WO2018014455A1 - 全向轮及具有该全向轮的机器人 - Google Patents

全向轮及具有该全向轮的机器人 Download PDF

Info

Publication number
WO2018014455A1
WO2018014455A1 PCT/CN2016/102725 CN2016102725W WO2018014455A1 WO 2018014455 A1 WO2018014455 A1 WO 2018014455A1 CN 2016102725 W CN2016102725 W CN 2016102725W WO 2018014455 A1 WO2018014455 A1 WO 2018014455A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
wheel
sub
omnidirectional
omnidirectional wheel
Prior art date
Application number
PCT/CN2016/102725
Other languages
English (en)
French (fr)
Inventor
贝世猛
吴振凯
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Publication of WO2018014455A1 publication Critical patent/WO2018014455A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/12Roller-type wheels

Definitions

  • the invention relates to an omnidirectional wheel and a robot having the omnidirectional wheel.
  • the omnidirectional wheel is a wheel that can be used to build an all-round mobile platform. It is characterized in that each omnidirectional wheel is distributed with a driven wheel at an angle around the hub. Driven by the hub, the driven wheel can be freely rotated in either direction, thereby achieving a omnidirectional movement such as forward, traverse, oblique, rotation, and combinations thereof on the plane. Due to this feature, the mobile platform using the omnidirectional wheel has higher motion flexibility than the conventional wheel train platform, and can adapt to movement in a narrower space. In the prior art, the grip of the omnidirectional wheel is poor.
  • An omnidirectional wheel includes a hub and a plurality of driven wheels disposed on a circumference of the hub, each of the driven wheels includes an axle and a wheel body, the axle passes through the wheel body, and the opposite ends are self-owned The wheel body is exposed, the opposite ends of the axle are fixed to the hub, and the outer surface of the wheel is provided with a tread.
  • the tread is a uniformly distributed protrusion.
  • treads are arranged in a matrix.
  • the wheel body has a drum shape, and the height of the tread protrusion gradually increases from both ends of the wheel body toward the middle of the wheel body.
  • each of the protrusions gradually increases from a side far from the middle of the wheel body toward a side close to the middle of the wheel body.
  • the wheel body is an integrally formed structure.
  • the hub is a carbon fiber hub.
  • the hub includes a first sub-hub and a second sub-hub, the first sub-hub and the second sub-hub being spaced apart from each other by a predetermined distance along the axial direction of the omnidirectional wheel, and along the circumference of the omnidirectional wheel Stagger the preset angle.
  • the driven wheel is rotatably disposed between the first sub-hub and the second sub-hub, and the two ends of the driven wheel are respectively adjacent to the first sub-hub and the second sub-hub.
  • first sub-hub and the second sub-hub are respectively provided with support ears fixedly coupled with the axle, and opposite ends of the axle are respectively fixed to the first sub-hub and the first The support of the two sub-wheels on the ears.
  • both ends of the axle of the driven wheel are respectively connected to the first sub-hub and the second sub-hub, and the axle of the driven wheel is rotatably connected with the wheel body of the driven wheel and/or The axle of the driven wheel is rotatably coupled to the first sub-hub and the second sub-hub.
  • the axle of the driven wheel is a screw, and is connected to the hub by a nut, wherein a screw head of the screw abuts against the first sub-hub, a threaded portion of the screw tail passes through the second sub-hub and the Nut connection.
  • the sub-hub further includes an inner hub, an outer hub, and a connecting arm connecting the inner hub and the outer hub, the support ears being disposed at an outer edge of the outer hub.
  • a robot includes a fuselage and at least one omnidirectional wheel, and the omnidirectional wheel is coupled to the fuselage.
  • the robot further includes an imaging device disposed on the body.
  • the robot further includes a control device mounted to the body, the control device controlling the omnidirectional wheel to move in accordance with the control command.
  • the omnidirectional wheel and the robot provided by the present invention can improve the grip of the omnidirectional wheel by providing a tread pattern on the surface of the driven wheel of the omnidirectional wheel, thereby improving the omnidirectional wheel. Sports efficiency and controllability.
