WO2017117203A1 - Optical probe, light intensity detection, imaging method and system - Google Patents
Optical probe, light intensity detection, imaging method and system Download PDFInfo
- Publication number
- WO2017117203A1 WO2017117203A1 PCT/US2016/068848 US2016068848W WO2017117203A1 WO 2017117203 A1 WO2017117203 A1 WO 2017117203A1 US 2016068848 W US2016068848 W US 2016068848W WO 2017117203 A1 WO2017117203 A1 WO 2017117203A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- light
- probe
- subject
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4795—Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00096—Optical elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00165—Optical arrangements with light-conductive means, e.g. fibre optics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00172—Optical arrangements with means for scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/042—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/055—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances having rod-lens arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0661—Endoscope light sources
- A61B1/0669—Endoscope light sources at proximal end of an endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/07—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0073—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/4833—Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
Definitions
- the present invention relates generally to apparatus and methods for endoscopy and, more particularly to spectrally encoded endoscopy probes for obtaining information having a wide field of view, methods for acquiring the image, and methods of making the endoscope.
- Medical probes have the ability to provide images from inside the patient's body. Considering the potential harm capable to a human body caused by the insertion of a foreign object, it is preferable that the probe be as small as possible. Additionally, the ability to provide image within small pathways such as small vessels, ducts, needles, incisions, gaps, dictates the use of a small probe.
- SEE spectrally encoded endoscopy
- SEE spectrally encoded endoscopy
- broadband light is diffracted by a grating at the tip of the probe, producing a dispersed spectrum on the sample.
- Light returned from the sample is detected using a spectrometer; and each resolvable wavelength corresponds to reflectance from a different point on the sample.
- the principle of the SEE technique and SEE probe having a diameter of 0.5 mm, i.e., 500 ⁇ , has been reported by D. Yelin et al. [(Nature Vol. 443, 765-765 (2006)]. SEE can produce high-quality images in two- and three- dimensions.
- the presently disclosed apparatus, systems, and methods for miniature endoscopes having a wide FoV (more than 6o°) are herein provided.
- an exemplary embodiment of an apparatus and complimenting methods and systems can be provided for establishing SEE probes that have more than 6o° FoV.
- the present disclosure teaches an apparatus utilizing multiple illumination fibers and image processing to yield better images of a subject using a SEE probe.
- the subject SEE probe is designed such that the spectrally-encoded line from the two or more illumination fibers has overlap, as shown in Figure 7, dramatically improving the FoV.
- the final image is given by logical disjunction of the image obtained from each spectrally-encoded line.
- an apparatus for endoscopy having a probe, a first optical fiber to guide light, a second optical fiber to guide light, a third optical fiber to capture light, and a switch configured to operate the first optical fiber and second optical fiber, wherein light dispersed by the first optical fiber overlaps light dispersed by the second optical fiber.
- the subject apparatus may incorporate a spectrally dispersive component that receives light from the first optical fiber and disperses the light.
- a spectrally dispersive component is utilized to disperse light received from the second optical fiber.
- light guided by the first optical fiber or second optical fiber is directed to a mirror prior to introduction to a spectrally dispersive component.
- the angle of incident of light provided by the optical fiber is dramatically different than if the light was not reflected by the mirror.
- light provided by the first optical fiber overlaps light provided by the second optical fiber, either with or without the aid of the mirror, leading to a overlapped large field of view which may be stitched to produce a large image of the subject.
- a larger image of an in vivo tissue may be produced and viewed.
- the first optical fiber and/or second optical fiber are configured to be offset from the optical axis of the probe.
- the third optical fiber may act as a detection fiber for collecting light reflected from the subject.
- the third optical fiber may be in communication with a spectrometer for reading the light spectrum to be sent to a processor which produces an image.
- a light source may be incorporated to provide light to the optical fibers.
- a mechanical scan unit incorporating a rotational mechanism, and configured to rotate the probe in oscillatory motion or in continuous rotating motion, may be incorporated.
- a processing in communication with the apparatus, and configured to process information received from the apparatus may be incorporated.
- Figure 1 depicts a SEE probe with accompanying components typical of the prior art.
- Figure 2 provides a schematic diagram of an imaging system incorporating the SEE probe depicted in Figure 1, typical of the prior art.
- Figure 3 provides a schematic diagram of a wide FoV SEE probe, in accordance with one or more embodiments of the present subject matter.
- Figure 4 depicts a schematic diagram of a wide FoV SEE probe, detailing the path of light from an illumination fiber, according to one or more embodiments of the present subject matter.
- Figure 5 depicts a schematic diagram of a wide FoV SEE probe, detailing the path of light from an illumination fiber, according to one or more embodiments of the present subject matter.
- Figure 6 illustrates a schematic diagram of SEE imaging system explained in Embodiments 1 and 2, according to one or more embodiments of the present subject matter.
- Figure 7 illustrates an exemplary method of how the wide FoV SEE probe is realized, or how the switchable viewing direction SEE probe is realized, according to one or more embodiments of the present subject matter.
- Figure 8 provides a schematic diagram of a portion of an exemplary wide FoV SEE probe incorporating two gratings, according to one or more embodiments of the present subject matter.
- Figure 9 depicts a detailed block diagram of an imaging method provided in the present disclosure, according to one or more embodiments of the present subject matter.
- Figure 10 provides an exemplary flow chart detailing the procedure of the image acquisition process, according to one or more embodiments of the present subject matter.
- Figure 11 illustrates an exemplary time chart for switching of the two illumination fibers 12 and 13 to achieve the wide FOV, according to one or more embodiments of the present subject matter.
- Figure 12 illustrates a schematic diagram of an exemplary computer system to be incorporated with the SEE imaging system, according to one or more embodiments of the present subject matter.
