WO2017118216A1 - 一种液晶透镜板和显示装置 - Google Patents

一种液晶透镜板和显示装置 Download PDF

Info

Publication number
WO2017118216A1
WO2017118216A1 PCT/CN2016/105491 CN2016105491W WO2017118216A1 WO 2017118216 A1 WO2017118216 A1 WO 2017118216A1 CN 2016105491 W CN2016105491 W CN 2016105491W WO 2017118216 A1 WO2017118216 A1 WO 2017118216A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid crystal
display device
light
substrate
Prior art date
Application number
PCT/CN2016/105491
Other languages
English (en)
French (fr)
Inventor
赵文卿
董学
陈小川
高健
王倩
杨明
卢鹏程
许睿
王磊
牛小辰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/537,737 priority Critical patent/US10558076B2/en
Publication of WO2017118216A1 publication Critical patent/WO2017118216A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • FIG. 1 is a schematic diagram of a display device according to a first embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a display device according to Embodiment 3 of the present disclosure.
  • FIG. 7 is a schematic view of a second substrate of a liquid crystal lens panel according to Embodiment 7 of the present disclosure.
  • FIG. 8 is a schematic diagram of light refraction of a lens equivalent unit in the seventh embodiment.
  • the liquid crystal lens panel further includes a first electrode disposed on the first substrate, the second electrode being disposed on the first substrate or the second substrate, and the second electrode being arranged in an array a plurality of electrode units of the cloth, each of the plurality of electrode units being disposed between the first electrode and the first electrode An electric field is formed, and the liquid crystal layer is driven to form a lens equivalent unit.
  • each electrode unit includes at least two annular electrodes arranged in a radial arrangement.
  • the radially arranged annular electrodes mean that the annular electrodes have the same center but have different sizes and are arranged around the same center.
  • the position of the lens equivalent unit on the liquid crystal lens plate is not adjustable, and the focal length of the lens equivalent unit can be adjusted by adjusting the voltage of the ring electrode in the electrode unit.
  • the ring-shaped electrode is a closed ring-shaped electrode or a ring-shaped electrode having a break point.
  • the ring-shaped electrode includes a circular ring-shaped electrode, a square ring-shaped electrode, or a triangular ring-shaped electrode.
  • each electrode unit includes a plurality of lattice electrodes.
  • the position of the lens equivalent unit on the liquid crystal lens plate can be adjusted, and the position and focal length of the lens equivalent unit can be adjusted by adjusting the voltage of the lattice electrode.
  • the lattice electrode is a circular lattice electrode, a square lattice electrode, or a triangular lattice electrode.
  • the lens equivalent unit of the liquid crystal lens panel is adjusted in alignment with the direction of the straight light.
  • the light collimation correcting device is a prism film.
  • a plurality of pixel portions of the display module that are opposite to the lens equivalent unit position are selectively turned off. In this way, not only can the optical energy be saved, but also the precise control of the light output of the display device can be realized, thereby improving the display quality.
  • the display device includes a privacy display device, a naked eye 3D display device, a holographic display device, or a partial light energy enhanced display device.
  • the display device is rich in application and has a wide application range.
  • the "light-emitting side" of a certain component can be understood to mean that the display device is close to the side of the viewer when it is normally used.
  • the collimated light mentioned in the embodiment of the present disclosure is not limited to the fact that the light is absolutely perpendicular to the screen, and may allow a certain error range, for example, the angle between the collimated light emitted by the display module 1 and the screen. At 90 ° ⁇ ⁇ , ⁇ is the set angular tolerance.
  • the liquid crystal display module may be configured to include a backlight module 10, a liquid crystal panel 11 and a light collimation correction device 12, wherein the liquid crystal panel 11 is located on the light exit side of the backlight module 10; and the light collimation correction device 12 It is located between the backlight module 10 and the liquid crystal panel 11.
  • the backlight module 10 emits a spherical light field, and the light collimation correcting device 12 modulates the divergent light emitted by the backlight module 10 into collimated light, so that the light is incident perpendicular to the liquid crystal panel 11.
  • the structure of the liquid crystal display module may also include: a backlight module 10, a liquid crystal panel 11 and a light collimation correction device 12, wherein the liquid crystal panel 11 is located on the light exit side of the backlight module 10; the light collimation correction device 12 is located on the light exit side of the liquid crystal panel 11.
  • the divergent light emitted from the backlight module 10 passes through the liquid crystal panel 11 to be divergent light, and the light collimation correcting device 12 modulates the light emitted from the liquid crystal panel 11 into collimated light, and causes the light to be directed perpendicular to the liquid crystal panel 11 to be directed forward.
  • the display module 1 can also be an organic light emitting diode display module, including an organic light emitting diode display panel 13 and a light collimation correcting device 12 , wherein the light collimating correcting device 12 is located on the organic light emitting diode display panel 13 . side.
  • the type of the light collimation correcting device 12 is not limited, and may be, for example, a prism film, a lens structure that has a collimating effect on light, and the like.
