WO2017115991A1 - 항암제-인도시아닌 그린-리포좀 복합체를 포함하는 암 치료용 조성물 - Google Patents

항암제-인도시아닌 그린-리포좀 복합체를 포함하는 암 치료용 조성물 Download PDF

Info

Publication number
WO2017115991A1
WO2017115991A1 PCT/KR2016/011909 KR2016011909W WO2017115991A1 WO 2017115991 A1 WO2017115991 A1 WO 2017115991A1 KR 2016011909 W KR2016011909 W KR 2016011909W WO 2017115991 A1 WO2017115991 A1 WO 2017115991A1
Authority
WO
WIPO (PCT)
Prior art keywords
indocyanine green
icg
complex
cancer
composition
Prior art date
Application number
PCT/KR2016/011909
Other languages
English (en)
French (fr)
Inventor
박지호
윤환준
이혜성
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2017115991A1 publication Critical patent/WO2017115991A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations

Definitions

  • the present invention relates to a composition for treating cancer comprising a liposome complex in which an anticancer agent and indocyanine green are encapsulated, and to a method for preparing the same.
  • the present invention relates to a composition for treating cancer and a method for producing the same, wherein the cancer treatment effect is exhibited by an anticancer agent selectively released from the same.
  • Indocianin green is a near-infrared fluorescent die (NIR) that is licensed by the US Food and Drug Administration (FDA) for the diagnosis of the heart and liver vascular systems as well as the lymphatic system.
  • NIR near-infrared fluorescent die
  • FDA US Food and Drug Administration
  • indocyanine green is known as an excellent probe for imaging metastatic lymph nodes and mapping of lymph nodes for early diagnosis of breast cancer.
  • indocyanine green has low hydrophilicity, low light stability, low photon yield, and low sensitivity.
  • indocyanine green is susceptible to nonspecific aggregation, has a disadvantage of being chemically decomposed by external light, solvent and temperature change, and has a problem of being rapidly absorbed into serum proteins and rapidly removed through the liver due to low molecular weight and hydrophobic characteristics. have.
  • indocyanine green probes have been studied, and indocyanine green is trapped in nanoparticles, or polymers are used to examine in vivo and in vitro stability of indocyanine green.
  • indocyanine green is trapped in nanoparticles, or polymers are used to examine in vivo and in vitro stability of indocyanine green.
  • Cancer phototherapy is based on light, and is a method of treating cancer by radiating light at a tumor site, rather than by dangerous and expensive surgery.
  • Phototherapy is nondestructive, simple and has fewer side effects than surgical procedures. In addition, there is no need for general anesthesia, little pain of the patient, a short period of stability and recovery as well as the advantage that can be repeated several times.
  • phototherapy technology that combines silica nanoparticles with gold-coated nanoshells and near infrared light
  • phototherapy technology that combines single wall carbon nanotubes (SWCNT) with near infrared light
  • SWCNT single wall carbon nanotubes
  • the present inventors have developed a composition for treating cancer by combining indocyanine green with liposomes applicable to the body in Korean Patent No. 10-2015-0068674.
  • the composition is applicable only to cancer phototherapy, it is necessary to develop a composition for treating cancer having a high anticancer effect because the actual anticancer effect is low.
  • the inventors of the present application can induce apoptosis by therapeutically effective light irradiation when the indocyanine green further comprises an anticancer agent in the complex encapsulated in liposomes, Through the composition for treating cancer, which can inhibit the growth of cancer cells more effectively by the anticancer agent selectively released, it was confirmed that the conventional problem can be solved and the desired cancer therapeutic effect can be achieved, and the present invention has been completed. .
  • An object of the present invention comprises a liposome complex encapsulated with an anticancer agent and indocyanine green as an active ingredient, and a composition for treating cancer having both cancer cell photothermal treatment effect and cancer treatment effect by an anticancer agent at the time of therapeutically effective light irradiation. And to provide a method for producing the same.
  • the present invention is prepared by using phosphatidylcholine, stabilizer, anticancer agent and indocyanine green as raw materials, complexes in which anticancer agent and indocyanine green are encapsulated in liposomes as an active ingredient.
  • the present invention provides a composition for treating cancer having both cancer cell photothermal therapeutic effects and cancer therapeutic effects by an anticancer agent upon irradiation with a therapeutically effective light.
  • the present invention also provides a method for preparing a complex in which an anticancer agent and indocyanine green are encapsulated in a liposome comprising the following steps:
  • step (c) isolating the complex of the anti-cancer agent and indocyanine green encapsulated in the liposome in the liposome of step (b).
  • 1 is a graph comparing the absorbance according to the ratio of phosphatidylcholine and ICG in a mixture for preparing a liposome complex encapsulated with cisplatin and indocyanine green;
  • 2 is a graph comparing fluorescence intensity per liposome according to phosphatidylcholine and ICG ratio in a mixture for preparing a liposome complex encapsulated with cisplatin and indocyanine green;
  • Figure 3 is based on the amount of indocyanine green in liposomes according to the ratio of phosphatidylcholine and ICG in a fixed state of cisplatin in the mixture for preparing the liposome complex encapsulated cisplatin and indocyanine green based on the amount of lipids in the liposome A graph of comparison;
  • FIG. 4 is a graph comparing cisplatin content in liposomes according to ICG ratios based on the amount of lipids in liposomes with a fixed ratio of phosphatidylcholine and cisplatin in a mixture for preparing a liposome complex encapsulated with cisplatin and indocyanine green to be;
  • FIG. 5 (A) shows the content of indocyanine green in liposomes according to the cisplatin ratio according to the ratio of cisplatin in a fixed ratio of phosphatidylcholine and ICG in a mixture for preparing a liposome complex encapsulated with cisplatin and indocyanine green.
  • Figure 5 (B) is a graph comparing the amount, cisplatin and indocyanine green of cisplatin in liposomes according to the cisplatin ratio in a fixed ratio of phosphatidylcholine and ICG in the mixture for preparing the encapsulated liposome complex It is a graph comparing content based on the amount of lipid in liposomes.