- the same reference numerals and characters unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments.
- reference numeral(s) including by the designation " ' " signify prior art elements and/or references.
- the subject invention will now be described in detail with reference to the Figures, it is done so in connection with the illustrative embodiments. It is intended that changes and modifications can be made to the described embodiments without departing from the true scope and spirit of the subject disclosure as defined by the appended paragraphs.
- FIG. 1 depicts an exemplary SEE probe typical of the prior art.
- This prior art SEE probe 100 includes an illumination fiber 12', a focusing lens 18', and a diffraction grating 16'. Broadband light is relayed thought the illumination fiber 12' and focused by the lens 18'.
- the broadband light includes, for example three wavelengths: ⁇ , ⁇ _, and ⁇ 3 ( ⁇ ⁇ ⁇ _ ⁇ ⁇ 3 ).
- the light is then diffracted by the diffraction grating 16', and each wavelength is focused on a unique location on the subject 20' being imaged. Accordingly, the light can be focused into a line rather than a point. This line is termed as a spectrally-encoded line.
- the light source 22' outputs broadband light, which is coupled into an illumination fiber 12'.
- the illumination fiber 12' is connected through a junction unit 26' to the illumination fiber 12' that is attached to the SEE probe 10.
- the light scattered back from the subject 20' is collected by a detection fiber 14', which is relayed through the junction unit 26' to a detector 24' in which the intensity of selected wavelength is detected.
- An example of a detector may be a spectrometer.
- the SEE probe 10' can be scanned rotationally along the optical axis of the lens by a mechanical scan unit 28' to obtain the two-dimensional image of the object.
- the mechanical scan 28' is typically done by Galvo scanner or motor.
- the pitch of the grating is 450nm and broadband light from 450nm to 750nm is used, the FoV of spectrally-encoded line is limited to approximately 45 0 .
- FIG. 3 provides a schematic diagram of a wide FoV SEE probe 10, in accordance with one or more embodiments of the present subject matter.
- a gradient index (GRIN) lens 34 is used as the focusing lens.
- a transparent rod 32 with a wedge-polished end is attached to the GRIN lens 34.
- the wedge- polished end has a polished surface 30 and a diffraction grating 16.
- two illumination fibers 12 and 13 are attached to the GRIN lens 34.
- the first illumination fibers 12 and second illumination fiber 13 are offset perpendicular to the center-line of the transparent rod 32.
- a broadband light including, for example, wavelengths: ⁇ , ⁇ 2 , and ⁇ 3 ( ⁇ ⁇ ⁇ 2 ⁇ ⁇ 3 ) from the first illumination fiber 12 is directly incident on the grating 16 and then is diffracted as shown in Figure 4.
- a broadband light including, for example, wavelengths: ⁇ , ⁇ 2 , and ⁇ 3 ( ⁇ ⁇ ⁇ 2 ⁇ ⁇ 3 ) from the second illumination fiber 13 is first directly incident on the polished surface 16 to be reflected and then diffracted as shown in Figure 5. Due to this reflected arrangement, the shorter wavelength ⁇ of the first illumination fiber 12 is diffracted closer to the optical axis, whereas the longer wavelength ⁇ 3 of the second illumination fiber 13 is diffracted closer to the optical axis.
- Embodiment 1 Wide Field of View
- the wide FoV SEE probe 10 system is explained in conjunction with Figure 6.
- the parameters of the wide FoV probe will be provided as well.
- the wide FoV SEE probe 10 is attached to the junction unit 26.
- the junction unit 26 and the mechanical scan unit 28 is in a handpiece.
- the vibration from the mechanical scan unit 28 in the handpiece may affect the precise user handling of the probe.
- the mechanical scan unit 28 can be outside of the handpiece to reduce the vibration to the handpiece.
- the broadband light with the wavelength of 450-750nm is radiated from the light source 22, which is controlled by a computer system 500 (detailed below).
- the maximum wavelength max is 750nm and the minimum wavelength m in is 450nm.
- a single-mode fiber is used to guide the broadband light to the junction unit 26. Inside the junction unit 26, there is a switching device controlled by the computer system 500. The switching device can switch the fiber to couple the light according to the command from the computer system 500.
- the wide FoV SEE probe 10 of the same type as shown in Figure 3 is implemented.
- An optical rod 32 with a wedge-polished end is attached to the GRIN lens 34.
- the length without the wedge is 2.5m.
- the lower wedge surface has a grating 16 with a period of 450nm, which is stumped onto an epoxy on the optical rod 32.
- the grating angle from the optical axis is nearly 40 0 .
- the upper wedge surface is mirror polished to function as a mirror 30.
- the polished surface angle is nearly 40 0 from the optical axis.
- Two single-mode illumination fibers 12 and 13 are attached to the GRIN lens 34 with symmetrical 0.11mm offset perpendicular to the wedge intersection line.
- the detection fiber 14 is attached to the GRIN lens 34.
- the wide FoV SEE probe 10 is connected to the mechanical scan unit 28, which in turn is connected to the junction unit 26.
- the spectrally-encoded line maybe formed through the grating 16, onto the subject 20.
- the reflected light from the subject 20 is detected by the detection fiber 14, which usually is a multi-mode fiber to collect more light than a single-mode fiber.
- the detection fiber 14 guides the reflected light to the spectrometer 24 through the junction unit 26.
- the spectrometer 24 reads out the spectrum of the returning light, which is sent to the computer system 500 for data processing.
- the computer system 500 processes each line image to display an image to the monitor 504.
- a user for example a doctor, can operate the computer system 500 through a given user interface 503.
