WO2017118358A1 - 一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统 - Google Patents

一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统 Download PDF

Info

Publication number
WO2017118358A1
WO2017118358A1 PCT/CN2016/113876 CN2016113876W WO2017118358A1 WO 2017118358 A1 WO2017118358 A1 WO 2017118358A1 CN 2016113876 W CN2016113876 W CN 2016113876W WO 2017118358 A1 WO2017118358 A1 WO 2017118358A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
hole
piston rod
antenna
metallic
Prior art date
Application number
PCT/CN2016/113876
Other languages
English (en)
French (fr)
Inventor
李楠
李军
Original Assignee
广州市诚臻电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市诚臻电子科技有限公司 filed Critical 广州市诚臻电子科技有限公司
Priority to US16/067,823 priority Critical patent/US10608333B2/en
Priority to DE112016006152.8T priority patent/DE112016006152B4/de
Publication of WO2017118358A1 publication Critical patent/WO2017118358A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/02Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member
    • F15B15/06Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1428Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1457Piston rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1457Piston rods
    • F15B15/1461Piston rod sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • H01Q1/10Telescopic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1235Collapsible supports; Means for erecting a rigid antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • H01Q1/1264Adjusting different parts or elements of an aerial unit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation
    • H01Q3/06Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation over a restricted angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2215/00Fluid-actuated devices for displacing a member from one position to another
    • F15B2215/30Constructional details thereof
    • F15B2215/305Constructional details thereof characterised by the use of special materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles

