WO2017118213A1 - 模块化制冷设备 - Google Patents

模块化制冷设备 Download PDF

Info

Publication number
WO2017118213A1
WO2017118213A1 PCT/CN2016/105338 CN2016105338W WO2017118213A1 WO 2017118213 A1 WO2017118213 A1 WO 2017118213A1 CN 2016105338 W CN2016105338 W CN 2016105338W WO 2017118213 A1 WO2017118213 A1 WO 2017118213A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
outdoor
circulation
valve
section
Prior art date
Application number
PCT/CN2016/105338
Other languages
English (en)
French (fr)
Inventor
刘帆
翁建刚
万钧
郭雨龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017118213A1 publication Critical patent/WO2017118213A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems

Definitions

  • the utility model relates to the field of electronics, telecommunications equipment room or data center infrastructure, in particular to a modular refrigeration equipment suitable for large-scale, medium-sized and small-scale needs and can be rapidly deployed.
  • a modular refrigeration device including an indoor circulation box and an outdoor circulation box;
  • the indoor circulation box is provided with an inner circulation air outlet and an inner circulation air return port, and a heat exchanger and a mixed air valve are disposed, the heat exchanger is located between the inner circulation air outlet and the inner circulation air return port, and the indoor circulation
  • the box is divided into an indoor air supply section and an indoor return air section, and the heat exchanger is provided with a cold air inlet, a hot air outlet, a cold air supply port, and a hot air return port, wherein the cold air supply port is connected to the The indoor air supply section, the hot air return air inlet is connected to the indoor return air section, and the air mixing valve is disposed in the indoor air supply section;
  • the outdoor circulation box is provided with an outer circulation air inlet and an outer circulation air outlet, and a partition wall, a fresh air start-stop valve, an outer circulation air inlet valve and an outer circulation air exhaust valve, wherein the partition wall separates the outdoor circulation box Forming an outdoor air inlet section and an outdoor exhaust section, the outer circulation air inlet valve is disposed at an outer circulation air inlet, the outer circulation air exhaust valve is disposed at an outer circulation air outlet, and the fresh air start and stop valve is disposed outside a wind section, the cold air inlet is connected to the outdoor inlet section, and the hot air outlet is connected to the outdoor exhaust section;
  • a fresh air exhaust valve is further connected between the outdoor air exhaust section and the indoor return air section; a fresh air inlet valve is further connected between the outdoor air inlet section and the indoor air supply section, and one end of the fresh air inlet valve is connected Located between the fresh air start-stop valve and the outer circulation air inlet valve, the other end of the fresh air inlet valve is located between the mixed air valve and the inner circulation air outlet.
  • a ventilation wall is disposed in the indoor air supply section, and/or an exhaust wall is disposed in the outdoor exhaust section.
  • the air supply wall when the air supply wall is provided, the air supply wall is disposed between the air distribution valve and the inner circulation air outlet.
  • a spray evaporative cooler is disposed in the outdoor air inlet section, and the spray evaporative cooler is disposed between the fresh air start-stop valve and the partition wall.
  • the spray evaporative cooler is provided with a water storage mechanism.
  • an auxiliary mechanical refrigerator is further included, the auxiliary mechanical refrigerator includes a compressor, a condenser, and an evaporator, the compressor and the condenser being disposed in an outdoor exhaust section, the evaporator being disposed at Indoor air supply section.
  • the outdoor circulation box is further provided with an auxiliary refrigeration inlet valve capable of communicating the outdoor exhaust section and the outdoor environment.
  • an external circulation filter is further disposed in the outdoor air inlet section, the outer circulation filter is located between the fresh air start-stop valve and the outer circulation inlet valve; and/or the indoor return air section
  • An internal loop filter is also set inside.
  • the controller further includes a controller configured to control the mixing damper, the fresh air start-stop valve, the outer circulation air inlet valve, the outer circulation air vent valve, the fresh air inlet valve, and the fresh air exhaust valve.
  • the indoor circulation tank and/or the outdoor circulation tank are constructed as standard containers.
  • the modular refrigeration device provided by the utility model can facilitate the rapid cooling capacity expansion and splicing of data centers of different scales through a standard modular structure, and integrates the air duct structures realized by the traditional civil engineering into a modular box body. High integration, reducing construction time and Engineering quantity.
  • the air supply wall 106 and the exhaust wall 208 are adopted, which can realize a farther air supply distance and reduce energy loss of the air supply fan, and can improve the density of the data center cabinet and the cooling capacity of the high density cabinet;
  • the controller controls each valve as well as the spray evaporative cooler 209 and the auxiliary mechanical chiller to achieve flexible selection of various cooling modes.
  • FIG. 1 is a schematic structural view of a modular refrigeration device of the present invention.
  • FIG. 2 is a working principle diagram of a fresh air cooling mode of the modular refrigeration device of the present invention.
  • FIG. 3 is a working principle diagram of a mixed air cooling mode of the modular refrigeration device of the present invention.
  • FIG. 4 is a working principle diagram of an air-to-air heat exchange refrigeration mode of the modular refrigeration equipment of the present invention.
  • Fig. 5 is a working principle diagram of a spray evaporation refrigeration mode of the modular refrigeration equipment of the present invention.
  • Figure 6 is a working principle diagram of the auxiliary mechanical cooling mode of the modular refrigeration equipment of the present invention.
  • the modular refrigeration device provided by the present invention is used for cooling electronic devices in an environment such as a computer room or a data center, including an indoor circulation box 10 and an outdoor circulation box 20 .
  • the modular refrigeration apparatus further includes a controller (not shown in FIG. 1) configured to control operation of various components of the indoor circulation tank 10 and the outdoor circulation tank 20, and the controller may be integrated in the indoor circulation tank 10 or It is placed inside the outdoor circulation box 20 or in an external environment.
  • the indoor circulation box 10 and the outdoor circulation box 20 are designed in accordance with the specifications of standard international containers on the outer structure to meet the transportation and installation requirements of sea transportation and land transportation. It will be appreciated that in some embodiments, a non-standard container design may also be employed.
  • the indoor circulation box 10 is provided with an inner circulation air outlet 101 and an inner circulation air return port 102, and the inner circulation The air outlet 101 and the inner circulation air return port 102 are respectively located at both ends of the indoor circulation box 10.
  • the indoor circulation tank 10 is provided with a heat exchanger 104 and a mixed air valve 105.
  • the heat exchanger 104 is located between the inner circulation air outlet 101 and the inner circulation air return port 102, and divides the indoor circulation box 10 into an indoor air supply. Section 11 and indoor return section 12.
  • the heat exchanger 104 has two intersecting flow paths of an inner circulation and an outer circulation, wherein the inner circulation flow passage is provided with a cold air air supply port 1041 and a hot air return air outlet 1042.
  • the cold air blowing port 1041 communicates with the indoor air blowing section 11
  • the hot air return air inlet 1042 communicates with the indoor return air section 12 .
  • the outer circulation flow passage is provided with a cold air inlet port 1043 and a hot air outlet port 1044.
  • the cold air inlet port 1043 and the hot air outlet port 1044 are in communication with the outdoor circulation tank 10, respectively.
  • the air mix valve 105 is disposed in the indoor air supply section 11.
  • the outdoor circulation box 20 is provided with an outer circulation air inlet 201 and an outer circulation air outlet 202, and is provided with a partition wall 203, a fresh air start-stop valve 204, an outer circulation air inlet valve 205, and an outer circulation air exhaust valve 206, wherein the outdoor wall 203 divides the outdoor circulation box 20 into an outdoor air inlet section 21 and an outdoor air exhaust section 22.
  • the outer circulation air inlet valve 205 is disposed at the outer circulation air inlet 201
  • the outer circulation air exhaust valve 206 is disposed at the outer circulation air outlet 202
  • the fresh air start and stop valve 204 is disposed at the outdoor air inlet portion 21.
  • the cold air inlet 1043 of the heat exchanger 104 is in communication with the outdoor air inlet section 21, and the hot air outlet 1044 of the heat exchanger 104 is in communication with the outdoor exhaust section 22.
  • a duct may be connected to the cold air inlet 1043 and the outdoor inlet section 21, and the hot air outlet 1044 and the outdoor exhaust section 22 may be connected.
  • a fresh air exhaust valve 31 is further disposed between the outdoor air exhausting section 22 and the indoor air returning section 12; a fresh air inlet valve 32 is further connected between the outdoor air inlet section 21 and the indoor air supply section 11
  • One end of the fresh air intake valve 32 is located between the fresh air start-stop valve 204 and the outer circulation intake dam 205, and the other end of the fresh air intake valve 32 is located between the mixed air valve 105 and the inner circulation air outlet 101.
  • the air supply wall 106 is disposed in the indoor air supply section 11.
  • the air supply wall 106 is disposed between the air distribution valve and the inner circulation air outlet 101.
  • an exhaust wall 208 is disposed in the outdoor exhaust section 22.
  • the supply wall 106 and the exhaust wall 208 provide power to the indoor and outdoor circulating airflow, respectively. It will be appreciated that the power of the airflow may also be provided by a power mechanism other than the modular refrigeration device and is not limited to being provided within the modular refrigeration device.
  • the air supply wall 106 and the exhaust wall 208 can be designed by multiple fans. Under the condition of satisfying the air volume and the wind pressure requirement, a small and reasonable size small fan combination can be used instead of the large and large fan to increase the redundancy of the wind wall. Reliable, and reduce noise and energy consumption, while reducing the dead zone of airflow during air supply, providing a more uniform and stable air supply.