- Figure 9 depicts a detailed block diagram of an imaging method provided in the present disclosure, according to one or more embodiments of the subject disclosure.
- the junction unit 26 includes an optical switch and a multi-channel rotary junction.
- the scan unit 28 includes a motor body 28-1 and a motor control unit 28-2.
- the control unit 28-2 include at least a substrate for the motor control.
- the control unit 28-2 also may include an encoder scale jointed to the end of the motor shaft and a sensor.
- the encoder scale rotates similarly to the motor shaft.
- the sensor detects the rotation of the encoder scale and outputs the rotating angle information (position information).
- the computer system 500 inputs the signal indicating the angle position (position information) output by the sensor (the control unit 28-2) and controls the optical switch according to the input signal from the control unit 28-2.
- a stepping Galvo motor may be implemented as a motor body 28-1, whereby the encoder scale and a sensor could be omitted.
- the computer system 500 is initiated and sends a command to the switching device situated in the junction unit 26, to couple broadband light to first illumination fiber 12. Then, the computer system 500 sends a command to mechanical scan unit 28 to rotate the wide FoV probe 10 for one time by an angle of -a to + a or vise versa.
- the mechanical scan unit 28 continuously moves the probe 10. During the continuous moving, the line image is obtained at the sampling rotation rate of ⁇ .
- a m i n be the diffraction angle of the maximum wavelengths ma x.
- Amax be the diffraction angle of the minimum wavelengths m in.
- the spectrally-encoded line by the diffraction angle between m in and Amax is obtained.
- the image is obtained according to these diffraction angles.
- This two-dimensional (“2-D”) image is termed as Image 1.
- the computer system 500 sends a command to the switching device to couple the light to the second illumination fiber 13.
- the computer system 500 then, sends a command to the mechanical scan unit 28 to rotate the wide FoV probe 10 by -a to + a or vice cersa.
- J m i n and ij be the diffraction angles of m in and Amax, respectively.
- the image is obtained from the spectrally-encoded line whose diffraction angle is limited between ⁇ and ij - This 2-D image is termed as Image 2.
- Image 1 and Image 2 are combined by the computer system 500 to obtain a wide FoV image.
- the FoV is clearly increased to a range from m in to ij with the subject matter presented here. Repeating these steps would provide a video image of the subject.
- the FoV in the spectrally-encoded direction is increased to more than 8o°.
- FIG. 10 incorporates a user of this device to turn on the computer 500, monitor 504, and the laser source 22 for operation. The user then attaches the wide FoV probe 10 to the junction unit 26, to commence imaging.
- step S101 the shutter of the laser source 22 is opened by a command from the computer 500.
- the shutter can be mechanical or be controlled by software.
- step S102 the light from the laser source 22 is coupled to the first illumination fiber 12 by a switching device inside the junction unit 26. The light reaches the tip of the wide FoV probe 10 followed by dispersion of the light by the grating 16 to illuminate the subject 20.
- step S103 an image is obtained by the light from the first illumination fiber 12.
- This step consists of collecting many line images, one of which is taken as follows.
- the dispersed light illuminates the subject 20 and a part of the light is reflected back from the subject 20 to return into the detection fiber 14.
- the detection fiber 14 guides the light to the spectrometer 24.
- the spectrum distribution is sent to the computer 500, which is converted into a line image of the subject 20.
- the computer 500 controls the rotation of the wide FoV probe 10 around the optical axis by sending a command to the mechanical scan unit 28.
- a back and forth rotation is conducted between -a and +ct, so that the angle of rotation of the wide PoV probe 10 is 2a.
- This back and forth rotation can be done, for example, by a Galvo motor.
- the computer 500 acquires the line image at a rotation angle of cu (1 ⁇ i ⁇ N), where N is the number of the pixel in rotating direction.
- the simplest way of setting the rotation angle is for ctj+i - ctj (1 ⁇ j ⁇ N) to be constant.
- Another possible way of setting the rotation angle is for
- step S104 the fiber to illuminate the subject 20 is switched, i.e., the light from the laser source 22 is guided to the second illumination fiber 13 instead of the first fiber 12. This operation is conducted by a command from the computer 500.
- FIG 11 is provided to illustrate an exemplary time chart for switching between the two illumination fibers 12 and 13 to achieve the wide FoV.
- the computer system 500 inputs the rotation angle information to the motor, and determined if the input angle information corresponds to "a" or "-a". Based on the results, a switching signal is outputted (command 1001) to the optical switch in the junction unit 26 to change the rotation direction so that the wide FoV probe 10 rotates in the desired direction.
- the computer system 500 may determine the rotation angle at which the computer 500 acquires the line image, based on the rotation angle information provided by the sensor (control unit 28-2).
- the computer 500 may determine the rotation angle at which the computer 500 acquires the lime image based on the elapsed time from the computer system 500 input information output from the sensor.
- the computer system 500 may determines the rotation angle at which the computer 500 acquires the line image by the elapsed time from the timing in which the computer system outputs the command.
- step S105 a 2-D image is acquired using the second illumination fiber. Since the process is the same as that of step S103, the details are omitted herein, and maybe reference above.
- step S106 two 2-D images obtained in step S103 and S106 are combined together, which is often referred to as "image stitching".
- the two images have some overlap and the computer 500 determines which portions of the images are overlapped. Then, the computer 500 combines the two images according to the overlapped portions detected.
- image stitching is not a special technique and can nowadays be found in commercial cameras. Therefore, detail of image stitching are incorporated by reference herein.
- step S107 the image combined in step S106 is displayed on the display 504.
- step S108 if the computer 500 does not receive a quit command from the user, then the procedure may continue by returning to step S102; otherwise, it may go to step S109.