  • the liquid crystal lens panel 2 includes a first substrate, a second substrate opposite to the first substrate, and a liquid crystal layer between the first substrate and the second substrate, wherein: the first substrate or the second The substrate is provided with a planar electrode, that is, the aforementioned first electrode; as shown in FIG. 5, the second substrate 112 is provided with a plurality of electrode units 115 arranged in an array, that is, the aforementioned second electrode, each electrode unit 115 includes at least two annular electrodes 116 arranged in a radial shape; the lens equivalent unit 20 is formed by an electric field between the electrode unit 115 and the planar electrodes to drive the liquid crystal layer.
  • the ring-shaped electrodes arranged in a radial shape, as shown in FIG. 5, mean that the ring-shaped electrodes have the same center but have different sizes of ring-shaped electrodes. The poles are aligned from the inside to the outside.
  • the planar electrode may be disposed on the same substrate as the electrode unit 115, or may be disposed on the two substrates separately from the electrode unit 115. Regardless of the design, the liquid crystal can be driven between the electrode unit 115 and the planar electrode. The electric field deflected by the liquid crystal molecules of the layer. The electric field between the electrode unit 115 and the planar electrode drives the liquid crystal layer to produce an effect equivalent to that of the condensing mirror, so that the direct light can be aligned for direction adjustment.
  • the position of the lens equivalent unit 20 on the liquid crystal lens panel 2 is not adjustable, but the focal length of the lens equivalent unit 20 can be adjusted by adjusting the voltage of the annular electrode 116 in the electrode unit 115.
  • the ring-shaped electrode 116 may be a closed ring-shaped electrode; as shown in FIG. 6, the ring-shaped electrode 116 may also be a ring-shaped electrode having a break point.
  • the ring-shaped electrode 116 shown in Figs. 5 and 6 is a circular ring-shaped electrode, and the ring-shaped electrode may also be a square-ring electrode or a triangular ring-shaped electrode.
  • the equivalent unit of the lens can be regarded as a spherical mirror equivalent unit.
  • the equivalent unit of the lens can be regarded as a corresponding number of edges.
  • the equivalent of a pyramid mirror is a circular ring-shaped electrode.
  • the liquid crystal lens panel 2 includes a first substrate, a second substrate opposite to the first substrate, and a liquid crystal layer between the first substrate and the second substrate, wherein: the first substrate or the first A planar electrode is disposed on the two substrates; as shown in FIG. 7, the second substrate 112 is provided with a plurality of electrode units, each of the electrode units includes a plurality of lattice electrodes 117 arranged in an array; the lens equivalent unit 20 is The position-adjustable lens equivalent unit is formed by an electric field between the plurality of lattice electrodes 117 and the planar electrodes corresponding to the positional region.
  • the planar electrode may be disposed on the same substrate as the plurality of electrode units, or may be disposed on the two substrates separately from the plurality of electrode units. Regardless of the design, the planar electrode and each of the electrode units are required to be An electric field that deflects the liquid crystal molecules that drive the liquid crystal layer is generated.
  • Each of the electrode units includes a plurality of lattice electrodes 117, and an electric field between each of the lattice electrodes 117 and the planar electrodes drives the liquid crystal layer, which can produce an equivalent effect to the condensing mirror, thereby being able to align straight The light is adjusted in direction. It should be noted that in addition to the concentrating effect, the liquid crystal lens can also produce other effects as long as the change in the direction of the light can be achieved.
  • the focal length and position of the lens equivalent unit 20 on the liquid crystal lens panel 2 can be adjusted. If the position of the lens equivalent unit 20 is determined, by adjusting the voltage of the lattice electrode 117 at different positions, The focal length of the lens equivalent unit 20 can be adjusted. The position of the lens equivalent unit 20 can be adjusted even by adjusting the voltage of the lattice electrode 117 at different positions.
  • the shape of the dot electrode 117 is not limited, and may be, for example, a square lattice electrode as shown in FIG. 7, a circular lattice electrode, or a triangular lattice electrode, or the like.
  • the focal length of the lens equivalent unit can be adjusted.
  • the focal length of each lens equivalent unit can be adjusted by setting different voltage levels of electrodes at different positions, so that the display device can display different depth information and realize holographic display, that is, the display device can be used as a hologram display. Device.
  • a plurality of pixel portions of the display module 1 corresponding to the position of the lens equivalent unit 20 are selectively turned off.
  • the display device is a naked-eye 3D display device
  • a plurality of pixels corresponding to the position of the lens equivalent unit 20 in the display module 1 are only selected to be turned on, and thus, the lens equivalent unit 20 functions.
  • the light path is relatively simple, and the direction of light emission can be accurately controlled to accurately fall into the left eye view or the right eye view area, thereby improving the 3D display effect.
  • the liquid crystal lens plate can also be adjusted to reposition the light exiting direction, so that the human eye can still see a better 3D display effect.
  • the light-emitting direction can be controlled according to the application situation of the display device, thereby reducing unnecessary light energy waste and improving light utilization efficiency; and the display device can be applied by using the solution.
  • the application range of the display device is greatly enriched.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种液晶透镜板(2)及显示装置,包括第一基板、与第一基板相对的第二基板(112)以及位于第一基板和第二基板(112)之间的液晶层,其中:所述液晶透镜板(2)还包括第一电极和第二电极,所述第一电极设置在所述第一基板上,所述第二电极设置在所述第一基板或所述第二基板(112)上,所述第二电极包括呈阵列排布的多个电极单元(115),所述多个电极单元(115)中的每一个与第一电极配置为之间形成电场,驱动液晶层形成透镜等效单元(20)。