  • Figure 7 is a graph measuring the photothermal effect of the state of the liposome complex encapsulated in the ICG only, the liposome complex of ICG and cisplatin and liposome complex encapsulated cisplatin and ICG;
  • Figure 9 is a graph measuring the cell death effect by the photothermal effect and the cell death effect by the release of cisplatin by the photothermal effect at various concentrations of cisplatin and ICG concentration;
  • 10 is a graph measuring the stability in blood flow according to the ratio of phosphatidylcholine and ICG in liposomal ICG and cisplatin-coupled liposomal ICG;
  • FIG. 11 compares the amount accumulated in major organs after 24 hours of liposomal ICG and cisplatin-incorporated liposomal ICG;
  • FIG. 13 is a comparison of liposomal ICG and cisplatin-incorporated liposomal ICG, followed by near-infrared irradiation, and the effects of cancer treatment.
  • A measures the number of days of survival and cancer in mice in various experimental and control groups.
  • B is a picture of cancer development sites of various experimental and control mice;
  • FIG. 14 is a diagram illustrating the photothermal effect and anticancer effect of the anticancer agent-ICG-liposomal complex of the present invention when irradiated with a therapeutically effective light.
  • the present invention is prepared from phosphatidylcholine, stabilizer, anticancer agent, and indocyanine green as raw materials, and contains a complex as an active ingredient, wherein the liposome is encapsulated with an anticancer agent and indocyanine green, and is treated.
  • the present invention relates to a composition for treating cancer, which has both cancer cell photothermal therapeutic effects and cancer therapeutic effects by an anticancer agent upon effective light irradiation.
  • the inventors of the present application can not only improve the stability of indocyanine green by overcoming the disadvantages associated with low stability of indocyanine green through the liposome complex in which the anticancer agent and indocyanine green are encapsulated. It was confirmed that cancer treatment is possible due to the apoptosis effect by the anticancer agent and indocyanine green released during the irradiation.
  • Phototherapy includes photodynamic therapy (PDT) and photothermal therapy (PTT), which include reactive oxygen species (ROS) and light and photosensitizers for thermal energy generation, respectively. Formulation is required.
  • the photothermal therapeutic effect is to induce the death of cancer cells by indocyanine green upon therapeutically effective light irradiation, the composition for cancer treatment.
  • the anticancer agent and indocyanine green in accordance with the present invention was confirmed that the excellent photothermal therapeutic effect can be seen when light irradiation to the encapsulated liposome complex. This effect was confirmed to increase the cytotoxicity to cancer cells can exhibit a cancer treatment effect.
  • the liposomes are prepared including phosphatidylcholine and stabilizers, and liposomes in the form of a single lamellar or a multilamellar may be used.
  • the phosphatidylcholine is a kind of phospholipid with choline, and includes a hydrophobic tail and a choline hydrophilic head of saturated or unsaturated fatty acids, for example, L- ⁇ -phosphatidylcholine (Egg, Chicken), L - ⁇ -phosphatidylcholine, hydrogenated (Egg, Chicken), L- ⁇ -phosphatidylcholine (Soy), L- ⁇ -phosphatidylcholine, hydrogenated (Soy) 1,2-didecanoyl-sn-glycero-3-phosphocholine (10: 0 PC) , 1,2-diundecanoyl-sn-glycero-3-phosphocholine (11: 0 PC), 1,2-dilauroyl-sn-glycero-3-phosphocholine
  • encapsulation means that the indocyanine green and the anticancer agent are substantially present only in the space within the liposome to form a liposome-ICG complex, and the free ICG or liposome to which the liposome is not bound. ICG bound only to the surface means that it is substantially absent.
  • the phosphatidylcholine may be preferably DPPC.
  • the stabilizer may be a lipid, a lipid derivative, a protein or a peptide, and the like, and specifically, may be phosphatidylethanolamine conjugated with polyethylene glycol.
  • the polyethylene glycol may be used without limitation as long as it is a size suitable for stabilization, for example, may have a molecular weight of about 1,000 to 10,000, preferably 2,000 to 8, 000, more preferably 2,000 to 6, 000.
  • the phosphatidylethanolamine may be mono or diunsaturated fatty acid, for example, DMPE (dimyristoylphosphatidylethanolamine), DPPE (dipalmitoylphosphatidylethanolamine), DOPE (dioleoylphosphatidylethanolamine), DSPE (distearoylphosphatidyl-ethanolamine) and DSPE-PEG phosph2000 ethanolamine-polyethylene glycole-2000) may be one or more selected from the group consisting of, but is not limited thereto.
  • DMPE diimyristoylphosphatidylethanolamine
  • DPPE dipalmitoylphosphatidylethanolamine
  • DOPE dioleoylphosphatidylethanolamine
  • DSPE disearoylphosphatidyl-ethanolamine
  • DSPE-PEG phosph2000 ethanolamine-polyethylene glycole-2000 may be one or more selected from the group consisting of, but is
  • the phosphatidylcholine and stabilizer may be included with indocyanine green to an appropriate level to form liposomes suitable for photothermal effect, for example, the molar ratio of phosphatidylcholine and stabilizer is from about 85:15 to about 98: 2, preferably about 90:10 to 95: 5. Within this molar ratio range, liposomes in vivo are most stable to maximize lifespan.
  • the content of phosphatidylcholine and indocyanine green and anticancer agent in the mixture is not limited so long as it is suitable for producing a photothermal effect for treatment, but is included in a molar ratio of 250: 0.1-32: 1-200, for example.
  • the content of phosphatidylcholine and indocyanine green and anticancer agent in the mixture may be included in a molar ratio of 250: 0.5-16: 5-50, and most preferably, the content of phosphatidylcholine and indocyanine green and anticancer agent in the mixture.
  • 250: 7: 11 total lipid: ICG: Cisplatin may be included in the molar ratio.
  • the desired photothermal effect can be exhibited throughout the range.