  • the fan of the air supply wall 106 and the exhaust wall 208 is communicatively connected with the controller, and the fan speed can be intelligently adjusted according to the command of the controller.
  • a spray evaporative cooler 209 is disposed within the outdoor air inlet section 21, and the spray evaporative cooler 209 is disposed between the fresh air start-stop valve 204 and the partition wall 203.
  • the spray evaporative cooler 209 is used to evaporate and cool the outdoor circulating air to provide sufficient cooling capacity.
  • the spray evaporative cooler 209 is provided with a water storage mechanism 207.
  • the controller can control the flow rate of the spray evaporative cooler 209 to provide a suitable amount of spray to ensure the cooling and cooling effect of the evaporative cooling.
  • the controller can monitor and control the water quality of the spray evaporative cooler 209.
  • the spray evaporative cooler 209 can be protected and controlled.
  • the outdoor ambient temperature is lower than a certain temperature (recommended to be 5 ° C), or the spray evaporative cooler 209 is not operated for a certain period (recommended for one week), the storage will be automatically discharged.
  • the water in the water mechanism 207 prevents the formation of scale damage to the equipment by avoiding freezing or freezing equipment or excessive deposition of water.
  • the modular refrigeration apparatus further includes an auxiliary mechanical refrigerator for providing refrigeration for supplementation under extreme climatic conditions.
  • the auxiliary mechanical refrigerator includes a compressor 40, a condenser 41, and an evaporator 42.
  • the compressor 40 and the condenser 41 are disposed in an outdoor exhaust section 22, and the evaporator 42 is disposed in the indoor air supply section 11.
  • the refrigerant used in the auxiliary mechanical refrigerator may be chilled water or a refrigerant such as R22 or R410A.
  • the outdoor circulation box 20 is further configured to be able to communicate with the outdoor exhaust section 22 and the outdoor
  • the ambient auxiliary refrigeration inlet valve 210 is used for forced air cooling of the condenser 41 of the auxiliary mechanical refrigerator.
  • an outer circulation filter 211 is disposed in the outdoor air inlet section 21, and the outer circulation filter 211 is located between the fresh air start-stop valve 204 and the outer circulation air inlet valve 205.
  • the outer circulation filter 211 may be a multi-stage air filtration device, for example, including different types of filters such as primary effect, medium and high efficiency filtration devices, and chemical filtration devices, which can filter the outdoor circulating air to improve the cleanliness of the air in the suction chamber. Degree to meet the equipment work requirements.
  • the indoor return air section 12 is further provided with an inner circulation filter 107
  • the inner circulation filter 107 may also be a multi-stage air filtration device, for example, including a primary effect, a medium efficiency filter device, and a chemical filter device. Different types of filters can filter the air circulating indoors to improve the cleanliness of the indoor air to meet the equipment requirements.
  • the modular refrigeration device controls the outer circulation air inlet valve 205, the outer circulation exhaust valve 206, the fresh air start-stop valve 204, the fresh air exhaust valve 31, the fresh air inlet valve 32, and the like according to external ambient temperature, humidity and the like.
  • the mixing valve 105, the auxiliary mechanical refrigerator, and the like perform operations such as opening, closing, and opening degree adjustment, and can flexibly realize different cooling modes to cool the electronic device.
  • the controller can also be designed with atmospheric corrosion detection equipment to detect the chemical corrosiveness of the air before and after the chemical filter of the outdoor air inlet section 21. When the corrosiveness of the outdoor air exceeds the requirements of the equipment room, the corresponding valve should be closed. Switch the cooling mode accordingly and prompt to replace the chemical filter.
  • the interior of the modular refrigeration equipment should be insulated and designed to avoid loss of cooling airflow during operation and to avoid condensation of inner wall due to insufficient thermal insulation capacity; all structural components of indoor circulation and outdoor circulation are fully sealed to avoid airflow.
  • the leakage causes the loss of cooling capacity; the outer circulation air inlet 201 and the outer circulation air outlet 202 are provided with sand-proof and rain-proof structural members to protect the outdoor circulation box 20 under severe weather and geographical conditions.
  • FIG. 2 it is a schematic diagram of the working principle of the modular refrigeration equipment of the utility model in the fresh air cooling mode.
  • the outdoor ambient temperature is lower than a certain set value (recommended to be 25 °C)
  • the outdoor cold air can be directly used to cool the electronic equipment in the equipment room.
  • the refrigeration equipment can start the fresh air cooling mode, and the fresh air start and stop valve 204, the mixed air valve 105, the auxiliary cooling air inlet valve 210 is closed, the outer circulation air inlet valve 205, the fresh air inlet valve 32, the fresh air exhaust valve 31, the outer circulation exhaust valve 206 are opened, the exhaust wall 208, the air supply wall
  • the spray evaporative cooler 209, the heat exchanger 104, and the auxiliary mechanical refrigerator are all inoperative.
  • the whole work flow is as follows: the outdoor cold air flows from the outer circulation air inlet 201 through the outer circulation filter 211 to form clean air flowing into the outdoor air inlet section 21, because the fresh air start and stop valve 204, the air mixing valve 105 is closed, and the fresh air inlet air
  • the valve 32 is opened, the outdoor cold air cannot enter the heat exchanger 104, and can only enter the indoor air supply section 11 through the fresh air inlet valve 32, and is sent to the inner circulation air outlet 101 by the power of the air supply wall 106, and finally sent. Cool the heating electronic equipment into the equipment room.
  • the mixing valve 105 is closed to prevent the return air from circulating in the room from mixing with the supply air.
  • the auxiliary mechanical refrigerator does not work, the cold air heats up after the electronic equipment in the equipment room is cooled, and finally enters the indoor return air section 12 through the inner circulation air return port 102, and enters the outdoor circulation box through the fresh air exhaust valve 31.
  • the outdoor exhaust section 22 of the 20 discharges hot air into the outdoor air by means of the exhaust wall 208.
  • FIG. 3 it is a working principle diagram of the hybrid cooling mode of the refrigeration equipment of the present invention.
  • the outdoor ambient temperature is lower than a certain set value (recommended to be 10 °C)
  • the outdoor cold air temperature is too low to meet the operation requirements of the electronic equipment in the equipment room.
  • the refrigeration equipment can open the fresh air and return air mixed cooling. mode.
  • the auxiliary cooling inlet valve 210, the fresh air start-stop valve 204 are closed, the mixing valve 105, the fresh air inlet valve 32, the fresh air exhaust valve 31 are partially opened, the outer circulation inlet valve 205, the outer circulation exhaust valve 206, and the row
  • the wind wall 208 and the air supply wall 106 are opened, and the spray evaporative cooler 209, the heat exchanger 104, and the auxiliary mechanical refrigerator are all inoperative, and are completely natural cooling.
  • the whole work flow is as follows: the outdoor cold air flows from the outer circulation air inlet 201 through the outer circulation filter 211 to form clean air flowing into the outdoor air inlet section 21, because the fresh air start/stop valve 204 is closed, the fresh air inlet valve 32 is opened, and the outdoor air inlet valve 32 is opened.
  • the cold air cannot enter the heat exchanger 104 through the cold air inlet 1043, and can only enter the indoor air supply section 11 through the fresh air inlet valve 32, and with the help of the air supply wall
  • the power of 106 is sent to the inner circulation air outlet 101, and finally sent to the equipment room to cool the heat-generating electronic equipment.
  • the auxiliary mechanical refrigerator does not work, the cold air heats up after the electronic equipment in the equipment room is cooled, and finally enters the indoor return air section 12 through the inner circulation return air outlet 102. Since the fresh air exhaust valve 31 and the mixed air valve 105 are partially opened, a part of the return air hot air enters the outdoor exhaust section 22 of the outdoor circulation tank 20 through the fresh air exhaust valve 31, and the hot air is discharged to the outdoor by the exhaust wall 208. In the air, another part is sent to the indoor air supply section 11 through the heat exchanger 104 and the air distribution valve 105 through the power provided by the air supply wall 106, and a certain amount of the incoming air is introduced after the fresh air inlet valve 32 is partially opened. The outdoor cold air is mixed to meet the requirements of the ambient temperature of the equipment room, and then the electronic equipment in the equipment room is cooled.
  • the controller of the refrigeration device controls the fan speed control of the air supply wall 106, the exhaust wall 208, the mixing valve 105, the fresh air inlet valve 32, and the fresh air exhaust valve 31 to perform different degrees of opening control. Therefore, the outdoor cold air and the return air of the engine room are reasonably mixed uniformly.
  • FIG. 4 it is a working principle diagram of the air-to-air heat exchange cooling mode of the refrigeration equipment of the present invention.
  • the outdoor ambient temperature is lower than a certain set value (recommended -20 °C)
  • the refrigeration equipment can turn on the air-air heat exchange cooling mode.
  • auxiliary cooling air inlet valve 210 the fresh air inlet valve 32, the fresh air exhaust valve 31 are closed, the outer circulation inlet valve 205, the outer circulation exhaust valve 206, the fresh air start-stop valve 204, the mixed air valve 105, the exhaust wall 208, the air supply wall 106 is opened, the spray evaporative cooler 209, the auxiliary mechanical refrigerator are not working, and the heat exchanger 104 works normally, and is completely natural cooling.
  • the whole work flow is as follows: on the outdoor circulation side, the outdoor cold air flows from the outer circulation air inlet 201 through the outer circulation filter 211 to form clean air flowing into the outdoor air inlet section 21, and the fresh air inlet and outlet valve 204 is opened, and the fresh air inlet valve 32 is opened.
  • the outdoor cold air enters the heat exchanger 104 from the cold air inlet 1043 of the heat exchanger 104 in the heat exchanger 104 and circulates air into the room.
  • the air-to-air heat exchange is performed, and then flows out from the hot air outlet 1044 of the heat exchanger 104, enters the outdoor exhaust section 22, and discharges the hot air to the outdoor environment through the exhaust wall 208; in the indoor circulation side, in the machine room