Description

一种液晶透镜板和显示装置 技术领域
本公开的实施例涉及一种液晶透镜板和显示装置。
背景技术
目前,常见显示装置一般为薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,TFT-LCD)或有机发光二极管显示器(Organic Light-Emitting Diode,OLED),这些显示装置发出的光线形成球形发射的光场,因此,显示装置在空间上具有较大的发光球面角。
然而,正是由于显示装置在空间上具有较大的发光球面角,这使得被人眼接收的光能只有很少一部分,显示装置的光能利用率较低。近年来,随着各类显示装置的快速发展,如何提高光能利用率得到了人们更多的关注。
发明内容
本公开的至少一个实施例提供了一种液晶透镜板,包括第一基板、与第一基板相对的第二基板以及位于第一基板和第二基板之间的液晶层,其中:
所述液晶透镜板还包括第一电极和第二电极,所述第一电极设置在所述第一基板上,所述第二电极设置在所述第一基板或所述第二基板上,所述第二电极包括呈阵列排布的多个电极单元,所述电极单元与第一电极配置为之间形成电场,驱动液晶层形成透镜等效单元。
液晶透镜板上的多个透镜等效单元可以对准直光方向进行调整,从而减少不必要的光能浪费,提高了光利用率;此外,可将该液晶透镜板应用在防窥显示、全息显示或裸眼3D显示等场合,大大丰富了显示装置的应用范围。
本公开的至少一个实施例提供了一种显示装置,包括显示模组和上述任一液晶透镜板,所述液晶透镜板位于显示模组出光侧,其中:
所述液晶透镜板的透镜等效单元用于对所述显示模组的出射光进行方向调整。
在根据本公开实施例的技术方案中,显示模组发出准直光,液晶透镜板 上的多个透镜等效单元对准直光进行方向调整,可根据显示装置的应用场合控制其出光方向,从而减少光能浪费,提高了光利用率;此外,可利用该方案将显示装置应用在防窥显示、全息显示或裸眼3D显示等场合,大大丰富了显示装置的应用范围。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开实施例一的显示装置示意图;
图2为根据本公开实施例二的显示装置示意图;
图3为根据本公开实施例三的显示装置示意图;
图4为根据本公开实施例四的显示装置示意图;
图5为根据本公开实施例五中液晶透镜板的第二基板示意图;
图6为根据本公开实施例六中液晶透镜板的第二基板上的电极单元示意图;
图7为根据本公开实施例七中液晶透镜板的第二基板示意图;以及
图8为实施例七中透镜等效单元对光线折射示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的至少一个实施例提供了一种液晶透镜板,包括第一基板、与第一基板相对的第二基板以及位于第一基板和第二基板之间的液晶层,其中:
所述液晶透镜板还包括第一电极和第二电极,所述第一电极设置在第一基板上,所述第二电极设置在第一基板或第二基板上,第二电极包括呈阵列排布的多个电极单元,所述多个电极单元中的每一个与第一电极配置为之间 形成电场,驱动液晶层形成透镜等效单元。
在本公开的一个实施例中,每个电极单元包括至少两个呈辐射状排列的环状电极。所述呈辐射状排列的环状电极指的是环状电极具有相同的中心但具有不同的大小,围绕相同的中心排列。
采用该结构设计时,液晶透镜板上的透镜等效单元的位置不可调,可通过调整电极单元中环状电极的电压从而调整透镜等效单元的焦距。
在本公开的一个实施例中,环状电极为封闭的环状电极或具有断点的环状电极。
在本公开的一个实施例中,环状电极包括圆形环状电极、方形环状电极或三角形环状电极。
应当理解的是,环状电极的形状不限于圆形、方形或三角形,其也可以具有五边形、六边形等形状。
当环状电极为圆形环状电极时,透镜等效单元可以认为是等效球面镜。当环状电极为方形环状电极或三角形环状电极时,透镜等效单元可以认为是等效棱锥镜。
在本公开的一个实施例中,每个电极单元包括多个点阵电极。
采用该结构设计,液晶透镜板上的透镜等效单元的位置可调,可通过调整点阵电极的电压从而调整透镜等效单元的位置和焦距。
在本公开的一个实施例中,点阵电极为圆形点阵电极、方形点阵电极或三角形点阵电极。