  • FIG. 1 is a perspective view of an omnidirectional wheel provided by an embodiment of the present invention.
  • Fig. 2 is a perspective view of the hub of the omnidirectional wheel shown in Fig. 1.
  • Fig. 3 is a perspective view of the driven wheel of the omnidirectional wheel shown in Fig. 1;
  • a component when a component is considered to be “set to” another component, it may be directly disposed on another component or may have a centered component at the same time. When a component is referred to as being “fixed” to another component, it can be directly on the other component or the component can be in the middle. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • an omnidirectional wheel 10 includes a hub 11 and a plurality of driven wheels 16 disposed on a periphery of the hub 11 .
  • the hub 11 is a carbon fiber hub.
  • the carbon fiber hub can ensure the mechanical strength of the hub 11, while reducing the weight of the hub 11, thereby reducing noise when the omnidirectional wheel 10 is in operation.
  • the hub 11 includes a first sub-hub 12 and a second sub-hub 13 that are oppositely disposed.
  • the first sub-hub 12 and the second sub-hub 13 are spaced apart from each other by a predetermined distance along the axial direction of the omnidirectional wheel 10, and are offset by a predetermined distance along the circumferential direction of the omnidirectional wheel 10, thereby
  • the axis of the driven wheel 16 is at an angle to the axis of the omnidirectional wheel 10, such as 30 degrees, 45 degrees, 60 degrees, and the like.
  • the outer edge of the first sub-hub 12 is provided with a plurality of first support ears 121.
  • the plurality of first support ears 121 are evenly distributed along the circumferential interval of the first sub-hub 12.
  • the first sub-hub 12 further includes a first inner hub 122, a first outer hub 123, and a plurality of connections between the first inner hub 122 and the first outer hub 123.
  • the first inner hub 122 is disposed coaxially with the first outer hub 123.
  • the plurality of first connecting arms 124 are evenly connected between the first inner hub 122 and the first outer hub 123.
  • the first support ears 121 are evenly disposed at an outer edge of the first outer hub 123 along a circumferential interval of the first outer hub 123.
  • the number of the first connecting arms 124 is six, and each of the first connecting arms 124 is bent in a substantially "V" shape, and the two ends of each of the first connecting arms 124 are respectively connected
  • the first inner hub 122 and the first outer hub 123 are described. It can be understood that in other embodiments, the number of the first connecting arms 124 can be any suitable change according to actual needs, for example, the first connecting arms 124 can be three, four, five, seven.
  • the shape of the first connecting arm 124 is not limited to the illustrated embodiment.
  • the first connecting arm 124 may have a substantially "one" shape and a substantially "Y" shape. It is in the shape of "X".
  • the structure of the second sub-hub 13 is substantially the same as the structure of the first sub-hub 12.
  • the outer edge of the second sub-hub 13 is provided with a plurality of second support ears 131.
  • the second support ear 131 is in one-to-one correspondence with the first support ears 121.
  • the second support ears 131 are evenly distributed along the axial interval of the second sub-hub 13 .
  • Each of the second support ears 131 is spaced apart from the corresponding first support ears 121 by a predetermined distance along the axial direction of the hub 11 to support one of the driven wheels 16 and to receive the driven wheel 16
  • Two corresponding first support ears 121 and second support ears 131 are disposed.
  • each of the second support ears 131 and the corresponding first support ears 121 are offset by a predetermined angle in the axial direction of the hub 11 such that the driven wheel 16 accommodated therebetween is inclined.
  • the second sub-hub 13 further includes a second inner hub 132 corresponding to the first inner hub 122, a second outer hub 133 corresponding to the first outer hub 123, and A plurality of second connecting arms 134 connected between the second inner hub 132 and the second outer hub 133 and in one-to-one correspondence with the plurality of first connecting portions 124.
  • the second inner hub 132 is disposed coaxially with the second outer hub 133.