  • the air dissipates heat generated by the absorption electronic device to form indoor hot air, and enters the indoor return air section 12 through the inner circulation air return port 102. Since the fresh air exhaust valve 31 is closed and the mixed air valve 105 is opened, the air supply by the indoor air supply section 11 is provided.
  • the power provided by the wall 106 enters the heat exchanger 104 from the hot air return air outlet 1042 of the heat exchanger 104, and performs air-to-air heat exchange with the cold air entering the heat exchanger 104 on the outdoor circulation side. After the temperature is lowered, the cooled air is cooled from the cold air supply port 1041 to the indoor air supply section 11, and re-enters into the machine room through the inner circulation air outlet 101 to cool the electronic device, and the hot air formed by absorbing the heat of the electronic device is again Return to the indoor return air section 12 and enter the next refrigeration cycle.
  • FIG. 5 it is a working principle diagram of the spray evaporation cooling mode of the modular refrigeration equipment of the present invention.
  • the refrigeration equipment can turn on the spray evaporative cooling mode.
  • the auxiliary cooling air inlet valve 210, the fresh air inlet valve 32, the fresh air exhaust valve 31 are closed, the outer circulation inlet valve 205, the outer circulation exhaust valve 206, the fresh air start-stop valve 204, the mixed air valve 105, the exhaust wall 208.
  • the air supply wall 106 is opened, the auxiliary mechanical refrigerator is not working, and the spray evaporative cooler 209 and the heat exchanger 104 are normally operated.
  • the whole work flow is as follows: on the outdoor circulation side, the outdoor air flows from the outer circulation air inlet 201 through the outer circulation filter 211 to form clean air flowing into the outdoor air inlet section 21, and the fresh air start/stop valve 204 is opened, and the spray evaporation cooler 209,
  • the heat exchanger 104 operates normally, the fresh air inlet valve 32 is closed, and the outdoor air enters the spray evaporative cooler 209 through the outdoor air inlet section 21, and the spray evaporative cooler 209 pairs the outdoor air according to the cooling demand and the temperature and humidity of the outdoor air.
  • a reasonable spray humidification treatment is performed to achieve evaporative cooling and cooling, and the outdoor air cooled by evaporative cooling is sent to the heat exchanger 104 from the cold air inlet 1043, and the hot air of the indoor circulation side is air-passed through the heat exchanger 104.
  • Air heat exchange the temperature rises to form hot air, and then flows out from the hot air outlet 1044 of the heat exchanger 104, enters the outdoor exhaust section 22, and discharges the hot air to the outdoor environment through the exhaust wall 208;
  • the air in the equipment room is absorbed
  • the heat dissipated by the electronic device forms indoor hot air, and enters the indoor return air section 12 through the inner circulation return air outlet 102.
  • the indoor hot air enters the heat exchanger 104 from the hot air return air inlet 1042 of the heat exchanger 104, and performs air-to-air heat exchange with the cold air entering the heat exchanger 104 on the outdoor circulation side to achieve cooling and cooling.
  • the cold air enters the indoor air supply section 11 from the cold air supply port 1041, and re-enters the air supply port 101 through the inner circulation air outlet 101 to cool the electronic device, and the hot air formed by absorbing the heat of the electronic device returns again.
  • the indoor return air section 12 enters the next refrigeration cycle.
  • FIG. 6 it is a working principle diagram of the auxiliary mechanical cooling mode of the modular refrigeration equipment of the present invention.
  • the outdoor ambient temperature is higher than a certain set value (35 °C recommended)
  • the outdoor air temperature is too high, and the spray evaporative cooler 209 cannot lower the air temperature to the usable temperature.
  • the auxiliary mechanical cooling mode can be turned on. .
  • the outer circulation air inlet valve 205, the fresh air start and stop valve 204, the fresh air inlet valve 32, and the fresh air exhaust valve 31 are all closed, and the outer circulation exhaust valve 206, the auxiliary cooling inlet valve 210, and the mixed air valve 105 are closed.
  • the spray evaporative cooler 209 and the heat exchanger 104 are turned off, the auxiliary mechanical refrigerator operates normally.
  • the whole work flow is as follows: on the outdoor circulation side, since the outer circulation inlet damper 205 and the fresh air start/stop valve 204 are both closed, the outdoor inlet section 21 fails.
  • the outdoor exhaust section 22, the auxiliary cooling inlet valve 210 is opened, the fresh air exhaust valve 31 is closed, the condenser 41 and the compressor 40 in the auxiliary mechanical refrigerator are normally operated, the exhaust wall 208 is operated, and the outdoor air is supplied from the auxiliary cooling air.
  • the valve 210 is introduced into the condenser 41 to cool the condenser 41 and is discharged through the outer circulation exhaust port 202.
  • the air in the equipment room is heated by the absorption electronic device to form indoor hot air, and passes through the inner circulation air return port.
  • the heat exchanger 104 does not work, and the hot air enters the room by the power provided by the air supply wall 106.
  • the wind section 11 is cooled in the indoor air supply section 11 through the evaporator 42 of the auxiliary mechanical refrigerator to form cold air suitable for the temperature conditions required for the electronic equipment in the equipment room, and is sent to the engine room through the inner circulation air outlet 101.
  • the electronic device is cooled, and the hot air formed after absorbing the heat of the electronic device returns to the indoor return air segment 12 again to enter the next refrigeration cycle.
  • the entire refrigeration process is formed by the auxiliary mechanical refrigerator to form a cooling effect, and the evaporator 42 is regulated by the controller according to the cooling load.
  • the auxiliary mechanical refrigerator can also provide auxiliary cooling to supplement the insufficient cooling capacity.
  • the cooling mode of partial natural cooling + partial auxiliary mechanical cooling In this case, the auxiliary refrigeration inlet damper 210 is closed, the evaporator 42 of the auxiliary mechanical refrigerator, the condenser 41 and the compressor 40 are normally operated, and the other valves and related components are operated in respective modes, and may be operated according to the auxiliary machinery.
  • the amount of refrigeration provided by the chiller adjusts the amount of cooling to form a partial cooling mode with a portion of the natural cooling + partial auxiliary mechanical cooling.
  • the temperature of the cooled cold air sent by the air supply wall 106 in the indoor air supply section 11 is not lowered to the temperature range required by the equipment room, and the auxiliary machinery is controlled by the controller.
  • the working state of the refrigerator enables the evaporator 42 to provide a partial cooling capacity, and further cools the cold air of the indoor air supply section 11 to reach the temperature required by the electronic equipment in the equipment room, and sends it to the equipment room through the inner circulation air outlet 101.
  • Cooling of the electronic device is performed; accordingly, the condenser 41 and the compressor 40 of the outdoor exhaust section 22 operate normally, and the refrigerant in the condenser 41 is cooled by the airflow provided by the exhaust wall 208 to ensure that the auxiliary mechanical refrigerator is normal. jobs.
  • the fresh air cooling mode uses the indoor and outdoor temperature difference of the machine room to form a heat exchange, and relies on a large amount of air to effectively transfer the heat in the equipment room to the outside, thereby effectively reducing the internal temperature of the equipment room; air-air
  • the heat exchange cooling mode is to remove the heat from the indoor air into the outdoor air by using a heat exchanger when the ambient air quality is relatively poor and the outdoor temperature is too low to directly introduce the outdoor air to the equipment room, and finally the heat is discharged to the air.
  • this cooling mode can reduce the pollutants in the data center, achieve the purpose of energy saving in the data center and keep the air clean;
  • the spray evaporation cooling mode mainly uses the dry and wet bulb temperature difference of the wet air in the natural environment to obtain the cooling effect, wet
  • the difference between the ball temperature and the dry bulb temperature is the cooling potential of the spray evaporative cooling mode. The larger the difference, the greater the effect of the spray evaporative cooling mode.
  • This cooling mode can perform supplementary cooling under high temperature conditions;
  • the auxiliary mechanical cooling mode is It is a way of working through the compressor 40, through chilled water or refrigerant Indoor heat removal to the outdoor environment, this cooling mode can supplement refrigeration in very high temperature conditions.
  • the modular refrigeration equipment provided by the utility model has the following advantages: adopts a container-type standard shape structure, can be pre-installed at the factory, is convenient for transportation assembly, and can realize rapid construction of a refrigeration system in an application environment such as a data center and a machine room;
  • the standard modular structure facilitates rapid cooling capacity expansion and splicing in application environments such as data centers of different sizes.
  • the highly integrated design of all accessories makes the entire airflow form a fixed flow path, which reduces the demanding requirements on the building structure and reduces the requirements.
  • the amount of on-site construction engineering reduces the complexity of civil works; the wind wall air supply scheme can achieve farther air supply distance and reduce energy loss of air supply fan, improve the cooling capacity of high-density cabinets, and improve the data center. Cabinet density; design solutions that integrate multiple cooling modes, increase the annual natural cooling running time of application terminals such as data centers, achieve the goal of energy-saving cooling, and can be applied to various complex and harsh climatic conditions and geography. surroundings.
  • a modular refrigeration device provided by an embodiment of the present invention has the following beneficial effects: the modular refrigeration device includes an indoor circulation box and an outdoor circulation box, and integrates related components into the indoor circulation box and the outdoor circulation box. And through the standard modular structure, it is convenient for the expansion of the cooling capacity and splicing of the computer room or data center of different scales, and the air duct structure realized by the traditional civil construction is fully integrated into a modular box body, which has high integration and reduces construction. Cycle and amount of work.