  • indocyanine green and anticancer agents can be optimally dispersed inside liposomes to form encapsulated complexes, and to treat cancer.
  • indocyanine green and anticancer agents can be optimally dispersed inside liposomes to form encapsulated complexes, and to treat cancer.
  • the amount of indocyanine green and anticancer agent is less than the range described in the above mixture, the desired degree of photoreaction effect and cancer treatment effect cannot be expected, and the amount of liposomes is relatively high, resulting in cost and time required for preparing liposomes. It is very inefficient when considered, and if the amount of indocyanine green and anticancer agent is larger than the stated range, a synergistic photothermal effect cannot be expected because aggregation occurs in liposomes or reaches a threshold that no longer reacts to light. .
  • the anticancer agent-indocyanine green-liposomal complex of the present invention not only induces apoptosis due to photothermal effects when indocyanine green undergoes a therapeutically effective light irradiation, but also changes the bilayer permeability of liposomes.
  • the release of the anticancer agent contained in the liposome is promoted, and the released anticancer agent exerts a therapeutic effect on cancer cells in a selective region irradiated with a laser. That is, the anticancer agent-indocyanine green-liposomal complex of the present invention releases the anticancer agent from the complex only upon therapeutically effective light irradiation. Through this, it was confirmed that the anti-cancer effect was superior to the existing liposome treatments, and the side effects caused by the anticancer agents could be minimized.
  • heat may be generated when the composite is irradiated with near infrared rays, and the near infrared rays may be irradiated for 3 minutes or more with a power of 100 mW or more at 700-900 nm.
  • the power for generating heat may be, for example, 100 mW or more, 1 W or less, preferably 400 mW or more and 800 mW or less.
  • the light irradiation time may be 3 minutes or more and 30 minutes or less. In the light irradiation conditions lower than the above range, indocyanine green is not effectively consumed in generating the photothermal effect, and in high light irradiation conditions, surrounding normal cells may be exposed to phototoxicity and damage may be caused.
  • the heat generated at this time may be, for example, a temperature of about 45 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, at which 90% or more apoptosis, preferably 95% or more, may occur. .
  • Indocyanine green in the heat generating complex may comprise, for example, at a concentration of 1-30 ug / ml, preferably 5-10 ug / ml, and the anticancer agent may be, for example, 1-50 ug / ml, Preferably it may be included at a concentration of 1-20ug / ml.
  • the inventors of the present application have confirmed that heat can be generated to a temperature rise of 10 ° C. or more, which can cause apoptosis of 95% or more upon near-infrared irradiation to liposome complexes including indocyanine green and an anticancer agent in the aforementioned concentration range. .
  • the complex may be determined in size (diameter) according to the type and size of liposomes in which the indocyanine green and the anticancer agent are encapsulated, and the average hydrodynamic diameter (HD) of the complex is, for example. For example, 50-200 nm, preferably 100-150 nm.
  • the composite exhibits a low degree of polydispersity index and confirmed that the molecular weight and structure is uniform, wherein the polydispersity index may be 0.2 or less, but is not limited thereto.
  • the zeta potential of the complex may be -50-0mv.
  • the anticancer agent can be used as long as it is a water-soluble small molecule compound (small molecule), but may be preferably an alkylating agent that can inhibit the synthesis of DNA by forming a covalent bond with the nucleic acid.
  • the alkylating agent is mechlorethamine, cyclophosphamide, Ifosfamide, Melphalan, Chlorambucil, Busulfan, It may be one or more selected from the group consisting of Thiotepa, nitrosourea and platinum compounds, and most preferably cisplatin or carboplatin.
  • 'cancer' and 'tumor' mean or describe a physiological state in a mammal, which is typical of uncontrolled cell growth, and according to the composition of the present invention, breast, heart, lung, Tumors or metastatic tumors, such as small intestine, large intestine, spleen, kidney, bladder, head and neck, ovary, prostate, brain, pancreas, skin, bone, bone marrow, blood, thymus, uterus, testes, cervix and liver, can be treated .
  • Tumors or metastatic tumors such as small intestine, large intestine, spleen, kidney, bladder, head and neck, ovary, prostate, brain, pancreas, skin, bone, bone marrow, blood, thymus, uterus, testes, cervix and liver, can be treated .
  • the present invention provides a cancer treatment method comprising the following steps:
  • step (b) irradiating a therapeutically effective light to the complex administered in step (a) accumulated at the tumor site.
  • the present invention relates to a method for producing a complex in which an anticancer agent and indocyanine green are encapsulated in liposomes.
  • the manufacturing method according to the present invention may preferably be characterized by including the following steps, but is not limited thereto:
  • step (c) isolating the complex of the anti-cancer agent and indocyanine green encapsulated in the liposome in the liposome of step (b).
  • step (a) is a step of preparing a cake by dissolving at least one phosphatidylcholine, a stabilizer, and indocyanine green in an organic solvent, and removing the organic solvent.
  • Compositions comprising complexes in which the anticancer agent and indocyanine green are encapsulated in liposomes can be prepared through film hydration / extrusion.
  • the phosphatidylcholine and the stabilizing agent which is a material of the liposome are equally applicable to the inventions related to the manufacturing method mentioned above.
  • Phosphatidylcholine and a stabilizer may be dissolved in the organic solvent.
  • the organic solvent in step (a) for example, methanol (methanol), ethanol (ethanol), propanol (propanol), isopropanol (isopropanol), butanol (butanol), acetone (acetone), ether
  • It may be at least one selected from the group consisting of ether, benzene, chloroform, ethyl acetate, methylene chloride, hexane and cyclohexane, preferably Chloroform can be used.
  • the organic solvent is removed and dried to mix the anticancer agent in the cake prepared, and then hydrated to prepare a dispersion, and extruded on a porous polymer membrane to prepare a liposome containing the anticancer agent and indocyanine green.
  • the dispersion may be prepared by hydration with an isotonic solution, the isotonic solution may include, for example, glucose, trehalose, etc., the isotonic agent may be, for example, 1-10% (w / v), preferably To 3-7% (w / v).