Definitions

  • the invention relates to an auxiliary device for electromagnetic compatibility testing, in particular to a non-metallic cylinder, a rotating angle adjustable antenna device and a system for electromagnetic compatibility testing.
  • the antenna When using an open test site or an anechoic chamber for product EMC testing, the antenna needs to be lifted or rotated to change the angle of the antenna.
  • the commonly used antenna driving device is electric, and the motor will be larger in the test.
  • the electromagnetic disturbance causes interference to the test signal transmitted and received by the antenna, which affects the effect of the product electromagnetic compatibility test.
  • the present invention provides a non-metallic cylinder, a rotating angle adjustable antenna device and system for electromagnetic compatibility testing.
  • the present invention provides a non-metallic cylinder for electromagnetic compatibility testing, comprising a first cylinder, an end cap, a first cylinder and a first cylinder divided into a first chamber and a piston of the second chamber, a first through hole disposed on the first cylinder wall and communicating with the first chamber, a second through hole disposed on the first cylinder wall and communicating with the second chamber, and the first piston a rod, wherein the first end of the piston rod is fixedly connected to the first piston, and the second end passes through a third through hole formed in the end cover and is exposed outside the first cylinder.
  • the first through hole and the second through hole are respectively connected to the air pressure control device through a pipe, and the air pressure control device controls the air flow direction of the first through hole and the second through hole by controlling the inlet and outlet valves. And thereby controlling the direction and speed of the first piston rod telescopic movement.
  • the airflow When the airflow enters the first chamber inside the first through hole, the airflow pushes the piston and drives the piston rod to move to the second chamber, and the first through hole is exhausted. Conversely, if the airflow enters the second chamber through the second through hole, the airflow pushes the piston and drives the piston rod to the first The chamber moves and the first through hole is exhausted.
  • a portion of the piston coupled to the first cylinder is provided with a first annular seal; a portion of the first cylinder coupled to the piston rod is provided with a second annular seal; A portion of the end cap combined with the piston rod is provided with a third annular seal.
  • the components of the non-metallic cylinder provided by the present invention are all made of a non-metallic material, and commonly, such as a PTFE material, to avoid interference with electromagnetic compatibility testing.
  • the present invention provides a rotation angle adjustable antenna device, comprising a non-metallic cylinder for electromagnetic compatibility testing, further comprising a first connecting member and an antenna; wherein the connecting member comprises: a hollow cavity, opened in An empty slot in the cavity, a first mounting hole disposed in the cavity and penetrating the upper and lower surfaces of the connecting member, and a second mounting hole communicating with the recess;
  • the antenna sleeve is provided with a rotating sleeve and then loaded in the first mounting hole, and at least one end of the antenna protrudes from the first mounting hole;
  • the non-metallic cylinder for electromagnetic compatibility testing includes: a first cylinder body, an end cover, a piston housed in the first cylinder body and dividing the first cylinder body into the first chamber and the second chamber, and setting a first through hole communicating with the first chamber on the first cylinder wall, a second through hole disposed on the first cylinder wall and communicating with the second chamber, and a piston rod, wherein the piston rod One end is fixedly connected to the piston, and the second end passes through the third through hole formed in the end cover and is exposed to the outside of the first cylinder;
  • the first connecting member is further provided with a second mounting hole, and the piston rod of the non-metallic cylinder passes through the end cover of the non-metallic cylinder and the second mounting hole of the first connecting member, and is accommodated in the first
  • the piston rod is connected to the rotating sleeve; when the piston rod moves back and forth along the empty slot, the rotating sleeve can be rotated by 0-90°, and then the antenna is rotated by 0-90°. .
  • the first through hole and the second through hole of the non-metallic cylinder are respectively connected to the air pressure control device through a pipeline, and the air pressure control device controls the first through hole and the second through the control inlet and outlet valves.
  • the direction of the airflow of the hole which in turn controls the direction and speed of the first piston rod telescopic movement.
  • the airflow When the airflow enters the first chamber inside the first through hole, the airflow pushes the piston and drives the piston rod to move to the second chamber, and the first through hole is exhausted. On the contrary, if the airflow enters the second chamber through the second through hole, the airflow pushes the piston and drives the piston rod to move toward the first chamber, and the first through hole is exhausted.
  • a portion of the piston of the non-metallic cylinder combined with the first cylinder is provided with a first annular seal; a portion of the first cylinder coupled to the piston rod is provided with a second ring a sealing member; a portion of the end cap combined with the piston rod is provided with a third annular seal.
  • a side of the connecting member that is provided with the second mounting hole is provided with a mounting screw hole
  • the end cover of the non-metallic cylinder is provided with a matching mounting screw hole
  • the end of the non-metal cylinder The cover is provided with a second safety by a screw and the first connecting member One side of the hole is threaded.
  • the rotation angle adjustable antenna device further includes an antenna frame, a connecting arm connected to the antenna frame, a second connecting member fixedly connected to the connecting arm, and a non-metal position sensor; wherein The first connecting member is movably connected to the second connecting member; the first connecting member and the second connecting member are connected by a stepped connecting shaft, and the stepped connecting shaft is further connected with the non-metal position sensor.
  • the step connecting shaft further connected with the non-metal position sensor comprises: the non-metal position sensor comprises a second cylinder, and the second piston and the second received in the second cylinder a piston rod, one end of the second piston is fixedly connected to the second piston rod, and the other end is fixedly connected with the connecting rod; and the stepped connecting shaft drives the connecting rod of the non-metallic position sensor to perform telescopic movement through the transmission connecting member .
  • the present invention provides a rotation angle adjustable antenna system, comprising the rotation angle adjustable antenna device according to the second aspect, further comprising the rotation angle adjustable antenna device according to the second aspect a first gas transmission device connected to the non-metal cylinder, and a control device connected to the first gas transmission device, wherein the first gas transmission control device is configured to: send the first or second gas transmission command to the first gas delivery device;
  • the first gas delivery device is configured to: when receiving the first gas transmission command sent by the gas transmission control device, deliver air to the first through hole of the non-metal cylinder, so that the first piston rod advances toward the second through hole, when receiving When the second gas transmission command sent by the gas transmission control device is sent to the second through hole of the non-metallic cylinder, the first piston rod is advanced toward the first through hole.
  • the gas transmission control device is configured to control the direction and magnitude of the input airflow of the first gas transmission device into the first through hole or the second through hole of the non-metallic cylinder, thereby controlling the first piston The direction and speed of the rod telescopic movement.
  • the present invention provides a non-metallic cylinder according to the first aspect, the rotation angle adjustable antenna device according to the second aspect, or the rotation angle adjustable antenna system according to the third aspect, in the electromagnetic Compatible with the application in the test.
  • the invention has the beneficial effects that the non-metallic cylinder and the rotating angle adjustable antenna device and system for electromagnetic compatibility testing provided by the invention not only have a simple working principle, convenient operation and high reliability, but also can control the rotation angle of the antenna and adjust The pitch angle of the antenna enables multidimensional spatial positioning of the antenna.
  • FIG. 1 is a cross-sectional view of a non-metallic cylinder 01 for electromagnetic compatibility testing according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a rotation angle adjustable antenna device 001 according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a rotation angle adjustable antenna device 001 according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a rotation angle adjustable antenna device 002 according to an embodiment of the present invention.
  • Figure 5 is a schematic view showing the connection of the first connecting member 02 and the second connecting member 06 according to the embodiment of the present invention
  • FIG. 6 is a schematic diagram of horizontal placement of an antenna 03 of a rotating angle adjustable antenna device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a non-metal position sensor 08 in a state 1 according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a non-metal position sensor 08 in a state 1 according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a rotation angle tunable antenna system 004 according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • first position and “second position” as used in the present invention should be understood broadly, and may be, for example, a position point or an activity area.