- step S109 to finish the operation safely, the computer 500 closes the shutter of the laser source 22. To shut down the whole system, the user may turn off the computer 500, laser source 22, and display 504.
- step S103 or S105 a 2-D image is obtained by combining many line images.
- the dispersed light from either the illumination fiber 12 or 13 illuminates the subject 20 and the spectrum of the reflected light is analyzed via the detection fiber 14 by the spectrometer 24.
- the spectrum distribution output from the spectrometer 24 is converted into a line image of the subject 20.
- the motor embedded in the mechanical scan unit 28 continuously rotates the wide FoV probe 10 during image acquisition process.
- the line image is captured only at a predetermined rotation angle range between -a and +ct. In other words, if the rotation angle is not within from -a and +ct, no line image is captured.
- the computer 500 acquires the line image at a rotation angle of ⁇ 3 ⁇ 4 (1 ⁇ i ⁇ N), where N is the number of the pixel in rotating direction. Hence, -a ⁇ ⁇ 3 ⁇ 4 ⁇ +a.
- the simplest way of setting the rotation angle is for Oj+i - ⁇ 3 ⁇ 4 (1 ⁇ j ⁇ N) to be constant.
- Another possible way of setting the rotation angle is for
- N line images are obtained, they are arranged together to form a 2-D image.
- Embodiment 2 View Switching.
- a direction switchable SEE probe is disclosed.
- the SEE probe used in this Embodiment is similar to the probe disclosed in Embodiment 1, however the operation in obtaining images of the subject differs.
- a user selects a viewing direction from either forward-view like direction or side-view like direction. If the use selects the forward-view like direction at the user interface unit 503, the computer system 500 sends a command to the optical switch inside the junction unit 26 to couple the light to the first illumination fiber 12. Under this condition the, previously disclosed, standard SEE image acquisition procedure, similar to step S103 in Figure 10, is performed. The video image is then displayed in the monitor 504.
- the user can select the side-view orientation via the user interface unit 503.
- the computer system 500 sends a command to the optical switch to couple the light to the second illumination fiber 13.
- the resultant image is obtained by the procedure similar to step S105 in Figure 10.
- the image capturing process is the standard SEE image capturing process.
- the illumination fibers 12 and 13 may be fusion spliced into the GRIN lens 34. If the melting temperatures of the GRIN lens 34 and the illumination fibers 12 and 13 vary greatly, epoxy may be used in lieu of splicing to attach illumination fibers 12 and 13. As high intensity light may damage the epoxy between the illumination fibers and GRIN lens 34, we may fusion splice a coreless fiber (less than imm length) to the illumination fibers. In this case, the coreless fiber is attached to the GRIN lens with epoxy.
- the polished end surface of the GRIN lens 34 should be polished very smoothly. Usually, ⁇ .3 ⁇ polishing paper is good to finish the polishing.
- the transparent rod 32 we can splice a glass rod to the GRIN lens 34, or glass rod can be attached to the GRIN lens 34 with epoxy.
- the transparent rod 32 may comprise of epoxy as well.
- the grating 16 can be stamped on to the polished surface.
- An epoxy can be used for stamping.
- a grating sheet may be placed on the surface as well.
- injection molding may be utilized for one or both the polished surface and grating.
- the detection fiber 14 should be attached to the side of the GRIN lens (as close as the plane formed by the optical axis and wedge intersection line). Its end surface should be cleaved or polished, and attached to the transparent rod 32.
- heat shrinking tube may be utilized around every component including the fibers. Currently, a heat shrinking tube with less than 5 ⁇ wall thickness is available. Even if this heat shrinking tube is wrapped to the wide FoV probe 10, the wide FoV probe 10 diameter changes by less than ⁇ . Thus, the wide FoV probe 10 remains miniscule.
- the exemplary embodiments of the disclosure are described utilizing visible light, it is understood that invisible light may and can be incorporated or substituted into the wide FoV probe 10.
- the wide FoV probe 10 is not limited similar to the schematic diagrams presented in this disclosure.
- Figure 8 illustrates the use of two gratings Gi and G2, which may incorporate the use of one or more illumination fibers to capture an image of the subject.
- the mechanical scan unit 28 was configured to oscillate back and forth.
- the mechanical scan unit 28 may be configured to rotate.
- a rotary junction may be incorporated to rotate at the junction unit 26.
- the spectrally-encoded line is scanned only if the rotation angle is within a predetermined rotation angle range.
- exemplary embodiments of the disclosure are provided with GRIN lenses 34, however other focusing component such as micro lens or ball lens can be incorporated and/or supplemented.
- GRIN lens 34 wherein rays approximately follow sinusoidal paths.
- a pitch of GRIN lens 34 is determined such that a light ray that has propagated one pitch has propagated one cycle of the sinusoidal path trajectory.
- GRIN lenses 34 with lengths of one pitch and two-pitch have the identical optical property.
- G p be one pitch of a GRIN lens 34.
- the length of the GRIN lens 34 was more than (k + i/4)G p + o.iG p and less than (k + i/4)G p + o.3G p , where k is zero or a positive integer. This result gives us a framework of the wide FoV probe 10 design.
- the wide FoV probe 10 can be in a tube with a window. Hypotube can be used for such a purpose.
- the detection fiber 14 and the wide FoV probe 10 are in a unit in the above embodiments, but they can be separated.
- the detection fiber 14 can be a part of the protection tube.
- the mechanical scan unit 28 does not necessarily rotate the detection fiber 14, and the required power to the mechanical scan unit 28 can be reduced.
- the exemplary procedures provided herein may be executed on and/or assisted by, or under the control of a computer system, executing one or more executable instructions stored on a computer-accessible medium.
- a computer system accesses the computer-accessible medium, it retrieves executable instructions therefrom and then executes the executable instructions.