  • the dispersion may be prepared by liposomes in the form of single or multi-lamellar vesicles by extruding the porous polymer membrane, wherein the porous polymer membrane may be, for example, a polycarbonate polymer membrane, and the pore diameter of the porous polymer membrane may be, for example. For example 10-1000 nm, preferably 50-200 nm.
  • the complex in which the anticancer agent and indocyanine green are encapsulated in liposomes is isolated.
  • the method used for removal may be used without limitation as long as the anticancer agent and indocyanine green can separate complexes encapsulated in liposomes and free indocyanine green and liposome surface by simply binding or exposing indocyanine green, For example, by passing through a dialysis membrane or using chromatography (eg, size exclusion chromatography, etc.), only complexes in which the desired indocyanine green is encapsulated in liposomes can be isolated.
  • chromatography eg, size exclusion chromatography, etc.
  • composition for treating cancer of the present invention may further include appropriate excipients and diluents commonly used in the manufacture of pharmaceutical compositions.
  • composition for treating cancer according to the present invention in the form of powder, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols and the like, oral preparations, suppositories, and sterile injectable solutions, respectively, according to a conventional method. Can be formulated and used.
  • Carriers, excipients, and diluents that may be included in the composition comprising the anticancer agent-indocyanine green-liposomal complex include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, maltitol, starch, glycerin, starch, and acacia rubber. , Alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil have.
  • diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants, etc. which are commonly used can be prepared.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient such as starch, calcium carbonate, sucrose in the polypeptide. ) Or lactose, gelatin and the like can be mixed.
  • lubricants such as magnesium styrate talc may also be used.
  • Liquid preparations for oral administration include suspensions, solvents, emulsions, and syrups.In addition to commonly used simple diluents such as water and liquid paraffin, various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included. Can be.
  • Formulations for non-oral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations, suppositories.
  • the non-aqueous preparation and suspending agent propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate and the like can be used.
  • a coloring agent what is permitted to add to a pharmaceutical product is used, for example, a cocoa powder, a peppermint brain, an aromatic acid, peppermint oil, a dragon brain, a cinnamon powder, etc. are used. These tablets do not exclude the appropriate coating of sugars, gelatin, and other necessities in the case of granules.
  • a pH adjuster, a buffer, a stabilizer, a preservative, etc. are added as needed, and it is made into a subcutaneous, intramuscular, intravenous injection by a conventional method.
  • the amount of the anticancer agent-indocyanine green liposome complex-containing composition of the present invention may vary depending on the age, sex, and weight of the patient, but is generally in an amount of 5 to 500 mg / kg, preferably in an amount of 100 to 250 mg / kg. It can be administered divided into 1 to 3 times a day, the dosage can be increased or decreased depending on the route of administration, the degree of disease, sex, weight, age and the like. Therefore, the above dosage does not limit the scope of the present invention in any aspect.
  • ICG insulin-derived neuropeptide
  • DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol) -2000]) as main lipids
  • ICG 250: X (M)
  • methanol dissolved in methanol at 1 mg / ml in a solution dissolved in chloroform in a molar ratio of 95: 5 to the required concentration
  • the ratio of DPPC and ICG in the hydration solution was 250: 1, 250: 4, 250: 8, 250: 16, 250: 32 and 250: 64, respectively.
  • the hydrated liposome solution was extruded to an average of 100 nm single or multi lamellar liposomes.
  • Dialysis membranes with a 100 kDa MWCO (molecular weight cut-off) were used for dialysis to remove trace amounts of free ICG and ICG adhering to the liposome surface, thereby preparing an ICG encapsulated liposome complex.
  • Example 2 In the method of Example 1, cislatin 1mg / ml aqueous solution was mixed and then hydrated when hydrating the lipid cake, and by the method of Example 1, the free ICG present in the cis-liposomal ICG solution and As a result of confirming the presence or absence of ICG exposed on the surface of the liposome, when the initial phosphatidylcholine: ICG ratio is 250: 4, it was confirmed that the ICG can be encapsulated in the cis-liposomal ICG to the maximum (FIG. 2).
  • ICG ratios of 250: 1, 250: 4 or 250: 8 were prepared and their hydrodynamic diameter, polydispersity index and As a result of measuring the zeta potential, it was confirmed that the physical properties of the complex did not change with or without cisplatin (FIG. 6).
  • the ICG concentrations of all Liposomal ICG and Free ICG of the Liposomal ICG complex prepared in Example 1 and the Cis-liposomal ICG complex prepared in Example 2 were adjusted to 5 ⁇ g / ml, and the Liposomal ICG complexes prepared in Examples 1 and 2 were used. And the Cis-liposomal ICG complex was irradiated with a laser of 808nm at 650mW for 3 minutes (81J, Joule), and measured the thermal effect caused by the total volume of liposome solution 100ul through a thermal imaging camera (FLIR).
  • FLIR thermal imaging camera
  • the measured photothermal effect is shown in FIG. 7. As disclosed in FIG. 7, it was confirmed that the Cis-liposomal ICG complex maximizes the photothermal effect with the same amount of ICG.
  • Cis-liposomal ICG prepared by the method of Example 2
  • Cis-liposomal ICG (HSPC) prepared by using phosphatidyl choline (HSPC)
  • Cis-liposomal ICG using DPPC Cis-liposomal ICG using DPPC
  • Cisplatin release ⁇ (LC-C) / (O-C) ⁇ * 100
  • Cisplatin concentration in solution from which liposomes were removed using centrifugal filter after LC Laser irradiation
  • Cisplatin concentration in solution from which liposomes were removed using centrifugal filter prior to C Laser irradiation
  • thermosensitive release can be implemented (Fig. 8).