液晶透镜板上的多个透镜等效单元可以对准直光方向进行调整,从而减少不必要的光能浪费,提高了光利用率;此外,可将该液晶透镜板应用在防窥显示、全息显示或裸眼3D显示等场合,丰富了显示装置的应用范围。
本公开的至少一个实施例提供了一种显示装置,包括显示模组和上述任一液晶透镜板,所述液晶透镜板位于显示模组的出光侧,其中:
显示模组配置为发出准直光;
液晶透镜板的透镜等效单元对准直光的方向进行调整。
在本公开实施例的技术方案中,显示模组发出准直光,液晶透镜板上的多个透镜等效单元对准直光的方向进行调整,可根据显示装置的应用场合控制其出光方向,从而减少不必要的光能浪费,提高了光利用率;此外,还可 以将显示装置应用在防窥显示、全息显示或裸眼3D显示等场合,丰富了显示装置的应用范围。
在本公开的一个实施例中,显示模组包括背光模组、液晶面板和光准直校正器件,其中:液晶面板位于背光模组的出光侧;光准直校正器件位于背光模组和液晶面板之间,或者,光准直校正器件位于液晶面板出光侧。
在本公开的一个实施例中,显示模组包括有机发光二极管显示面板和光准直校正器件,其中:光准直校正器件位于有机发光二极管显示面板出光侧。
在本公开的一个实施例中,光准直校正器件为棱镜膜。
在本公开的一个实施例中,显示模组中与透镜等效单元位置相对的多个像素部分被选择关闭。这样,不但可以节约光能源,还有利于实现显示装置出光的精确控制,从而提高显示品质。
在本公开的一个实施例中,显示装置包括防窥显示装置、裸眼3D显示装置、全息显示装置或局部光能量增强的显示装置。这样,显示装置的应用场合比较丰富,适用范围较广。
如图1所示,本公开的至少一个实施例提供了一种显示装置,包括显示模组1和位于显示模组1出光侧的液晶透镜板2,其中:显示模组1发出准直光;液晶透镜板2包括呈阵列排布的多个透镜等效单元20,透镜等效单元20对准直光进行方向调整,即将准直光调整为在三维坐标系下方向可控的光。
在本公开实施例中,某一部件的“出光侧”可以理解为:显示装置在通常使用时,该部件靠近观看者的一侧。
应当理解的是,本公开实施例中所提及的准直光并不限定为光线与屏幕绝对垂直,可以允许一定的误差范围,例如,显示模组1发出的准直光与屏幕的夹角为90°±α,α为设定的角度公差。
在本公开实施例的技术方案中,显示模组1发出准直光,液晶透镜板2上的多个透镜等效单元20对准直光进行方向调整,可根据显示装置的应用场合控制其出光方向,从而减少不必要的光能浪费,提高了光利用率;此外,还可以将显示装置应用在防窥显示、全息显示或裸眼3D显示等场合,大大丰富了显示装置的应用范围。
显示装置的具体类型不限,例如可以为2D显示装置、防窥显示装置、 裸眼3D显示装置、全息显示装置、需要局部光能量增强的显示装置,等等。例如,显示装置为裸眼3D显示装置时,准直光经过各列透镜等效单元后被调制为分别射向观看者左眼视区和右眼视区的光,从而实现裸眼3D显示。再例如,显示装置为防窥显示装置时,准直光经过各透镜等效单元后被调制的可视角很小,仅屏幕正前方的观看者可以看到画面显示,其它位置的窥视者无法看到画面显示。
在本公开的上述实施例中,显示模组1的类型不限,例如可以为液晶显示模组。
如图2所示,液晶显示模组的结构可以为:包括背光模组10、液晶面板11和光准直校正器件12,其中,液晶面板11位于背光模组10出光侧;光准直校正器件12位于背光模组10和液晶面板11之间。背光模组10发出球形光场,光准直校正器件12将背光模组10发出的发散光调制为准直光,使光垂直于液晶面板11入射。
如图3所示,液晶显示模组的结构也可以为:包括背光模组10、液晶面板11和光准直校正器件12,其中,液晶面板11位于背光模组10出光侧;光准直校正器件12位于液晶面板11出光侧。背光模组10发出的发散光经过液晶面板11后仍为发散光,光准直校正器件12将从液晶面板11射出的光调制为准直光,使光垂直于液晶面板11射向前方。
如图4所示,显示模组1也可以为有机发光二极管显示模组,包括有机发光二极管显示面板13和光准直校正器件12,其中:光准直校正器件12位于有机发光二极管显示面板13出光侧。
上述各实施例中,光准直校正器件12的类型不限,例如,可以为棱镜膜,也可以为对光有准直校正作用的透镜结构,等等。
