheel around the center wheel when the center wheel is rotated. Unmovable motion and low braking performance may occur due to other reasons. It is achieved that the peripheral wheel brake assembly can be used to increase the resistance when the peripheral wheel rotates and prevent the peripheral wheel from rotating arbitrarily.
  • FIG. 3 is a schematic structural diagram of a motion apparatus according to an embodiment of the present invention.
  • the motion apparatus includes a control component 20 and at least four omnidirectional wheels 10 shown in any of the embodiments shown in FIG. 1 to FIG. 2E, that is, the
  • the omnidirectional wheel 10 includes a center wheel and a plurality of peripheral wheels circumferentially arranged about the axis of the center wheel; the center wheel is provided with a peripheral wheel brake assembly that is configured to control the resistance of the peripheral wheel when it rotates.
  • Control assembly 20 is configured to control omnidirectional wheel 10.
  • the motion device can include a body A in which various components of the motion device can be disposed.
  • the motion device can further include a pressure sensing assembly 30 configured to collect control commands of the user and communicate the control commands to the control assembly.
  • the pressure sensing assembly 30 can be disposed directly above the body A to facilitate collection of user control commands.
  • the exercise device provided by the embodiment of the invention may be a balance car, which can be applied to tally places in shopping malls, supermarkets, etc., as well as in patrols in hotels, shops, and the like.
  • the motion device can also include a power assembly (not shown in FIG. 3) that is configured to provide power to the omnidirectional wheel 10.
  • the power assembly can be disposed in the body A, such as below the pressure sensing assembly 30.
  • the power assembly can include a battery and a motor configured to provide electrical energy to the motor, and the motor can be coupled to the omnidirectional wheel to drive the omnidirectional wheel or to brake the omnidirectional wheel.
  • FIG. 3 shows a case where the omnidirectional wheels 10 are four, and the positions of the four omnidirectional wheels can constitute four square vertices.
  • the number of omnidirectional wheels in the motion device may be more or less, which is not limited in the embodiment of the present invention.
  • the motion device provided by the embodiment of the present invention solves the problem that the motion device in the related art is braking when a peripheral wheel brake assembly capable of controlling the resistance of the peripheral wheel around the center wheel is provided on the center wheel.
  • the problem of uncontrollable motion and low braking performance may occur due to other reasons, and the effect of increasing the resistance of the peripheral wheel when the peripheral wheel is rotated and preventing the peripheral wheel from rotating freely is achieved by the peripheral wheel brake assembly.
  • FIG. 4A is a flowchart of a method for controlling a motion device according to an embodiment of the present invention, which is capable of controlling, for example, the motion device shown in FIG. 3, the method includes:
  • step 401 upon receiving the brake command, the resistance when the center wheel of the omnidirectional wheel is rotated is increased, and the resistance of the peripheral wheel when the outer wheel is rotated is increased by the peripheral wheel brake assembly on the omnidirectional wheel.
  • the control component may increase the resistance when the center wheel of the omnidirectional wheel rotates, and increase the peripheral wheel by the peripheral wheel brake assembly on the omnidirectional wheel Resistance at the time of rotation. That is, the center wheel and the peripheral wheel of the designated omnidirectional wheel are simultaneously braked.
  • the center wheel can be braked by the motor and the peripheral wheel braked by the peripheral wheel brake assembly.
  • the control assembly can also lock both the center wheel and the peripheral wheel when the motion device is at rest, preventing the motion device from slipping.
  • the control assembly can also adjust the resistance of the peripheral wheel during rotation according to the difference in contact with the ground of the moving device, so that the moving device can adapt to different contact with the ground.
  • the center wheel is usually braked by a motor, but when the center wheel is braked, if the entire motion device has kinetic energy in a certain direction, the peripheral wheel may rotate in the direction, and then the motion device does not occur.
  • the controlled movement affects the braking effect of the moving device, which is dangerous when carrying the operator or heavy cargo on the moving device.
  • the control method of the motion device provided by the embodiment of the invention avoids the random rotation of the peripheral wheel and improves the braking effect of the motion device.
  • step 402 a user's control command is received by the pressure sensing component.
  • the motion device can receive a user's control command through the pressure sensing component.
  • the pressure sensing component can be a pressure sensing group in the motion device shown in FIG. 3A Pieces.
  • the user's control commands can also be obtained by other means.
  • the user's control commands can be received by the control terminal connected to the motion device.
  • step 403 the center wheel rotation of the omnidirectional wheel is controlled in accordance with the control command.
  • the motion device After the motion device acquires the user's control command, the motion device can control the rotation of the center wheel of the omnidirectional wheel according to the control command. It should be noted that the control method shown in FIG. 4A and the control method shown in FIG. 4B may be two parallel control methods, and respectively control the motion device in different situations.
  • the control mode of the pressure sensing component 30 is exemplified, as shown in FIG. 4C, which is a top view of the motion device shown in FIG. 3A.
  • the user When the user operates the motion device, the user can face the direction N and step on the pressure sensing.
  • the contact surface of the pressure sensing component and the user On the component 30; the contact surface of the pressure sensing component and the user is divided into four regions of 31, 32, 33 and 34.
  • the pressure sensing component When the user normally steps on the pressure sensing component 30 (which area is not intentionally biased), the pressure sensing component
  • the pressure values of the four regions on the 30 are all initial values, after which the user can change the respective pressure values of the four regions of the pressure sensing component 30 by changing the center of gravity of the body, and the change of the pressure values of the respective regions can correspond to different controls. instruction.
  • the moving device will move to the left, at which time the omnidirectional wheels 10b and 10c rotate forward, and the omnidirectional wheels 10a and 10d rotate backward;
  • the moving device can perform a rotating motion, at which time the omnidirectional wheels 10a and 10c are rotated forward, and the omnidirectional wheels 10b and 10d are rotated backward.
  • the control component controls each omnidirectional wheel, if an omnidirectional wheel does not need to rotate, the control component can lock the center wheel of the omnidirectional wheel through the motor and brake through the peripheral wheel when needed.
  • the assembly locks the peripheral wheel of the omnidirectional wheel to prevent the peripheral wheel from rotating freely to affect the motion device.
  • control method of the motion device acquires the control command of the user through the pressure sensing component, and controls the rotation of the center wheel of the omnidirectional wheel according to the control command, thereby achieving convenient movement device The effect of the control.
  • the control method of the motion device provided by the embodiment of the present invention solves the related art by increasing the resistance when the center wheel and the peripheral wheel of the omnidirectional wheel rotate when the brake command is received.
  • the motion device may have uncontrollable motion due to other reasons during braking, and the braking performance is low. It is achieved that the peripheral wheel brake assembly can be used to increase the resistance when the peripheral wheel rotates, and the surrounding wheel can be prevented from rotating at will.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