  • HeLa cells (ATCC® CCL-2 TM) were prepared in an amount of 5000 Cells / 100 ⁇ l 1 Well. Hela cells were treated with Cis-liposomal ICG complex with lipid: ICG ratio of 250: 1 or 250: 4, lipid type of DPPC or HSPC, and cisplatin concentration of 11 uM at 5 ⁇ g / ml (based on ICG concentration), respectively. Afterwards, a laser of 808 nm and 650 mW was irradiated for 3 minutes. After irradiating the laser and removing liposomes including indocyanine green remaining in the cell culture after 30 minutes and incubating the cells for 24 hours, the apoptosis effect was measured by MTT assay.
  • Cis-liposomal ICG having an initial lipid: ICG ratio of 250: 4 has the highest stability in the bloodstream.
  • the complex prepared by Liposomal ICG and Cis-liposomal ICG with a lipid: ICG ratio of 250: 4 by the method of Examples 1 and 2 was concentrated to 400 ⁇ g / ml based on ICG concentration, and then 200 ⁇ l C57BL / 6
  • the rats were euthanized after 24 hours, the main organs were removed, mass was measured, the tissues were crushed, and 100ul of the crushed mixture was placed on a 96well plate to confirm the distribution of ICG in the organs.
  • the fluorescence intensity of the ICG contained in the tissue was measured using a fluorometer, the mass of the tissue was divided, and the ratios thereof were compared.
  • Liposomal ICG and Cis-liposomal ICG by the method of Examples 1 and 2 were concentrated to 400 ⁇ g / ml based on the ICG concentration of the complex prepared to have a lipid: ICG ratio of 250: 4, and then 200 ⁇ l to C57BL / 6 mouse Each injection was performed intravenously (the concentration of cisplatin was about 240 ⁇ g / ml), Free ICG was dissolved at 400 ⁇ g / ml, 200 ⁇ l was injected intravenously, and 5% glucose was injected intravenously. After 30 minutes, the 808nm laser was irradiated for 20 minutes at an intensity of 0.6 W / cm 2, and then visualized by varying the temperature distribution over time, and the maximum value of the temperature in the cancer tissue was measured.
  • Cis-liposomal ICG maintains high photothermal effect for a long time (FIG. 12).
  • mice treated with the above method were graphed by monitoring tumor size and survival at intervals of 2 days, and the mice were photographed before, after irradiation, 3, 7 and 20 days after irradiation.
  • composition for treating cancer according to the present invention exhibits a significant apoptosis effect by irradiating a therapeutically effective light to a complex comprising a liposome encapsulated with an anticancer agent and indocyanine green, thereby showing an excellent cancer treatment effect.
  • tumors can be removed without surgical intervention.
  • it may selectively exhibit apoptosis effect against cancer cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biochemistry (AREA)

Abstract

본 발명은 항암제 및 인도시아닌 그린이 캡슐화된 리포좀 복합체를 포함하는 암 치료용 조성물 및 이의 제조방법에 관한 것으로, 구체적으로는 리포좀, 항암제 및 인도시아닌그린을 포함하는 복합체를 포함하고, 치료적으로 유효한 광 조사시 발생하는 인도시아닌 그린에 의한 광열효과와 항암제에 의한 암 치료효능을 동시에 가지는 암 치료용 조성물 및 이를 제조할 수 있는 방법에 관한 것이다.

Description

항암제-인도시아닌 그린-리포좀 복합체를 포함하는 암 치료용 조성물
본 발명은 항암제 및 인도시아닌 그린이 캡슐화된 리포좀 복합체를 포함하는 암 치료용 조성물 및 이의 제조방법에 관한 것으로, 치료적으로 유효한 광 조사시, 인도시아닌 그린에 의해 광열치료효능을 나타내고, 복합체로부터 선택적으로 방출되는 항암제에 의해 암 치료 효능을 나타내는 것을 특징으로 하는 암 치료용 조성물 및 이를 제조할 수 있는 방법에 관한 것이다.
인도시아닌 그린(Indocianin green, ICG)은 근적외선 형광 다이(NIR)로, 미국 FDA(Food and Drug Administration)에서 림프계뿐 아니라 심장, 간 혈관 시스템의 진단에 사용 허가를 받은 물질이다. 특히, 인도시아닌 그린은 유방암의 조기 진단을 위한 전이성 림프노드의 이미징 및 감시림프절(sentinel lymph node)의 맵핑에 우수한 프로브로 알려져 있다.
이러한 인도시아닌 그린은 친수성이 낮고, 광안정성이 낮으며, 광자 수율이 낮고, 감도가 떨어지는 단점을 가지고 있다. 또한, 인도시아닌 그린은 비특이적 응집에 취약하고, 외부 광, 용매 및 온도 변화에 의해 화학적으로 분해되는 단점이 있으며, 낮은 분자량과 소수성 특징 때문에 혈청 단백질로 잘 흡수되어 빠르게 간을 거쳐 제거된다는 문제점이 있다.
이러한 단점을 극복하고자, 나노 물질 기반 인도시아닌 그린 프로브가 연구되어 왔으며, 나노파티클에 인도시아닌 그린을 포집하거나, 폴리머 등을 이용하여, 인도시아닌 그린의 in vivo 및 in vitro에서의 안정성을 증가시킨 연구가 있어왔다. 인도시아닌 그린을 나노파티클에 포집함으로써, 외부 광선 및 온도에 대한 물리화학적 안정이 현저히 증가되었다.
암 광치료는 광에 기반한 것으로, 암 치료시 위험하고 비용이 많이 드는 수술에 의하지 않고, 종양 부위에 광을 쪼여 암을 치료하는 방법이다.
광 치료법은 외과수술법에 비해 비파괴적이고 간단하며 부작용이 적다. 또한, 전신 마취가 불필요하고 환자의 고통도 거의 없으며, 안정과 회복을 위한 기간이 짧을 뿐만 아니라 여러 차례 반복 치료가 가능한 이점도 있다.