  • the plurality of second connecting arms 134 are evenly connected between the second inner hub 132 and the second outer hub 133.
  • each of the second connecting arms 134 and the middle portion of the corresponding first connecting arm 124 are recessed toward each other.
  • the second support ears 131 are evenly disposed at an outer edge of the second outer hub 133 along a circumferential interval of the second outer hub 133.
  • the first sub-hub 12 and the second sub-hub 13 are integrally formed.
  • the first inner hub 122 is integrally formed with the second inner hub 132 and/or the first connecting arm 124 and the second connecting arm 134 are integrally formed and/or the first outer hub 123
  • the second outer hub 133 is integrally formed.
  • the first inner hub 122 and the second inner hub 123 constitute an inner hub of the hub 11 .
  • the first outer hub 123 and the second outer hub 133 constitute an outer hub of the hub 11.
  • the first connecting arm 124 and the second connecting arm 134 form a substantially "X" connecting arm connected between the inner hub and the outer hub.
  • the shape of the connecting arm may be different according to the shape of the first connecting arm 124 and the second connecting arm 134, and is not limited thereto.
  • Each of the driven wheels 16 is rotatably disposed between the first sub-hub 12 and the second sub-hub 13 , and the two ends of the driven wheel 16 are respectively adjacent to the first sub-hub 12 and Two sub-wheels 13.
  • each of the driven wheels 16 includes an axle 17 and a wheel body 18.
  • the axle 17 passes through the wheel body 18 and the opposite ends are exposed from the wheel body 18.
  • axle 17 The opposite ends of the axle 17 are coupled to the hub 11.
  • the opposite ends of the axle 17 are respectively connected to the first sub-hub 12 and the second sub-hub 13 , and the axle 17 is rotatably connected with the wheel 18 and/or
  • the axle 17 is rotatably coupled to the first sub-hub 12 and the second sub-hub 13.
  • the opposite ends of the axle 17 are connected to the first support ears 122 and the corresponding second support ears 132.
  • the axle 17 is a screw and is coupled to the hub 11 by a nut. The screw head of the screw abuts against the first sub-hub 12, and the threaded portion of the screw tail is connected to the nut through the second sub-hub 13.
  • the wheel body 18 has an integrally formed structure and is substantially drum-shaped.
  • the wheel body 18 is axially opened with a through hole 181 for the axle 17 to pass through.
  • the outer surface of the wheel body 18 is provided with a tread 182.
  • the tread 182 is a uniformly distributed protrusion. Specifically, the protrusions are in a dot shape.
  • the treads 182 are arranged in a matrix.
  • the height of the tread 182 protrusion gradually increases from both ends of the wheel body 18 toward the middle of the wheel body 18.
  • the height of each of the projections gradually increases from a side away from the middle of the wheel body 18 toward a side close to the middle of the wheel body 18.
  • the tread 182 may be a protrusion, and/or a depression of a line, a dot, or various patterns. At this time, the tread 182 is disposed axially around the wheel body 18.
  • the tread 182 can also be designed into other shapes as needed, as long as the outer surface area of the wheel body 18 can be increased and the friction between the wheel body and the ground can be increased, thereby increasing the omnidirectional wheel 10. Grip can be, not limited to this.
  • Embodiments of the present invention also provide a robot (not shown) including a body, and an imaging device and/or a sensing device, a control device, and at least one of the omnidirectional wheels 10 disposed on the body.
  • the control device controls the omnidirectional wheel 10 to move in accordance with a control command.
  • imaging device and the sensing device can be omitted.
  • the omnidirectional wheel and the robot provided by the present invention can improve the grip of the omnidirectional wheel by providing a tread pattern on the surface of the driven wheel of the omnidirectional wheel, thereby improving the omnidirectional wheel. Sports efficiency and controllability.
  • the hub of the omnidirectional wheel is a carbon fiber hub, the weight of the omnidirectional wheel can be reduced while the noise during the operation of the omnidirectional wheel is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

