WO2017121022A1 - 含氰类、烃类和NOx的工业废气一体化净化方法及系统 - Google Patents

含氰类、烃类和NOx的工业废气一体化净化方法及系统 Download PDF

Info

Publication number
WO2017121022A1
WO2017121022A1 PCT/CN2016/075602 CN2016075602W WO2017121022A1 WO 2017121022 A1 WO2017121022 A1 WO 2017121022A1 CN 2016075602 W CN2016075602 W CN 2016075602W WO 2017121022 A1 WO2017121022 A1 WO 2017121022A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
catalyst
catalytic combustion
reactor
heating unit
Prior art date
Application number
PCT/CN2016/075602
Other languages
English (en)
French (fr)
Inventor
陈标华
张润铎
张傑
史东军
李英霞
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Priority to US15/568,461 priority Critical patent/US10315160B2/en
Publication of WO2017121022A1 publication Critical patent/WO2017121022A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • B01D53/865Simultaneous elimination of the components characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8696Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • B01J35/19
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/063Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/504ZSM 5 zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/904Multiple catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/408Cyanides, e.g. hydrogen cyanide (HCH)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/66Synthesis on support on metal supports
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • C07C255/08Acrylonitrile; Methacrylonitrile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/60Separating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/203Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50213Preheating processes other than drying or pyrolysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/508Providing additional energy for combustion, e.g. by using supplementary heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Definitions