Abstract

一种模块化制冷设备,包括室内循环箱(10)和室外循环箱(20),室内循环箱(10)开设有内循环出风口(101)和内循环回风口(102),并设置热交换器(104)和混风阀(105);室外循环箱(20)开设有外循环进风口(201)和外循环排风口(202),并设置隔离墙(203)、新风启停阀(204)、外循环进风阀(205)和外循环排风阀(206);室外排风段(22)和室内回风段(12)之间设置有新风排风阀(31),室外进风段(21)和室内送风段(11)之间设置有新风进风阀(32)。上述模块化制冷设备应用于机房或数据中心等环境对电子设备进行制冷,通过集成相关构件至室内循环箱(10)和室外循环箱(20),并通过标准的模块化结构,便于不同规模的机房或数据中心进行快速制冷量扩容以及拼接,且将传统土建实现的风道结构全部集成到一个模块化的箱体内,集成度高,降低了施工周期及工程量。

Description

模块化制冷设备 技术领域
本实用新型涉及电子、电信机房或数据中心基础设施领域,尤其是一种适用于大、中、小各种规模需求、可以快速部署的模块化制冷设备。
背景技术
传统机房、数据中心在构建制冷设备时,普遍存在以下缺陷:(1)制冷设备安装与土建工程等界面交互比较多,施工量大,复杂度高,土建施工建设周期长,难以满足客户应用需求;(2)不能充分利用自然冷源,节能效果差、冷却效率低;(3)扩容性能差。
实用新型内容
基于此,有必要针对上述问题,提供一种可以同时满足模块化建设、快速部署和高效节能、弹性扩容的制冷设备。
一种模块化制冷设备,包括室内循环箱和室外循环箱;
所述室内循环箱开设有内循环出风口和内循环回风口,并设置热交换器和混风阀,所述热交换器位于内循环出风口和内循环回风口之间并将所述室内循环箱分隔成室内送风段和室内回风段,所述热交换器设有冷空气入风口、热空气出风口、冷空气送风口、热空气回风口,其中所述冷空气送风口连通所述室内送风段,所述热空气回风口连通所述室内回风段,所述混风阀设置在所述室内送风段;
所述室外循环箱开设有外循环进风口和外循环排风口,并设置隔离墙、新风启停阀、外循环进风阀、外循环排风阀,其中隔离墙将所述室外循环箱分隔成室外进风段和室外排风段,所述外循环进风阀设置在外循环进风口处,所述外循环排风阀设置在外循环排风口处,所述新风启停阀设置在室外进风段,所述冷空气入风口与所述室外进风段连通,所述热空气出风口与所述室外排风段连通;
所述室外排风段和室内回风段之间还连接设置新风排风阀;所述室外进风段和室内送风段之间还连接设置新风进风阀,所述新风进风阀的一端位于新风启停阀和外循环进风阀之间,所述新风进风阀的另一端位于混风阀与内循环出风口之间。
在其中一个实施例中,所述室内送风段内设置送风墙,和/或所述室外排风段内设置排风墙。
在其中一个实施例中,当设置有送风墙时,所述送风墙设置在混风阀和内循环出风口之间。
在其中一个实施例中,所述室外进风段内还设置喷雾蒸发冷却器,所述喷雾蒸发冷却器设置在新风启停阀和隔离墙之间。
在其中一个实施例中,所述喷雾蒸发冷却器设有储水机构。
在其中一个实施例中,还包括辅助机械制冷器,所述辅助机械制冷器包括压缩机、冷凝器和蒸发器,所述压缩机、冷凝器设置在室外排风段,所述蒸发器设置在室内送风段。
在其中一个实施例中,所述室外循环箱上还设置能够连通室外排风段和室外环境的辅助制冷进风阀。
在其中一个实施例中,所述室外进风段内还设置外循环过滤器,所述外循环过滤器位于新风启停阀和外循环进风阀之间;和/或所述室内回风段内还设置内循环过滤器。
在其中一个实施例中,还包括控制器设置为控制混风阀、新风启停阀、外循环进风阀、外循环排风阀、新风进风阀、新风排风阀。
在其中一个实施例中,所述室内循环箱和/或室外循环箱构造为标准集装箱。
本实用新型提供的模块化制冷设备,通过标准的模块化结构,便于不同规模的数据中心进行快速制冷量扩容以及拼接,且将传统土建实现的风道结构全部集成到一个模块化的箱体内,集成度高,降低了施工周期以及 工程量。
可选地,采用了送风墙106和排风墙208,可以实现更远的送风距离并降低送风风机的能耗损失,可提升数据中心的机柜密度及高密度机柜的制冷能力;通过控制器对各阀门以及喷雾蒸发冷却器209和辅助机械制冷器等的控制,可实现多种制冷模式的灵活选择。
附图说明
图1是本实用新型模块化制冷设备的结构布局示意图。
图2是本实用新型模块化制冷设备的新风制冷模式的工作原理图。
图3是本实用新型模块化制冷设备的混风制冷模式的工作原理图。
图4是本实用新型模块化制冷设备的空气-空气热交换制冷模式的工作原理图。
图5是本实用新型模块化制冷设备的喷雾蒸发制冷模式的工作原理图。
图6是本实用新型模块化制冷设备的辅助机械制冷模式的工作原理图。
具体实施方式
如图1所示,本实用新型提供的一种模块化制冷设备用于对机房或数据中心等环境中的电子设备进行冷却,包括室内循环箱10和室外循环箱20。该模块化制冷设备还包括控制器(图1中未示出),控制器设置为控制室内循环箱10和室外循环箱20的各种器件的运作,控制器可以整合设置在室内循环箱10或室外循环箱20内,或者设置在外部环境。
室内循环箱10与室外循环箱20在外形结构上采用标准国际集装箱的规格进行设计,以满足海运、陆运等运输、安装要求。可以理解在一些实施例中,也可采用非标集装箱设计。
室内循环箱10开设有内循环出风口101和内循环回风口102,内循环 出风口101和内循环回风口102分别位于室内循环箱10的两端。
室内循环箱10内设置热交换器104和混风阀105,所述热交换器104位于内循环出风口101和内循环回风口102之间,并将所述室内循环箱10分隔成室内送风段11和室内回风段12。
所述热交换器104有内循环与外循环两个交叉流道,其中内循环流道设有冷空气送风口1041和热空气回风口1042。所述冷空气送风口1041连通所述室内送风段11,所述热空气回风口1042连通所述室内回风段12。外循环流道设有冷空气入风口1043和热空气出风口1044。冷空气入风口1043和热空气出风口1044分别与室外循环箱10连通。
所述混风阀105设置在所述室内送风段11内。
所述室外循环箱20开设有外循环进风口201和外循环排风口202,并设置隔离墙203、新风启停阀204、外循环进风阀205、外循环排风阀206,其中隔离墙203将所述室外循环箱20分隔成室外进风段21和室外排风段22。所述外循环进风阀205设置在外循环进风口201处,所述外循环排风阀206设置在外循环排风口202处,所述新风启停阀204设置在室外进风段21。
所述热交换器104的冷空气入风口1043与所述室外进风段21连通,所述热交换器104的热空气出风口1044与所述室外排风段22连通。具体地,可采用风管连接冷空气入风口1043与所述室外进风段21,以及连接热空气出风口1044与所述室外排风段22。
所述室外排风段22和室内回风段12之间还连接设置新风排风阀31;所述室外进风段21和室内送风段11之间还连接设置新风进风阀32,所述新风进风阀32的一端位于新风启停阀204和外循环进风阀205之间,所述新风进风阀32的另一端位于混风阀105与内循环出风口101之间。
在一些实施例中,所述室内送风段11内设置送风墙106。所述送风墙106设置在混风阀和内循环出风口101之间。
可选地,所述室外排风段22内设置排风墙208。
送风墙106和排风墙208分别提供室内和室外循环气流流动的动力。可以理解,气流流动的动力也可由该模块化制冷设备之外的动力机构提供,不限定在该模块化制冷设备内提供。