一种全向轮(10)及具有该全向轮(10)的机器人,所述全向轮(10)包括轮毂(11)及设置于所述轮毂(11)周缘的多个从动轮(16),每个所述从动轮(16)均包括轮轴(17)及轮体(18),所述轮轴(17)穿过所述轮体(18),且相对两端自所述轮体(18)露出,所述轮轴(17)的相对两端固定于所述轮毂(11),所述轮体(18)外表面设置有胎纹(182)。由于所述全向轮(10)的从动轮(16)表面设置有胎纹(182),可提升所述全向轮(10)的抓地力,从而提高所述全向轮(10)的运动效率及可控性。

Description

全向轮及具有该全向轮的机器人 技术领域
本发明涉及一种全向轮及具有该全向轮的机器人。
背景技术
全向轮是一种可以用于搭建全方位移动平台的轮子。它的特点是每个全向轮在轮毂周围分布有与其成一定角度的从动轮。在轮毂的驱动下,从动轮可以朝任一方向自由转动,从而实现平面上前行、横移、斜行、旋转及其组合等全方位移动方式。由于这种特征,运用全向轮的移动平台相比普通轮系平台,具有更高的运动灵活性,能适应在更狭小的空间中运动。现有技术中,全向轮的抓地力较差。
发明内容
有鉴于此,有必要提供一种解决上述问题的全向轮及具有该全向轮的机器人。
一种全向轮,包括轮毂及设置于所述轮毂周缘的多个从动轮,每个所述从动轮均包括轮轴及轮体,所述轮轴穿过所述轮体,且相对两端自所述轮体露出,所述轮轴的相对两端固定于所述轮毂,所述轮体外表面设置有胎纹。
进一步地,所述胎纹为均匀分布的凸起。
进一步地,所述胎纹呈矩阵排列。
进一步地,所述轮体呈鼓状,所述胎纹凸起的高度自所述轮体两端向所述轮体中部逐渐递增。
进一步地,每一所述凸起的高度自远离所述轮体中部的一侧向靠近所述轮体中部的一侧逐渐增大。
进一步地,所述轮体为一体成型结构。
进一步地,所述轮毂为碳纤维轮毂。
进一步地,所述轮毂包括第一子轮毂及第二子轮毂,所述第一子轮毂和第二子轮毂沿所述全向轮的轴向隔开预设距离,且沿全向轮的周向错开预设角度。
进一步地,所述从动轮可转动地设置于所述第一子轮毂和第二子轮毂之间,且所述从动轮的两个端部分别靠近所述第一子轮毂和第二子轮毂。
进一步地,所述第一子轮毂及第二子轮毂的外缘均设置有与所述轮轴配合固定的支撑耳,所述轮轴的相对两端分别固定在所述第一子轮毂及所述第二子轮毂的支撑耳上。
进一步地,所述从动轮的轮轴的两端分别连接于所述第一子轮毂和第二子轮毂,且所述从动轮的轮轴与所述从动轮的轮体可转动地连接和/或所述从动轮的轮轴与所述第一子轮毂和第二子轮毂可转动地连接。
进一步地,所述从动轮的轮轴为螺杆,通过螺母连接于所述轮毂上,其中所述螺杆的螺杆头抵接于第一子轮毂,螺杆尾部的螺纹部分穿过第二子轮毂与所述螺母连接。
进一步地,所述子轮毂还包括内轮毂、外轮毂及连接内轮毂和外轮毂的连接臂,所述支撑耳设置于所述外轮毂的外缘。
一种机器人,包括机身及至少一个上述全向轮,所述全向轮连接于所述机身。
进一步地,所述机器人还包括成像装置,所述成像装置设置于在所述机身上。
进一步地,所述机器人还包括安装于机身的控制装置,所述控制装置控制所述全向轮依照控制指令进行运动。
相对于现有技术,本发明提供的全向轮及机器人,由于所述全向轮的从动轮表面设置有胎纹,可提升所述全向轮的抓地力,从而提高所述全向轮的运动效率及可控性。
附图说明
图1是本发明实施方式提供的全向轮的立体图。
图2是图1所示的全向轮的轮毂的立体图。
图3是图1所示的全向轮的从动轮的立体图。
主要元件符号说明
全向轮          10
轮毂             11
从动轮           16
第一子轮毂       12
第二子轮毂       13