  • the invention belongs to the field of exhaust gas purification, and particularly relates to an integrated purification treatment process for treating exhaust gas generated by an acrylonitrile production device by using a combined catalyst to select a catalytic combustion technology.
  • acrylonitrile production equipment For acrylonitrile production equipment, it is usually produced by propylene ammoxidation. In the final exhaust gas, it usually contains cyano-containing substances such as acrylonitrile, acetonitrile and HCN. At the same time, because the raw material gas is not pure, the tail gas is usually accompanied by propane and B. Alkanes, incompletely converted propylene and other hydrocarbons, and also contain a certain amount of environmentally hazardous components such as nitrogen oxides and carbon monoxide. Due to the complexity of the combustible exothermic components in the exhaust gas, low concentration, high toxicity, and large gas volume, the general process cannot meet environmental protection requirements.
  • Thermal incineration disadvantage is the need to add a lot of fuel, high operating costs, and operating at elevated temperatures and easy containing cyanides (R-CN) materials into the NO X, while the high-temperature portion of the tail N 2 oxidation of NO x , easy to cause secondary pollution, need to continue to increase the NH 3 -SCR device to continue to remove, the process parameters and removal effects are higher, the process is more complicated.
  • the catalytic oxidation method under the action of the catalyst, allows the pollutants to be removed at low temperatures without the need to replenish additional fuel.
  • Patent CN101362051A discloses an exhaust treatment process for an acrylonitrile plant, which uses an oxidation reactor using a noble metal honeycomb as a catalyst and an NH 3 -SCR reactor using a vanadium/tungsten/titanium honeycomb ceramic as a catalyst, and the two reactors are combined and removed. Contaminants.
  • This process is part of the reactor prior to the oxidation reaction, is a hydrocarbon, CO, and R-CN completely oxidized, producing CO 2, H 2 O and NO X, the sections continue to use ammonia as the reducing agent, selective catalytic reduction of NO x .
  • This process not only requires two reactors at the same time, the process is long, pre-investment in equipment, also during operation consumes a large amount of ammonia, while in the preceding paragraph R-CN is converted to NO x, NH 3 -SCR increase means The load is also in danger of NH 3 leakage and overflow, resulting in excessive emissions of NH 3 , resulting in new sources of pollution. Therefore, there is still room for improvement in this process.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide an integrated waste gas purification treatment method comprising cyanogens, hydrocarbons and nitrogen oxides.
  • Another object of the present invention is to provide an industrial waste gas integrated purification treatment system containing cyanogens, hydrocarbons and nitrogen oxides.
  • An industrial waste gas integrated purification method comprising cyanogens, hydrocarbons and nitrogen oxides, wherein the exhaust gas is an industrial waste gas containing multi-component pollutants, comprising the steps of:
  • the tail gas containing cyanide, hydrocarbon and nitrogen oxide pollutants is first separated by gas-liquid separation equipment After the free liquid is discharged, it is mixed with the air sent from the air blower, and preheated by the heating unit.
  • SCC reactor selective catalytic combustion reactor
  • the inlet temperature of the SCC reactor is 280-350 °C
  • the temperature of the front stage of the catalyst is controlled to 300-550 °C
  • the temperature of the latter stage is controlled by 500-650 °C
  • the pressure of the bed is 0.5-25 kPa (G) (the pressure drop that the bed can withstand) Under the conditions of the conversion of harmful substances into CO 2 , H 2 O and N 2 ;
  • the purified exhaust gas can be directly emptied through the chimney.
  • the air blower is used to supplement the flow rate of the air to control the total oxygen concentration in the exhaust gas before entering the SCC reactor to be 3% to 8%, preferably 5%.
  • the inlet temperature of the SCC reactor is preferably 325 ° C
  • the bed control temperature in the front stage of the catalyst is 430 ⁇ 20 ° C
  • the bed control temperature in the latter stage of the catalyst is 560 ⁇ 20 ° C.
  • the supported molecular sieve catalyst in the preceding stage is a honeycomb monolithic or particulate packed catalyst, wherein the molecular sieve is ZSM-5 to ZSM-48 series, Beta, Y, Beta, MCM-22 to MCM.
  • the molecular sieve is ZSM-5 to ZSM-48 series, Beta, Y, Beta, MCM-22 to MCM.
  • the supported metal ions are copper, iron, cobalt, manganese, nickel, aluminum,
  • the silver plasmas preferably a honeycomb monolithic Cu-ZSM-5.
  • the noble metal catalyst in the latter stage is made of cordierite ceramic or metal corrugated plate type, and the noble metal is one or more of platinum, palladium, rhodium, silver and ruthenium, and the noble metal catalyst is preferably Platinum/palladium-cordierite honeycomb ceramic catalyst.
  • Supported molecular sieve catalysts especially the preferred Cu-ZSM-5 catalysts of the present invention, have higher conversion rates for cyanide-containing materials and nitrogen selectivity, and can convert R-CN to N 2 , CO 2 and H 2 O.
  • Modified molecular sieve catalyst in the temperature range of 350 ⁇ 500 °C, propane or propylene can be used as the reducing agent in the exhaust gas to remove NO x, so that efficient conversion to nitrogen gas, while requiring bed temperature and not higher than 550 deg.] C, or the higher the temperature, the less conducive to the conversion of nO x.
  • transition metal modified molecular sieve catalysts are difficult to achieve complete removal of hydrocarbons, especially propane, ethane or methane, below 550 ° C, and need to be elevated to a higher temperature to meet the requirements.
  • hydrocarbons especially propane, ethane or methane
  • the molecular sieve catalyst structure is prone to change, and the catalyst life is reduced.
  • the reactor is required to withstand higher temperatures.
  • the transition metal modified zeolite catalyst having the advantage of a high selectivity for conversion of a cyano group-containing nitrogen gas and NO x
  • the noble metal catalyst has advantages of high conversion of hydrocarbons, by optimizing a combination of both at a low temperature, suitable control Conditions, can give play to their respective advantages, to achieve an integrated purification process.
  • the ratio of the catalyst loading amount of the front stage and the rear stage ranges from 1 to 5:0 to 3, preferably 3:1.
  • An industrial waste gas integrated purification treatment system containing cyanogens, hydrocarbons and nitrogen oxides comprising a gas-liquid separation device, a heating unit, an SCC reactor (selective catalytic combustion reactor);
  • the gas-liquid separation device is provided with a gas outlet, and the pipeline connected by the gas outlet is connected to the exhaust gas inlet of the SCC reactor through a heating unit, and the air outlet is connected with an air blower; the exhaust gas of the SCC reactor The outlet is connected to the heating medium inlet of the heating unit via a line, and the heating medium outlet of the heating unit is connected to the chimney.
  • the heating unit comprises a heat recovery device and an electric heater
  • the heat recovery device comprises a steam heat exchanger, a waste heat boiler and an exhaust heat exchanger
  • a gas distributor, a molecular sieve honeycomb catalyst bed, an air redistributor, and a noble metal catalyst bed are sequentially disposed from the exhaust gas inlet to the exhaust gas outlet.
  • the exhaust gas purification treatment system comprises two air blowers, wherein an air outlet of the first air blower is connected to the pipeline connected to the gas outlet, and an air outlet of the second air blower is connected to the SCC reactor, and the inlet position is located in the molecular sieve honeycomb Between the catalyst and the air redistributor.
  • the electric heater, the steam superheater, the waste heat boiler, the exhaust gas heat exchanger, the blower and the like are all equipped with standard equipment.
  • the invention simultaneously realizes the conversion of three pollutants containing cyanide (R-CN), hydrocarbon (C x H y ) and nitrogen oxide (NO x ) in the same reactor by rationally installing catalysts with different functions. There is no need to provide a separate selective catalytic reduction denitration reactor, and no need to add ammonia, which significantly simplifies the process.