送风墙106和排风墙208可采用多风机设计,在满足风量与风压要求的条件下,可采用性价比高的合理尺寸的小风机组合来代替大型、超大风机,以提升风墙的冗余可靠性,并降低噪音和能耗,同时减少送风时的气流死区,提供更均匀稳定的送风气流。送风墙106和排风墙208的风机与控制器通信连接,可以根据控制器的命令进行风机转速的智能调节。
在一些实施例中,所述室外进风段21内还设置喷雾蒸发冷却器209,所述喷雾蒸发冷却器209设置在新风启停阀204和隔离墙203之间。喷雾蒸发冷却器209用来对室外循环的空气进行蒸发冷却降温,从而提供足够的制冷量。
可选地,所述喷雾蒸发冷却器209设有储水机构207。
该控制器可以对喷雾蒸发冷却器209进行流量控制,提供合适的喷雾量保证蒸发冷却的制冷降温效果。此外,控制器可以对喷雾蒸发冷却器209进行水质的监视以及控制,当储水机构207内部的水质超过规定的临界值时,可实现自动排水并引入新的符合使用要求的水源;控制器还可以对喷雾蒸发冷却器209进行保护控制,当室外环境温度低于一定温度时(推荐为5℃)、或者喷雾蒸发冷却器209在一定周期内没有运行时(推荐为一周),将自动排放储水机构207内的存水,避免结冰冻坏设备或者过久的沉积水导致形成水垢损坏设备。
在一些实施例中,所述模块化制冷设备还包括辅助机械制冷器,用来为极高温的气候条件下补充提供制冷量。所述辅助机械制冷器包括压缩机40、冷凝器41和蒸发器42,所述压缩机40、冷凝器41设置在室外排风段22,所述蒸发器42设置在室内送风段11。所述辅助机械制冷器采用的冷媒可以是冷冻水也可以是R22、R410A等制冷剂。
可选地,所述室外循环箱20上还设置能够连通室外排风段22和室外 环境的辅助制冷进风阀210,用来为辅助机械制冷器的冷凝器41进行强迫风冷。
在一些实施例中,所述室外进风段21内还设置外循环过滤器211,所述外循环过滤器211位于新风启停阀204和外循环进风阀205之间。外循环过滤器211可以是多级空气过滤装置,例如包括初效、中高效过滤装置以及化学过滤装置等不同类型的过滤器,可以将室外循环的空气进行过滤处理,提升吸入室内的空气的洁净度以满足设备工作要求。
在一些实施例中,所述室内回风段12内还设置内循环过滤器107,内循环过滤器107也可以是多级空气过滤装置,例如包括初效、中高效过滤装置以及化学过滤装置等不同类型的过滤器,可以将室内内循环的空气进行过滤处理,提升室内的空气的洁净度以满足设备工作要求。
该模块化制冷设备根据外部环境温度、湿度等条件,通过控制器控制外循环进风阀205、外循环排风阀206、新风启停阀204、新风排风阀31、新风进风阀32、混风阀105、辅助机械制冷器等进行开启、关闭、开度调节等操作,可以灵活实现不同制冷模式对电子设备进行冷却。
控制器还可设计兼具有大气腐蚀性检测设备,对室外进风段21的化学过滤器前后的空气的化学腐蚀性进行检测,当室外空气的腐蚀性超过机房的要求时,应关闭相应阀门对制冷模式进行相应切换,并提示更换化学过滤器。
该模块化制冷设备内部应采用隔热保温设计,避免运行过程中气流的冷量发生损失,并且避免保温能力不足发生内壁凝露的现象;室内循环与室外循环的所有结构件充分密封,避免气流泄露导致冷量流失;外循环进风口201和外循环排风口202设有防风沙、防雨雪结构件,以便在恶劣的气候与地理条件下对室外循环箱20进行防护。
以下结合其他附图对本实用新型提供的模块化制冷设备应用在机房的环境中对机房内的电子设备进行冷却时,所采用的不同制冷模式的工作原理分别进行说明。
如图2所示,为本实用新型模块化制冷设备在新风制冷模式下的工作原理示意图。当室外环境温度低于某个设定值(推荐为25℃)的时候,可以直接利用室外冷空气对机房内的电子设备进行冷却,该制冷设备可以开启新风制冷模式,此时新风启停阀204、混风阀105、辅助制冷进风阀210关闭,外循环进风阀205、新风进风阀32、新风排风阀31、外循环排风阀206开启,排风墙208、送风墙106开启,喷雾蒸发冷却器209、热交换器104、辅助机械制冷器均不工作。
整个工作流程如下:室外冷空气从外循环进风口201中经过外循环过滤器211以后形成洁净空气流入到室外进风段21中,因新风启停阀204、混风阀105关闭,新风进风阀32开启,室外的冷空气不能进入热交换器104,只能通过新风进风阀32进入室内送风段11,并借助送风墙106的动力送入到内循环出风口101,最终送入到机房中对发热电子设备进行制冷。混风阀105被关闭可避免室内循环的回风热空气与送风冷空气混合。此模式下,辅助机械制冷器不工作,冷空气对机房内的电子设备散热后升温,最后通过内循环回风口102进入到室内回风段12中,并通过新风排风阀31进入室外循环箱20的室外排风段22,借助排风墙208将热空气排放到室外空气中。
如图3所示,为本实用新型制冷设备的混合制冷模式的工作原理图。当室外环境温度低于某个设定值(推荐为10℃)的时候,由于室外冷空气温度过低,不能满足机房内的电子设备的运行要求,该制冷设备可以开启新风与回风混合制冷模式。此时辅助制冷进风阀210、新风启停阀204关闭,混风阀105、新风进风阀32、新风排风阀31部分开启,外循环进风阀205、外循环排风阀206、排风墙208、送风墙106开启,喷雾蒸发冷却器209、热交换器104、辅助机械制冷器均不工作,为完全的自然冷却。
整个工作流程如下:室外冷空气从外循环进风口201经过外循环过滤器211以后形成洁净空气流入到室外进风段21中,因新风启停阀204关闭,新风进风阀32开启,室外的冷空气不能经冷空气入风口1043进入热交换器104,只能通过新风进风阀32进入室内送风段11,并借助送风墙 106的动力送入到内循环出风口101,最终送入到机房中对发热电子设备进行制冷。
此模式下,辅助机械制冷器不工作,冷空气对机房内的电子设备散热后升温,最后通过内循环回风口102进入到室内回风段12中。由于新风排风阀31、混风阀105部分打开,回风热空气中的一部分通过新风排风阀31进入室外循环箱20的室外排风段22,借助排风墙208将热空气排放到室外空气中,另一部分则通过送风墙106提供的动力,经过热交换器104和混风阀105被输送到室内送风段11中,与新风进风阀32部分开启后引入进来的一定量的室外冷空气进行混合,以达到机房环境温度的要求,再对机房中的电子设备进行冷却。
整个制冷过程通过制冷设备的控制器对送风墙106、排风墙208的风机调速控制、对混风阀105、新风进风阀32、新风排风阀31进行不同比例的开度控制,从而保证室外冷空气与机房回风热空气进行合理的比例均匀混合。
如图4所示,为本实用新型制冷设备的空气-空气热交换制冷模式的工作原理图。当室外环境温度低于某个设定值(推荐为-20℃)不适合直接引入室外冷空气到机房中,或者室外空气的污染物浓度过高不适合直接引入室外空气到机房中,或者室外空气湿度过高不适宜电子设备运行等情况下,该制冷设备可以开启空气-空气热交换制冷模式。此时辅助制冷进风阀210、新风进风阀32、新风排风阀31关闭,外循环进风阀205、外循环排风阀206、新风启停阀204、混风阀105、排风墙208、送风墙106开启,喷雾蒸发冷却器209、辅助机械制冷器均不工作,热交换器104正常工作,为完全的自然冷却。