한편, 종양 부위에 발열기구를 삽입하여 단순히 가열하는 방식을 갖는 열에 의한 암 치료기술은 이미 오래 전에 시도된 바 있으나, 암세포와 정상세포의 식별이 불가능하여 암세포 주변의 정상세포들도 파괴되는 문제로 인해, 실제 임상에는 널리 적용되지 못하였다. 이에 반해, 광 치료법은 약물 치료법과 방사선 치료법의 단점을 모두 극복한 새로운 암 치료법이라 할 수 있다. 초기의 광 치료법은 광원에 따라 그 종류가 다양하나, 대부분 치료기간이 길고, 치료 부위의 경계면이 부정확하다는 단점을 가지고 있다.
예를 들어, 실리카 나노입자에 금을 코팅한 나노쉘과 근적외선을 결합한 광 치료기술 또는 단일벽 탄소나노튜브 (single wall carbon nanotube: SWCNT)를 근적외선과 결합한 광 치료기술이 선택적 암 치료를 위한 방법으로 사용될 수 있음이 제시되었으나, 이들은 체내 적용에 허가를 받은 물질이 아니어서 임상적 적용에 제한이 있고, 목적하는 열을 얻기 위해 매우 고강도의 근적외선을 사용하여야 하나 광원의 강도가 이렇게 높으면 정상세포가 나노쉘이나 SWCNT와 같은 발열제와 아주 가까이 있지 않더라도 손상될 수 있다는 문제점이 발생한다.
본 발명자들은 대한민국 특허 제10-2015-0068674호에서 인도시아닌 그린을 체내에 적용 가능한 리포좀과 결합시켜 이를 암 치료용 조성물에 적용한 암 치료용 조성물을 개발한 바 있다. 하지만 상기 조성물은 암 광치료만 적용가능하여 실제 항암효과가 낮아 높은 항암효과를 가지는 암 치료용 조성물을 개발할 필요가 있었다.
이러한 기술적 배경하에서, 본 출원의 발명자들은 인도시아닌 그린이 리포좀에 캡슐화되어 있는 복합체에 항암제를 추가로 포함할 경우, 치료적으로 유효한 광 조사에 의해 세포사멸을 유도할 수 있을 뿐만 아니라, 복합체로부터 선택적으로 방출되는 항암제에 의해 더욱 효과적으로 암 세포의 성장을 억제할 수 있는 암 치료용 조성물을 통해 종래의 문제점을 해결하고, 목적하는 암 치료 효과를 달성할 수 있음을 확인하고, 본 발명을 완성하였다.
발명의 요약
본 발명의 목적은 항암제 및 인도시아닌 그린이 캡슐화된 리포좀 복합체를 유효성분으로 함유하고, 치료적으로 유효한 광 조사시, 암 세포 광열치료효능과 항암제에 의한 암 치료효능을 동시에 가지는 암 치료용 조성물 및 이의 제조방법을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 포스파티딜콜린, 안정화제, 항암제 및 인도시아닌 그린을 원료로 하여 제조되고, 리포좀에 항암제 및 인도시아닌 그린이 갭슐화(encapsulation) 되어 있는, 복합체를 유효성분으로 함유하고, 치료적으로 유효한 광 조사시, 암 세포 광열치료효능과 항암제에 의한 암치료효능을 동시에 가지는 암 치료용 조성물을 제공한다.
본 발명은 또한, 다음 단계를 포함하는 리포좀에 항암제 및 인도시아닌 그린이 캡슐화(encapsulation)되어 있는 복합체의 제조방법을 제공한다:
a) 유기용매 중에 1종 이상의 포스파티딜콜린과 안정화제 및 인도시아닌 그린을 용해시키고, 유기용매를 제거하여 케익을 제조하는 단계;
(b) 상기 케익에 항암제를 혼합한 다음, 수화시켜 분산액을 제조하고, 다공성 고분자막에 압출시켜 항암제 및 인도시아닌 그린이 포함된 리포좀을 제조하는 단계; 및
(c) 상기 단계 (b)의 리포좀 중 항암제 및 인도시아닌 그린이 리포좀 내에 캡슐화된 복합체를 분리하는 단계.
도 1은 시스플라틴 및 인도시아닌 그린이 캡슐화된 리포좀 복합체를 제조하기 위한 혼합물 중 포스파티딜콜린과 ICG 비율에 따른 흡광도를 비교한 그래프이다;
도 2는 시스플라틴 및 인도시아닌 그린이 캡슐화된 리포좀 복합체를 제조하기 위한 혼합물 중 포스파티딜콜린과 ICG 비율에 따른 리포좀 당 형광세기를 비교한 그래프이다;
도 3은 시스플라틴 및 인도시아닌 그린이 캡슐화된 리포좀 복합체를 제조하기 위한 혼합물 중 시스플라틴의 농도를 고정한 상태에서 포스파티딜콜린과 ICG 비율에 따른 리포좀 내 인도시아닌 그린의 함유량을 리포좀 내 지질의 양을 기준으로 비교한 그래프이다;
도 4는 시스플라틴 및 인도시아닌 그린이 캡슐화된 리포좀 복합체를 제조하기 위한 혼합물 중 포스파티딜콜린 및 시스플라틴의 비율을 고정한 상태에서 ICG 비율에 따른 리포좀 내 시스플라틴의 함유량을 리포좀 내 지질의 양을 기준으로 비교한 그래프이다;
도 5의 (A)는 시스플라틴 및 인도시아닌 그린이 캡슐화된 리포좀 복합체를 제조하기 위한 혼합물 중 포스파티딜콜린 및 ICG의 비율을 고정한 상태에서 시스플라틴 비율에 따른 리포좀 내 인도시아닌 그린의 함유량을 리포좀 내 지질의 양을 기준으로 비교한 그래프이고, 도 5의 (B)는 시스플라틴 및 인도시아닌 그린이 캡슐화된 리포좀 복합체를 제조하기 위한 혼합물 중 포스파티딜콜린 및 ICG의 비율을 고정한 상태에서 시스플라틴 비율에 따른 리포좀 내 시스플라틴의 함유량을 리포좀 내 지질의 양을 기준으로 비교한 그래프이다.