第一支撑耳       121
第二支撑耳       131
第一内轮毂       122
第一外轮毂       123
第一连接臂       124
第二内轮毂       132
第二外轮毂       133
第二连接臂       134
轮轴             17
轮体             18
通孔             181
胎纹             182
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当一个组件被认为是“设置于”另一个组件,它可以是直接设置于另一个组件上或者可能同时存在居中组件。当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所 使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,本发明实施方式提供的全向轮10包括轮毂11及设置于所述轮毂11周缘的多个从动轮16。
请一并参阅图2,本实施方式中,所述轮毂11为碳纤维轮毂。所述碳纤维轮毂能够保证所述轮毂11的机械强度,同时减轻所述轮毂11的重量,进而在所述全向轮10运转时降低噪音。本实施方式中,所述轮毂11包括相对设置的第一子轮毂12及第二子轮毂13。所述第一子轮毂12及所述第二子轮毂13沿所述全向轮10的轴向隔开预设距离,且沿所述全向轮10的周向错开预设距离,从而使得所述从动轮16的轴线与所述全向轮10的轴线之间成一定角度,例如30度、45度、60度等。
本实施方式中,所述第一子轮毂12的外缘设置有多个第一支撑耳121。所述多个第一支撑耳121沿所述第一子轮毂12的周向间隔均匀地分布。具体到图示实施方式中,所述第一子轮毂12还包括第一内轮毂122、第一外轮毂123及连接在所述第一内轮毂122与所述第一外轮毂123之间的多个第一连接臂124。所述第一内轮毂122与所述第一外轮毂123共轴设置。所述多个第一连接臂124间隔均匀地连接在所述第一内轮毂122与第一外轮毂123之间。所述第一支撑耳121沿所述第一外轮毂123的周向间隔均匀地设置在所述第一外轮毂123的外缘。
本实施方式中,所述第一连接臂124的数量为六个,每一个所述第一连接臂124大致呈“V”形弯曲,每一个所述第一连接臂124的两末端分别连接所述第一内轮毂122以及所述第一外轮毂123。可以理解,在其他的实施方式中,所述第一连接臂124的数量可以依据实际需求作任意合适的变化,例如所述第一连接臂124可以为三个、四个、五个、七个、八个等;另外,所述第一连接臂124的形状也不限于图示的实施方式,例如,所述第一连接臂124可以大致呈“一”字形、大致呈“Y”形、大致呈“X”形等。
所述第二子轮毂13的结构与所述第一子轮毂12的结构大致相同。
所述第二子轮毂13的外缘设置有多个第二支撑耳131。所述第二支撑耳 131与所述第一支撑耳121一一对应。所述第二支撑耳131沿所述第二子轮毂13的轴向间隔均匀地分布。每个所述第二支撑耳131与对应的所述第一支撑耳121沿所述轮毂11的轴向间隔预定距离,以件支撑一个所述从动轮16,并将所述从动轮16收容于两对应的所述第一支撑耳121与第二支撑耳131之间。本实施方式中,每个所述第二支撑耳131与对应的所述第一支撑耳121沿所述轮毂11的轴向错开预定角度,以使收容其间的所述从动轮16倾斜设置。每一所述支撑耳121与对应的第二支撑耳131配合,以将一个所述从动轮16连接于所述轮毂11。具体到图式实施方式中,所述第二子轮毂13还包括与所述第一内轮毂122对应的第二内轮毂132,与所述第一外轮毂123对应的第二外轮毂133,以及连接在所述第二内轮毂132与所述第二外轮毂133之间且与所述多个第一连接部124一一对应的多个第二连接臂134。所述第二内轮毂132与所述第二外轮毂133共轴设置。所述多个第二连接臂134间隔均匀地连接在所述第二内轮毂132与第二外轮毂133之间。每一所述第二连接臂134的中段与对应的第一连接臂124的中段向靠近彼此的方向凹陷。所述第二支撑耳131沿所述第二外轮毂133的周向间隔均匀地设置在所述第二外轮毂133的外缘。