  • the invention can realize tail gas treatment under multi-industry and multi-conditions by adjusting the catalyst combination mode, and has broad application prospects.
  • FIG. 1 is a process flow diagram of an integrated purification treatment process of the present invention.
  • FIG. 2 is a schematic view showing the internal structure of the SCC reactor (5) of the present invention.
  • 1 is a gas-liquid separation tank
  • 101 is a waste water pipeline of a gas-liquid separation tank
  • 201 is a first air blower
  • 202 is a second air blower
  • 301 is an electric heater
  • 302 is a steam heat exchanger
  • 303 is an exhaust gas.
  • Heat exchanger 4 is waste heat boiler
  • 401 is boiler feed water pipeline
  • 402 is steam exhausting device
  • 403 is boiler exhaust sewage pipeline
  • 5 is SCC reactor
  • 501 exhaust gas inlet
  • 502 is gas distributor
  • 503 is molecular sieve
  • the honeycomb catalyst bed, 504 is an air redistributor
  • 505 is a noble metal catalyst bed
  • 506 is a tail gas outlet
  • 6 is a chimney
  • 7 is an air filter.
  • the catalyst selected in the examples is a catalyst developed by Beijing University of Chemical Technology.
  • the main parameters of the catalyst are shown in Table 1.
  • the size of the catalyst block is the outer dimensions of the honeycomb catalyst.
  • the former stage catalyzed the use of molecular sieve honeycomb catalyst (Cu-ZSM-5), and the later stage used noble metal honeycomb ceramic catalyst (main components of platinum and palladium).
  • the ratio of catalyst loading in the front and rear stages was 3:1.
  • the experimental conditions were: NO (200 mg/m 3 ) + C 3 H 6 (2000 mg/m 3 ) + C 3 H 8 (2000 mg/m 3 ) + CO (5000 mg/m 3 ), and the oxygen concentration was 8%.
  • the oxygen concentrations were 10% and 12%.
  • the other test conditions are the same as those obtained in Example 1, as shown in Table 2.
  • Example 2 when seen 1, the molecular sieve in the catalyst bed, the oxygen concentration exceeds 8%, NO x removal efficiency for the poor by Example 1.
  • the temperature is higher than 500 °C, the molecular sieve catalyst for NO x removal can not meet emissions standards.
  • Higher oxygen concentrations, higher temperatures are not conducive to the removal of NO x, is propylene or propane may not play the role of reducing agent, all of the oxidation reaction. Therefore, it is necessary to control the tail gas oxygen concentration not higher than 8%, and the molecular sieve catalyst bed temperature is not higher than 550 ° C.
  • the process waste gas containing cyanide, hydrocarbons and nitrogen oxides and other multi-component pollutants can be integrated and purified.
  • the exhaust gas integrated purification treatment process generated by the acrylonitrile production device the system used includes a gas-liquid separation tank 1, a heating unit, an SCC reactor 5;
  • the gas-liquid separation tank 1 is provided with a gas outlet, and the pipeline connected by the gas outlet is connected to the exhaust gas inlet of the SCC reactor 5 through a heating unit, and the air outlet is connected with an air blower; the exhaust gas of the SCC reactor The outlet is connected to the heating medium inlet of the heating unit via a line, and the heating medium outlet of the heating unit is connected to the chimney 6.
  • the heating unit includes a heat recovery device and an electric heater 301, and the heat recovery device includes a steam heat exchanger 302, a waste heat boiler 4, and an exhaust heat exchanger 303.
  • the accessories of the waste heat boiler 4 include a boiler feed water pipe 401 connecting the pipe network, a boiler drain pipe 403 discharged to the sewage system, and a steam evacuation device 402.
  • a gas distributor 502 a molecular sieve honeycomb catalyst bed 503, an air redistributor 504, and a noble metal catalyst bed 505 are sequentially disposed from the exhaust gas inlet 501 to the exhaust gas outlet 506.
  • the exhaust gas purification treatment system of the present embodiment includes two air blowers, and the air inlets are connected with an air filter 7, the air intake includes air and nitrogen gas from the pipe network; wherein the air outlet of the first air blower 201 is connected to the gas outlet connection
  • the conduit, the outlet of the second air blower is connected to the SCC reactor, and the inlet location is between the molecular sieve honeycomb catalyst bed 503 and the air redistributor 504.
  • the tail gas discharged from the absorption tower of the acrylonitrile production separation device is separated from the free liquid by the gas-liquid separation tank 1, and then mixed with air, and the air replenishing amount should be matched according to the total oxygen concentration (3% to 8%) of the controlled tail gas.
  • the electric heater in the process flow is only used when driving, and is normally closed, and the preheated exhaust gas enters the SCC reactor 5 to perform selective catalytic combustion reaction, and is fixed.
  • the catalyst bed is divided into two sections before and after the air re-divider. The front section is catalyzed by a supported molecular sieve honeycomb catalyst, and the latter stage is catalyzed by a supported noble metal honeycomb catalyst.
  • the inlet temperature of the reactor is 280-350. °C
  • the temperature of the front stage of the catalyst is controlled to 300-550 ° C
  • the temperature of the latter stage is controlled at 500-650 ° C
  • the bed pressure is 0.5-25 kPa (G) (the pressure drop that the catalyst bed can withstand in the reactor) will be harmful.
  • the material is converted into CO 2 , H 2 O and N 2 , wherein the temperature control of the latter stage is supplemented by a blower according to the exothermic temperature rise of the reaction, and the purified gas from the SCC reactor is recovered by heat. After the device steam superheater, preheating boiler and exhaust heat exchanger recover heat, they are directly drained through the chimney.
  • the tail gas containing cyanide, hydrocarbon and nitrogen oxide pollutants is first separated from the free liquid by the gas-liquid separation tank 1, and then mixed with the air sent from the first air blower 201, and preheated by the heating unit.
  • Example 4 to Example 9 a molecular sieve honeycomb catalyst (main component Cu-ZSM-5) was used in the front stage of the SCC reactor, and a noble metal honeycomb ceramic catalyst (platinum/palladium-cordierite honeycomb ceramic catalyst) was used in the latter stage.
  • the ratio of catalyst loading in the front and rear stages is 3:1, and the pressure in the reactor is about 5 kPa (G).
  • the removal efficiency of the exhaust gas is controlled by adjusting the inlet temperature and the catalyst bed temperature.
  • Other process conditions were the same as in Example 4, and the results of the treatment are shown in Table 4.
  • Table 5 uses only molecular sieve catalyst as the comparative test data and national emission standards
  • Table 6 uses only precious metal catalysts as the comparative test data and national emission standards
  • the molecular sieve catalyst through the pre-stage and rear sections of the noble metal catalyst composition, to control the temperature in the reactor SCC may be a cyano group-containing, hydrocarbons and NO x can be removed, and meet the state Emission Standards.
  • the present invention disclosed cyanides, industrial waste gas purification process integrated hydrocarbons and NO x, wherein the exhaust gas is a multicomponent gas containing industrial pollutants.
  • the tail gas containing cyanide, hydrocarbon and nitrogen oxide (NO x ) pollutants is first separated from the free liquid by the gas-liquid separation device, and then mixed with the air sent by the air blower, and preheated by the heating unit. Heat; then enter the SCC reactor for selective catalytic combustion reaction, the gas from the SCC reactor enters the heating unit to recover heat, and the purified exhaust gas is directly emptied through the chimney.
  • the invention simultaneously realizes the conversion of three pollutants containing cyanide (R-CN), hydrocarbon (C x H y ) and nitrogen oxide (NO x ) in the same reactor by rationally installing catalysts with different functions. There is no need to provide a separate selective catalytic reduction denitration reactor, and no need to add ammonia, which significantly simplifies the process.
  • the invention can realize the tail gas treatment under the multi-industry and multi-conditions by adjusting the catalyst combination mode, and has excellent industrial application prospect.