一种全向轮(10)、运动装置和运动装置的控制方法,全向轮(10)包括中心轮(11)和多个关于中心轮(11)的轴线(x)呈圆周排布的周边轮(12),中心轮(11)上设置有被配置为控制周边轮(12)自转时阻力的周边轮制动组件(13),全向轮(10)解决了运动装置制动性能较低的问题,增大了周边轮(12)转动时的阻力,可防止周边轮(12)随意转动。

Description

全向轮、运动装置和运动装置的控制方法 技术领域
本发明的实施例涉及一种全向轮、运动装置和运动装置的控制方法。
背景技术
全向轮包括一个中心轮和多个以关于中心轮的轴线呈圆周阵列排布的周边轮,周边轮能够自转(沿自身的轴线转动)且周边轮的轴线与中心轮的轴线之间呈一定角度(除90度外的任意角度)。
已知一种运动装置,包括4个全向轮,通过控制每个全向轮的转动方向和转动速度,最终可以将4个全向轮产生的动力合成为在任何要求的方向上的一个合力,从而使该运动装置能够向最终的合力的方向移动。该运动装置能够通过增大全向轮的中心轮转动时的阻力以达到制动的效果。
然而,上述运动装置在制动时可能由于其它原因发生无法控制的运动,制动性能较低。
发明内容
为了解决现有技术中运动装置在制动时可能由于其它原因发生无法控制的运动,制动性能较低的问题,本发明实施例提供了一种全向轮、运动装置和运动装置的控制方法。
本发明实施例采用以下技术方案:
根据本发明的第一方面,提供了一种全向轮,所述全向轮包括:
中心轮和多个周边轮,所述多个周边轮关于所述中心轮的轴线呈圆周排布;
所述中心轮上设置有周边轮制动组件,所述周边轮制动组件被配置为控制所述周边轮自转时的阻力。
在一个示例中,所述周边轮制动组件包括:
调节杆和多个扩张件;
所述调节杆的轴线与所述中心轮的轴线重合;
所述多个扩张件均匀排布在所述调节杆的四周,且被配置为在所述调节杆的带动下朝向所述周边轮运动并与所述周边轮接触。
在一个示例中,所述调节杆上设置有锥形结构,所述调节杆能够沿所述调节杆的长度方向移动并通过所述锥形结构推动所述多个扩张件朝向所述周边轮运动;
或者,
所述调节杆上设置有凸轮结构,所述凸轮结构能够关于所述中心轮转动并推动所述多个扩张件朝向所述周边轮运动。
在一个示例中,所述中心轮包括:
两个轮毂,所述两个轮毂大小相等且轴线重合;
所述周边轮制动组件设置在所述两个轮毂中。
在一个示例中,所述两个轮毂中的一个轮毂上设置有通孔,所述通孔中设置有轴线与所述轮毂的轴线垂直的多个压缩弹簧,所述多个压缩弹簧中的任一压缩弹簧的一端抵在所述通孔的内壁上并且另一端抵在所述多个扩张件中的第一扩张件上,所述第一扩张件为所述多个扩张件中的任一扩张件。
在一个示例中,所述第一扩张件包含有朝向所述多个周边轮中至少一个周边轮的摩擦面,并且所述任一压缩弹簧的另一端抵在所述摩擦面上。
根据本发明的第二方面,提供一种运动装置,所述运动装置包括控制组件和至少4个第一方面所述的全向轮,所述控制组件被配置为控制所述全向轮。
在一个示例中,所述运动装置还包括压力感应组件,所述压力感应组件被配置为收集用户的控制指令并将所述控制指令传递给所述控制组件。
在一个示例中,所述运动装置还包括动力组件,所述动力组件被配置为向所述全向轮提供动力。
根据本发明的第三方面,提供一种第二方面所述的运动装置的控制方法,所述方法包括:
在接收到制动指令时,增大全向轮的中心轮转动时的阻力,并通过全向轮上的周边轮制动组件增大周边轮自转时的阻力。
在一个示例中,所述运动装置还包括压力感应组件,所述方法还包括:
通过所述压力感应组件接收用户的控制指令;
根据所述控制指令控制所述全向轮的中心轮转动。
本发明实施例提供的技术方案带来的有益效果是:
通过在中心轮上设置被配置为控制中心轮四周的周边轮自转时的阻力 的周边轮制动组件,解决了相关技术中运动装置在制动时可能由于其它原因发生无法控制的运动、制动性能较低的问题,达到了可以通过周边轮制动组件来增大周边轮转动时的阻力、防止周边轮随意转动的效果。
附图说明
以下将结合附图对本发明的实施例进行更详细的说明,以使本领域普通技术人员更加清楚地理解本发明,其中:
图1是本发明实施例提供的一种全向轮的结构示意图;
图2A是本发明实施例提供的另一种全向轮的结构示意图;
图2B是图2A所示实施例提供的全向轮中一种调节杆的结构示意图;
图2C是图2B所示实施例提供的全向轮中另一种调节杆的结构示意图;
图2D是图2B所示实施例提供的全向轮的结构示意图;
图2E是图2D所示全向轮的右视图;
图3是本发明实施例提供的一种运动装置的结构示意图;
图4A是本发明实施例提供的提供一种运动装置的控制方法的流程图;
图4B是本发明实施例提供的提供另一种运动装置的控制方法的流程图;
图4C是图3A所示的运动装置的俯视图。
附图标记:
10-全向轮;11-中心轮;12-周边轮;13-周边轮制动组件;131-调节杆;
132-扩张件;k-第一扩张件;131a-凸轮结构;t-压缩弹簧;c-摩擦面;
x-中心轮的轴线;g-通孔;20-控制组件;A-运动装置的主体;
30-压力感应组件;31、32、33和34-压力感应组件的4个区域;
N-用户面向的方向;10a、10b、10c和10d-4个全向轮。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领 域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
图1是本发明实施例示出的一种全向轮的结构示意图。如图1所示,该全向轮可以包括:中心轮11和多个关于中心轮11的轴线x呈圆周排布的周边轮12,所述周边轮12可自转。
中心轮11上设置有周边轮制动组件13,周边轮制动组件13能够控制周边轮12自转时的阻力。
综上所述,本发明实施例提供的全向轮,通过在中心轮上设置能够控制中心轮四周的周边轮自转时的阻力的周边轮制动组件,解决了相关技术中运动装置在制动时可能由于其它原因发生无法控制的运动、制动性能较低的问题,达到了可以通过周边轮制动组件来增大周边轮转动时的阻力、防止周边轮随意转动的效果。
参考图2A,其示出了本发明实施例提供的另一种全向轮的结构示意图,该全向轮在图1所示的全向轮的基础上增加了额外的部件,从而使得本发明实施例提供的全向轮具有更好的性能。
如图2A所示,可选地,周边轮制动组件13包括调节杆131和多个扩张件132,调节杆131的轴线与中心轮11的轴线重合,均为x,而多个扩张件132围绕轴线x均匀排布在调节杆131的四周且能够在调节杆131的带动下朝向周边轮12运动并与周边轮12接触。示例性地,本发明实施例提供的全向轮为麦克纳姆轮。
本发明实施例提供的全向轮中的调节杆可以有多种实施方式,以下将参照图2B-2C示出其中两种结构,但本发明的实施例不限于此。
第一种结构如图2B所示,其为图2A所示全向轮的轴线x所在平面的截面示意图,调节杆131上设置有锥形结构,例如图2B中所示的锥形端部,调节杆131能够沿调节杆131的长度方向(该长度方向可以为调节杆131的轴线x的长度方向)移动,并通过所述锥形结构推动多个扩张件132朝向周边轮12运动。需要说明的是,图2B示出的是调节杆131的杆身仅部分为锥 形的情况,但调节杆131还可以整个杆身均为锥形,本发明实施例不作出限制。调节杆131上还可以设置有锁紧螺纹,该螺纹可以与中心轮的其它组件配合以使得在调节杆131将扩张件132推向周边轮12并与周边轮12接触后、该螺纹可锁紧调节杆131。
第二种结构如图2C所示,其为图2A所示全向轮中与轴线x垂直的平面的截面示意图,调节杆131上设置有凸轮结构131a,凸轮结构131a能够例如关于轴线x转动从而推动多个扩张件132朝向周边轮12运动。例如,凸轮结构131a可以自行转动(例如通过驱动装置),或者凸轮结构131a可以在调节杆131的带动下转动。
需要说明的是,调节杆131还可以是其它任意已知的能够将扩张件推向周边轮的结构,本发明实施例对此并不做限定。
可选地,在图2A所示实施例中,中心轮11包括两个轮毂111,两个轮毂111大小相等且轴线重合;周边轮制动组件13设置在两个轮毂111中。