  • the terms “downward movement”, “upward movement”, “upward” or “downward” as used in the present invention should be understood broadly, for example, the first feature is “moved downward” relative to the second feature, “Upward movement”, “upward” or “downward” may mean a movement of the first feature relative to the second feature to the first position of the second feature, and may also indicate a first feature relative to the second feature to the second feature The direction of the second position moves;
  • the terms "loading”, “installing”, “connecting”, “connecting”, “fixing” and the like should be understood broadly, and may be, for example, a fixed connection, or may be used, unless otherwise explicitly defined and defined. It is a detachable connection, or an integral connection; it may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • a detachable connection, or an integral connection it may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
  • Embodiment 1 A non-metallic cylinder for electromagnetic compatibility testing
  • FIG. 1 is a cross-sectional view of a non-metallic cylinder 01 for electromagnetic compatibility testing provided by an embodiment of the present invention.
  • the non-metallic cylinder 01 for electromagnetic compatibility testing includes a first cylinder 11 , an end cover 12 , and is received in the first cylinder 11 and the first cylinder 11 .
  • a piston 13 divided into a first chamber 111 and a second chamber 112, a first through hole 113 disposed on the wall of the first cylinder 11 and communicating with the first chamber 111, and disposed on the wall of the first cylinder 11 a second through hole 114 communicating with the second chamber 112, the first piston rod 14, wherein the first end of the piston rod 14 is fixedly connected with the piston 13, and the second end passes through the third end opened on the end cover 12.
  • a through hole (not shown in FIG. 1) is exposed and exposed outside the first cylinder block 11.
  • the first through hole 113 and the second through hole 114 are respectively connected to the air pressure control device through a pipe, and the air pressure control device controls the first through hole 113 and the second by controlling the inlet and outlet valves.
  • the second through hole 114 is an air outlet hole; otherwise, when the first through hole 113 is an air outlet hole, the second through hole 114 is an air inlet hole.
  • the airflow enters the interior of the first chamber 111 along the first through hole 113, the airflow pushes the piston 13 and drives the first piston rod 14 to move toward the second chamber 112, and the first through hole 114 is exhausted.
  • the airflow pushes the piston 13 and drives the piston rod 14 to move toward the first chamber 111, and the first through hole 113 is exhausted.
  • a portion of the piston 13 that is coupled to the first cylinder block 11 is provided with a first annular seal member 131; a portion where the first cylinder block 11 and the piston rod 14 are coupled with a first portion A second annular seal 115; a portion of the end cover 12 coupled to the piston rod 14 is provided with a third annular seal 121.
  • the first annular seal 131, the second annular seal 115 and the third annular seal 121 are non-metallic seals, such as rubber soft rings, which can prevent the connection between the piston and the cylinder, the piston rod and the cylinder Air leakage occurs at the joint of the body, the connection between the piston rod and the end cap, and acts as a seal.
  • Each component of the cylinder 01 is made of a non-metallic material, and is commonly used, such as polyoxymethylene or polytetrafluoroethylene, to avoid interference with electromagnetic compatibility testing.
  • Embodiment 2 A rotating angle adjustable antenna device
  • FIG. 2 is a schematic structural view of a rotating angle adjustable antenna device 001 according to Embodiment 2 of the present invention
  • FIG. 3 is a cross-sectional view of a rotating angle adjustable antenna device 001 according to an embodiment of the present invention.
  • the rotation angle adjustable antenna device 001 provided in Embodiment 2 of the present invention includes the non-metal cylinder 01 for electromagnetic compatibility testing provided by the present invention, and further includes a connecting member 02 and an antenna 03, wherein
  • the connecting member 02 includes: a hollow cavity 21, an empty slot 22 opened in the cavity 21, and is disposed in the cavity 21 and penetrates a first mounting hole 23 on the lower part of the connector 02, and a second mounting hole 24 communicating with the recess 22;
  • the antenna 03 is sleeved with a rotating sleeve 31 and then loaded into the first mounting hole 23, and at least one end of the antenna 03 extends out of the first mounting hole 23.
  • one side of the connecting member 02 on which the second mounting hole 24 is opened is provided with a mounting screw hole (not shown in FIG. 3), and the end cover 12 of the non-metallic cylinder 01 is matched.
  • the mounting screw hole of the non-metallic cylinder 01 is screwed to one side of the connecting member 02 with the second mounting hole 24 through a screw.
  • the first piston rod 14 of the non-metallic cylinder 01 passes through the end cover 12 and then passes through the second mounting hole 24 of the connecting member 02 to receive the empty slot of the connecting member 02.
  • the first piston rod 14 is connected to the rotating sleeve 31.
  • the rotating sleeve 31 can be rotated by 0-90°, and then the antenna 03 is driven. 0-90° rotation.
  • the rotation angle adjustable antenna device 001 further includes a cylinder control module for controlling the airflow into the first through hole 113 or the second through hole 114 of the non-metallic cylinder 01.
  • the direction and size of the first piston rod 14 furtherly move back and forth along the empty slot 22.
  • the rotation angle tunable antenna device 001 of the present invention interlocks the rotation of the antenna 03 and the advancement and ejection of the first piston rod 14 by the action of the cylinder; thereby realizing the rotation of the antenna by 0-90°.
  • the rotation angle adjustable antenna device 001 further includes an external cylinder control module for controlling the airflow entering the first through hole 113 or the second through hole 114. Direction and size, and then controlling the direction and speed of the first piston rod to perform the telescopic movement, so that the first piston rod 14 of the non-metallic cylinder 01 drives the rotating sleeve to rotate 0-90°, thereby driving the antenna to rotate 0-90°. .
  • Embodiment 3 A rotating angle adjustable antenna device
  • FIG. 4 is a schematic structural view of a rotating angle adjustable antenna device 002 according to Embodiment 3 of the present invention
  • FIG. 5 is a schematic diagram of connection between a first connecting member 02 and a second connecting member 06 according to an embodiment of the present invention
  • the rotation angle adjustable antenna device 002 adopts the non-metal cylinder 01, the first connecting member 02, and the antenna 03 for electromagnetic compatibility testing provided by the present invention, and further includes The antenna frame 04, the connecting arm 05 connected to the antenna frame 04, and the second connecting member 06 fixedly connected to the connecting arm 05; wherein the first connecting member 02 is movably connected to the second connecting member 06.
  • one end of the connecting arm 05 is fixed on the antenna frame 04, and the other end is opened.
  • a groove is formed in the upper and lower ends of the groove; the upper end and the lower end of the second connecting member 06 are respectively provided with a plurality of mounting holes 61 matching the upper and lower end mounting holes of the connecting arm 05.
  • the second connecting member 06 is snapped on the connecting arm 05 Between the glyph openings, the mounting holes of the upper arm 51 and the lower arm 52 of the connecting arm 05 are detachably connected to the mounting holes 61 of the second connecting member 06 by pins or screws.
  • the specific structure of the connecting arm 05 is fixed on the antenna frame 04.
  • the antenna frame 04 includes a column, and is disposed on the column and can be lifted along the column.
  • the lifting arm; the one end of the connecting arm 05 is fixed on the lifting seat on the column of the antenna frame 04, and can be moved up and down with the lifting seat.
  • the first connecting member 02 and the second connecting member 06 are connected by a stepped connecting shaft 07.
  • the sidewall of the second connecting member 06 is provided with a first mounting hole 62 and a first positioning hole 63 (the first mounting hole 62 and the first positioning hole 63 are both through holes, That is, the side wall of the second connecting member 06 is penetrated; the side wall of the first connecting member 02 is provided with a second mounting hole 25, and a vertical positioning hole 26 and a horizontal positioning hole 27; wherein the stepped connecting shaft 07 One end is fixed on the side wall of the first connecting member 02 provided with the second mounting hole 25, and the other end is passed through the first mounting hole 62 of the second connecting member 06, and the stepped connecting shaft 07 can be in the first mounting hole
  • the first positioning hole 63 of the second connecting member 06 is detachably connected to the vertical positioning hole 26 or the horizontal positioning hole 27 of the first connecting member 02 by a pin or a screw.
  • the stepped connecting shaft 07 further includes: a first step 71, a second step 72 connected to the first step 71 and being inserted into the first mounting hole 62, and a second step a third step 73 connected to the first step 71, wherein the first step 71 is screwed to the side wall of the first connecting member 02 provided with the second mounting hole 25 by a screw 74; the second step 72 extends through the first mounting hole 62.
  • the third step 73 passes through the first mounting hole 62 such that the stepped connecting shaft 07 can rotate in the first mounting hole 62.
  • the stepped connecting shaft 07 further includes a fixing plate 75, the fixing plate 75 is sleeved on the third step 73, and the fixing plate 75 and the connecting arm 05 are threaded by screws 74. Connect to make the device more stable.
  • the technician connects the first positioning hole 63 to the vertical positioning hole 26 or the horizontal positioning hole 27 through a pin or a screw
  • the first connecting member 02 is rotated by 0 or 90°. Therefore, the antenna 03 sleeved on the first connecting member 02 is rotated by 0 or 90° in synchronization with the first connecting member 02, that is, the antenna 03 is placed vertically or horizontally in different positions.