Abstract

一种氰类、烃类和NO x的工业废气一体化净化方法及系统。方法包括步骤:1)将含氰类、烃类和氮氧化物(NO x)类污染物的尾气首先经气液分离设备(1)分离出游离的液体后,与空气鼓风机(201,202)送出的空气混合,用加热单元进行预热;2)进入选择催化燃烧(SCC)反应器(5)内进行选择催化燃烧反应,分两段进行催化,前段用负载型分子筛催化剂催化,后段以负载型贵金属催化剂催化,将有害物质转化为CO 2、H 2O和N 2;3)从SCC反应器(5)出来的气体进入加热单元回收热量后,净化尾气通过烟囱(6)直接排空。系统包括气液分离设备(1)、加热单元、选择催化燃烧反应器(5),气液分离设备(1)的气体出口通过加热单元连接选择催化燃烧反应器(5),选择催化燃烧反应器(5)的尾气出口通过加热单元连接烟囱(6)。

Description

含氰类、烃类和NOx的工业废气一体化净化方法及系统 技术领域
本发明属于废气净化领域,具体涉及一种采用组合催化剂分段选择催化燃烧技术,处理丙烯腈生产装置所产生的废气的一体化净化处理工艺。
背景技术
石化行业和碳纤维行业的企业,如丙烯腈厂、合成橡胶厂、有机玻璃厂、碳纤维厂、碳素厂等,这些企业排放的废气中不仅含有烃类(CxHy),氮氧化物(NOx),还含有如丙烯腈、氢氰酸和乙腈等含氰类(R-CN)物质的剧毒废气,直接排放必然引起严重的环境污染问题。
我国目前化工行业尾气处理通常采用直接排放或直接燃烧法处理,无法保证企业可持续发展的要求,而催化燃烧技术具有起燃温度低,余热可回收,能耗低,选择性好等优点,必然是今后石化行业和碳纤维行业含氰废气净化技术的主流。
针对丙烯腈生产装置,通常采用丙烯氨氧化法生产,在最终排放的尾气中通常含有丙烯腈、乙腈和HCN等含氰基物质,同时由于原料气丙烯不纯,尾气中通常伴有丙烷、乙烷、未完全转化的丙烯以及其他烃类物质,另外还含有一定量氮氧化物、一氧化碳等对环境有危害的组分。由于尾气中可燃烧放热组分复杂、浓度低、毒性高、气体量大,采用一般工艺不能满足环保要求。
针对丙烯腈尾气治理技术,目前主要有热力焚烧工艺和催化氧化两种工艺。热力焚烧的缺点是需要补充大量的燃料,运行成本较高,且在高温条件下运行,易将含氰类(R-CN)物质转变为NOx,同时尾气中部分N2被高温氧化生成NOx,易造成二次污染,需要后续增加NH3-SCR装置继续脱除,对工艺参数及脱除效果要求较高,工艺较为复杂。而采用催化氧化法,在催化剂的作用下,可使污染物在低温且不需要补充额外燃料情况可将其脱除。专利CN1903415报道,采用催化氧化处理工艺,将丙烯腈吸收塔排放尾气中的烃 类物质转变成二氧化碳和水,但没有考虑含R-CN氧化转变为NOx和本身含有NOx的脱除。虽然尾气中的氮气不会继续转变为NOx,但其NOx排放同样超标。专利CN101362051A公开报道了一种丙烯腈装置尾气处理工艺,采用以贵金属蜂窝为催化剂的氧化反应器和采用钒/钨/钛蜂窝陶瓷为催化剂的NH3-SCR反应器,两种反应器组合脱除污染物。此工艺前部分反应器为氧化反应,是将烃类物质、CO和R-CN完全氧化,生产CO2、H2O和NOx,后段则继续采用氨气为还原剂,选择催化还原NOx。此工艺不仅同时需要两台反应器,工艺流程长,前期设备投资大,还在运行过程中消耗了大量的氨气,同时前段中R-CN转化为NOx,增加了NH3-SCR装置的负荷,又面临NH3泄漏和溢流的危险,形成NH3过多排放,造成新的污染源。因此,此工艺仍有提升的空间。
负载型贵金属催化剂因其强氧化性,对烃类物质的脱除效果极佳,但对含氰类物质(R-CN)的脱除不具有生成氮气的选择性,因此当尾气中含氰类物质排放量大时,极易造成尾气NOx的含量排放超标。由于烃类含量高时,反应放热量大,催化剂床层温度很容易超过550℃,此温度下含氮物质极易转化为NOx,因此采用贵金属催化剂时尾气中NOx含量较高。据了解,丙烯腈生产排放尾气经贵金属催化剂床层后,尾气NOx浓度有时高达1000mg/m3,后续为脱除NOx,必须增设NH3-SCR反应器。尾气含较高浓度的NOx,不仅增加了NH3的消耗,而且对SCR催化剂的脱除效率提出更高要求。钒/钨/钛类型的催化剂也存在危害环境的风险。
发明内容
本发明的目的在于克服现有技术的存在的不足之处,提供一种含氰类、烃类和氮氧化物的废气一体化净化处理方法。
本发明的另一目的是提出一种含氰类、烃类和氮氧化物的工业废气一体化净化处理系统。
实现本发明上述目的技术方案为:
一种含氰类、烃类和氮氧化物的工业废气一体化净化方法,所述废气是含有多组分污染物的工业废气,包括步骤:
1)将含氰类、烃类和氮氧化物类污染物的尾气首先经气液分离设备分离 出游离的液体后,与空气鼓风机送出的空气混合,用加热单元进行预热,
2)进入选择催化燃烧反应器(SCC反应器)内进行选择催化燃烧反应,在SCC固定床反应器内分两段进行催化,前段用负载型分子筛催化剂催化,后段以负载型贵金属催化剂催化,进入SCC反应器的入口温度为280~350℃,催化剂前段温度控制为300~550℃,后段温度控制500~650℃,在床层压力0.5~25kPa(G)(床层可承受的压力降)的条件下,将有害物质转化为CO2、H2O和N2
3)从SCC反应器出来的气体进入加热单元回收热量后,净化尾气通过烟囱可直接排空。
进一步地,所述步骤1)中,利用空气鼓风机补充空气的流量来控制进入SCC反应器前尾气中总氧浓度为3%~8%,优选为5%。
其中,所述步骤2)中,SCC反应器入口温度优选为325℃,催化剂前段床层控制温度为430±20℃,催化剂后段床层控制温度为560±20℃。
其中,所述步骤2)中,前段的负载型分子筛催化剂为蜂窝整体式或颗粒捆包式的催化剂,其中分子筛为ZSM-5~ZSM-48系列、Beta、Y、Beta、MCM-22~MCM-56系列、SAPO-5~SAPO-47系列、SBA-15、SBA-16、TS-1分子筛中的一种或多种,负载的金属离子为铜、铁、钴、锰、镍、铝、银等离子中的一种或多种,优选蜂窝整体式的Cu-ZSM-5。