도 6은 ICG만 포함된 리포좀 복합체와 시스플라틴 및 ICG가 캡슐화된 리포좀 복합체에서, 포스파티딜콜린과 ICG 비율에 따른 복합체의 물리적 특성을 비교한 것으로, (A)는 수동력학적 평균 직경을 측정한 것이고, (B)는 다분산지수(Polydispersity Index, PDI)를 측정한 것이며, (C)는 제타 전위(zeta potential)을 측정한 것이다;
도 7은 ICG만 캡슐화된 리포좀 복합체, ICG만 리포좀 복합체에 캡슐화되어 있고 시스플라틴은 리포좀 외부에 존재하는 상태와 시스플라틴 및 ICG가 캡슐화된 리포좀 복합체의 광열효과를 측정한 그래프이다;
도 8은 DPPC, 시스플라틴 및 인도시아닌 그린이 캡슐화된 리포좀 복합체와 HSPC, 시스플라틴 및 인도시아닌 그린이 캡슐화된 리포좀 복합체에서 광열효과에 의한 시스플라틴의 방출효율을 측정한 그래프이다;
도 9는 다양한 농도의 시스플라틴과 ICG의 농도에서 광열효과에 의한 세포사멸효과와, 광열효과에 의한 시스플라틴의 방출에 따른 세포사멸효과를 측정한 그래프이다;
도 10은 liposomal ICG와 시스플라틴이 결합된 liposomal ICG에서, 포스파티딜콜린과 ICG의 비율에 따른 혈류 내 안정성을 측정한 그래프이다;
도 11은 liposomal ICG와 시스플라틴이 결합된 liposomal ICG를 체내에 주입한 다음, 24시간 후, 주요 기관에 축적된 양을 비교한 것이다;
도 12는 liposomal ICG와 시스플라틴이 결합된 liposomal ICG를 체내에 주입한 다음, 근적외선 조사 후, 광열효과를 비교한 것이다;
도 13은 liposomal ICG와 시스플라틴이 결합된 liposomal ICG를 체내에 주입한 다음, 근적외선 조사 후, 암 치료효과를 비교한 것으로, (A)는 다양한 실험군 및 대조군에서 쥐의 생존 일수 및 암 크기를 측정한 것이고, (B)는 다양한 실험군 및 대조군 생쥐의 암 발생부위를 촬영한 것이다;
도 14는 본 발명의 항암제-ICG-리포좀 복합체가 치료적으로 유효한 광을 조사 받았을 때에 나타나는 광열효과 및 항암효과를 도식화 한 것이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 일 관점에서, 포스파티딜콜린, 안정화제, 항암제 및 인도시아닌 그린을 원료로 하여 제조되고, 리포좀에 항암제 및 인도시아닌 그린이 캡슐화(encapsulation) 되어 있는, 복합체를 유효성분으로 함유하고, 치료적으로 유효한 광 조사시, 암 세포 광열치료효능과 항암제에 의한 암 치료효능을 동시에 가지는 암 치료용 조성물에 관한 것이다.
본 출원의 발명자들은 항암제 및 인도시아닌 그린이 캡슐화된 리포좀 복합체를 통해 인도시아닌 그린의 낮은 안정성과 관련된 단점을 극복함으로써 인도시아닌 그린의 안정성을 향상시킬 수 있을 뿐 아니라, 치료적으로 유효한 광 조사시 방출되는 항암제와 인도시아닌 그린에 의한 세포사멸 효과로 암 치료가 가능함을 확인하였다.
본 명세서에서 광 조사에 의한 세포사멸은 광치료(phototherapy)에 의해 달성되는 것으로, 광치료는 부작용이 적고, 비침습적이며, 특정 파장의 광에 특이적이기 때문에, 암치료에 널리 사용되는 임상 방법 중 하나이다. 광치료는 광역치료 (photodynamic therapy, PDT) 및 광열치료 (photothermal therapy, PTT)를 포함하며, 이를 위해 각각 활성 산소종(reactive oxygen species, ROS)과 열에너지 발생을 위한 빛과 광민감제(photosensitizer)를 포함한 제제가 필요하다.
본 발명에 있어서, 상기 광열치료효능은 치료적으로 유효한 광 조사시, 인도시아닌 그린에 의해 암 세포의 사멸을 유도하는 것임을 특징으로 하는 암 치료용 조성물.
본 출원의 발명자들은 특히, 본 발명에 따른 항암제 및 인도시아닌 그린이 캡슐화된 리포좀 복합체에 광 조사시 우수한 광열 치료 효과가 나타날 수 있음을 확인하였다. 이러한 효과는 암세포에 대한 세포 독성을 높여 암 치료 효과를 나타낼 수 있음을 확인하였다.