  • the second connecting member 06 since the second connecting member 06 is fixed on the connecting arm 05, the second connecting member 06 and the first connecting member 02 are movably connected by the stepped connecting shaft 07, and only the first positioning hole of the second connecting member 06 is required.
  • 63 is connected with the vertical positioning hole 26 or the horizontal positioning hole 27 on the first connecting member 02, so that the change of the different orientation of the first connecting member 02 can be realized, that is, the latch is changed.
  • the screw is inserted in different states of the vertical positioning hole 26 and the horizontal positioning hole 27 to change the position state of the first connecting member 02, and then the step connecting shaft 07 is rotated by the first connecting member 02 around the axis of the step connecting shaft 07.
  • the antenna 03 on the first connecting member 02 In this state as shown in FIG. 4, the antenna 03 on the first connecting member 02 is horizontally placed; if the pin or the screw insertion position is changed, the antenna 03 on the first connecting member 02 can be placed vertically (ie, the non-metallic cylinder in FIG. 6). 01 position).
  • FIG. 7 is a cross-sectional view of the non-metallic position sensor 08.
  • the rotation angle adjustable antenna device 002 according to the third embodiment of the present invention further includes a non-metallic position sensor 08, and the stepped connecting shaft 08 Further connected to the non-metal position sensor 08; wherein the non-metal position sensor 08 specifically includes:
  • the second cylinder 81 includes a second cylinder a body upper chamber 811 and a second cylinder lower chamber 812; a sidewall of the second cylinder lower chamber 812 is provided with a first radial air hole 8121 and a second diameter disposed at a lower end of the first radial air hole 8121 a third radial air hole 8123 axially symmetrical with the first radial air hole 8121;
  • a portion of the second piston rod 83 combined with the inner wall of the second cylinder lower chamber 812 is sequentially provided with a first sealing ring 831 and a second sealing ring 832 from top to bottom, and the second piston rod 83 is internally provided with an I-shape.
  • an axial distance between the first seal ring 831 and the second seal ring 832 is equal to an axial distance between the first radial air hole 8121 and the second radial air hole 8122; and the first seal ring 831,
  • the second sealing ring 832 is in sealing engagement with the inner cavity of the second cylinder lower chamber 812; wherein the first sealing ring 831 is provided with a first radial through hole 8311, and the second sealing ring 832 is provided with a second Radial through hole 8321;
  • the second cylinder 81 of the non-metallic position sensor 08 is provided with an axial through hole 813 at the end, the first end is fixed on the third piston 83, the tail end passes through the axial through hole 813, and the second cylinder is extended.
  • the first radial air hole 8121 is electrically connected to the third radial air hole 8123;
  • the connecting rod 84 of the second non-metallic position sensor 08 is connected to the stepped connecting shaft 07 through the transmission connecting member; when the stepped connecting shaft 07 is connected to the stepped connecting shaft by an external force When the axis rotates (for example, the tester drives the stepped connecting shaft 07 to rotate about the axis of the stepped connecting shaft 07 through the first connecting member), the step connecting shaft 07 can drive the connecting rod 84 to perform the telescopic movement through the transmission connecting member.
  • the second piston rod 83 moves in the inner cavity of the second cylinder 81 until the first radial air hole 8121 is electrically connected to the third radial air hole 8123.
  • the second piston rod 83 moves in the inner cavity of the second cylinder 81 to the first radial air hole 8121 and the second radial air hole 8122 through the air duct 833.
  • one of the first radial air hole 8121 and the third radial air hole 8123 is an air inlet hole, and the other is an air outlet hole; wherein the air inlet hole is connected with an external air intake device, and the air outlet hole and the external gas electricity conversion device connection.
  • the non-metal position sensor 08 (the first radial air hole 8121 and the third radial air hole 8123) The first air pressure signal is sent externally.
  • one of the first radial air hole 8121 and the second radial air hole 8122 is an air inlet hole, and the other is an air outlet hole; wherein the air inlet hole is connected with an external air intake device, and the air outlet hole and the external gas electricity conversion device connection.
  • the non-metal position sensor 08 (the air outlet in the first radial air hole 8121 and the second radial air hole 8122) The second air pressure signal is sent externally.
  • the second piston 82 is combined with the inner wall of the second cylinder upper chamber 811 to provide a third sealing ring 821, the third sealing ring 821 and the second cylinder
  • the inner cavity of the chamber 811 is sealingly engaged;
  • the inner wall of the second cylinder lower chamber 812 is provided with a fourth sealing ring 8124 and a fifth sealing ring 8125 from top to bottom;
  • one end of the second piston rod 83 ( The first end) is fixedly connected to the second piston 82 through the through hole formed in the fourth sealing ring 8124, and the second piston rod 83 is sealingly engaged with the fourth sealing ring 8124, and the other end (tail end) passes through the fifth sealing.
  • a through hole is formed in the ring 8125, and the second piston rod 83 is sealingly engaged with the fifth sealing ring 8125.
  • the fourth seal ring 8124 divides the second cylinder 81 into the second cylinder upper chamber 811 and the second cylinder lower chamber 812.
  • the second connecting member 06 drives the stepped connecting shaft 07 to rotate, thereby driving the connecting rod of the non-metallic position sensor 08 to move telescopically.
  • the external gas-to-electricity conversion device converts the first or second air pressure signal into a first or second electrical signal, and when the external control device receives the first or second electrical signal, it can determine, detect and/or display
  • the antenna is placed vertically or horizontally.
  • the non-metal cylinder 01, the first connecting member 02, the antenna 03, the support of the antenna frame 04, the lifting base, the connecting arm 05, and the The two connecting members 06, the non-metallic sensor 08, the stepped connecting shaft 07 and the connecting members between these components are all made of a non-metallic material.
  • Embodiment 4 A rotation angle adjustable antenna system
  • Embodiment 4 of the present invention provides a rotation angle adjustable antenna system 003, which includes a rotation angle adjustable antenna device 001 according to Embodiment 2 of the present invention, and further includes a first air delivery device connected to the non-metal cylinder 01, and Connected to a gas transmission device Control device, the gas transmission control device is configured to: send a first or second gas delivery command to the first gas delivery device; the first gas delivery device is configured to: receive the first transmission sent by the gas transmission control device When the air command is made, the first through hole 113 of the non-metallic cylinder 06 is aired, so that the first piston rod 14 is advanced toward the second through hole 114, and when receiving the second gas transmission command sent by the gas transmission control device, the non-metal is sent to the non-metal.
  • the second through hole 114 of the cylinder 06 is vented so that the first piston rod 14 is advanced toward the first through hole 113. It can be understood that the rotation of the first piston rod 14 of the non-metallic cylinder 01 drives the rotating sleeve to rotate 0-90°, thereby driving the antenna to rotate 0-90°. Further, the gas transmission control device is specifically configured to control a direction and a magnitude of a gas flow entering the first through hole or the second through hole of the non-metallic cylinder, thereby controlling the first piston and the first piston of the non-metallic cylinder The rod makes the direction and speed of the telescopic movement.
  • Embodiment 5 A rotation angle adjustable antenna system
  • FIG. 9 is a schematic structural diagram of a rotation angle tunable antenna system 004 according to Embodiment 5 of the present invention.
  • the present invention provides a rotation angle adjustable antenna system 004, which includes a rotation angle adjustable antenna device 002 according to Embodiment 3 of the present invention, and a gas-electric conversion device connected to the non-metal position sensor 08. And a position control device connected to the gas and electricity conversion device;
  • the non-metallic position sensor 08 When the non-metallic position sensor 08 is turned on by different air holes, the non-metal position sensor 08 sends a first or second air pressure signal to the gas-electrical conversion device; then the gas-electric conversion device is used to: The received first or second air pressure signal is converted into a first or second electrical signal; and the control device is configured to: when receiving the first or second electrical signal, determine that the antenna is in a vertical placement state or a horizontal placement state .
  • control program of the control device of the present invention can be further preset, for example, when the control device determines that the antenna is in a horizontally placed state, in the preset control device.
  • the control program does not output a move command that controls the antenna in a certain direction, thereby avoiding invalid movement.
  • the present invention provides a rotational angle adjustable antenna system 004 that further includes a second air delivery device for delivering air to the cylinders of the non-metallic position sensor 08, in particular, provided by embodiments of the present invention.
  • the air delivery device is configured to supply air to the air intake holes of the first radial air hole 821, the second radial air hole 822, and the third radial air hole 823 of the second non-metal position sensor 08.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)
  • Actuator (AREA)
  • Details Of Aerials (AREA)