可选地,在如图2D所示实施例中,两个轮毂111中的一个轮毂上设置有通孔g,通孔g中设置有轴线与轮毂11的轴线垂直的多个压缩弹簧t,多个压缩弹簧t中的任一压缩弹簧的一端抵在通孔g的内壁上,另一端抵在多个扩张件中的第一扩张件k上,第一扩张件k为多个扩张件中的任一扩张件。第一扩张件k包括朝向多个周边轮(图2D中未示出)中至少一个周边轮的摩擦面,任一压缩弹簧的另一端抵在该摩擦面上,该摩擦面可以由橡胶等柔性材料制成以提高摩擦面对周边轮自转时阻力的控制效果。压缩弹簧t可以使摩擦面在全向轮正常转动时(全向轮正常转动时无需限制周边轮自转)不与周边轮接触,避免了扩张件对周边轮的正常转动造成影响。
需要说明的是,可选地,两个轮毂111中的另一个未设置有通孔的轮毂上可以设置有盲孔,扩张件可以抵在该盲孔中以确保扩张件在向周边轮运动时的稳定性。
如图2E所示,其为图2D示出的全向轮的右视图,131为调节杆,k为第一扩张件,c为第一扩张件k上的摩擦面,12为周边轮。为清楚示出摩擦面c,图2E未示出部分周边轮。
需要补充说明的是,本发明实施例提供的全向轮,通过设置有锥形结构的调节杆来调节扩张件与周边轮之间的摩擦力,继而控制周边轮自转的阻力,达到了防止周边轮随意转动的效果。
需要补充说明的是,本发明实施例提供的全向轮,通过设置有凸轮结构的调节杆来调节扩张件与周边轮之间的摩擦力,继而控制周边轮自转的阻力,达到了防止周边轮随意转动的效果。
需要补充说明的是,本发明实施例提供的全向轮,通过在扩张件和轮毂之间设置压缩弹簧,达到了全向轮在正常转动时,扩张件不会影响到周边轮自由转动的效果。
综上所述,本发明实施例提供的全向轮,通过在中心轮上设置用于控制中心轮四周的周边轮自转时的阻力的周边轮制动组件,解决了相关技术中运动装置在制动时可能由于其它原因发生无法控制的运动、制动性能较低的问题。达到了可以通过周边轮制动组件来增大周边轮转动时的阻力、防止周边轮随意转动的效果。
图3是本发明实施例提供的一种运动装置的结构示意图,该运动装置包括控制组件20和至少4个图1-图2E中任一所示实施例示出的全向轮10,即:该全向轮10包括中心轮和多个关于中心轮的轴线呈圆周排布的周边轮;中心轮上设置有周边轮制动组件,周边轮制动组件被配置为控制周边轮自转时的阻力。控制组件20被配置为控制全向轮10。
运动装置可以包括主体A,运动装置的各个部件可以设置在该主体A中。
可选地,运动装置还可包括压力感应组件30,压力感应组件30被配置为收集用户的控制指令并将控制指令传递给控制组件。压力感应组件30可以设置在主体A的正上方,以方便收集用户的控制指令。
本发明实施例提供的运动装置可以为一种平衡车,该平衡车可以应用于商场、超市等中的理货场合以及酒店、商店等中的巡查场合。
可选地,运动装置还可包括动力组件(图3中未示出),动力组件被配置为向全向轮10提供动力。动力组件可以设置在主体A中,如压力感应组件30下方。示例性地,动力组件可以包括电池与电机,电池被配置为给电机提供电能,电机可以与全向轮连接以驱动全向轮或对全向轮进行制动。
需要说明的是,图3示出的是全向轮10为4个的情况,这4个全向轮的设置位置可以构成一个正方形的4个顶点。此外,运动装置中全向轮的数量还可以更多或更少,本发明实施例不作出限制。
需要补充说明的是,本发明实施例提供的运动装置,通过设置压力感应 组件,达到了用户能够方便地对运动装置进行控制的效果。
需要补充说明的是,本发明实施例提供的运动装置,通过设置动力组件,达到了可以通过自身的动力组件进行移动的效果。
综上所述,本发明实施例提供的运动装置,通过在中心轮上设置能够控制中心轮四周的周边轮自转时的阻力的周边轮制动组件,解决了相关技术中运动装置在制动时可能由于其它原因发生无法控制的运动、制动性能较低的问题,达到了可以通过周边轮制动组件来增大周边轮转动时的阻力、防止周边轮随意转动的效果。
图4A是本发明实施例提供的运动装置的控制方法的流程图,其能够控制例如图3所示的运动装置,该方法包括:
在步骤401中,在接收到制动指令时,增大全向轮的中心轮转动时的阻力,并通过全向轮上的周边轮制动组件增大周边轮自转时的阻力。