- a software arrangement can be provided separately from the computer-accessible medium, which can provide the instructions to the computer system so as to configure the processing arrangement to execute the above-described procedures.
- a computer system 500 may include a CPU 501, a Storage/RAM 502, an I/O Interface 503 and a Monitor interface 504.
- the computer system 500 may comprises one or more devices.
- the one computer may include components 501, 502 and 503 and other computer may include component 504.
- the CPU 501 is configured to read and perform computer-executable instructions stored in the Storage/RAM 502.
- the computer-executable instructions may include those for the performance of the methods and/or calculations described herein.
- Storage/RAM 502 includes one or more computer readable and/or writable media, and may include, for example, a magnetic disc (e.g., a hard disk), an optical disc (e.g., a DVD, a Blu-ray), a magneto-optical disk, semiconductor memory (e.g., a non-volatile memory card, flash memory, a solid state drive, SRAM, DRAM), an EPROM, an EEPROM, etc.
- Storage/RAM 502 may store computer-readable data and/or computer-executable instructions.
- Each of components in the computer system 500 communicates each other via a bus.
- the spectrum data from the spectrometer D is stored in the Storage/RAM 502 before the images captured in response to the illumination, reflection and detection of the subject, from illumination fibers 12 and 13, are stitched by the CPU 501.
- the I/O interface 503 provides communication interfaces to input and output devices, which may include the light source 22, the spectrometer 24, the junction unit 26, the scan unit 28, the user interface unit 503, a microphone and a communication cable and a network (either wired or wireless).
- the user interface unit 503 may include a keyboard, a mouse, a touch screen, a light pen, a microphone and so on.
- the Monitor interface 504 provides communication interfaces to the Monitor.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Optics & Photonics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Hematology (AREA)
- Medicinal Chemistry (AREA)
- Urology & Nephrology (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Endoscopes (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/062,397 US10444146B2 (en) | 2015-12-28 | 2016-12-28 | Optical probe, light intensity detection, imaging method and system |
| JP2018553056A JP2019502519A (ja) | 2015-12-28 | 2016-12-28 | 光プローブ、光強度検出、撮像方法およびシステム |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562271887P | 2015-12-28 | 2015-12-28 | |
| US62/271,887 | 2015-12-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2017117203A1 true WO2017117203A1 (en) | 2017-07-06 |
Family
ID=59225465
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2016/068848 Ceased WO2017117203A1 (en) | 2015-12-28 | 2016-12-28 | Optical probe, light intensity detection, imaging method and system |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US10444146B2 (enExample) |
| JP (1) | JP2019502519A (enExample) |
| WO (1) | WO2017117203A1 (enExample) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10234694B2 (en) | 2016-07-15 | 2019-03-19 | Canon U.S.A., Inc. | Spectrally encoded probes |
| US10288868B2 (en) | 2014-01-31 | 2019-05-14 | Canon U.S.A., Inc. | Optical probe, light intensity detection, imaging method and system |
| EP3494870A2 (en) | 2017-11-17 | 2019-06-12 | Canon U.S.A. Inc. | Rotational extender and/or repeater for rotating imaging systems |
| US10321810B2 (en) | 2016-06-13 | 2019-06-18 | Canon U.S.A., Inc. | Spectrally encoded endoscopic probe having a fixed fiber |
| US10357160B2 (en) | 2017-10-05 | 2019-07-23 | Canon U.S.A., Inc. | Image acquiring apparatus, systems, and methods |
| US10371614B2 (en) | 2016-11-03 | 2019-08-06 | Canon U.S.A., Inc. | Diagnostic spectrally encoded endoscopy apparatuses and systems and methods for use with same |
| US10506922B2 (en) | 2018-04-06 | 2019-12-17 | Canon U.S.A., Inc. | Spectrometer for color spectrally-encoded endoscopy |
| US10682044B2 (en) | 2017-01-12 | 2020-06-16 | Canon U.S.A., Inc. | Spectrally encoded forward view and spectrally encoded multi-view endoscope using back-reflected light between reflective surfaces |
| US10809538B2 (en) | 2017-11-27 | 2020-10-20 | Canon U.S.A., Inc. | Image acquisition apparatus, spectral apparatus, methods, and storage medium for use with same |
| US10825152B2 (en) | 2017-09-14 | 2020-11-03 | Canon U.S.A., Inc. | Distortion measurement and correction for spectrally encoded endoscopy |
| US10895692B2 (en) | 2017-06-01 | 2021-01-19 | Canon U.S.A., Inc. | Fiber optic rotary joints and methods of using and manufacturing same |
| US10966597B2 (en) | 2015-08-05 | 2021-04-06 | Canon U.S.A., Inc. | Forward and angle view endoscope |
| US10996402B2 (en) | 2016-03-24 | 2021-05-04 | Canon U.S.A., Inc. | Multi-channel optical fiber rotary junction |