Abstract

一种用于电磁兼容测试的非金属气缸(01)、旋转角度可调天线装置(001)及系统(003)。该旋转角度可调天线装置包括非金属气缸(01)、第一连接件(02)、天线(03);天线套设有旋转套(31)后装载于连接件的第一安装孔(23)中,天线的至少一端伸出第一安装孔;第一连接件还设有第二安装孔(24),非金属气缸的第一活塞杆(14)先后穿过非金属气缸的端盖(12)、第一连接件的第二安装孔后,容置于第一连接件的空槽(22)中;非金属气缸的第一活塞杆与旋转套连接,带动天线做0-90°的旋转。该技术方案不仅工作原理简单、操作方便、可靠性强,还可通过控制天线旋转角度、调节天线的俯仰角度,实现天线多维空间定位。

Description

一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统
本申请要求了2016年1月4日提交中国专利局的,申请号201610009807.0,发明名称为“一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及用于电磁兼容测试的配套设备,具体涉及一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统。
背景技术
在使用开阔测试场地或电波暗室进行产品电磁兼容性测试时,需要对天线进行升降或旋转以改变天线的角度;而目前常用的天线驱动设备是电动的,而电机在测试中会对外产生较大的电磁骚扰,对天线收发的测试信号产生干扰,影响产品电磁兼容测试的效果。
发明内容
针对现有技术的不足,本发明提供了一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统。
第一方面,本发明提供了一种用于电磁兼容测试的非金属气缸,包括第一缸体、端盖、容置于第一缸体中并将第一缸体分为第一腔室和第二腔室的活塞、设置在第一缸体壁上与第一腔室连通的第一通孔、设置在第一缸体壁上与第二腔室连通的第二通孔、第一活塞杆,其中,所述活塞杆的第一端与第一活塞固定连接,第二端穿过开设在端盖上的第三通孔,并露置第一缸体外。
在本发明一实施方式中,所述第一通孔和第二通孔分别通过管道与气压控制装置相连,气压控制装置通过控制进出气阀门,控制第一通孔和第二通孔的气流方向,进而控制第一活塞杆伸缩移动的方向和速度。
当气流沿第一通孔进入第一腔室内部,气流推动活塞,并带动活塞杆向第二腔室运动,第一通孔排气。反之,若气流沿第二通孔进入第二腔室内部,气流推动活塞并带动活塞杆向第一 腔室运动,第一通孔排气。
在本发明一实施方式中,所述活塞与第一缸体相结合的部位设有第一环形密封件;所述第一缸体与活塞杆相结合的部位设置有第二环形密封件;所述端盖与活塞杆相结合的部位设置有第三环形密封件。
本发明提供的所述非金属气缸的各部件均采用非金属材料,常见地,如聚四氟乙烯材质,避免了对电磁兼容测试的干扰。
第二方面,本发明提供了一种旋转角度可调天线装置,包括用于电磁兼容测试的非金属气缸,还包括第一连接件、天线;其中,连接件包括:中空的空腔、开设于空腔中的空槽、设置于空腔中且穿透连接件上下面的第一安装孔、与所述空槽相通的第二安装孔;
天线套设有旋转套后装载于第一安装孔中,天线的至少一端伸出第一安装孔;
所述用于电磁兼容测试的非金属气缸包括:第一缸体、端盖、容置于第一缸体中并将第一缸体分为第一腔室和第二腔室的活塞、设置在第一缸体壁上与第一腔室连通的第一通孔、设置在第一缸体壁上与第二腔室连通的第二通孔、活塞杆,其中,所述活塞杆的第一端与活塞固定连接,第二端穿过开设在端盖上的第三通孔,并露置第一缸体外;
所述第一连接件还设有第二安装孔,所述非金属气缸的活塞杆先后穿过非金属气缸的端盖、第一连接件的第二安装孔后,容置于所述第一连接件的空槽中;所述活塞杆与旋转套连接,当所述活塞杆沿空槽来回伸缩运动时可带动旋转套做0-90°的旋转,进而带动天线做0-90°的旋转。
在本发明一实施方式中,所述非金属气缸的第一通孔和第二通孔分别通过管道与气压控制装置相连,气压控制装置通过控制进出气阀门,控制第一通孔和第二通孔的气流方向,进而控制第一活塞杆伸缩移动的方向和速度。
当气流沿第一通孔进入第一腔室内部,气流推动活塞,并带动活塞杆向第二腔室运动,第一通孔排气。反之,若气流沿第二通孔进入第二腔室内部,气流推动活塞并带动活塞杆向第一腔室运动,第一通孔排气。
在本发明一实施方式中,所述非金属气缸的活塞与第一缸体相结合的部位设有第一环形密封件;所述第一缸体与活塞杆相结合的部位设置有第二环形密封件;所述端盖与活塞杆相结合的部位设置有第三环形密封件。
在本发明一实施方式中,所述连接件开设有第二安装孔的一侧设有安装螺孔,所述非金属气缸的端盖上设有相匹配的安装螺孔,非金属气缸的端盖通过螺钉与第一连接件开设有第二安 装孔的一侧螺纹连接。
在本发明一实施方式中,所述的旋转角度可调天线装置还包括天线架、连接在天线架上的连接臂、固定连接在连接臂上的第二连接件和非金属位置传感器;其中,所述第一连接件活动连接在第二连接件上;所述第一连接件与所述第二连接件通过台阶式连接轴连接,所述的台阶式连接轴进一步与非金属位置传感器连接。
进一步地,所述的台阶式连接轴进一步与非金属位置传感器连接具体包括:所所述非金属位置传感器包括第二缸体,容置于所述第二缸体中的第二活塞和第二活塞杆,所述第二活塞的一端与所述第二活塞杆固定连接,另一端与连接杆固定连接;则所述台阶式连接轴通过传动连接部件带动非金属位置传感器的连接杆做伸缩运动。
第三方面,本发明还提供了一种旋转角度可调天线系统,包括如第二方面所述的旋转角度可调天线装置,还包括与如第二方面所述的旋转角度可调天线装置的非金属气缸相连的第一输气装置、与第一输气装置相连的控制装置,所述第一输气控制装置用于:发送第一或第二输气指令给第一输气装置;所述第一输气装置用于:当接收输气控制装置发送的第一输气指令时,向非金属气缸的第一通孔输气,使得第一活塞杆向第二通孔推进,当接收输气控制装置发送的第二输气指令时,向非金属气缸的第二通孔输气,使得第一活塞杆向第一通孔推进。
在本发明一实施方式中,所述输气控制装置用于控制第一输气装置向所述非金属气缸第一通孔或第二通孔中输入气流的方向及大小,进而控制第一活塞杆伸缩移动的方向和速度。
第四方面,本发明提供了一种如第一方面所述的非金属气缸、如第二方面所述的旋转角度可调天线装置或如第三方面所述的旋转角度可调天线系统在电磁兼容测试中的应用。
本发明的有益效果:本发明所提供的用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统不仅工作原理简单、操作方便、可靠性强,还可通过控制天线旋转角度、调节天线的俯仰角度,实现天线多维空间定位。
附图说明
图1是本发明实施例提供的用于电磁兼容测试的非金属气缸01的剖面图;
图2是本发明实施例提供的旋转角度可调天线装置001的结构示意图;
图3是本发明实施例提供的旋转角度可调天线装置001的剖面图;
图4是本发明实施例提供的旋转角度可调天线装置002的结构示意图;
图5是本发明实施例提供的第一连接件02与第二连接件06的连接示意图;
图6是本发明实施例提供的旋转角度可调天线装置的天线03水平放置的示意图;
图7是本发明实施例提供的非金属位置传感器08处于状态1的结构示意图;
图8是本发明实施例提供的非金属位置传感器08处于状态1的结构示意图;
图9是本发明实施例提供的旋转角度可调天线系统004的结构示意图。
具体实施方式
下面结合附图以及具体实施例对本发明做进一步说明,其中的示意性实施例以及说明仅用来解释本发明,但并不作为对本发明的限定。
需要说明的是,在本发明中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,本发明所述的“第一位置”、“第二位置”等术语应做广义理解,例如,可以是一个位置点,也可以是一个活动区域。
在本发明中,本发明所述的“向下移动”、“向上移动”、“上升”或“下降”等术语应做广义理解,例如,第一特征相对第二特征“向下移动”、“向上移动”、“上升”或“下降”,可以表示第一特征相对于第二特征向第二特征的第一位置的方向移动,也可以表示第一特征相对于第二特征向第二特征的第二位置的方向移动;
在本发明中,除非另有明确的规定和限定,术语“装载”、“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
实施例1一种用于电磁兼容测试的非金属气缸
图1是本发明实施例提供的用于电磁兼容测试的非金属气缸01的剖面图。
如图1所示,在本发明实施例提供的用于电磁兼容测试的非金属气缸01包括第一缸体11、端盖12、容置于第一缸体11中并将第一缸体11分为第一腔室111和第二腔室112的活塞13、设置在第一缸体11壁上与第一腔室111连通的第一通孔113、设置在第一缸体11壁上与第二腔室112连通的第二通孔114、第一活塞杆14,其中,所述活塞杆14的第一端与活塞13固定连接,第二端穿过开设在端盖12上的第三通孔(图1中未显示),并露置第一缸体11外。
在本发明第一实施方式中,所述第一通孔113和第二通孔114分别通过管道与气压控制装置相连,气压控制装置通过控制进出气阀门,进而控制第一通孔113和第二通孔114的气流方向,从而控制第一活塞杆14做伸缩移动的方向和速度。
当第一通孔113为进气孔,第二通孔114即为出气孔;反之,当第一通孔113为出气孔,第二通孔114即为进气孔。当气流沿第一通孔113进入第一腔室111内部,气流推动活塞13,并带动第一活塞杆14向第二腔室112运动,第一通孔114排气。反之,若气流沿第二通孔114进入第二腔室112内部,气流推动活塞13并带动活塞杆14向第一腔室111运动,第一通孔113排气。
在本发明第二实施方式中,所述活塞13与第一缸体11相结合的部位设有第一环形密封件131;所述第一缸体11与活塞杆14相结合的部位设置有第二环形密封件115;所述端盖12与活塞杆14相结合的部位设置有第三环形密封件121。
所述的第一环形密封件131、第二环形密封件115和第三环形密封件121为非金属密封圈,如橡胶软圈,密封圈能够防止活塞与缸体的连接处、活塞杆与缸体的连接处、活塞杆与端盖的连接处发生漏气,起到密封的作用。
所述气缸01的各部件均采用非金属材料,常见地,如聚甲醛、聚四氟乙烯材质,避免了对电磁兼容测试的干扰。
实施例2一种旋转角度可调天线装置
图2是本发明实施例2提供的旋转角度可调天线装置001的结构示意图;图3是本发明实施例提供的旋转角度可调天线装置001的剖面图。
如图2-3所示,在本发明实施例2提供的旋转角度可调天线装置001包括本发明提供的用于电磁兼容测试的非金属气缸01,还包括连接件02、天线03,其中,
连接件02包括:中空的空腔21、开设于空腔21中的空槽22、设置于空腔21中且穿透连 接件02上下面的第一安装孔23、与所述空槽22相通的第二安装孔24;
天线03套设有旋转套31后装载于第一安装孔23中,天线03的至少一端伸出第一安装孔23。
在本发明第三实施方式中,连接件02开设有第二安装孔24的一侧设有安装螺孔(图3中未显示),所述非金属气缸01的端盖12上设有相匹配的安装螺孔,非金属气缸01的端盖12通过螺钉与连接件02开设有第二安装孔24的一侧螺纹连接。
在本发明第四实施方式中,非金属气缸01的第一活塞杆14穿出端盖12后,再穿过连接件02的第二安装孔24,容置于所述连接件02的空槽22中;所述第一活塞杆14与旋转套31连接,当所述第一活塞杆14沿空槽22来回伸缩运动时可带动旋转套31做0-90°的旋转,进而带动天线03做0-90°的旋转。