可以理解,其他实施方式中,所述第一子轮毂12与所述第二子轮毂13一体成型。此时,所述第一内轮毂122与所述第二内轮毂132一体成型及/或所述第一连接臂124与所述第二连接臂134一体成型及/或所述第一外轮毂123与所述第二外轮毂133一体成型。所述第一内轮毂122与所述第二内轮毂123构成所述轮毂11的内轮毂。所述第一外轮毂123与所述第二外轮毂133构成所述轮毂11的外轮毂。所述第一连接臂124与所述第二连接臂134构成大致“X”的连接臂连接在所述内轮毂与所述外轮毂之间。此时,所述连接臂的形状可依据所述第一连接臂124及所述第二连接臂134形状的不同而有所不同,并不以此为限。
每个所述从动轮16可转动地设置于所述第一子轮毂12和第二子轮毂13之间,且所述从动轮16的两个端部分别靠近所述第一子轮毂12和第二子轮毂13。
请一并参阅图3,每个所述从动轮16均包括轮轴17及轮体18。所述轮轴17穿过所述轮体18,且相对两端自所述轮体18露出。
所述轮轴17的相对两端连接于所述轮毂11。本实施方式中,所述轮轴17的相对两端分别连接于所述第一子轮毂12和第二子轮毂13,且所述轮轴17与所述轮体18可转动地连接,及/或所述轮轴17相对所述第一子轮毂12和第二子轮毂13可转动地连接。具体到图示实施方式中,所述轮轴17的相对两端连接于所述第一支撑耳122及对应的所述第二支撑耳132上。本实施方式中,所述轮轴17为螺杆,通过螺母连接于所述轮毂11上。所述螺杆的螺杆头抵接于第一子轮毂12,螺杆尾部的螺纹部分穿过第二子轮毂13与所述螺母连接。
本实施方式中,所述轮体18为一体成型结构,大致呈鼓状。所述轮体18轴向开设有通孔181,以供所述轮轴17穿过。所述轮体18的外表面设置有胎纹182。本实施方式中,所述胎纹182为均匀分布的凸起。具体地,所述凸起呈点状。所述胎纹182呈矩阵排列。所述胎纹182凸起的高度自所述轮体18的两端向所述轮体18的中部逐渐递增。每一所述凸起的高度自远离所述轮体18的中部的一侧向靠近所述轮体18的中部的一侧逐渐增大。
可以理解,其他实施方式中,所述胎纹182可为线状、点状或各种图案的凸起及/或凹陷。此时,所述胎纹182轴向环绕所述轮体18设置。当然,所述胎纹182也可依需要设计为其他形状,只要能够增大所述轮体18的外表面面积及增大轮体与地面的摩擦力,进而增大所述全向轮10的抓地力即可,并不以此为限。
本发明实施方式还提供一种机器人(图未示),包括机身,及设置于所述机身上的成像装置和/或感测装置,控制装置及至少一个所述全向轮10。所述控制装置控制所述全向轮10依照控制指令进行运动。
可以理解,所述成像装置及感测装置可省略。
相对于现有技术,本发明提供的全向轮及机器人,由于所述全向轮的从动轮表面设置有胎纹,可提升所述全向轮的抓地力,从而提高所述全向轮的运动效率及可控性。
另外,由于所述全向轮的轮毂为碳纤维轮毂,可减轻所述全向轮的重量,同时减弱所述全向轮运转时的噪音。
对于本领域的普通技术人员来说,可以根据本发明的技术构思做出其它各种相应的改变与变形,而所有这些改变与变形都应属于本发明权利要求的 保护范围。