| US11298001B2 (en) | 2018-03-29 | 2022-04-12 | Canon U.S.A., Inc. | Calibration tool for rotating endoscope |
| US12076177B2 (en) | 2019-01-30 | 2024-09-03 | Canon U.S.A., Inc. | Apparatuses, systems, methods and storage mediums for performance of co-registration |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10898068B2 (en) * | 2016-11-01 | 2021-01-26 | Canon U.S.A., Inc. | Multi-bandwidth spectrally encoded endoscope |
| US12171410B2 (en) | 2019-02-05 | 2024-12-24 | Canon U.S.A., Inc. | Endoscope observation window cleaning |
| US11360269B2 (en) * | 2019-03-04 | 2022-06-14 | Lumentum Operations Llc | High-power all fiber telescope |
| US20250040796A1 (en) * | 2021-12-03 | 2025-02-06 | Georgia Tech Research Corporation | Three-dimensional light-field microendoscopy with a grin lens array |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070276187A1 (en) * | 2006-02-27 | 2007-11-29 | Wiklof Christopher A | Scanned beam imager and endoscope configured for scanning beams of selected beam shapes and/or providing multiple fields-of-view |
| US20090153932A1 (en) * | 2007-12-18 | 2009-06-18 | Microvision, Inc. | MEMS devices and related scanned beam devices |
| US20140378846A1 (en) * | 2013-06-19 | 2014-12-25 | Canon U.S.A., Inc. | Omni-directional viewing apparatus |
| US20150131098A1 (en) * | 2005-04-25 | 2015-05-14 | University Of Massachusetts | Systems and methods for correcting optical reflectance measurements |
| WO2015116939A1 (en) * | 2014-01-31 | 2015-08-06 | Canon U.S.A., Inc. | Apparatus and methods for color endoscopy |
Family Cites Families (59)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2354892C3 (de) | 1973-11-02 | 1978-05-11 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Digitaler elektro-optischer Lichtablenker mit doppelbrechenden Ablenkprismen |
| US4074306A (en) | 1975-07-28 | 1978-02-14 | Olympus Optical Co., Ltd. | Endoscope utilizing color television and fiber optics techniques |
| US4264127A (en) | 1979-04-04 | 1981-04-28 | Amp Incorporated | Optical detector assembly and method |
| US6485413B1 (en) | 1991-04-29 | 2002-11-26 | The General Hospital Corporation | Methods and apparatus for forward-directed optical scanning instruments |
| EP0539084A1 (en) | 1991-10-18 | 1993-04-28 | Imagyn Medical, Inc. | Apparatus and method for independent movement of an instrument within a linear eversion catheter |
| US5208882A (en) | 1991-11-14 | 1993-05-04 | Eastman Kodak Company | Hybrid thin film optical waveguide structure having a grating coupler and a tapered waveguide film |
| US5909529A (en) | 1996-10-10 | 1999-06-01 | Corning Incorporated | Method of manufacturing planar gradient-index waveguide lenses |
| EP1057063A4 (en) | 1998-02-26 | 2004-10-06 | Gen Hospital Corp | CONFOCAL MICROSCOPY WITH MULTISPECTRAL CODING |
| US6831781B2 (en) | 1998-02-26 | 2004-12-14 | The General Hospital Corporation | Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy |
| US7070987B2 (en) | 2000-10-30 | 2006-07-04 | Sru Biosystems, Inc. | Guided mode resonant filter biosensor using a linear grating surface structure |
| US9295391B1 (en) | 2000-11-10 | 2016-03-29 | The General Hospital Corporation | Spectrally encoded miniature endoscopic imaging probe |
| US6654517B2 (en) | 2001-02-21 | 2003-11-25 | Vitesse Semiconductor Corporation | Optical devices engaged to fibers with angle-polished facets |
| JP2002269791A (ja) | 2001-03-15 | 2002-09-20 | Sankyo Seiki Mfg Co Ltd | 光ヘッド装置 |
| JP3210654B1 (ja) | 2001-05-02 | 2001-09-17 | レーザーテック株式会社 | 光学式走査装置及び欠陥検出装置 |
| WO2003010518A2 (en) | 2001-07-26 | 2003-02-06 | Koninklijke Philips Electronics N.V. | Opto-acoustic apparatus with optical heterodyning for measuring solid surfaces and thin films |
| US6661513B1 (en) | 2001-11-21 | 2003-12-09 | Roygbiv, Llc | Refractive-diffractive spectrometer |
| US20030142934A1 (en) | 2001-12-10 | 2003-07-31 | Carnegie Mellon University And University Of Pittsburgh | Endoscopic imaging system |
| JP2004222870A (ja) | 2003-01-21 | 2004-08-12 | Pentax Corp | 内視鏡用プローブ |
| US7448995B2 (en) | 2003-06-23 | 2008-11-11 | Microvision, Inc. | Scanning endoscope |
| JP4535697B2 (ja) * | 2003-07-23 | 2010-09-01 | オリンパス株式会社 | 生体組織の光散乱観測内視鏡装置 |
| US7003196B2 (en) | 2003-09-04 | 2006-02-21 | Sioptical, Inc. | External grating structures for interfacing wavelength-division-multiplexed optical sources with thin optical waveguides |
| JP4475501B2 (ja) | 2003-10-09 | 2010-06-09 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 分光素子、回折格子、複合回折格子、カラー表示装置、および分波器 |
| US7279063B2 (en) | 2004-01-16 | 2007-10-09 | Eastman Kodak Company | Method of making an OLED display device with enhanced optical and mechanical properties |
| US7342659B2 (en) | 2005-01-21 | 2008-03-11 | Carl Zeiss Meditec, Inc. | Cross-dispersed spectrometer in a spectral domain optical coherence tomography system |
| WO2006130797A2 (en) | 2005-05-31 | 2006-12-07 | The General Hospital Corporation | Spectral encoding heterodyne interferometry techniques for imaging |