其中,所述步骤2)中,后段的贵金属催化剂采用堇青石陶瓷或金属波纹板式为基质,贵金属为铂、钯、铑、银、钌中的一种或多种,所述贵金属催化剂优选为铂/钯-堇青石蜂窝陶瓷催化剂。
负载型分子筛催化剂,尤其是本发明优选的Cu-ZSM-5催化剂,对含氰类物质脱除的转化率和氮气的选择性较高,可使R-CN转变为N2、CO2和H2O。改性分子筛催化剂在350~500℃温度区间内,可利用丙烯或丙烷作为还原剂,脱除尾气中的NOx,使其高效转变为氮气,同时要求床层温度最高不能高于550℃,否则温度越高,越不利于NOx的转化。但大多数过渡金属改性分子筛催化剂在550℃以下对烃类,尤其是丙烷、乙烷或甲烷难以实现完全脱除,需要升至更高的温度,才能满足要求。而高温下(600℃以上)分子筛催化剂结 构易发生变化,催化剂寿命受到缩减。同时要求反应器耐受温度更高。
因此,过渡金属改性分子筛催化在低温时具有针对含氰基和NOx的转化时高氮气选择性的优势,贵金属催化剂具有对烃类物质高效转化的优势,通过二者组合优化,控制合适的条件,可发挥出二者各自的优势,实现一体化净化处理工艺。
其中,所述步骤2)中,前段与后段的催化剂装填量之比范围为1~5:0~3,优选为3:1。
一种含氰类、烃类和氮氧化物的工业废气一体化净化处理系统,包括气液分离设备、加热单元、SCC反应器(选择催化燃烧反应器);
所述气液分离装置设置有气体出口,气体出口连接的管路通过加热单元,连接于SCC反应器的尾气进口,所述气体出口连接的管路上设置有空气鼓风机;所述SCC反应器的尾气出口通过管路连接加热单元的加热介质进口,所述加热单元的加热介质出口连接有烟囱。
其中,所述加热单元包括热量回收装置和电加热器,所述热量回收装置包括蒸气换热器、余热锅炉和尾气换热器。
进一步地,所述SCC反应器内,从尾气进口至尾气出口的方向上顺次设置气体分布器、分子筛蜂窝催化剂床层、空气再分布器、贵金属催化剂床层。
优选地,所述废气净化处理系统包括二个空气鼓风机,其中第一空气鼓风机的出风口连接所述气体出口连接的管路,第二空气鼓风机的出风口连接SCC反应器,进口位置位于分子筛蜂窝催化剂和空气再分布器之间。
所述的SCC反应器内,利用空气,对其内部进行降温,防止放热量过大,温度过高导致催化剂失活。
所述的电加热器、蒸气过热器、余热锅炉、尾气换热器、鼓风机等设备均采用标准设备即可。
本发明的有益效果在于:
本发明通过合理的安装不同功能的催化剂,在同一台反应器内同时实现含氰类(R-CN)、烃类(CxHy)和氮氧化物(NOx)三种污染物的转化,无需设置单独的选择性催化还原脱硝反应器,且无需加氨,明显简化了工艺。本 发明可通过调节催化剂组合方式,实现多行业、多工况下尾气治理,具有广泛的推广应用前景。
附图说明
图1为本发明一体化净化处理工艺的工艺流程图。
图2为本发明SCC反应器(5)内部结构示意图。
图中,1为气液分离罐,101为气液分离罐的废水管道,201为第一空气鼓风机,202为第二空气鼓风机,301为电加热器,302为蒸汽换热器,303为尾气换热器,4为余热锅炉,401为锅炉给水管道,402为水蒸气排空装置,403为锅炉排污水管道,5为SCC反应器,501为尾气入口,502为气体分布器,503为分子筛蜂窝催化剂床层,504为空气再分布器,505为贵金属催化剂床层,506为尾气出口,6为烟囱,7为空气过滤器。
具体实施方式
下面通过最佳实施例来说明本发明。本领域技术人员所应知的是,实施例只用来说明本发明而不是用来限制本发明的范围。
实施例中,如无特别说明,所用手段均为本领域常规的手段。
实施例所选用的催化剂为北京化工大学研制的催化剂,其催化剂主要参数见表1。
表1催化剂主要参数
Figure PCTCN2016075602-appb-000001
表1中,催化剂块的尺寸是蜂窝式催化剂的外形尺寸。
实施例1:
实施例1和2、对比例1和2的条件,是模拟实施例3的尾气主要气体组成系统,在实验室用气瓶进行的实验。
本实施例单独考察了不同氧浓度下,丙烯和丙烷作为还原剂,分子筛催化剂选择催化还原NOx实验结果。其实验条件为:NO(200mg/m3)+C3H6(2000mg/m3)+C3H8(2000mg/m3)+CO(5000mg/m3),氧浓度为5%(体积百分比,下同)。
前段催化采用分子筛蜂窝催化剂(Cu-ZSM-5),后段采用含贵金属蜂窝陶瓷催化剂(主要组分为铂和钯),前后两段端催化剂装填量之比为3:1。
实施例2
其实验条件为:NO(200mg/m3)+C3H6(2000mg/m3)+C3H8(2000mg/m3)+CO(5000mg/m3),氧浓度为8%。
对比例1和对比例2
对比例中1和2,氧浓度10%和12%。其他试验条件同实施例1所得结果如表2所示。
表2不同氧浓度对分子筛催化剂脱除NOx的影响
Figure PCTCN2016075602-appb-000002
通过实施例1和2与对比例1和2看出,在分子筛催化剂床层内,氧浓度超出8%时,对于NOx脱除效果不佳。同时温度高于500℃时,分子筛催化剂对NOx脱除也不能达标排放。较高氧浓度,较高温度均不利于脱除NOx,可能是丙烯或丙烷不能起到还原剂的作用,而全部进行了氧化反应。因此必须控制尾气氧浓度不能高于8%,而分子筛催化剂床层温度最高不高于550℃。
因此,采用组合催化的方式,合理设计,通过精确控制反应条件,可实现含氰类、烃类和氮氧化物等多组分污染物的工艺废气一体化净化处理。
实施例3
参见图1,丙烯腈生产装置产生的废气一体化净化处理工艺,使用的系统包括气液分离罐1、加热单元、SCC反应器5;
气液分离罐1设置有气体出口,气体出口连接的管路通过加热单元,连接于SCC反应器5的尾气进口,所述气体出口连接的管路上设置有空气鼓风机;所述SCC反应器的尾气出口通过管路连接加热单元的加热介质进口,所述加热单元的加热介质出口连接有烟囱6。
其中加热单元包括热量回收装置和电加热器301,热量回收装置包括蒸气换热器302、余热锅炉4和尾气换热器303。余热锅炉4的配件包括连接管网的锅炉给水管道401、排至污水系统的锅炉排污水管道403及水蒸气排空装置402。