整个工作流程如下:室外循环侧,室外冷空气从外循环进风口201经过外循环过滤器211以后形成洁净空气流入到室外进风段21中,因新风启停阀204开启,新风进风阀32关闭,室外冷空气自热交换器104的冷空气入风口1043进入热交换器104在热交换器104中与室内循环空气进 行空气-空气热交换,然后自热交换器104的热空气出风口1044流出,进入到室外排风段22,通过排风墙208将热空气排放到室外环境中;室内循环侧中,机房内空气经过吸收电子设备散发的热量形成室内热空气,并通过内循环回风口102进入室内回风段12,由于新风排风阀31关闭、混风阀105开启,借助室内送风段11的送风墙106提供的动力,室内热空气自热交换器104的热空气回风口1042进入到热交换器104内循环,与室外循环侧进入热交换器104中的冷空气进行空气-空气热交换从而实现降温,降温后的冷空气自冷空气送风口1041进入到室内送风段11,通过内循环出风口101重新进入到机房中对电子设备冷却,经过吸收电子设备的热量后形成的热空气又再次重新回到室内回风段12进入下一次的制冷循环。
如图5所示,为本实用新型模块化制冷设备的喷雾蒸发制冷模式的工作原理图。当室外环境温度高于某个设定值(推荐为20℃)、低于某个设定值(推荐为35℃),并且空气湿度比较低的时候,该制冷设备可以开启喷雾蒸发制冷模式。此时辅助制冷进风阀210、新风进风阀32、新风排风阀31关闭,外循环进风阀205、外循环排风阀206、新风启停阀204、混风阀105、排风墙208、送风墙106开启,辅助机械制冷器不工作,喷雾蒸发冷却器209、热交换器104正常工作。
整个工作流程如下:室外循环侧,室外空气从外循环进风口201经过外循环过滤器211以后形成洁净空气流入到室外进风段21中,因新风启停阀204开启,喷雾蒸发冷却器209、热交换器104正常工作,新风进风阀32关闭,室外空气经室外进风段21后进入喷雾蒸发冷却器209中,喷雾蒸发冷却器209根据制冷需求以及室外空气的温湿度情况,对室外空气进行合理的喷雾加湿处理以实现蒸发冷却降温,经过蒸发冷却降温后的室外空气自冷空气入风口1043被送入到热交换器104,通过热交换器104对室内循环侧的热空气进行空气-空气热交换,温度升高形成热空气后从热交换器104的热空气出风口1044流出,进入到室外排风段22,通过排风墙208将热空气排放到室外环境中;室内循环中,机房内空气经过吸收 电子设备散发的热量形成室内热空气,并通过内循环回风口102进入室内回风段12,由于新风排风阀31关闭、混风阀105开启,借助室内送风段11的送风墙106提供的动力,室内热空气自热交换器104的热空气回风口1042进入到热交换器104内循环,与室外循环侧进入热交换器104中的冷空气进行空气-空气热交换从而实现降温,降温后的冷空气自冷空气送风口1041进入到室内送风段11,通过内循环出风口101重新进入到机房中对电子设备冷却,经过吸收电子设备的热量后形成的热空气又再次重新回到室内回风段12进入下一次的制冷循环。
如图6所示,为本实用新型模块化制冷设备的辅助机械制冷模式的工作原理图。当室外环境温度高于某个设定值(推荐为35℃)的时候,室外空气的温度过高,喷雾蒸发冷却器209也无法将空气温度降低到可用温度,此时可以开启辅助机械制冷模式。该种模式下,外循环进风阀205、新风启停阀204、新风进风阀32、新风排风阀31均关闭,外循环排风阀206、辅助制冷进风阀210、混风阀105开启,喷雾蒸发冷却器209、热交换器104不工作,辅助机械制冷器正常工作。
整个工作流程如下:室外循环侧,由于外循环进风阀205、新风启停阀204均关闭,室外进风段21失效。室外排风段22,辅助制冷进风阀210开启,新风排风阀31关闭,辅助机械制冷器中的冷凝器41、压缩机40正常工作,排风墙208运行,室外空气从辅助制冷进风阀210引入流经冷凝器41,为冷凝器41降温,并经外循环排风口202排出;室内循环侧,机房内空气经过吸收电子设备散发的热量形成室内热空气,并通过内循环回风口102进入室内回风段12,由于混风阀605开启,新风进风阀32、新风排风阀31均关闭,热交换器104不工作,热空气借助送风墙106提供的动力进入到室内送风段11,在室内送风段11中流经辅助机械制冷器的蒸发器42进行降温处理,形成适合机房内的电子设备所需要的温度条件的冷空气,通过内循环出风口101送入到机房中对电子设备进行冷却,经过吸收电子设备的热量后形成的热空气又再次重新回到室内回风段12进入下一次的制冷循环。
整个制冷过程靠辅助机械制冷器形成制冷效果,蒸发器42由控制器根据制冷负荷可进行效率调节。
可以理解地,在其他制冷模式所提供的制冷量不充分的时候,辅助机械制冷器也可提供辅助制冷,补充不足的制冷量,此时为部分自然冷却+部分辅助机械制冷的制冷模式。该种情况下,辅助制冷进风阀210关闭,辅助机械制冷器的蒸发器42、冷凝器41和压缩机40正常工作,其他阀以及相关构件均按各自模式下进行操作,并可根据辅助机械制冷器提供的制冷量,调节各自的制冷量,以形成部分自然冷却+部分辅助机械制冷的制冷模式。具体地,由于自然冷却模式的制冷能力不足,室内送风段11中由送风墙106送出的降温后的冷空气温度并未降低到机房所需要的温度范围,此时由控制器控制辅助机械制冷器的工作状态,使蒸发器42提供部分制冷量,对室内送风段11的冷空气进行进一步降温处理,达到机房电子设备所需要的温度,并通过内循环出风口101送入到机房内进行电子设备的冷却;相应地,室外排风段22的冷凝器41、压缩机40正常工作,借助排风墙208提供的气流对冷凝器41中的冷媒进行降温处理,保障辅助机械制冷器正常工作。
上述各种制冷模式中,新风制冷模式利用机房室内外温差较大形成热交换,依靠大量的透风有效地将机房内的热量迅速向外迁移,从而达到有效降低机房内部温度的目的;空气-空气热交换制冷模式是在环境空气质量比较差、室外温度过于低等无法直接引入室外空气至机房的情况下,采用热交换器将室内空气中的热量移除到室外空气中,最终将热量排放到室外环境,此制冷模式可以减少数据中心中的污染物,达到数据中心节能且保持空气洁净的目的;喷雾蒸发制冷模式主要是利用自然环境中湿空气的干湿球温度差而获得冷却效果,湿球温度与干球温度的差值是喷雾蒸发制冷模式的制冷潜力,差值越大,喷雾蒸发制冷模式的效应就越大,此制冷模式可以在高温条件下进行补充制冷;辅助机械制冷模式则是通过压缩机40做功的方式,通过冷冻水或者冷媒将室内热量移除到室外环境中,此制冷模式可以在极高温的情况下补充制冷。
本实用新型提供的模块化制冷设备,具有以下优点:采用了集装箱式的标准外形结构,可以工厂预装,便于运输拼装,同时可以实现数据中心、机房等应用环境中的制冷系统的快速搭建;标准的模块化结构,便于不同规模的数据中心等应用环境进行快速制冷量扩容以及拼接;采用全部配件高度集成的设计,使得全部气流形成固定流道,降低了对建筑结构的苛刻要求,降低了现场施工工程量,减少了土建复杂程度;采用风墙送风的方案,可以实现更远的送风距离并降低送风风机的能耗损失,提升了高密度机柜的制冷能力,提升数据中心的机柜密度;集成多种制冷模式的设计方案,增加了数据中心等应用终端的全年自然冷却的运行时间,达到了节能冷却的目标的同时还能适用于各种复杂、恶劣的气候条件跟地理环境。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。
工业实用性
如上所述,本发明实施例提供的一种模块化制冷设备具有以下有益效果:所述模块化制冷设备包括室内循环箱和室外循环箱,通过集成相关构件至室内循环箱和室外循环箱内,并通过标准的模块化结构,便于不同规模的机房或数据中心进行快速制冷量扩容以及拼接,且将传统土建实现的风道结构全部集成到一个模块化的箱体内,集成度高,降低了施工周期以及工程量。