在本公开的一个实施例中,液晶透镜板2包括第一基板、与第一基板相对的第二基板以及位于第一基板和第二基板之间的液晶层,其中:第一基板或第二基板上设置有面状电极,即前述的第一电极;如图5所示,第二基板112上设置有呈阵列排布的多个电极单元115,即前述的第二电极,每个电极单元115包括至少两个呈辐射状排列的环状电极116;透镜等效单元20由电极单元115与面状电极之间的电场驱动液晶层形成。呈辐射状排列的环状电极,如图5所示,指的是环状电极具有相同的中心但具有不同大小的环状电 极绕相同的中心由内向外排列。
面状电极可以与电极单元115设置于同一个基板上,也可以与电极单元115分别设置于两个基板上,无论采用何种设计,都需要电极单元115与面状电极之间能够产生驱动液晶层的液晶分子偏转的电场。电极单元115与面状电极之间的电场驱动液晶层可以产生与聚光镜等效的效果,从而能够对准直光进行方向调整。
采用该结构设计时,液晶透镜板2上的透镜等效单元20的位置不可调,但可以通过调整电极单元115中环状电极116的电压从而调整透镜等效单元20的焦距。
如图5所示,环状电极116可以为封闭的环状电极;如图6所示,环状电极116也可以为具有断点的环状电极。图5和图6所示的环状电极116为圆形环状电极,此外,环状电极也可以采用方形环状电极或三角形环状电极。
当环状电极为圆形环状电极时,透镜等效单元可以认为是球面镜等效单元,当环状电极为方形环状电极或三角形环状电极时,透镜等效单元可以认为是相应棱数的棱锥镜等效单元。
在本公开的又一实施例中,液晶透镜板2包括第一基板、与第一基板相对的第二基板以及位于第一基板和第二基板之间的液晶层,其中:第一基板或第二基板上设置有面状电极;如图7所示,第二基板112上设置有多个电极单元,每个电极单元包括呈阵列排布的多个点阵电极117;透镜等效单元20为位置可调节的透镜等效单元,由对应位置区域的若干个点阵电极117与面状电极之间的电场驱动液晶层形成。
面状电极可以与多个电极单元同设置于同一基板上,也可以与多个电极单元分别设置于两个基板上,无论采用何种设计,都需要面状电极与每个电极单元之间能够产生驱动液晶层的液晶分子偏转的电场。每个电极单元包括多个点阵电极117,每个电极单元中的每个点阵电极117与面状电极之间的电场驱动液晶层,可以产生与聚光镜等效的效果,从而能够对准直光进行方向调整。需要说明的是液晶透镜除了聚光效果,也可以产生其他效果,只要能实现对光线方向的改变即可。
采用该结构设计,液晶透镜板2上的透镜等效单元20的焦距和位置可调。如果透镜等效单元20的位置确定,通过调整不同位置的点阵电极117的电压, 可以调整透镜等效单元20的焦距。通过调整不同位置的点阵电极117的电压,甚至可以调整透镜等效单元20的位置。
点阵电极117的形状不限,例如可以为图7所示的方形点阵电极,也可以为圆形点阵电极,或三角形点阵电极,等等。
图5和图7所示的实施例中,透镜等效单元的焦距均可以进行调节。例如,可通过对不同位置的电极设置不同的电压大小即可实现对各透镜等效单元的焦距进行调控,可以使显示装置展现出不同的深度信息,实现全息显示,即显示装置可以作为全息显示装置。
在本公开的一个实施例中,显示模组1中与透镜等效单元20位置对应的若干个像素部分被选择关闭。这样,不但可以节约光能源,还有利于实现对显示装置出光光路的精确控制,从而提高显示品质。例如,如图8所示,当显示装置为裸眼3D显示装置时,显示模组1中与透镜等效单元20位置对应的多个像素只选择开启一个,这样,经透镜等效单元20作用的光线光路比较简单,可以精确的控制光的射出方向,使其准确的落入左眼视区或右眼视区,从而提升3D显示效果。并且当人眼位置改变时,也可以通过调整液晶透镜板实现对出光方向重新定位,使人眼仍然能看到较好的3D显示效果。
综上,采用本公开的实施例中的技术方案,可以根据显示装置的应用场合控制其出光方向,从而减少不必要的光能浪费,提高了光利用率;还可利用该方案将显示装置应用在防窥显示、裸眼3D显示、全息显示等场合,大大丰富了显示装置的应用范围。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。
本申请要求于2016年1月8日递交的中国专利申请No.201610012276.0的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (13)