参见图2,SCC反应器5内,从尾气进口501至尾气出口506的方向上顺次设置气体分布器502、分子筛蜂窝催化剂床层503、空气再分布器504、贵金属催化剂床层505。
本实施例的废气净化处理系统包括二个空气鼓风机,其进风口均连接有空气过滤器7,进气包括空气和从管网来的氮气;其中第一空气鼓风机201的出风口连接气体出口连接的管路,第二空气鼓风机的出风口连接SCC反应器,进口位置位于分子筛蜂窝催化剂床层503和空气再分布器504之间。
来自丙烯腈生产分离装置吸收塔排放的尾气,经气液分离罐1分离出游离的液体后,与空气混合,其空气补充量应按照控制尾气总氧浓度(3%~8%)配比,用尾气换热器303对其进行预热后,其中工艺流程中的电加热器只在开车时使用,平时处于关闭状态,预热的尾气进入SCC反应器5内进行选择催化燃烧反应,在固定床反应器内,以空气再分器为界,将催化剂床层分为前后两段,前段以负载型分子筛蜂窝催化剂催化,后段以负载型贵金属蜂窝催化剂催化,反应器入口温度为280~350℃,催化剂前段温度控制为300~550℃,后段温度控制500~650℃,床层压力在0.5~25kPa(G)(反应器内催化剂床层可承受的压力降)的条件下,将有害物质转化为CO2、H2O和N2,其中后段床层控温采用鼓风机根据反应放热温升的情况进行适量补充,从 SCC反应器出来的净化气体经热量回收装置蒸气过热器、预热锅炉和尾气换热器回收热量后,通过烟囱直接排空。
具体工艺及效果在以下试验中体现。
实施例4
1)将含氰类、烃类和氮氧化物类污染物的尾气首先经气液分离罐1分离出游离的液体后,与第一空气鼓风机201送出的空气混合,用加热单元进行预热,
2)进入SCC反应器5内进行选择催化燃烧反应,在SCC固定床反应器R-101内分两段进行催化,以反应器内空气再分器504为界,将催化剂床层分为前后两段,前段用负载型分子筛催化剂催化,后段以负载型贵金属催化剂催化,进入SCC反应器的入口温度为280℃,催化剂前段温度控制为338℃,后段温度控制518℃,在床层压力0.5~25kPa(G)的条件下,将有害物质转化为CO2、H2O和N2
3)从SCC反应器5出来的气体经热量回收装置—蒸气过热器301、余热锅炉4和尾气换热器303回收热量后,净化尾气通过烟囱6直接排空。
实施例中4-9和对比例3-8的尾气均来源于某公司10.6万吨/年的丙烯腈生产装置,废气净化处理系统同实施例3,工况条件如表3所述:
表3某公司吸收塔排放的尾气组成
监测项目 数值
尾气总流量m3/h 50000~70000
丙烯腈(mg/Nm3) 100~620
非甲烷总烃(mg/m3) 7000~12500
其中丙烷(mg/m3) 1000~3012
其中丙烯(mg/m3) 1201~3059
其中乙烷(mg/m3) 10~400
氢氰酸(mg/Nm3) 0~60
乙腈(mg/Nm3) 0~50
氮氧化物(mg/m3) 200~435
氧气浓度(%) 1.1~7.2
氮气(%) 89~91
温度℃ 35
尾气入口压力kPa(G) 20
实施例5-9
实施例4到实施例9中,在SCC反应器前段均采用分子筛蜂窝催化剂(主要组分为Cu-ZSM-5),后段采用含贵金属蜂窝陶瓷催化剂(铂/钯-堇青石蜂窝陶瓷催化剂),前后两段端催化剂装填量之比为3:1,反应器内的压力约为5kPa(G),通过调节入口温度、催化剂床层温度来控制尾气的脱除效果。其他工艺条件同实施例4,处理结果如表4所示。
表4实施例4-9所得检测数据与国家排放标准
Figure PCTCN2016075602-appb-000003
对比例3-5
对比例3到对比例5中,SCC反应器前后两段均采用分子筛蜂窝催化剂(主要组分为Cu-ZSM-5),其他工艺条件同实施例4,处理结果如表5所示。
表5只采用分子筛催化剂作为对比例时所得检测数据与国家排放标准
Figure PCTCN2016075602-appb-000004
而对比例3和5中,SCC反应器内仅采用分子筛催化剂时,虽然NOx在低温情况下可以达到国家排放标准,当温度高于600℃时,NOx也不能达 标排放。而针对烃类物质,低温不能使其达标排放,高温则达到排放标准。但高温不利于NOx的脱除,催化剂也不能长期承受600℃以上高温。
对比例6-8
对比例6到对比例8,SCC反应器前后两段均采含贵金属蜂窝陶瓷催化剂(主要组分为铂和钯),结果如表6所示。
表6只采用贵金属催化剂作为对比例时所得检测数据与国家排放标准
Figure PCTCN2016075602-appb-000005
通过实施例4至9,可以看出,通过前段分子筛催化剂和后段贵金属催化剂组合的方式,控制SCC反应器内的温度,可以使含氰基、烃类和NOx能够脱除,并达到国家排放标准。
以上结果表明,采用组合催化的方式,合理设计,通过精确控制反应条件,可实现含氰类、烃类和氮氧化物等多组分污染物的工艺废气一体化净化处理。
以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案做出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。
工业实用性
本发明公开的氰类、烃类和NOx的工业废气一体化净化方法,其中所述废气是含有多组分污染物的工业废气。所述的方法将含氰类、烃类和氮氧化物(NOx)类污染物的尾气首先经气液分离设备分离出游离的液体后,与空气鼓 风机送出的空气混合,用加热单元进行预热;然后进入SCC反应器内进行选择催化燃烧反应,从SCC反应器出来的气体进入加热单元回收热量后,净化尾气通过烟囱直接排空。本发明通过合理的安装不同功能的催化剂,在同一台反应器内同时实现含氰类(R-CN)、烃类(CxHy)和氮氧化物(NOx)三种污染物的转化,无需设置单独的选择性催化还原脱硝反应器,且无需加氨,明显简化了工艺。本发明可通过调节催化剂组合方式,实现多行业、多工况下尾气治理,具有极好的工业应用前景。