控制组件在接收到针对任意一个全向轮的制动指令时,可以增大该全向轮的中心轮转动时的阻力,并通过该全向轮上的周边轮制动组件增大该周边轮自转时的阻力。即:对指定全向轮的中心轮和周边轮同时进行制动。
示例性地,可以通过电机对中心轮制动,通过周边轮制动组件对周边轮制动。此外,在运动装置处于静止状态时,控制组件也可以对中心轮和周边轮均进行锁死,防止运动装置发生滑动。控制组件还可以根据运动装置的接触地面的不同来调节周边轮自转时的阻力,使运动装置能够适应于不同的接触地面。
相关技术中通常会通过电机对中心轮进行制动,但对中心轮进行制动时,若整个运动装置存在某一方向的动能,则周边轮可能会向该方向转动,继而造成运动装置发生不受控制的移动,影响运动装置的制动效果,这在运动装置上承载有操作人员或较重的货物时具有一定的危险性。而本发明实施例提供的运动装置的控制方法避免了周边轮的随意转动,提高了运动装置的制动效果。
可选地,运动装置还包括压力感应组件,如图4B所示,该方法还包括步骤402-403。
在步骤402中,通过压力感应组件接收用户的控制指令。
在用户使用该运动装置时,该运动装置可以通过压力感应组件接收用户的控制指令。该压力感应组件可以为图3A所示的运动装置中的压力感应组 件。此外,还可以通过其它的方式来获取用户的控制指令,示例性地,可以通过与运动装置连接的控制终端来接收用户的控制指令。
在步骤403中,根据控制指令控制全向轮的中心轮转动。
运动装置在获取了用户的控制指令之后,可以根据控制指令控制全向轮的中心轮转动。需要说明的是,图4A所示的控制方法和图4B所示的控制方法可以是并列的两种控制方法,并分别在不同的情况下对运动装置进行控制。
现对压力感应组件30的控制方式进行举例说明,如图4C所示,其为图3A所示的运动装置的俯视图,用户在操作该运动装置时,可以面向方向N,双脚踩在压力感应组件30上;将压力感应组件与用户的接触表面分为31、32、33和34共4个区域,当用户正常踩在压力感应组件30上(并未有意偏向哪个区域)时,压力感应组件30上4个区域的压力值均为初始值,之后用户可以通过改变自身的重心来改变压力感应组件30的4个区域上各自的压力值,各个区域压力值的变化情况可以对应于不同的控制指令。
示例性地,以用户面向的方向N的前、后、左、右均为标准方向进行说明,用户向前倾时,前脚掌向压力感应组件30施加的压力增大,即区域31和区域32的压力值增大、区域33和区域34的压力值减小,运动装置将向前移动,此时运动装置的四个全向轮均向前转动;当用户左倾时,左脚掌向压力感应组件30施加的压力增大而右脚掌向压力感应组件30施加的压力减小,运动装置将向左移动,此时全向轮10b和10c向前转动,全向轮10a和10d向后转动;当区域33和区域32的压力值增大时,运动装置可以进行旋转动作,此时全向轮10a和10c向前转动,全向轮10b和10d向后转动。需要说明的是,控制组件在控制各个全向轮时,若某个全向轮无需转动,则控制组件可以通过电机将该全向轮的中心轮锁死,并在需要时通过周边轮制动组件将该全向轮的周边轮锁死,以避免周边轮随意转动对运动装置造成影响。
需要补充说明的是,本发明实施例提供的运动装置的控制方法,通过压力感应组件来获取用户的控制指令,并根据该控制指令来控制全向轮的中心轮转动,达到了方便对运动装置进行控制的效果。
综上所述,本发明实施例提供的运动装置的控制方法,通过在接收到制动指令时,增大全向轮的中心轮和周边轮自转时的阻力,解决了相关技术中 运动装置在制动时可能由于其它原因发生无法控制的运动,制动性能较低的问题。达到了可以通过周边轮制动组件来增大周边轮转动时的阻力,防止周边轮随意转动的效果。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
本申请要求于2016年1月15日提交的名称为“全向轮、运动装置和运动装置的控制方法”的中国专利申请No.201610028120.1的优先权,该申请全文以引用方式合并于本文。