| US7542845B2 (en) * | 2005-07-29 | 2009-06-02 | Microsoft Corporation | Information navigation interface |
| WO2007041382A1 (en) | 2005-09-29 | 2007-04-12 | General Hospital Corporation | Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures |
| US7796270B2 (en) | 2006-01-10 | 2010-09-14 | The General Hospital Corporation | Systems and methods for generating data based on one or more spectrally-encoded endoscopy techniques |
| US8145018B2 (en) | 2006-01-19 | 2012-03-27 | The General Hospital Corporation | Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements |
| US8838213B2 (en) | 2006-10-19 | 2014-09-16 | The General Hospital Corporation | Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s) |
| WO2008131082A1 (en) | 2007-04-17 | 2008-10-30 | The General Hospital Corporation | Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy techniques |
| JP5173382B2 (ja) | 2007-12-03 | 2013-04-03 | キヤノン株式会社 | プリズムユニット |
| US9254089B2 (en) | 2008-07-14 | 2016-02-09 | The General Hospital Corporation | Apparatus and methods for facilitating at least partial overlap of dispersed ration on at least one sample |
| EP2153773A1 (en) | 2008-08-15 | 2010-02-17 | Technion Research and Development Foundation, Ltd. | Vessel imaging system and method |
| KR100973149B1 (ko) | 2008-09-05 | 2010-07-30 | 한국표준과학연구원 | 분광엔코딩 방법을 적용한 간섭성 반스톡스 라만산란 내시경 |
| WO2010055454A1 (en) * | 2008-11-14 | 2010-05-20 | Koninklijke Philips Electronics N.V. | Optical fiber scanning probe |
| WO2010090837A2 (en) | 2009-01-20 | 2010-08-12 | The General Hospital Corporation | Endoscopic biopsy apparatus, system and method |
| US8804133B2 (en) | 2009-06-16 | 2014-08-12 | Technion Research & Development Foundation Limited | Method and system of adjusting a field of view of an interferometric imaging device |
| US8812087B2 (en) | 2009-06-16 | 2014-08-19 | Technion Research & Development Foundation Limited | Method and system of spectrally encoded imaging |
| EP2623016A4 (en) * | 2010-10-29 | 2016-05-04 | Olympus Corp | OPTICAL MEASURING DEVICE AND PROBE DEVICE |
| US8809808B2 (en) | 2010-11-09 | 2014-08-19 | National Yang Ming University | Stimulated emission-based optical detection system |
| WO2012115983A1 (en) | 2011-02-21 | 2012-08-30 | Parmar Jaywant Philip | Optical endoluminal far-field microscopic imaging catheter |
| US9795285B2 (en) | 2011-07-07 | 2017-10-24 | Boston Scientific Scimed, Inc. | Imaging system for endoscope |
| EP2764399B1 (en) | 2011-10-07 | 2023-06-28 | ImagineOptix Corporation | Polarization conversion systems with polarization gratings and related fabrication methods |
| US20140037884A1 (en) * | 2011-12-12 | 2014-02-06 | Cinnamon Bay Partners, LLC | Automated system for personalizing container decorations with artistic arrangements |
| US10539731B2 (en) | 2012-06-07 | 2020-01-21 | Poinare Systems, Inc. | Grin lens and methods of making the same |
| GB2513343A (en) | 2013-04-23 | 2014-10-29 | Univ Singapore | Methods related to instrument-independent measurements for quantitative analysis of fiber-optic Raman spectroscopy |
| US9415550B2 (en) | 2012-08-22 | 2016-08-16 | The General Hospital Corporation | System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography |
| WO2014088885A1 (en) | 2012-12-04 | 2014-06-12 | Ninepoint Medical, Inc. | Low cost extended depth of field optical probes |
| US9057594B2 (en) | 2012-12-10 | 2015-06-16 | The Johns Hopkins University | Sapphire lens-based optical fiber probe for optical coherence tomography |
| EP2938243A4 (en) | 2012-12-28 | 2016-09-14 | Olympus Corp | THREE-DIMENSIONAL ENDOSCOPE |
| WO2014121193A1 (en) | 2013-02-01 | 2014-08-07 | The General Hospital Corporation | Apparatus for utilizing flexible forward scanning catheter |
| WO2015042093A1 (en) | 2013-09-17 | 2015-03-26 | The Johns Hopkins University | Device and methods for color corrected oct imaging endoscope/catheter to achieve high-resolution |
| JP6792450B2 (ja) | 2014-01-31 | 2020-11-25 | ザ ジェネラル ホスピタル コーポレイション | 前方視の内視鏡プローブ、当該プローブの制御方法、及び撮像装置 |
| US10261223B2 (en) | 2014-01-31 | 2019-04-16 | Canon Usa, Inc. | System and method for fabrication of miniature endoscope using nanoimprint lithography |
| US10966597B2 (en) | 2015-08-05 | 2021-04-06 | Canon U.S.A., Inc. | Forward and angle view endoscope |
| US9869854B2 (en) | 2015-12-16 | 2018-01-16 | Canon U.S.A, Inc. | Endoscopic system |
| WO2017139657A1 (en) | 2016-02-12 | 2017-08-17 | Canon U.S.A., Inc. | Simple monolithic optical element for forward-viewing spectrally encoded endoscopy |
| US10321810B2 (en) | 2016-06-13 | 2019-06-18 | Canon U.S.A., Inc. | Spectrally encoded endoscopic probe having a fixed fiber |
-
2016
- 2016-12-28 WO PCT/US2016/068848 patent/WO2017117203A1/en not_active Ceased
- 2016-12-28 US US16/062,397 patent/US10444146B2/en not_active Expired - Fee Related