  1. 一种液晶透镜板,包括第一基板、与第一基板相对的第二基板以及位于第一基板和第二基板之间的液晶层,其中:
    所述液晶透镜板还包括第一电极和第二电极,所述第一电极设置在所述第一基板或第二基板上,所述第二电极设置在所述第二基板上,所述第二电极包括呈阵列排布的多个电极单元,所述多个电极单元中的每一个与第一电极配置为之间形成电场,驱动液晶层形成透镜等效单元。
  2. 如权利要求1所述的液晶透镜板,其中,每个电极单元包括呈辐射状排列的至少两个环状电极。
  3. 如权利要求2所述的液晶透镜板,其中,所述环状电极为圆形环状电极、方形环状电极或三角形环状电极。
  4. 如权利要求2或3所述的液晶透镜板,其中,所述环状电极为封闭的环状电极或具有断点的环状电极。
  5. 如权利要求1所述的液晶透镜板,其中,每个电极单元包括多个点阵电极。
  6. 如权利要求5所述的液晶透镜板,其中,所述点阵电极为圆形点阵电极、方形点阵电极或三角形点阵电极。
  7. 如权利要求1至6中任何一项所述的液晶透镜板,其中,所述第一电极为面状电极。
  8. 一种显示装置,其包括显示模组和位于显示模组出光侧的如权利要求1~7任一项所述的液晶透镜板,其中:
    所述液晶透镜板的透镜等效单元用于对所述显示模组的出射光的方向进行调整。
  9. 如权利要求8所述的显示装置,其中,所述显示模组包括背光模组、液晶面板和光准直校正器件,其中:
    所述液晶面板位于背光模组出光侧;
    所述光准直校正器件位于背光模组和液晶面板之间,或者,所述光准直校正器件位于液晶面板出光侧。
  10. 如权利要求8所述的显示装置,其中,所述显示模组包括有机发光 二极管显示面板和光准直校正器件,其中:
    所述光准直校正器件位于有机发光二极管显示面板出光侧。
  11. 如权利要求9或10所述的显示装置,其中,所述光准直校正器件为棱镜膜。
  12. 如权利要求8至11中任一项所述的显示装置,其中,所述显示模组中与透镜等效单元位置相对的若干个像素部分被选择关闭。
  13. 如权利要求8至12中任一项所述的显示装置,其中,所述显示装置包括防窥显示装置、裸眼3D显示装置、全息显示装置或局部光能量增强的显示装置。
PCT/CN2016/105491 2016-01-08 2016-11-11 一种液晶透镜板和显示装置 WO2017118216A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/537,737 US10558076B2 (en) 2016-01-08 2016-11-11 Liquid crystal lens panel for display device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610012276.0A CN105446028B (zh) 2016-01-08 2016-01-08 一种液晶透镜板和显示装置
CN201610012276.0 2016-01-08