Claims (10)

  1. 一种氰类、烃类和NOx的工业废气一体化净化方法,所述工业废气是含有多组分污染物的工业废气,其特征在于,包括步骤:
    1)将含氰类、烃类和氮氧化物类污染物的尾气首先经气液分离设备分离出游离的液体后,与空气鼓风机送出的空气混合,用加热单元进行预热;
    2)进入选择催化燃烧反应器内进行选择催化燃烧反应,在选择催化燃烧反应器内分两段进行催化,前段用负载型分子筛催化剂催化,后段以负载型贵金属催化剂催化,进入选择催化燃烧反应器的入口温度为280~350℃,催化剂前段温度控制为300~550℃,后段温度控制500~650℃,在床层压力0.5~25kPa的条件下,将有害物质转化为CO2、H2O和N2
    3)从选择催化燃烧反应器出来的气体进入加热单元回收热量后,净化尾气通过烟囱直接排空。
  2. 根据权利要求1所述的工业废气一体化净化方法,其特征在于,所述步骤1)中,利用空气鼓风机补充空气的流量来控制进入SCC反应器前尾气中总氧体积浓度为3%~8%,优选为5%。
  3. 根据权利要求1所述的工业废气一体化净化方法,其特征在于,所述步骤2)中,选择催化燃烧反应器入口温度优选为325℃,催化剂前段床层控制温度为430±20℃,催化剂后段床层控制温度为560±20℃。
  4. 根据权利要求1所述的工业废气一体化净化方法,其特征在于,所述步骤2)中,前段的负载型分子筛催化剂为蜂窝整体式或颗粒捆包式的催化剂,其中分子筛为ZSM-5~ZSM-48系列、Beta、Y、Beta、MCM-22~MCM-56系列、SAPO-5~SAPO-47系列、SBA-15、SBA-16、TS-1分子筛中的一种或多种,负载的金属离子为铜、铁、钴、锰、镍、铝、银等离子中的一种或多种,优选蜂窝整体式的Cu-ZSM-5。
  5. 根据权利要求1所述的工业废气一体化净化方法,其特征在于,所述步骤2)中,后段的贵金属催化剂采用堇青石陶瓷或金属波纹板式为基质,贵金属为铂、钯、铑、银、钌中的一种或多种,所述贵金属催化剂优选为铂/钯-堇青石蜂窝陶瓷催化剂。
  6. 根据权利要求1~5任一所述的工业废气一体化净化方法,其特征在于,所述步骤2)中,前段与后段的催化剂装填量之比范围为1~5:0~3,优选为3:1。
  7. 一种含氰类、烃类和氮氧化物的工业废气一体化净化处理系统,其特征在于,包括气液分离设备、加热单元、选择催化燃烧反应器;
    所述气液分离装置设置有气体出口,气体出口连接的管路通过加热单元,连接于选择催化燃烧反应器的尾气进口,所述气体出口连接的管路上设置有空气鼓风机;所述选择催化燃烧反应器的尾气出口通过管路连接加热单元的加热介质进口,所述加热单元的加热介质出口连接有烟囱。
  8. 根据权利要求7所述的工业废气一体化净化处理系统,其特征在于,所述加热单元包括热量回收装置和电加热器,所述热量回收装置包括蒸气换热器、余热锅炉和尾气换热器。
  9. 根据权利要求7或8所述的工业废气一体化净化处理系统,其特征在于,所述选择催化燃烧反应器内,从尾气进口至尾气出口的方向上顺次设置气体分布器、分子筛蜂窝催化剂、空气再分布器、贵金属催化剂床层。
  10. 根据权利要求8所述的工业废气一体化净化处理系统,其特征在于,所述废气净化处理系统包括二个空气鼓风机,其中第一空气鼓风机的出风口连接所述气体出口连接的管路,第二空气鼓风机的出风口连接选择催化燃烧反应器,进口位置位于分子筛蜂窝催化剂和空气再分布器之间。
PCT/CN2016/075602 2016-01-12 2016-03-04 含氰类、烃类和NOx的工业废气一体化净化方法及系统 WO2017121022A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/568,461 US10315160B2 (en) 2016-01-12 2016-03-04 Integrated purification method and system for the industrial exhaust gas containing cyanides, hydrocarbons and NOx

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610019224.6 2016-01-12
CN201610019224.6A CN105605595B (zh) 2016-01-12 2016-01-12 含氰类、烃类和NOx的工业废气一体化净化方法及系统

Publications (1)

Publication Number Publication Date
WO2017121022A1 true WO2017121022A1 (zh) 2017-07-20

Family

ID=55985753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075602 WO2017121022A1 (zh) 2016-01-12 2016-03-04 含氰类、烃类和NOx的工业废气一体化净化方法及系统

Country Status (3)

Country Link
US (1) US10315160B2 (zh)
CN (1) CN105605595B (zh)
WO (1) WO2017121022A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108343978A (zh) * 2017-07-28 2018-07-31 北京化工大学 一种低热值燃料的催化氧化系统与方法
CN114712986A (zh) * 2022-04-29 2022-07-08 中山市大卉包装材料有限公司 一种VOCs共性工厂废气分类收集与处理系统
CN115414781A (zh) * 2022-09-15 2022-12-02 重庆三峰环境集团股份有限公司 一种水性高分子脱硝剂及其制备方法和应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10188983B2 (en) * 2016-12-22 2019-01-29 Integrated Global Services, Inc. Systems and methods for catalyst screens in selective catalytic reduction reactors
CN109569272B (zh) * 2017-09-28 2021-11-30 中国石油化工股份有限公司 含氰废气处理方法
CN108126518B (zh) * 2017-12-25 2018-11-02 营创三征(营口)精细化工有限公司 一种三聚氯氰尾气无害化处理工艺
CN110639500A (zh) * 2018-06-27 2020-01-03 中国石油化工股份有限公司 含氰废气的燃烧催化剂及含氰废气处理中的应用
CN111151265A (zh) * 2018-11-08 2020-05-15 中国科学院大连化学物理研究所 一种负载型蜂窝催化剂、其制备方法及其应用
CN111151123A (zh) * 2018-11-08 2020-05-15 中国科学院大连化学物理研究所 一种用于丙烯腈装置尾气净化的方法
CN109529610A (zh) * 2018-12-24 2019-03-29 杭州谱育科技发展有限公司 丙烯酸生产中尾气的处理装置及方法
CN109621627B (zh) * 2018-12-27 2021-06-01 天津大学 一种消除并回收利用燃烧尾气中的氮氧化物的方法
CN109701388A (zh) * 2019-02-26 2019-05-03 江西鹏凯环保工程设备有限公司 一种废气净化系统和废气净化方法
CN110411973B (zh) * 2019-08-30 2021-12-17 中国科学院大学 一种检测气体中非甲烷总烃浓度的方法
CN110947416B (zh) * 2019-12-18 2023-06-13 武汉科技大学 用于nh3-scr的铁/分子筛催化剂及其制备方法和应用
CN111330437A (zh) * 2020-03-01 2020-06-26 北京化工大学 一种己二酸生产中多种污染物协同净化的方法及系统
CN112791582A (zh) * 2020-12-21 2021-05-14 广东申菱环境系统股份有限公司 一种油气催化氧化处理装置
CN112664964A (zh) * 2020-12-28 2021-04-16 西安建筑科技大学 一种VOCs的热回收利用系统及方法
CN112844038B (zh) * 2020-12-31 2023-10-03 上海华谊新材料有限公司 废气处理系统和废气处理方法
CN113634120A (zh) * 2021-09-09 2021-11-12 徐州惜能环境工程设备有限公司 一种烟气脱硝设备
CN113731169B (zh) * 2021-09-22 2022-11-22 北京工业大学 一种利用组合催化剂协同净化丙烯腈多组分尾气的方法
CN115372538A (zh) * 2022-07-15 2022-11-22 河钢集团有限公司 用于一氧化碳催化剂催化性能现场测试的设备及测试方法
WO2024052387A1 (en) 2022-09-06 2024-03-14 Umicore Ag & Co. Kg Catalytic system and method for the removal of hcn from off-gases of a fluid cracking unit using same, and fcc unit assembly including the catalytic system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316991A (en) * 1991-11-08 1994-05-31 Ford Motor Company Exhaust treating system for lean-burn CNG engine
CN1903415A (zh) * 2005-07-27 2007-01-31 上海东化环境工程有限公司 丙烯腈装置吸收塔尾气的催化氧化处理工艺
CN101362051A (zh) * 2008-09-27 2009-02-11 上海东化环境工程有限公司 丙烯腈装置尾气处理工艺
CN102233231A (zh) * 2011-07-21 2011-11-09 上海师范大学 一种丙烯腈吸收塔尾气的净化设备和处理工艺