Claims (16)

  1. 一种全向轮,包括轮毂及设置于所述轮毂周缘的多个从动轮,每个所述从动轮均包括轮轴及轮体,所述轮轴穿过所述轮体,且相对两端自所述轮体露出,所述轮轴的相对两端固定于所述轮毂,所述轮体外表面设置有胎纹。
  2. 如权利要求1所述的全向轮,其特征在于,所述胎纹为均匀分布的凸起。
  3. 如权利要求2所述的全向轮,其特征在于,所述胎纹呈矩阵排列。
  4. 如权利要求1或2所述的全向轮,其特征在于,所述轮体呈鼓状,所述胎纹凸起的高度自所述轮体两端向所述轮体中部逐渐递增。
  5. 如权利要求3所述的全向轮,其特征在于,每一所述凸起的高度自远离所述轮体中部的一侧向靠近所述轮体中部的一侧逐渐增大。
  6. 如权利要求1所述的全向轮,其特征在于,所述轮体为一体成型结构。
  7. 如权利要求1所述的全向轮,其特征在于,所述轮毂为碳纤维轮毂。
  8. 如权利要求1所述的全向轮,其特征在于,所述轮毂包括第一子轮毂及第二子轮毂,所述第一子轮毂和第二子轮毂沿所述全向轮的轴向隔开预设距离,且沿全向轮的周向错开预设角度。
  9. 如权利要求8所述的全向轮,其特征在于,所述从动轮可转动地设置于所述第一子轮毂和第二子轮毂之间,且所述从动轮的两个端部分别靠近所述第一子轮毂和第二子轮毂。
  10. 如权利要求9所述的全向轮,其特征在于:所述第一子轮毂及第二子轮毂的外缘均设置有与所述轮轴配合固定的支撑耳,所述轮轴的相对两端分别固定在所述第一子轮毂及所述第二子轮毂的支撑耳上。
  11. 如权利要求8-10中任一项所述的全向轮,其特征在于,所述从动轮的轮轴的两端分别连接于所述第一子轮毂和第二子轮毂,且所述从动轮的轮轴与所述从动轮的轮体可转动地连接和/或所述从动轮的轮轴与所述第一子轮毂和第二子轮毂可转动地连接。
  12. 如权利要求1或8所述的全向轮,其特征在于,所述从动轮的轮轴为螺杆,通过螺母连接于所述轮毂上,其中所述螺杆的螺杆头抵接于第一子轮毂,螺杆尾部的螺纹部分穿过第二子轮毂与所述螺母连接。
  13. 如权利要求10所述的全向轮,其特征在于,所述子轮毂还包括内轮毂、 外轮毂及连接内轮毂和外轮毂的连接臂,所述支撑耳设置于所述外轮毂的外缘。
  14. 一种机器人,包括机身及至少一个如权利要求1-13中任一项所述的全向轮,所述全向轮连接于所述机身。
  15. 如权利要求14所述的机器人,其特征在于,所述机器人还包括成像装置,所述成像装置设置于在所述机身上。
  16. 如权利要求14所述的机器人,其特征在于,所述机器人还包括安装于机身的控制装置,所述控制装置控制所述全向轮依照控制指令进行运动。
PCT/CN2016/102725 2016-07-18 2016-10-20 全向轮及具有该全向轮的机器人 WO2018014455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620753947.4U CN206106799U (zh) 2016-07-18 2016-07-18 全向轮及具有该全向轮的机器人
CN201620753947.4 2016-07-18

Publications (1)

Publication Number Publication Date
WO2018014455A1 true WO2018014455A1 (zh) 2018-01-25

Family

ID=58510415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102725 WO2018014455A1 (zh) 2016-07-18 2016-10-20 全向轮及具有该全向轮的机器人

Country Status (2)