在本发明第五实施方式中,所述旋转角度可调天线装置001还包括气缸控制模块,所述气缸控制模块用于控制进入非金属气缸01第一通孔113或第二通孔114中气流的方向及大小,进而带动第一活塞杆14沿空槽22来回伸缩移动。
本发明的旋转角度可调天线装置001通过气缸作用使所述天线03的旋转和第一活塞杆14的推进与推出联动;从而实现天线做0-90°的旋转。
在该具体实施方式中,进一步地,所述旋转角度可调天线装置001还包括外部气缸控制模块,所述外部气缸控制模块用于控制进入第一通孔113或第二通孔114中气流的方向及大小,进而控制第一活塞杆做伸缩移动的方向和速度,使得所述非金属气缸01的第一活塞杆14带动旋转套做0-90°旋转,进而带动天线做0-90°旋转。
实施例3一种旋转角度可调天线装置
图4是本发明实施例3提供的旋转角度可调天线装置002的结构示意图;图5是本发明实施例提供的第一连接件02与第二连接件06的连接示意图;图6是本发明实施例提供的旋转角度可调天线装置002的天线03水平放置的示意图。
如图4所示,本发明实施例3提供的所述旋转角度可调天线装置002采用了本发明提供的用于电磁兼容测试的非金属气缸01、第一连接件02、天线03,还包括天线架04、连接在天线架04上的连接臂05、固定连接在连接臂05上的第二连接件06;其中,所述第一连接件02活动连接在第二连接件06上。
在本发明第五实施方式中,,所述连接臂05的一端固定在天线架04上,另一端开设有
Figure PCTCN2016113876-appb-000001
字形凹槽,所述凹槽上、下端均设有安装孔;所述第二连接件06的上端与下端均设 有数个与连接臂05的凹槽上、下端安装孔相匹配的安装孔61;所述第二连接件06卡装在连接臂05的
Figure PCTCN2016113876-appb-000002
字形开口间,所述连接臂05的上臂51和下臂52的安装孔与第二连接件06的安装孔61通过插销或螺钉可拆卸连接。
该具体实施方式中,进一步地,所述连接臂05的一端固定在天线架04上的具体结构为:所述天线架04包括立柱,及套设在所述立柱上、且可沿立柱升降的升降座;则所述连接臂05的一端固定在天线架04立柱上的升降座上,并可随升降座做升降移动。
在本发明第六实施方式中,如图5所示,所述第一连接件02与所述第二连接件06通过台阶式连接轴07连接。
在该具体实施方式中,进一步地,第二连接件06的侧壁设有第一安装孔62和第一定位孔63(所述第一安装孔62和第一定位孔63均为通孔,即贯穿第二连接件06两边侧壁);所述第一连接件02的侧壁设有第二安装孔25、及垂直定位孔26和水平定位孔27;其中,所述台阶式连接轴07的一端固定在第一连接件02设有第二安装孔25的侧壁上,另一端穿过第二连接件06的第一安装孔62,所述台阶式连接轴07可在第一安装孔62中旋转活动;所述第二连接件06的第一定位孔63与第一连接件02的垂直定位孔26或水平定位孔27通过插销或螺钉可拆卸连接。
在该具体实施方式中,进一步地,所述台阶式连接轴07包括:第一台阶71、与第一台阶71相连并穿装于第一安装孔62内的第二台阶72、与第二台阶72相连的第三台阶73,其中,所述第一台阶71与第一连接件02设有第二安装孔25的侧壁通过螺钉74螺纹连接;所述第二台阶72贯穿第一安装孔62,所述第三台阶73穿出第一安装孔62,使得台阶式连接轴07可在第一安装孔62中旋转活动。
在该具体实施方式中,进一步地,所述台阶式连接轴07还包括固定板75,所述固定板75套设在第三台阶73上,所述固定板75与连接臂05通过螺钉74螺纹连接,使装置更加稳固。
在该具体实施方式中,进一步地,当技术人员将所述第一定位孔63通过插销或螺钉与垂直定位孔26或水平定位孔27连接,使第一连接件02做0或90°的旋转,从而使套设在第一连接件02上的天线03随着第一连接件02同步做0或90°的旋转,即,使天线03有垂直放置或水平放置不同位置状态。
可以理解的是,由于第二连接件06固定在连接臂05上,第二连接件06与第一连接件02通过台阶式连接轴07活动相连,只需要第二连接件06的第一定位孔63与第一连接件02上的垂直定位孔26或水平定位孔27相连,即可实现第一连接件02不同方位的改变,即改变插销 或螺钉穿插在垂直定位孔26、水平定位孔27的不同状态来改变第一连接件02的位置状态,进而通过第一连接件02带动台阶式连接轴07绕台阶式连接轴07的轴线旋转。如图4所示该状态下,第一连接件02上的天线03水平放置;若改变插销或螺钉穿插位置,可将第一连接件02上的天线03垂直放置(即图6中非金属气缸01的位置)。
在本发明第七实施方式中,如图7是非金属位置传感器08的剖面图;本发明实施例3提供的旋转角度可调天线装置002还包括非金属位置传感器08,所述台阶式连接轴08进一步与非金属位置传感器08连接;其中,所述非金属位置传感器08具体包括:
第二缸体81,容置于所述第二缸体81中的第二活塞82,和一端与第二活塞82固定连接的第二活塞杆83;所述第二缸体81包括第二缸体上腔室811和第二缸体下腔室812;所述第二缸体下腔室812的侧壁设置有第一径向气孔8121、设置在第一径向气孔8121下端的第二径向气孔8122、及与第一径向气孔8121轴向对称的第三径向气孔8123;
第二活塞杆83与第二缸体下腔室812的内壁相结合的部位由上而下依次套设有第一密封圈831、第二密封圈832,第二活塞杆83内部设有工字形通气管道833;第一密封圈831、第二密封圈832之间的轴向距离等于第一径向气孔8121和第二径向气孔8122之间的轴向距离;且第一密封圈831、第二密封圈832与第二缸体下腔室812的内腔密封活动配合;其中,所述第一密封圈831设有第一径向通孔8311,所述第二密封圈832设有第二径向通孔8321;
所述非金属位置传感器08的第二缸体81端部设有轴向通孔813及首端固定在第三活塞83上,尾端穿过轴向通孔813,并伸出第二缸体81的连接杆84;
当第二活塞杆83在第二缸体81内腔中运动至至第一位置时,所述第一径向气孔8121与第三径向气孔8123相导通;
当第二活塞杆83在第二缸体81内腔中运动至至第二位置时,第一径向气孔8121和第二径向气孔8122通过通气管道833导通。
在该具体实施方式中,进一步地,所述第二非金属位置传感器08的连接杆84通过传动连接部件与台阶式连接轴07连接;当台阶式连接轴07在外力作用下绕台阶式连接轴的轴线旋转时(如测试人员通过第一连接件带动台阶式连接轴07绕台阶式连接轴07的轴线旋转),台阶式连接轴07可通过传动连接部件带动连接杆84做伸缩运动。
可以理解的是,如图7中状态1所示,第二活塞杆83在第二缸体81内腔中运动至第一径向气孔8121与第三径向气孔8123导通。如图8中状态2所示,第二活塞杆83在第二缸体81内腔中运动至第一径向气孔8121和第二径向气孔8122通过通气管道833导通。
进一步地,第一径向气孔8121与第三径向气孔8123中的一个为进气孔,另一个为出气孔;其中,进气孔与外部进气设备连接,出气孔与外部气电转换设备连接。
更进一步地,当所述第一径向气孔8121与第三径向气孔8123相导通时,所述非金属位置传感器08(第一径向气孔8121与第三径向气孔8123中的出气孔)对外发送第一气压信号。
进一步地,第一径向气孔8121与第二径向气孔8122中的一个为进气孔,另一个为出气孔;其中,进气孔与外部进气设备连接,出气孔与外部气电转换设备连接。
更进一步地,当所述第一径向气孔8121与第二径向气孔8122相导通时,所述非金属位置传感器08(第一径向气孔8121与第二径向气孔8122中的出气孔)对外发送第二气压信号。
在该具体实施方式中,进一步地,所述第二活塞82与第二缸体上腔室811的内壁相结合的部位设有第三密封圈821,第三密封圈821与第二缸体上腔室811的内腔密封活动配合;所述第二缸体下腔室812的内壁上由上而下依次设置有第四密封圈8124、第五密封圈8125;第二活塞杆83的一端(首端)穿过第四密封圈8124上开设的通孔与第二活塞82固定连接,且第二活塞杆83与第四密封圈8124密封活动配合,另一端(尾端)穿过第五密封圈8125上开设的通孔,且第二活塞杆83与第五密封圈8125密封活动配合。
可以理解的是,本实施方式中,所述第四密封圈8124将第二缸体81分割为第二缸体上腔室811和第二缸体下腔室812。
当人工旋转第一连接件02,将天线03在垂直放置状态或水平放置状态之间切换,则第二连接件06带动台阶式连接轴07旋转,从而带动非金属位置传感器08的连接杆伸缩移动,达到状态1(如图7所示)或状态2(如图8所示),导致不同气孔的导通,形第一或第二气压信号,并触发外部气电转换装置的微动开关,所述的外部气电转换装置将第一或第二气压信号转化成第一或第二电信号,则当外部控制设备接收到第一或第二电信号时,可判断、检测和/或显示天线处于垂直放置状态或水平放置状态。
可以理解的是,本发明中所述的“上”、“下”并不代表绝对空间。
值得注意的是,为了降低天线架本身对测试的干扰,本发明各实施方式中的非金属气缸01、第一连接件02、天线03、天线架04的支柱及升降座、连接臂05、第二连接件06、非金属传感器08、台阶式连接轴07及这些组件之间的连接部件均采用非金属材质制备而成。
实施例4一种旋转角度可调天线系统
本发明实施例4提供了一种旋转角度可调天线系统003,包括本发明实施例2提供的旋转角度可调天线装置001,还包括与非金属气缸01相连的第一输气装置、与第一输气装置相连 的控制装置,所述输气控制装置用于:发送第一或第二输气指令给第一输气装置;所述第一输气装置用于:当接收输气控制装置发送的第一输气指令时,向非金属气缸06的第一通孔113输气,使得第一活塞杆14向第二通孔114推进,当接收输气控制装置发送的第二输气指令时,向非金属气缸06的第二通孔114输气,使得第一活塞杆14向第一通孔113推进。可以理解的是,通过所述非金属气缸01的第一活塞杆14的伸缩带动旋转套做0-90°旋转,进而带动天线做0-90°旋转。进一步地,所述输气控制装置具体用于控制进入所述非金属气缸第一通孔或第二通孔中气流的方向及大小,进而控制所述非金属气缸的第一活塞及第一活塞杆做伸缩移动的方向和速度。
实施例5一种旋转角度可调天线系统
图9是本发明实施例5提供的旋转角度可调天线系统004的结构示意图。
如图8所示,本发明提供了一种旋转角度可调天线系统004,包括本发明实施例3提供的旋转角度可调天线装置002,还包括与非金属位置传感器08相连的气电转换装置和与气电转换装置相连的位置控制装置;
当所述非金属位置传感器08气缸上不同气孔的导通时,所述非金属位置传感器08向气电转换装置发送第一或第二气压信号;则所述的气电转换装置用于:将接收的第一或第二气压信号转化成第一或第二电信号;则所述的控制设备用于:在接收到第一或第二电信号时,判断天线处于垂直放置状态或水平放置状态。
可选地,由于控制设备可判断天线处于水平放置状态还是垂直状态,可进一步通过对本发明的控制设备的控制程序进行预设,比如,当控制设备判断天线处于水平放置状态,预设控制设备中的控制程序不输出控制天线向某个方向的移动指令,从而避免无效移动。
具体地,本发明提供旋转角度可调天线系统004还包括第二输气装置,所述第二输气装置用于给非金属位置传感器08的气缸输气,具体地,本发明实施例提供的输气装置用于给第二非金属位置传感器08的第一径向气孔821、所述第二径向气孔822、第三径向气孔823中的进气孔输气。
本发明还可有其它实施方式,凡是采用同等替换或等效变换形成的技术方案,均落在本发明要求的保护范围之内。