Publications (1)

Publication Number Publication Date
WO2017118216A1 true WO2017118216A1 (zh) 2017-07-13

Family

ID=55556393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105491 WO2017118216A1 (zh) 2016-01-08 2016-11-11 一种液晶透镜板和显示装置

Country Status (3)

Country Link
US (1) US10558076B2 (zh)
CN (1) CN105446028B (zh)
WO (1) WO2017118216A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105446028B (zh) 2016-01-08 2019-12-10 京东方科技集团股份有限公司 一种液晶透镜板和显示装置
CN106054414A (zh) * 2016-05-26 2016-10-26 武汉华星光电技术有限公司 透镜光栅及3d显示器
CN105954956B (zh) 2016-05-26 2019-02-15 京东方科技集团股份有限公司 3d显示面板及其控制方法
CN105824159B (zh) * 2016-06-02 2020-04-03 京东方科技集团股份有限公司 辅助面板和显示装置
CN105911791A (zh) * 2016-07-04 2016-08-31 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106125361B (zh) * 2016-08-05 2019-08-30 京东方科技集团股份有限公司 一种显示面板及其驱动方法和显示装置
CN106054423A (zh) * 2016-08-17 2016-10-26 京东方科技集团股份有限公司 一种显示模组及显示装置
CN106154682A (zh) * 2016-08-30 2016-11-23 京东方科技集团股份有限公司 一种显示装置
CN107783401B (zh) * 2016-08-31 2019-09-03 京东方科技集团股份有限公司 一种显示装置及其实现全息显示的方法
KR20180036821A (ko) * 2016-09-30 2018-04-10 삼성디스플레이 주식회사 입체 영상 표시 장치
CN106406063A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 全息显示系统和全息显示方法
CN106652815B (zh) * 2016-12-13 2019-03-15 京东方科技集团股份有限公司 显示面板及显示装置
CN114335382A (zh) * 2018-12-07 2022-04-12 京东方科技集团股份有限公司 显示模组及其制备方法
US10964290B2 (en) 2018-12-28 2021-03-30 Disney Enterprises, Inc. Selective reduction of pixel intensity to enhance energy efficiency during display of an image
CN110098241B (zh) * 2019-05-21 2022-08-30 京东方科技集团股份有限公司 一种显示面板及其控制方法、显示装置
CN110058464B (zh) * 2019-05-29 2022-01-07 京东方科技集团股份有限公司 液晶光子筛结构、近眼显示装置
WO2022133818A1 (zh) * 2020-12-23 2022-06-30 京东方科技集团股份有限公司 液晶透镜、显示装置及其驱动方法
CN115424538B (zh) * 2022-09-09 2024-04-09 惠科股份有限公司 显示装置及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419351A (zh) * 2007-10-24 2009-04-29 乐金显示有限公司 显示装置
JP2009157145A (ja) * 2007-12-27 2009-07-16 Citizen Electronics Co Ltd 液晶レンズ装置
CN101561570A (zh) * 2008-04-18 2009-10-21 鸿富锦精密工业(深圳)有限公司 液晶透镜及镜头模组
CN102279491A (zh) * 2011-07-25 2011-12-14 深圳超多维光电子有限公司 快门眼镜及立体显示系统
CN104570520A (zh) * 2014-12-31 2015-04-29 上海天马微电子有限公司 一种液晶透镜
CN105446028A (zh) * 2016-01-08 2016-03-30 京东方科技集团股份有限公司 一种液晶透镜板和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778246B2 (en) * 2001-01-26 2004-08-17 University Of Alabama In Huntsville Liquid crystal adaptive lens with closed-loop electrodes and related fabrication methods and control methods
KR20130005543A (ko) * 2011-07-06 2013-01-16 삼성전자주식회사 무선 통신 시스템에서 분산형 스케줄링을 위한 장치 및 방법
KR101928939B1 (ko) * 2011-11-30 2019-03-13 삼성디스플레이 주식회사 2차원/3차원 전환 가능한 디스플레이 장치
JP2014215441A (ja) * 2013-04-25 2014-11-17 パナソニック株式会社 画像表示デバイスおよび画像表示装置
CN204129391U (zh) * 2014-10-24 2015-01-28 华中科技大学 一种基于电控液晶平面微透镜的波前控制芯片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419351A (zh) * 2007-10-24 2009-04-29 乐金显示有限公司 显示装置
JP2009157145A (ja) * 2007-12-27 2009-07-16 Citizen Electronics Co Ltd 液晶レンズ装置
CN101561570A (zh) * 2008-04-18 2009-10-21 鸿富锦精密工业(深圳)有限公司 液晶透镜及镜头模组
CN102279491A (zh) * 2011-07-25 2011-12-14 深圳超多维光电子有限公司 快门眼镜及立体显示系统
CN104570520A (zh) * 2014-12-31 2015-04-29 上海天马微电子有限公司 一种液晶透镜
CN105446028A (zh) * 2016-01-08 2016-03-30 京东方科技集团股份有限公司 一种液晶透镜板和显示装置