Claims (11)

  1. 一种全向轮,包括:
    中心轮和多个周边轮,所述多个周边轮关于所述中心轮的轴线呈圆周排布;
    所述中心轮上设置有周边轮制动组件,所述周边轮制动组件被配置为控制所述周边轮自转时的阻力。
  2. 根据权利要求1所述的全向轮,其中,所述周边轮制动组件包括:调节杆和多个扩张件,其中,
    所述调节杆的轴线与所述中心轮的轴线重合;并且
    所述多个扩张件均匀排布在所述调节杆的四周,且被配置为在所述调节杆的带动下朝向所述周边轮运动并与所述周边轮接触。
  3. 根据权利要求2所述的全向轮,其中,
    所述调节杆上设置有锥形结构,所述调节杆能够沿所述调节杆的长度方向移动并通过所述锥形结构推动所述多个扩张件朝向所述周边轮运动;
    或者,
    所述调节杆上设置有凸轮结构,所述凸轮结构能够关于所述中心轮转动并推动所述多个扩张件朝向所述周边轮运动。
  4. 根据权利要求2所述的全向轮,其中,所述中心轮包括:
    两个轮毂,所述两个轮毂大小相等且轴线重合;并且
    所述周边轮制动组件设置在所述两个轮毂中。
  5. 根据权利要求4所述的全向轮,其中,所述两个轮毂中的一个轮毂上设置有通孔,所述通孔中设置有轴线与所述轮毂的轴线垂直的多个压缩弹簧,所述多个压缩弹簧中的任一压缩弹簧的一端抵在所述通孔的内壁上并且另一端抵在所述多个扩张件中的第一扩张件上,
    所述第一扩张件为所述多个扩张件中的任一扩张件。
  6. 根据权利要求5所述的全向轮,其中,所述第一扩张件包含朝向所述多个周边轮中至少一个周边轮的摩擦面,并且所述任一压缩弹簧的另一端抵在所述摩擦面上。
  7. 一种运动装置,包括控制组件和至少4个根据权利要求1至6中任一项所述的全向轮,所述控制组件被配置为控制所述全向轮。
  8. 根据权利要求7所述的运动装置,还包括:压力感应组件,所述压力感应组件被配置为收集用户的控制指令并将所述控制指令传递给所述控制组件。
  9. 根据权利要求7所述的运动装置,还包括:动力组件,所述动力组件被配置为向所述全向轮提供动力。
  10. 一种根据权利要求7至9中任一所述的运动装置的控制方法,所述方法包括:
    在接收到制动指令时,增大全向轮的中心轮转动时的阻力,并通过全向轮上的周边轮制动组件增大周边轮自转时的阻力。
  11. 根据权利要求10所述的方法,其中,所述运动装置还包括压力感应组件,所述方法还包括:
    通过所述压力感应组件接收用户的控制指令;
    根据所述控制指令控制所述全向轮的中心轮转动。
PCT/CN2016/098567 2016-01-15 2016-09-09 全向轮、运动装置和运动装置的控制方法 WO2017121138A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/537,920 US10406854B2 (en) 2016-01-15 2016-09-09 Omni wheel, motion device and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610028120.1 2016-01-15
CN201610028120.1A CN105584290B (zh) 2016-01-15 2016-01-15 全向轮、运动装置和运动装置的控制方法