Claims (15)

  1. 一种用于电磁兼容测试的非金属气缸,其特征在于,包括第一缸体、端盖、容置于第一缸体中并将第一缸体分为第一腔室和第二腔室的活塞、设置在第一缸体壁上与第一腔室连通的第一通孔、设置在第一缸体壁上与第二腔室连通的第二通孔、活塞杆,其中,所述活塞杆的第一端与活塞固定连接,第二端穿过开设在端盖上的第三通孔,并露置第一缸体外。
  2. 如权利要求1所述的用于电磁兼容测试的非金属气缸,其特征在于,所述活塞与第一缸体相结合的部位设有第一环形密封件;所述第一缸体与活塞杆相结合的部位设置有第二环形密封件;所述端盖与活塞杆相结合的部位设置有第三环形密封件。
  3. 如权利要求1所述的用于电磁兼容测试的非金属气缸,其特征在于,所述非金属气缸的第一通孔和第二通孔分别通过管道与气压控制装置相连,气压控制装置用于控制第一通孔和/或第二通孔的气流方向及大小,进而控制所述非金属气缸的第一活塞杆伸缩移动的方向和速度。
  4. 如权利要求1所述的用于电磁兼容测试的非金属气缸,其特征在于,所述非金属气缸的各部件均采用非金属材料。
  5. 如权利要求1所述的非金属气缸在电磁兼容测试中的应用。
  6. 一种旋转角度可调天线装置,其特征在于,包括用于电磁兼容测试的非金属气缸,还包括第一连接件、天线;其中,连接件包括:中空的空腔、开设于空腔中的空槽、设置于空腔中且穿透连接件上下面的第一安装孔、与所述空槽相通的第二安装孔;
    天线套设有旋转套后装载于第一安装孔中,天线的至少一端伸出第一安装孔;
    所述用于电磁兼容测试的非金属气缸包括:第一缸体、端盖、容置于第一缸体中并将第一缸体分为第一腔室和第二腔室的第一活塞、设置在第一缸体壁上与第一腔室连通的第一通孔、设置在第一缸体壁上与第二腔室连通的第二通孔、第一活塞杆,其中,所述活塞杆的第一端与活塞固定连接,第二端穿过开设在端盖上的第三通孔,并露置第一缸体外;
    所述第一连接件还设有第二安装孔,所述非金属气缸的活塞杆先后穿过非金属气缸的端盖、第一连接件的第二安装孔后,容置于所述第一连接件的空槽中;所述第一活塞杆与旋转套连接,当所述第一活塞杆沿空槽来回伸缩运动时可带动旋转套做0-90°的旋转,进而带动天线做0-90°的旋转。
  7. 如权利要求6所述的旋转角度可调天线装置,其特征在于,所述非金属气缸的第一通 孔和第二通孔分别通过管道与气压控制装置相连,气压控制装置用于控制第一通孔和/或第二通孔的气流方向及大小,进而控制所述非金属气缸的第一活塞杆伸缩移动的方向和速度。
  8. 如权利要求6所述的旋转角度可调天线装置,其特征在于,所述非金属气缸的活塞与第一缸体相结合的部位设有第一环形密封件;所述第一缸体与活塞杆相结合的部位设置有第二环形密封件;所述端盖与活塞杆相结合的部位设置有第三环形密封件。
  9. 如权利要求6所述的旋转角度可调天线装置,其特征在于,所述第一连接件开设有第二安装孔的一侧设有安装螺孔,所述非金属气缸的端盖上设有相匹配的安装螺孔,非金属气缸的端盖通过螺钉与第一连接件开设有第二安装孔的一侧螺纹连接。
  10. 如权利要求6所述的旋转角度可调天线装置,其特征在于,所述的旋转角度可调天线装置还包括天线架、连接在天线架上的连接臂、固定连接在连接臂上的第二连接件和非金属位置传感器;其中,所述第一连接件活动连接在第二连接件上;所述第一连接件与所述第二连接件通过台阶式连接轴连接,所述的台阶式连接轴进一步与非金属位置传感器连接。
  11. 如权利要求10所述的旋转角度可调天线装置,其特征在于,所述的台阶式连接轴进一步与非金属位置传感器连接具体包括:所述非金属位置传感器包括第二缸体,容置于所述第二缸体中的第二活塞和第二活塞杆,所述第二活塞的一端与所述第二活塞杆固定连接,另一端与连接杆固定连接;则所述台阶式连接轴通过传动连接部件带动非金属位置传感器的连接杆做伸缩运动。
  12. 如权利要求6所述的旋转角度可调天线装置在电磁兼容测试中的应用。
  13. 一种旋转角度可调天线系统,其特征在于,包括如权利要求3所述的旋转角度可调天线装置,还包括与所述的旋转角度可调天线装置的非金属气缸相连的第一输气装置、与第一输气装置相连的输气控制装置,所述输气控制装置用于:发送第一或第二输气指令给第一输气装置;所述第一输气装置用于:当接收输气控制装置发送的第一输气指令时,向非金属气缸的第一通孔输气,使得第一活塞杆向第二通孔推进,当接收输气控制装置发送的第二输气指令时,向非金属气缸的第二通孔输气,使得第一活塞杆向第一通孔推进。
  14. 如权利要求13所述的旋转角度可调天线系统,其特征在于,所述输气控制装置具体用于控制第一输气装置向所述非金属气缸第一通孔和/或第二通孔中输入气流的方向及大小,进而控制所述非金属气缸的第一活塞杆伸缩移动的方向和速度。
  15. 如权利要求13所述的旋转角度可调天线系统在电磁兼容测试中的应用。
PCT/CN2016/113876 2016-01-04 2016-12-30 一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统 WO2017118358A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/067,823 US10608333B2 (en) 2016-01-04 2016-12-30 Non-metal pneumatic cylinder for use in electromagnetic compatibility test, antenna device having adaptable angle of rotation, and system
DE112016006152.8T DE112016006152B4 (de) 2016-01-04 2016-12-30 Drehwinkel einstellbare antennenvorrichtung und system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610009807.0 2016-01-04
CN201610009807.0A CN105485084B (zh) 2016-01-04 2016-01-04 一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统

Publications (1)

Publication Number Publication Date
WO2017118358A1 true WO2017118358A1 (zh) 2017-07-13

Family

ID=55672287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113876 WO2017118358A1 (zh) 2016-01-04 2016-12-30 一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统

Country Status (4)