Claims (10)

  1. 一种模块化制冷设备,包括室内循环箱和室外循环箱;
    所述室内循环箱开设有内循环出风口和内循环回风口,并设置热交换器和混风阀,所述热交换器位于内循环出风口和内循环回风口之间并将所述室内循环箱分隔成室内送风段和室内回风段,所述热交换器设有冷空气入风口、热空气出风口、冷空气送风口、热空气回风口,其中所述冷空气送风口连通所述室内送风段,所述热空气回风口连通所述室内回风段,所述混风阀设置在所述室内送风段;
    所述室外循环箱开设有外循环进风口和外循环排风口,并设置隔离墙、新风启停阀、外循环进风阀、外循环排风阀,其中隔离墙将所述室外循环箱分隔成室外进风段和室外排风段,所述外循环进风阀设置在外循环进风口处,所述外循环排风阀设置在外循环排风口处,所述新风启停阀设置在室外进风段,所述冷空气入风口与所述室外进风段连通,所述热空气出风口与所述室外排风段连通;
    所述室外排风段和室内回风段之间还连接设置新风排风阀;所述室外进风段和室内送风段之间还连接设置新风进风阀,所述新风进风阀的一端位于新风启停阀和外循环进风阀之间,所述新风进风阀的另一端位于混风阀与内循环出风口之间。
  2. 根据权利要求1所述的模块化制冷设备,其中,所述室内送风段内设置送风墙,和/或所述室外排风段内设置排风墙。
  3. 根据权利要求2所述的模块化制冷设备,其中,当设置有送风墙时,所述送风墙设置在混风阀和内循环出风口之间。
  4. 根据权利要求1所述的模块化制冷设备,其中,所述室外进风段内还设置喷雾蒸发冷却器,所述喷雾蒸发冷却器设置在新风启停阀和隔离墙之间。
  5. 根据权利要求4所述的模块化制冷设备,其中,所述喷雾蒸发冷却器设有储水机构。
  6. 根据权利要求1所述的模块化制冷设备,其中,还包括辅助机 械制冷器,所述辅助机械制冷器包括压缩机、冷凝器和蒸发器,所述压缩机、冷凝器设置在室外排风段,所述蒸发器设置在室内送风段。
  7. 根据权利要求6所述的模块化制冷设备,其中,所述室外循环箱上还设置能够连通室外排风段和室外环境的辅助制冷进风阀。
  8. 根据权利要求1所述的模块化制冷设备,其中,所述室外进风段内还设置外循环过滤器,所述外循环过滤器位于新风启停阀和外循环进风阀之间;和/或所述室内回风段内还设置内循环过滤器。
  9. 根据权利要求1-8项中任意一项所述的模块化制冷设备,其中,还包括控制器设置为控制混风阀、新风启停阀、外循环进风阀、外循环排风阀、新风进风阀、新风排风阀。
  10. 根据权利要求1-8项中任意一项所述的模块化制冷设备,其中,所述室内循环箱和/或室外循环箱构造为标准集装箱。
PCT/CN2016/105338 2016-01-05 2016-11-10 模块化制冷设备 WO2017118213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620009628.2 2016-01-05
CN201620009628.2U CN205481475U (zh) 2016-01-05 2016-01-05 模块化制冷设备

Publications (1)

Publication Number Publication Date
WO2017118213A1 true WO2017118213A1 (zh) 2017-07-13

Family

ID=56665022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105338 WO2017118213A1 (zh) 2016-01-05 2016-11-10 模块化制冷设备

Country Status (2)

Country Link
CN (1) CN205481475U (zh)
WO (1) WO2017118213A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107388440A (zh) * 2017-08-30 2017-11-24 中国铁路设计集团有限公司 循环净化新风处理装置
CN107588482A (zh) * 2017-09-30 2018-01-16 青岛海尔空调电子有限公司 双冷源新风机组
CN108334130A (zh) * 2018-04-02 2018-07-27 郑州云海信息技术有限公司 一种集装箱数据中心及其制冷方法
CN108458460A (zh) * 2018-05-14 2018-08-28 浙江佳中智能家居科技有限公司 一种用于室内加湿装置送气的送气管路
CN108990392A (zh) * 2018-09-06 2018-12-11 郑州云海信息技术有限公司 一种多冷源模块化数据中心
CN109442712A (zh) * 2018-11-29 2019-03-08 新凤鸣集团湖州中石科技有限公司 复合式双向出风空调机组
CN109764521A (zh) * 2019-01-28 2019-05-17 浙江仓森环境科技有限公司 一种自适应转板换风空调机组
CN109906947A (zh) * 2019-04-03 2019-06-21 苏州市冯氏实验动物设备有限公司 一种ivc实验动物箱的主机、ivc实验动物箱及方法
CN110848923A (zh) * 2019-12-09 2020-02-28 西安阿姆斯壮智能系统工程有限公司 一种利用自然冷源、带有干空气能的机械制冷复合空调运行控制方法
CN111447787A (zh) * 2020-03-25 2020-07-24 西安工程大学 基于数据中心机房的蒸发自然冷却空调系统
CN113175715A (zh) * 2021-04-30 2021-07-27 西藏宁算科技集团有限公司 数据中心蒸发冷却与余热回收机组的控制方法及相关装置
CN113329600A (zh) * 2021-07-07 2021-08-31 中国工商银行股份有限公司 用于对数据中心进行制冷的冷水机组
CN113418295A (zh) * 2021-03-22 2021-09-21 青岛海尔空调电子有限公司 调湿机、用于控制调湿机静音运行的方法及装置
CN113669811A (zh) * 2021-08-21 2021-11-19 太原市轨道交通发展有限公司 一种地铁车站公共区域的环控方法
CN114484836A (zh) * 2022-03-02 2022-05-13 青岛海信日立空调系统有限公司 全热交换器
CN114526521A (zh) * 2020-11-23 2022-05-24 周雅娟 一种自然冷却装置及其控制方法、控制装置
WO2022156547A1 (zh) * 2021-01-25 2022-07-28 华为数字能源技术有限公司 一种冷却系统和数据中心
CN115095946A (zh) * 2022-06-21 2022-09-23 珠海格力电器股份有限公司 一种新风装置及其控制方法
CN115218365A (zh) * 2022-07-12 2022-10-21 北京环都拓普空调有限公司 一种旁通调节方法及相应的新风机
CN112797493B (zh) * 2021-01-13 2023-12-22 青岛海信日立空调系统有限公司 一种新风空调器及其控制方法
WO2024060836A1 (zh) * 2022-09-20 2024-03-28 美的集团股份有限公司 新风设备的控制方法、新风设备以及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205481475U (zh) * 2016-01-05 2016-08-17 中兴通讯股份有限公司 模块化制冷设备
CN106659086B (zh) * 2016-12-30 2019-08-13 华为数字技术(苏州)有限公司 一种制冷集装箱和集装箱数据中心
CN110043986A (zh) * 2018-01-15 2019-07-23 北京京东尚科信息技术有限公司 一种空调系统及采用其的数据中心
CN109708225B (zh) * 2018-12-28 2021-02-09 广东美的暖通设备有限公司 空调器及其控制方法、装置和可读存储介质
CN110017557A (zh) * 2019-04-10 2019-07-16 北京百度网讯科技有限公司 对数据中心制冷的室外箱体设备和制冷系统
CN110285546B (zh) * 2019-07-12 2021-07-23 青岛海尔空调器有限总公司 用于空调室内机的控制方法及空调室内机
CN114322140A (zh) * 2021-12-29 2022-04-12 北京潞电电气设备有限公司 一种内外风循环系统及具有该系统的模块化新风空调
CN115986273A (zh) * 2023-03-21 2023-04-18 北京中矿赛力贝特节能科技有限公司 一种储能电池集装箱热管型通风换热装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004018206U1 (de) * 2004-11-18 2005-01-27 Von Staudach, Karl Gerät zur Klimatisierung, wie Entfeuchter, Klimagerät, Lüftungsgerät u.dgl.
CN1963326A (zh) * 2006-11-30 2007-05-16 同济大学 一种能量利用与回收的单元式全空气空调机组
JP2011043291A (ja) * 2009-08-21 2011-03-03 Yamatake Corp 外気冷房システム
CN102889650A (zh) * 2012-10-12 2013-01-23 广东申菱空调设备有限公司 一种一体化组合式机房空调机组及其控制方法
CN103261804A (zh) * 2011-03-14 2013-08-21 富士电机株式会社 利用室外空气的空调系统及其空调装置
CN103615780A (zh) * 2013-11-25 2014-03-05 北京百度网讯科技有限公司 降低机房温度的系统
CN204373116U (zh) * 2014-11-20 2015-06-03 中兴通讯股份有限公司 一种模块化节能制冷设备
CN205481475U (zh) * 2016-01-05 2016-08-17 中兴通讯股份有限公司 模块化制冷设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004018206U1 (de) * 2004-11-18 2005-01-27 Von Staudach, Karl Gerät zur Klimatisierung, wie Entfeuchter, Klimagerät, Lüftungsgerät u.dgl.
CN1963326A (zh) * 2006-11-30 2007-05-16 同济大学 一种能量利用与回收的单元式全空气空调机组
JP2011043291A (ja) * 2009-08-21 2011-03-03 Yamatake Corp 外気冷房システム
CN103261804A (zh) * 2011-03-14 2013-08-21 富士电机株式会社 利用室外空气的空调系统及其空调装置
CN102889650A (zh) * 2012-10-12 2013-01-23 广东申菱空调设备有限公司 一种一体化组合式机房空调机组及其控制方法
CN103615780A (zh) * 2013-11-25 2014-03-05 北京百度网讯科技有限公司 降低机房温度的系统
CN204373116U (zh) * 2014-11-20 2015-06-03 中兴通讯股份有限公司 一种模块化节能制冷设备
CN205481475U (zh) * 2016-01-05 2016-08-17 中兴通讯股份有限公司 模块化制冷设备