Publications (1)

Publication Number Publication Date
WO2017121138A1 true WO2017121138A1 (zh) 2017-07-20

Family

ID=55924345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098567 WO2017121138A1 (zh) 2016-01-15 2016-09-09 全向轮、运动装置和运动装置的控制方法

Country Status (3)

Country Link
US (1) US10406854B2 (zh)
CN (1) CN105584290B (zh)
WO (1) WO2017121138A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665290A (zh) * 2020-05-15 2021-11-19 鸿富锦精密电子(天津)有限公司 全向轮

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105584290B (zh) 2016-01-15 2018-03-13 京东方科技集团股份有限公司 全向轮、运动装置和运动装置的控制方法
JP2019531216A (ja) * 2016-08-05 2019-10-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. オムニホイールを備える医療装置及びオムニホイール装置
US10876657B2 (en) * 2016-10-21 2020-12-29 Quanta Associates, L.P. Drill pipe or product line improved rollers and movement
CN106427388B (zh) * 2016-11-16 2018-11-06 浙江工业大学 具有辊子可控性转动的麦克纳姆轮装置
JP2018131068A (ja) * 2017-02-15 2018-08-23 ナブテスコ株式会社 運搬台車用の駆動装置
DE102017209356A1 (de) 2017-06-01 2018-12-06 Trumpf Medizin Systeme Gmbh + Co. Kg Laufrad
WO2019000433A1 (zh) * 2017-06-30 2019-01-03 深圳市大疆创新科技有限公司 两轮平衡车
CN108528139B (zh) * 2018-04-09 2019-12-10 京东方科技集团股份有限公司 一种全方位轮装置、机器人及其控制方法
KR102621117B1 (ko) 2018-11-14 2024-01-04 삼성전자주식회사 다방향 바퀴 및 이를 포함하는 이동 장치
CN109435575A (zh) * 2018-12-12 2019-03-08 深圳市三宝创新智能有限公司 一种具有刹车功能的麦克纳姆轮
US11524523B2 (en) 2019-06-12 2022-12-13 Toyota Motor North America, Inc. Omni-wheel brake devices and methods for braking an omni-wheel
CN210302393U (zh) * 2019-06-28 2020-04-14 汕头市益尔乐玩具有限公司 一种偏心全向轮
KR102341430B1 (ko) * 2020-02-06 2021-12-20 (주)대성티엠씨 구조적인 안전성이 우수한 매카넘 휠