- 2016-12-28 JP JP2018553056A patent/JP2019502519A/ja active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150131098A1 (en) * | 2005-04-25 | 2015-05-14 | University Of Massachusetts | Systems and methods for correcting optical reflectance measurements |
| US20070276187A1 (en) * | 2006-02-27 | 2007-11-29 | Wiklof Christopher A | Scanned beam imager and endoscope configured for scanning beams of selected beam shapes and/or providing multiple fields-of-view |
| US20090153932A1 (en) * | 2007-12-18 | 2009-06-18 | Microvision, Inc. | MEMS devices and related scanned beam devices |
| US20140378846A1 (en) * | 2013-06-19 | 2014-12-25 | Canon U.S.A., Inc. | Omni-directional viewing apparatus |
| WO2015116939A1 (en) * | 2014-01-31 | 2015-08-06 | Canon U.S.A., Inc. | Apparatus and methods for color endoscopy |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10288868B2 (en) | 2014-01-31 | 2019-05-14 | Canon U.S.A., Inc. | Optical probe, light intensity detection, imaging method and system |
| US10966597B2 (en) | 2015-08-05 | 2021-04-06 | Canon U.S.A., Inc. | Forward and angle view endoscope |
| US10996402B2 (en) | 2016-03-24 | 2021-05-04 | Canon U.S.A., Inc. | Multi-channel optical fiber rotary junction |
| US10321810B2 (en) | 2016-06-13 | 2019-06-18 | Canon U.S.A., Inc. | Spectrally encoded endoscopic probe having a fixed fiber |
| US10234694B2 (en) | 2016-07-15 | 2019-03-19 | Canon U.S.A., Inc. | Spectrally encoded probes |
| US10371614B2 (en) | 2016-11-03 | 2019-08-06 | Canon U.S.A., Inc. | Diagnostic spectrally encoded endoscopy apparatuses and systems and methods for use with same |
| US10682044B2 (en) | 2017-01-12 | 2020-06-16 | Canon U.S.A., Inc. | Spectrally encoded forward view and spectrally encoded multi-view endoscope using back-reflected light between reflective surfaces |
| US10895692B2 (en) | 2017-06-01 | 2021-01-19 | Canon U.S.A., Inc. | Fiber optic rotary joints and methods of using and manufacturing same |
| US10825152B2 (en) | 2017-09-14 | 2020-11-03 | Canon U.S.A., Inc. | Distortion measurement and correction for spectrally encoded endoscopy |
| US10357160B2 (en) | 2017-10-05 | 2019-07-23 | Canon U.S.A., Inc. | Image acquiring apparatus, systems, and methods |
| EP3494870A2 (en) | 2017-11-17 | 2019-06-12 | Canon U.S.A. Inc. | Rotational extender and/or repeater for rotating imaging systems |
| US11224336B2 (en) | 2017-11-17 | 2022-01-18 | Canon U.S.A., Inc. | Rotational extender and/or repeater for rotating fiber based optical imaging systems, and methods and storage mediums for use therewith |
| US10809538B2 (en) | 2017-11-27 | 2020-10-20 | Canon U.S.A., Inc. | Image acquisition apparatus, spectral apparatus, methods, and storage medium for use with same |
| US11298001B2 (en) | 2018-03-29 | 2022-04-12 | Canon U.S.A., Inc. | Calibration tool for rotating endoscope |
| US10506922B2 (en) | 2018-04-06 | 2019-12-17 | Canon U.S.A., Inc. | Spectrometer for color spectrally-encoded endoscopy |
| US12076177B2 (en) | 2019-01-30 | 2024-09-03 | Canon U.S.A., Inc. | Apparatuses, systems, methods and storage mediums for performance of co-registration |
Also Published As
| Publication number | Publication date |
|---|---|
| US10444146B2 (en) | 2019-10-15 |
| US20180372633A1 (en) | 2018-12-27 |
| JP2019502519A (ja) | 2019-01-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10444146B2 (en) | Optical probe, light intensity detection, imaging method and system | |
| JP6792450B2 (ja) | 前方視の内視鏡プローブ、当該プローブの制御方法、及び撮像装置 | |
| CN105050475B (zh) | 激光扫描观察装置和激光扫描方法 | |
| JP7107944B2 (ja) | スペクトル符号化前方ビュー内視鏡およびスペクトル符号化マルチビュー内視鏡、プローブ、および撮像装置 | |
| US11213191B2 (en) | Optical fiber arrangement for endoscope | |
| CA2558602C (en) | Forward scanning imaging optical fiber probe | |
| US8911357B2 (en) | Optical structure observation apparatus and structure information processing method of the same | |
| JP5054072B2 (ja) | 光断層画像撮像装置 | |
| US11835707B2 (en) | Scanning optical imaging device | |
| JP2021020073A (ja) | 全方向視覚装置 | |
| US20190167081A1 (en) | Three-Dimensional Imaging Using Swept, Confocally Aligned Planar Excitation with an Image Relay | |
| JP2023055872A (ja) | マルチコアファイバ内視鏡によるイメージングの強化 | |
| JPWO2014157645A1 (ja) | レーザ走査型観察装置及びレーザ走査方法 | |
| US20140221747A1 (en) | Apparatus, systems and methods which include and/or utilize flexible forward scanning catheter | |
| AU2011343179B2 (en) | Gastrointestinal electronic pill | |
| JP3947275B2 (ja) | 内視鏡 | |
| KR20120072757A (ko) | 광섬유 다발 기반의 내시경 타입 스펙트럼 영역 광학단층영상 시스템 | |
| JP2022501152A (ja) | 腔内光学プローブのためのオーバーモールド遠位光学系 | |
| JP2014094121A (ja) | 光伝達装置及び光学素子 | |
| JP3650364B2 (ja) | 光走査プローブ装置 | |
| WO2019181553A1 (ja) | 手術顕微鏡システム | |
| JP5131552B2 (ja) | 顕微鏡装置 | |
| JP2006510932A (ja) | コヒーレンス顕微鏡 | |
| US10678044B2 (en) | Beam-steering devices employing electrowetting prisms | |
| JP4745632B2 (ja) | 内視鏡の挿入部可撓管および内視鏡 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16882549 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2018553056 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 16882549 Country of ref document: EP Kind code of ref document: A1 |