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107388440B (zh) * 2017-08-30 2023-07-18 中国铁路设计集团有限公司 循环净化新风处理装置
CN107388440A (zh) * 2017-08-30 2017-11-24 中国铁路设计集团有限公司 循环净化新风处理装置
CN107588482A (zh) * 2017-09-30 2018-01-16 青岛海尔空调电子有限公司 双冷源新风机组
CN108334130A (zh) * 2018-04-02 2018-07-27 郑州云海信息技术有限公司 一种集装箱数据中心及其制冷方法
CN108458460A (zh) * 2018-05-14 2018-08-28 浙江佳中智能家居科技有限公司 一种用于室内加湿装置送气的送气管路
CN108458460B (zh) * 2018-05-14 2024-02-23 浙江星光电科智能家居科技有限公司 一种用于室内加湿装置送气的送气管路
CN108990392A (zh) * 2018-09-06 2018-12-11 郑州云海信息技术有限公司 一种多冷源模块化数据中心
CN108990392B (zh) * 2018-09-06 2023-08-18 郑州云海信息技术有限公司 一种多冷源模块化数据中心
CN109442712A (zh) * 2018-11-29 2019-03-08 新凤鸣集团湖州中石科技有限公司 复合式双向出风空调机组
CN109764521A (zh) * 2019-01-28 2019-05-17 浙江仓森环境科技有限公司 一种自适应转板换风空调机组
CN109764521B (zh) * 2019-01-28 2023-12-01 浙江仓森环境科技有限公司 一种自适应转板换风空调机组
CN109906947A (zh) * 2019-04-03 2019-06-21 苏州市冯氏实验动物设备有限公司 一种ivc实验动物箱的主机、ivc实验动物箱及方法
CN110848923A (zh) * 2019-12-09 2020-02-28 西安阿姆斯壮智能系统工程有限公司 一种利用自然冷源、带有干空气能的机械制冷复合空调运行控制方法
CN111447787B (zh) * 2020-03-25 2024-03-12 西安工程大学 基于数据中心机房的蒸发自然冷却空调系统
CN111447787A (zh) * 2020-03-25 2020-07-24 西安工程大学 基于数据中心机房的蒸发自然冷却空调系统
CN114526521A (zh) * 2020-11-23 2022-05-24 周雅娟 一种自然冷却装置及其控制方法、控制装置
CN112797493B (zh) * 2021-01-13 2023-12-22 青岛海信日立空调系统有限公司 一种新风空调器及其控制方法
WO2022156547A1 (zh) * 2021-01-25 2022-07-28 华为数字能源技术有限公司 一种冷却系统和数据中心
CN113418295A (zh) * 2021-03-22 2021-09-21 青岛海尔空调电子有限公司 调湿机、用于控制调湿机静音运行的方法及装置
CN113175715A (zh) * 2021-04-30 2021-07-27 西藏宁算科技集团有限公司 数据中心蒸发冷却与余热回收机组的控制方法及相关装置
CN113175715B (zh) * 2021-04-30 2022-08-30 西藏宁算科技集团有限公司 数据中心蒸发冷却与余热回收机组和其控制方法及装置
CN113329600B (zh) * 2021-07-07 2022-07-26 中国工商银行股份有限公司 用于对数据中心进行制冷的冷水机组
CN113329600A (zh) * 2021-07-07 2021-08-31 中国工商银行股份有限公司 用于对数据中心进行制冷的冷水机组
CN113669811A (zh) * 2021-08-21 2021-11-19 太原市轨道交通发展有限公司 一种地铁车站公共区域的环控方法
CN114484836A (zh) * 2022-03-02 2022-05-13 青岛海信日立空调系统有限公司 全热交换器
CN114484836B (zh) * 2022-03-02 2024-03-22 青岛海信日立空调系统有限公司 全热交换器
CN115095946A (zh) * 2022-06-21 2022-09-23 珠海格力电器股份有限公司 一种新风装置及其控制方法
CN115218365A (zh) * 2022-07-12 2022-10-21 北京环都拓普空调有限公司 一种旁通调节方法及相应的新风机
CN115218365B (zh) * 2022-07-12 2024-01-26 北京环都拓普空调有限公司 一种旁通调节方法及相应的新风机
WO2024060836A1 (zh) * 2022-09-20 2024-03-28 美的集团股份有限公司 新风设备的控制方法、新风设备以及存储介质

Also Published As

Publication number Publication date
CN205481475U (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2017118213A1 (zh) 模块化制冷设备
WO2016078483A1 (zh) 一种模块化节能制冷设备
CN205261858U (zh) 一种中大型整体式篷房用空调
CN103912947B (zh) 用于风机盘管和热回收新风空调机组的热泵系统
CN106369718A (zh) 用于数据中心的模块化节能制冷装置
CN104613574A (zh) 基于能量梯级利用的温湿度独立控制空调系统
CN112944739B (zh) 利用露点温度冷却的双循环制冷系统及其控制方法
KR102270023B1 (ko) 다중 공기유동 및 수분배 방식이 적용된 프리쿨링 냉각탑
CN209840328U (zh) 一种数据中心机房双冷蒸发冷却-冷凝一体化空调机组
US20160223212A1 (en) Hybrid Refrigeration Full Fresh Air-Conditioning Unit
CN217763695U (zh) 一种制冷系统
CN203443006U (zh) 一种混合式制冷的全新风空调机组
CN104949227A (zh) 空调机组
CN115419304A (zh) 一种新型控温节能设备间及控温方法
CN213273672U (zh) 一种多功能热泵除湿烘干系统
CN108679869A (zh) 一种单制冷剂回路全直膨型温湿分控空调系统
CN104061638A (zh) 免过滤全年运行空调装置及其空调方法
KR100869534B1 (ko) 통신장비용 냉방장치 및 그 제어방법
KR200487525Y1 (ko) 중계기 장비의 자동 냉각장치
JPH06221594A (ja) 空調機凝縮水の利用による外気リクール空調システム
CN105890078A (zh) 一种恒温除湿空气能热泵烘干新风空调
CN207365186U (zh) 一种数据机房地板空调装置
CN220191276U (zh) 空气处理机组
CN110686345A (zh) 一种高效楼宇冷冻机房及其控制方法
CN219999848U (zh) 一种冷却机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883340

Country of ref document: EP

Kind code of ref document: A1