Country Link
CN (2) CN206106799U (zh)
WO (1) WO2018014455A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114368178A (zh) * 2021-12-16 2022-04-19 捷和电机制品(深圳)有限公司 一种轮毂的制造方法以及全向轮的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100224427A1 (en) * 2007-04-04 2010-09-09 Nuechter Elmar Omnidirectional vehicle, driving module, and mobile industrial robot
CN101856945A (zh) * 2010-06-14 2010-10-13 中国海洋大学 一种简化制造工艺的全向轮
CN102874049A (zh) * 2012-10-24 2013-01-16 浙江鼎力机械股份有限公司 全向高空作业平台的移动轮
CN102896971A (zh) * 2012-09-12 2013-01-30 凯迈(洛阳)测控有限公司 一种全方位轮及使用该全方位轮的全向移动平台
CN202911454U (zh) * 2012-10-24 2013-05-01 武汉汉迪机器人科技有限公司 一种重载全向移动轮
CN105126350A (zh) * 2015-07-03 2015-12-09 北京信息科技大学 一种足球机器人整体结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100224427A1 (en) * 2007-04-04 2010-09-09 Nuechter Elmar Omnidirectional vehicle, driving module, and mobile industrial robot
CN101856945A (zh) * 2010-06-14 2010-10-13 中国海洋大学 一种简化制造工艺的全向轮
CN102896971A (zh) * 2012-09-12 2013-01-30 凯迈(洛阳)测控有限公司 一种全方位轮及使用该全方位轮的全向移动平台
CN102874049A (zh) * 2012-10-24 2013-01-16 浙江鼎力机械股份有限公司 全向高空作业平台的移动轮
CN202911454U (zh) * 2012-10-24 2013-05-01 武汉汉迪机器人科技有限公司 一种重载全向移动轮
CN105126350A (zh) * 2015-07-03 2015-12-09 北京信息科技大学 一种足球机器人整体结构

Also Published As

Publication number Publication date
CN206106799U (zh) 2017-04-19
CN206765702U (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
JP6870032B2 (ja) ヒンジ付ビークルシャーシ
US9004202B2 (en) Omnidirectional wheel that can be driven by a motor and vehicle provided therewith
US9821597B2 (en) Force distributing apparatus having first and second portions for a bicycle wheel spoke
WO2019114266A1 (zh) 柔性底座和自驱动机器人
CN104443101A (zh) 一种用于阶梯攀爬机器人的变形轮机构
JP2015515941A (ja) 球状車輪及びこの車輪を実装した車両
WO2018014455A1 (zh) 全向轮及具有该全向轮的机器人
KR20120071187A (ko) 바퀴 및 이를 구비한 이동체
CN202641254U (zh) 一种充气球轮式的无轴万向轮
US20220266627A1 (en) Transformable wheel suitable for crossing any type of terrain and autonomous robot equipped with at least one such wheel
WO2018072526A1 (zh) 类人机器人关节的连接结构
US9283807B2 (en) Sinusoidal wheel
CN102673301A (zh) 辐条锁紧装置
US20130207448A1 (en) Force distributing apparatus for a bicycle wheel spoke
TWI753242B (zh) 萬向輪、行走機構和自主移動搬運機器人
WO2018218727A1 (zh) 轮罩、车轮组件及步战车
US9381442B2 (en) Variable-track rolling toy
KR20150118602A (ko) 메카넘 휠을 이용한 볼-로봇
CN209479320U (zh) 万向脚轮
KR102050096B1 (ko) 조향 장치
KR20120002339A (ko) 차량의 드라이브 샤프트용 체결유닛
KR20130047209A (ko) 다방향 이동 구륜 바퀴
CN111532122A (zh) 一种通用移动机器人全向底盘
US10427062B2 (en) Wheel assembly for countering an acting gravitational force
KR101369895B1 (ko) 모형자동차 또는 주행로봇의 바퀴축 고정장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909382

Country of ref document: EP

Kind code of ref document: A1