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080018167A1 (en) * 2004-12-20 2008-01-24 Shinichiro Fuji Omnidirectionally Moving Wheel, Moving Device, Carrying Device, and Massage Device
CN101357093A (zh) * 2007-08-03 2009-02-04 富准精密工业(深圳)有限公司 电动轮椅
CN101803988A (zh) * 2010-04-14 2010-08-18 华中科技大学 多功能智能助立助行康复机器人
US20140232174A1 (en) * 2011-09-23 2014-08-21 Omniroll Ag Mecanum wheel and mecanum-wheeled vehicle
CN105584290A (zh) * 2016-01-15 2016-05-18 京东方科技集团股份有限公司 全向轮、运动装置和运动装置的控制方法
CN205523386U (zh) * 2016-01-15 2016-08-31 京东方科技集团股份有限公司 全向轮和运动装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0155193B1 (ko) * 1994-10-04 1998-10-15 신재인 중하중 취급 및 미끄럼 방지용 전방향 바퀴
US5551349A (en) * 1995-06-29 1996-09-03 The United States Of America As Represented By The Secretary Of The Navy Internal conduit vehicle
DE202005012682U1 (de) * 2005-08-09 2006-12-21 Ic Industrial Consulting Gmbh Rad
KR100976171B1 (ko) * 2008-10-07 2010-08-16 (주)스맥 전방향 바퀴
US20110272998A1 (en) * 2010-05-10 2011-11-10 Tsongli Lee Omni-directional transport device
CN102501726A (zh) * 2011-12-13 2012-06-20 北京卫星制造厂 一种适用于高精度大承载的全方位轮
JP5687325B1 (ja) * 2013-11-08 2015-03-18 Whill株式会社 全方向移動車輪およびそれを備えた全方向移動車両
JP5988952B2 (ja) * 2013-11-14 2016-09-07 本田技研工業株式会社 車輪及び車輪装置及び倒立振子型車両
WO2015081020A1 (en) * 2013-11-30 2015-06-04 Saudi Arabian Oil Company Magnetic omni-wheel
US9616707B2 (en) * 2015-06-26 2017-04-11 Amazon Technologies, Inc. Omnidirectional pinion wheel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080018167A1 (en) * 2004-12-20 2008-01-24 Shinichiro Fuji Omnidirectionally Moving Wheel, Moving Device, Carrying Device, and Massage Device
CN101357093A (zh) * 2007-08-03 2009-02-04 富准精密工业(深圳)有限公司 电动轮椅
CN101803988A (zh) * 2010-04-14 2010-08-18 华中科技大学 多功能智能助立助行康复机器人
US20140232174A1 (en) * 2011-09-23 2014-08-21 Omniroll Ag Mecanum wheel and mecanum-wheeled vehicle
CN105584290A (zh) * 2016-01-15 2016-05-18 京东方科技集团股份有限公司 全向轮、运动装置和运动装置的控制方法
CN205523386U (zh) * 2016-01-15 2016-08-31 京东方科技集团股份有限公司 全向轮和运动装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665290A (zh) * 2020-05-15 2021-11-19 鸿富锦精密电子(天津)有限公司 全向轮

Also Published As

Publication number Publication date
US20180050563A1 (en) 2018-02-22
CN105584290A (zh) 2016-05-18
US10406854B2 (en) 2019-09-10
CN105584290B (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
WO2017121138A1 (zh) 全向轮、运动装置和运动装置的控制方法
CN107284134B (zh) 带有刹车装置的万向脚轮
US20180140087A1 (en) Self-Driving Telescopic Post
JP5549012B2 (ja) 家具等のためのキャスター車輪構造
US4985960A (en) Caster with lever for braking and direction setting
CN104015827A (zh) 一种能够越障的变结构球形机器人
US9751363B2 (en) Swivel caster
US20170297179A1 (en) Rotatable fastening device and application method thereof
US9352200B1 (en) Front wheel folding arrangement for golf bag cart
CN106218788A (zh) 电动平衡车的转角可调操控把手
TWI637819B (zh) Ratchet wrench with sleeve quick card structure
WO2014032380A1 (zh) 一种轮组
KR20150118602A (ko) 메카넘 휠을 이용한 볼-로봇
TWI579159B (zh) 腳輪結構及使用方法
US20130092202A1 (en) Walking aid having a safety assembly
TWI541110B (zh) 煞車分泵調整器
AU2017100678A4 (en) Handbrake Structure
CA2970548C (en) Handbrake structure
JP5578529B2 (ja) 制動機構付き車輪構造体
EP3272622B1 (en) Handbrake structure
CN204399139U (zh) 具有限速装置的车轮
US20140189980A1 (en) Smart caster having function of preventing free rolling
CN116039288B (zh) 一种多踏板控制的脚轮及其使用方法
JP5236821B1 (ja) 車輪の制動機構
CN207999463U (zh) 一种平边刹车盘

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15537920

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884692

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16884692

Country of ref document: EP

Kind code of ref document: A1