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3053613A (en) * 1959-06-25 1962-09-11 Engelhard Ind Inc Method of purifying gases containing oxygen and oxides of nitrogen
US3895050A (en) * 1971-08-02 1975-07-15 Badger Co Disposal of waste materials from unsaturated nitrile
US3988423A (en) * 1974-10-11 1976-10-26 Sumitomo Chemical Company, Limited Method for removing harmful materials from waste gas
US5173278A (en) * 1991-03-15 1992-12-22 Mobil Oil Corporation Denitrification of flue gas from catalytic cracking
US6860971B2 (en) * 1998-06-15 2005-03-01 Gregory J. Ward Process for recovery of olefinically unsaturated nitriles
US6953558B2 (en) * 2002-09-06 2005-10-11 Solutia, Inc. Process for reducing nitrogen oxide emissions
JP2005288362A (ja) * 2004-04-01 2005-10-20 Ne Chemcat Corp ディーゼルエンジン排気ガス浄化装置
CN100417430C (zh) * 2005-07-27 2008-09-10 上海东化环境工程有限公司 含氮氧化物废气的催化还原处理工艺
CN101301580A (zh) * 2008-06-20 2008-11-12 上海东化环境工程有限公司 丁烷法顺酐装置尾气处理工艺
JP5700914B2 (ja) * 2009-04-03 2015-04-15 光洋サーモシステム株式会社 排ガス処理装置およびそれを備えた排ガス処理設備
JP5476774B2 (ja) * 2009-04-07 2014-04-23 三菱レイヨン株式会社 (メタ)アクリロニトリルの回収方法
CN101716462A (zh) * 2010-01-26 2010-06-02 浙江卫星丙烯酸制造有限公司 高浓度废气催化氧化方法
JP6024911B2 (ja) * 2013-03-13 2016-11-16 Jfeスチール株式会社 脱臭装置の運転方法およびそれを実施する脱臭装置
JP2016020801A (ja) * 2014-06-20 2016-02-04 株式会社荏原製作所 排ガス処理装置
CN204880159U (zh) * 2015-08-03 2015-12-16 广东俐峰环保科技有限公司 催化燃烧装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316991A (en) * 1991-11-08 1994-05-31 Ford Motor Company Exhaust treating system for lean-burn CNG engine
CN1903415A (zh) * 2005-07-27 2007-01-31 上海东化环境工程有限公司 丙烯腈装置吸收塔尾气的催化氧化处理工艺
CN101362051A (zh) * 2008-09-27 2009-02-11 上海东化环境工程有限公司 丙烯腈装置尾气处理工艺
CN102233231A (zh) * 2011-07-21 2011-11-09 上海师范大学 一种丙烯腈吸收塔尾气的净化设备和处理工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TETSUYA NANBA: "Active sites of Cu-ZSM-5 for the decomposition of acrylonitrile", APPLIED CATALYSIS B: ENVIRONMENTAL., vol. 61, no. 2005, 20 July 2005 (2005-07-20) - 9 November 2005 (2005-11-09), pages 288 - 296, XP027813687, ISSN: 0926-3373 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108343978A (zh) * 2017-07-28 2018-07-31 北京化工大学 一种低热值燃料的催化氧化系统与方法
CN114712986A (zh) * 2022-04-29 2022-07-08 中山市大卉包装材料有限公司 一种VOCs共性工厂废气分类收集与处理系统
CN114712986B (zh) * 2022-04-29 2023-10-27 中山市大卉包装材料有限公司 一种VOCs共性工厂废气分类收集与处理系统
CN115414781A (zh) * 2022-09-15 2022-12-02 重庆三峰环境集团股份有限公司 一种水性高分子脱硝剂及其制备方法和应用

Also Published As

Publication number Publication date
CN105605595A (zh) 2016-05-25
US10315160B2 (en) 2019-06-11
US20180111084A1 (en) 2018-04-26
CN105605595B (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
WO2017121022A1 (zh) 含氰类、烃类和NOx的工业废气一体化净化方法及系统
CN208824192U (zh) 一种VOCs废气高效吸附脱附催化燃烧处理系统
CN102913919A (zh) 一种高浓度有机废气的净化方法
CN208990564U (zh) 一种装填脱硝催化剂的一体化烟气脱硝换热器
CN103657404A (zh) 尾气催化燃烧处理系统
CN109289911B (zh) 一种处理含氮挥发性有机污染物的催化剂及方法
CN109126424A (zh) 一种船舶脱硫脱硝一体化工艺
WO2020024384A1 (zh) 一种水泥窑烟气scr脱硝系统
CN108654363A (zh) 耦合焦炉烟气余热及硫污染物制酸工艺
CN104399370A (zh) 一种低温烟气scr脱硝系统及其工艺
CN201776085U (zh) 加热式脱硝装置
CN111330437A (zh) 一种己二酸生产中多种污染物协同净化的方法及系统
CN203215697U (zh) 节能脱硝焚烧炉
CN112495160B (zh) 一种硫回收装置尾气氮氧化物脱除工艺的装置及方法
CN108612577A (zh) 一种船舶活性炭法尾气脱硝装置及方法
CN109078495A (zh) 一种装填脱硝催化剂和催化剂涂层的一体化烟气脱硝装置
CN212974632U (zh) 一种有机废气净化用节能型处理装置
CN204563937U (zh) 一种低温烟气scr脱硝系统
CN209355269U (zh) 一种用于化工尾气净化处理的热力焚烧设备
CN208990569U (zh) 一种装填脱硝催化剂和催化剂涂层的一体化烟气脱硝装置
CN210473547U (zh) 一种燃气锅炉除CO脱NOx一体化净化装置
CN203731440U (zh) 一种高温焚烧法处理丙烯腈尾气的系统
CN208302501U (zh) 一种常温催化深度净化VOCs废气的系统
CN208222539U (zh) 一种含苯类废气净化系统
CN207849405U (zh) 用于净化石油化工工业有机废气的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15568461

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884582

Country of ref document: EP

Kind code of ref document: A1