Country Link
US (1) US10608333B2 (zh)
CN (1) CN105485084B (zh)
DE (1) DE112016006152B4 (zh)
WO (1) WO2017118358A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111443257A (zh) * 2020-05-13 2020-07-24 佛山市顺德区铭都昊自动化设备有限公司 电磁发热盘老化测试生产线
CN113415440A (zh) * 2021-07-20 2021-09-21 哈尔滨工业大学 一种快速展开支撑装置
CN115327173A (zh) * 2022-07-20 2022-11-11 中国航空工业集团公司济南特种结构研究所 一种自由度可调的雷击试验夹具

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105485084B (zh) 2016-01-04 2018-04-17 广州市诚臻电子科技有限公司 一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统
CN105572506B (zh) * 2016-01-04 2018-11-23 广州市诚臻电子科技有限公司 一种用于电磁兼容测试的非金属位置传感器、天线自动定位装置及系统
CN105954621B (zh) * 2016-06-03 2019-01-01 广州市诚臻电子科技有限公司 一种射频天线驻波比自动调整系统
CN106058421B (zh) * 2016-07-07 2019-01-18 广州市诚臻电子科技有限公司 一种自动更换天线的平移式天线架及控制系统
CN105958174B (zh) * 2016-07-07 2019-09-10 广州市诚臻电子科技有限公司 一种自动更换天线的旋转式天线架及控制系统
CN109037896B (zh) * 2018-08-09 2024-04-09 中国船舶重工集团公司第七二六研究所 气动天线伸缩系统及航行器
CN109633337B (zh) * 2019-01-04 2024-01-12 中汽研汽车检验中心(天津)有限公司 一种智能驾驶汽车电磁兼容试验移动障碍物的拖动装置
CN111129701B (zh) * 2020-01-10 2021-06-15 东莞市天敏通讯科技有限公司 一种通信用天线设备
CN111541005B (zh) * 2020-04-17 2021-06-04 重庆市信息通信咨询设计院有限公司 一种通讯交换终端
CN112114210B (zh) * 2020-08-12 2023-09-22 欧陆电子电器检测服务(深圳)有限公司 一种产品电磁兼容测试系统
CN112362920B (zh) * 2020-11-11 2023-01-24 贵州电网有限责任公司 一种状态监测传感器保护装置
CN112768873B (zh) * 2021-01-26 2022-07-22 南京铁马信息技术有限公司 应急通信天线自动化部署及实时监控系统
CN114006168B (zh) * 2021-12-24 2022-03-08 中国人民解放军军事科学院战争研究院 5g通信天线测试架及其测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8104226L (sv) * 1981-07-07 1983-01-08 Martin Nilsson Hallare, foretredesvis avsedd for antenn
US5009115A (en) * 1989-03-10 1991-04-23 Neyrpic Framatome Mecanique Device for driving in rotation a structure of large diameter particularly an antenna
CN1563728A (zh) * 2004-03-19 2005-01-12 北京工业大学 关节定角往复回转驱动环形气缸
CN201528046U (zh) * 2009-10-13 2010-07-14 国营万峰无线电厂 特种车车顶天线自动旋转定位装置
CN202308269U (zh) * 2011-10-28 2012-07-04 上海飞乐汽车控制系统有限公司 线圈骨架直角端子组装定位装置
CN105485084A (zh) * 2016-01-04 2016-04-13 广州市诚臻电子科技有限公司 一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703125A (en) 1971-08-05 1972-11-21 Richard S Pauliukonis Plastic actuating cylinder
DE2847274C2 (de) 1978-10-31 1983-01-27 Fa. Carl Freudenberg, 6940 Weinheim Kolben für einen Arbeitszylinder
EP2181310B1 (de) * 2007-08-16 2017-03-15 Astyx GmbH Doppelkolbenstange
CN201608267U (zh) 2010-01-18 2010-10-13 宇謦企业有限公司 可调俯角天线架
CN201627774U (zh) * 2010-03-28 2010-11-10 董玉芬 一种高压重型气缸
CN102569981B (zh) 2010-12-31 2014-08-20 鸿富锦精密工业(深圳)有限公司 天线定位装置
JP2014005871A (ja) * 2012-06-25 2014-01-16 Aisin Seiki Co Ltd シリンダ装置及びその製造方法
CN104061204A (zh) * 2014-07-09 2014-09-24 苏州晓炎自动化设备有限公司 一种气缸体
CN105071018B (zh) * 2015-08-18 2018-05-22 北京航天万达高科技有限公司 一种可调节角度的多面定向天线的支撑机构
CN205388061U (zh) * 2016-01-04 2016-07-20 广州市诚臻电子科技有限公司 一种非金属气缸、旋转角度可调天线装置及系统
CN105572506B (zh) * 2016-01-04 2018-11-23 广州市诚臻电子科技有限公司 一种用于电磁兼容测试的非金属位置传感器、天线自动定位装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8104226L (sv) * 1981-07-07 1983-01-08 Martin Nilsson Hallare, foretredesvis avsedd for antenn
US5009115A (en) * 1989-03-10 1991-04-23 Neyrpic Framatome Mecanique Device for driving in rotation a structure of large diameter particularly an antenna
CN1563728A (zh) * 2004-03-19 2005-01-12 北京工业大学 关节定角往复回转驱动环形气缸
CN201528046U (zh) * 2009-10-13 2010-07-14 国营万峰无线电厂 特种车车顶天线自动旋转定位装置
CN202308269U (zh) * 2011-10-28 2012-07-04 上海飞乐汽车控制系统有限公司 线圈骨架直角端子组装定位装置
CN105485084A (zh) * 2016-01-04 2016-04-13 广州市诚臻电子科技有限公司 一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111443257A (zh) * 2020-05-13 2020-07-24 佛山市顺德区铭都昊自动化设备有限公司 电磁发热盘老化测试生产线
CN113415440A (zh) * 2021-07-20 2021-09-21 哈尔滨工业大学 一种快速展开支撑装置
CN115327173A (zh) * 2022-07-20 2022-11-11 中国航空工业集团公司济南特种结构研究所 一种自由度可调的雷击试验夹具

Also Published As

Publication number Publication date
CN105485084B (zh) 2018-04-17
US20190006750A1 (en) 2019-01-03
DE112016006152B4 (de) 2024-07-18
DE112016006152T5 (de) 2018-10-04
US10608333B2 (en) 2020-03-31
CN105485084A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2017118358A1 (zh) 一种用于电磁兼容测试的非金属气缸、旋转角度可调天线装置及系统
WO2017118357A1 (zh) 一种天线架、天线位置控制系统
CN202101829U (zh) 阀门气密性检测装置
WO2017118359A1 (zh) 一种用于电磁兼容测试的非金属位置传感器、天线自动定位装置及系统
CN102866713B (zh) 一种呼吸流量调节装置和呼吸机
CN206011142U (zh) 一种原点标定仪及工业机器人
WO2018028558A1 (zh) 一种低压扩散炉炉门密封装置
CN203272912U (zh) 真空安全阀
CN205388061U (zh) 一种非金属气缸、旋转角度可调天线装置及系统
CN207866439U (zh) 管道气密性检测工装及包含其的管道气密性检测系统
CN108613693A (zh) 一种用于测控仪器的多角度调节安装架
CN205452523U (zh) 一种天线架、天线位置控制系统
CN204851611U (zh) 一种可调节设定压力的水泵压力控制器
CN114985025B (zh) 一种利用伸缩波纹管的水位可调马氏瓶
CN105632972A (zh) 反应腔室
CN102705566A (zh) 零压差启动微阻力低功耗大通径电磁阀
CN108728827B (zh) 一种调平装置和等离子体设备
CN108529242A (zh) 一种用于微小型饲料输送的气动液压饲料上料机装置
CN111122070B (zh) 自动测试方法、自动测试系统及辅助测试装置
CN209458476U (zh) 一种微型集成调节阀
CN209012496U (zh) 限流恒压阀
CN111843466A (zh) 锁螺钉装置及应用其的锁螺钉机器人
CN107131347B (zh) 一种高精度阀门驱动器
CN219255372U (zh) 静压孔气密夹具组件
CN219302899U (zh) 一种控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016006152

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883483

Country of ref document: EP

Kind code of ref document: A1