Also Published As

Publication number Publication date
US20180046002A1 (en) 2018-02-15
US10558076B2 (en) 2020-02-11
CN105446028B (zh) 2019-12-10
CN105446028A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2017118216A1 (zh) 一种液晶透镜板和显示装置
WO2018171270A1 (zh) 显示面板、显示装置及驱动方法
TWI615634B (zh) 透明自動立體顯示器
WO2018040667A1 (zh) 显示装置
US8928969B2 (en) Spatio-optical directional light modulator
WO2017161717A1 (zh) 显示模组及显示系统
WO2018023987A1 (zh) 近眼显示装置和方法
CN102859425A (zh) 背光源系统和使用其的液晶显示装置
BR112015010895B1 (pt) dispositivo de display autoesteroscópico, método de exibição de imagens autoestereoscópicas e método para a fabricação de um dispositivo de display autoesteroscópico
WO2017118290A1 (zh) 3d显示控制系统及方法
KR20170013352A (ko) 디스플레이 시스템을 위한 스크린 구성
CN105974668B (zh) 透明显示装置及其制造方法
CN106526956B (zh) 一种显示装置
WO2018032912A1 (zh) 平视显示装置及其控制方法
WO2017166405A1 (zh) 液晶透镜、显示装置及其驱动方法
US10386695B2 (en) Auxiliary panel and display device
CN108169921A (zh) 显示器及其显示面板
WO2022160521A1 (en) 3d light field displays utilizing micro-led pixel arrays and metasurface multi-lens arrays
US20190107741A1 (en) Display device
WO2017206543A1 (zh) 显示装置及其驱动方法
WO2013150803A1 (ja) 光偏向素子及び画像表示装置
JP2008304715A (ja) 表示装置及び照明装置
KR102112652B1 (ko) 액정표시장치
TW201200909A (en) Optical film and stereoscopic display using the same
US20180231810A1 (en) Liquid crystal lens, display device and driving method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15537737

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883343

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16883343

Country of ref document: EP

Kind code of ref document: A1