하나의 실시예에서, 상기 리포좀은 포스파티딜콜린 및 안정화제를 포함하여 제조되는데, 단일 라멜라 (unilamellar) 또는 복합 라멜라 (multilamellar) 형태의 리포좀이 사용될 수 있다. 상기 포스파티딜콜린은 콜린을 도입한 인지질의 일종으로, 포화 또는 불포화 지방산의 소수성 꼬리 (hydrophobic tail) 및 콜린 친수성 머리 (hydrophilic head)를 포함하며, 예를 들어 L-α-phosphatidylcholine (Egg, Chicken) , L-α-phosphatidylcholine, hydrogenated (Egg, Chicken), L-α-phosphatidylcholine (Soy), L-α-phosphatidylcholine, hydrogenated (Soy) 1,2-didecanoyl-sn-glycero-3-phosphocholine (10:0 PC), 1,2-diundecanoyl-sn-glycero-3-phosphocholine (11:0 PC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (12:0 PC (DLPC)), 1,2-ditridecanoyl-sn-glycero-3-phosphocholine (13:0 PC), 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine (15:0 PC), 1,2-diphytanoyl-sn-glycero-3-phosphocholine (4ME 16:0 PC), 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (17:0 PC), 1,2-dinonadecanoyl-sn-glycero-3-phosphocholine (19:0 PC), 1,2-diarachidoyl-sn-glycero-3-phosphocholine (20:0 PC), 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (14:1 (Δ9-Cis) PC), 1,2-dimyristelaidoyl-sn-glycero-3-phosphocholine (14:1 (Δ9-Trans) PC), 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (16:1 (Δ9-Cis) PC), 1,2-dipalmitelaidoyl-sn-glycero-3-phosphocholine (16:1 (Δ9-Trans) PC), 1,2-dipetroselenoyl-sn-glycero-3-phosphocholine (18:1 (Δ6-Cis) PC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (18:1 (Δ9-Cis) PC (DOPC)), 1,2-dielaidoyl-sn-glycero-3-phosphocholine (18:1 (Δ9-Trans) PC), 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (18:2 (Cis) PC), 1,2-dilinolenoyl-sn-glycero-3-phosphocholine (18:3 (Cis) PC), 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (20:1 (Cis) PC), DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), HSPC(Hydrogenated soybean phosphatidylcholine) 및 DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine)로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 발명자들은 리포좀이 결합되지 않은 자유 ICG (공지의 인도시아닌 그린 단독 사용) 및 리포좀 표면에 결합된 ICG에 비해 리포좀이 캡슐화된 ICG에서 향상된 광열 효과가 나타남을 확인하였다. 이를 바탕으로, 본 명세서에서 사용되는 캡슐화는 인도시아닌 그린 및 항암제가 실질적으로 리포좀 내 공간에만 존재하여 리포좀-ICG 복합체를 형성하는 것을 의미하며, 리포좀이 결합되지 않은 자유 ICG (free ICG) 또는 리포좀 표면에만 결합된 ICG는 제거되어 실질적으로 존재하지 않는 것을 의미한다.
본 발명에 있어서, 상기 포스파티딜콜린은 바람직하게 DPPC일 수 있다.
본 발명에 있어서, 상기 안정화제는 지질, 지질 유도체, 단백질 또는 펩타이드 등일 수 있고, 구체적으로 폴리에틸렌글리콜이 컨쥬게이션된 포스파티딜에탄올아민일 수 있다. 상기 폴리에틸렌글리콜은 안정화에 적합한 정도의 크기라면 제한없이 사용될 수 있으나, 예를 들어 분자량이 약 1, 000 내지 10,000, 바람직하게 2,000 내지 8, 000, 더욱 바람직하게 2,000 내지 6, 000일 수 있다.
본 발명에 있어서, 상기 포스파티딜에탄올아민은 모노 또는 디 불포화지방산일 수 있으며, 예를 들어 DMPE (dimyristoylphosphatidylethanolamine), DPPE (dipalmitoylphosphatidylethanolamine), DOPE (dioleoylphosphatidylethanolamine), DSPE (distearoylphosphatidyl-ethanolamine) 및 DSPE-PEG2000 (distearoylphosphatidyl-ethanolamine-polyethylene glycole-2000)으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 포스파티딜콜린 및 안정화제는 인도시아닌 그린과 함께 광열 효과를 내기에 적합한 리포좀 형성에 적합한 정도로 포함될 수 있으며, 예를 들어 포스파티딜콜린 및 안정화제의 몰비가 약 85:15 내지 약 98:2, 바람직하게 약 90:10 내지 95:5일 수 있다. 상기 몰비 범위 내에서, 생체 내 리포좀이 가장 안정되어 수명을 최대화 시킬 수 있다.
본 발명에 있어서, 상기 혼합물 중 포스파티딜콜린과 인도시아닌 그린 및 항암제의 함량은 치료를 위한 광열 효과를 내기에 적합한 정도라면 제한되지 않으나, 예를 들어 250:0.1-32:1-200의 몰비로 포함될 수 있다. 바람직하게, 상기 혼합물 중 포스파티딜콜린과 인도시아닌 그린 및 항암제의 함량은 250:0.5-16:5-50의 몰비로 포함될 수 있고, 가장 바람직하게는 상기 혼합물 중 포스파티딜콜린과 인도시아닌 그린 및 항암제의 함량은 250:7:11=Total lipid:ICG:Cisplatin의 몰비로 포함될 수 있으며. 해당 범위 전체에서 목적하는 광열 효과를 나타낼 수 있다.
본 출원의 발명자들은 특히, 해당 범위의 몰비로 포스파티딜콜린과 인도시아닌 그린 및 항암제를 포함하는 경우, 인도시아닌 그린 및 항암제가 리포좀 내부에서 최적으로 분산되어 캡슐화된 복합체를 형성할 수 있으며, 암 치료에 유효한 광열 효과를 나타낼 수 있는 최적 흡광도를 가짐으로써, 유의한 광열 효과를 나타냄을 확인하였다.
상기 혼합물에서 기재된 범위보다 인도시아닌 그린 및 항암제의 포함량이 적으면 목적하는 정도의 광 반응 효과 및 암 치료 효과를 기대할 수 없고, 상대적으로 리포좀의 양이 많아져 리포좀 제조에 소요되는 비용 및 시간을 고려하였을 때 매우 비효율적이며, 기재된 범위보다 인도시아닌 그린 및 항암제의 포함량이 많으면, 오히려 리포좀 내에서 응집이 일어나거나, 더 이상 광에 반응하지 않는 정도의 임계치에 도달하게 되어 상승적 광열 효과 기대할 수 없다. 특히, 포스파티딜콜린과 인도시아닌 그린이 250:7의 몰비를 가지는 경우 적은 양의 리포좀으로 가장 우수한 광열 효과를 나타냄을 확인하였다(도 3). 이는 상기 혼합물에서 250:7의 몰비로 포함된 포스파티딜콜린과 인도시아닌 그린으로부터 제조된 리포좀 복합체에 인도시아닌 그린이 최대한 캡슐화 되어 있기 때문일 것으로 판단된다. 또한 250:7의 몰비로 포함된 포스파티딜콜린과 인도시아닌 그린으로부터 제조된 리포좀 복합체를 합성할 때 시스플라틴은 초기 농도가 0.25mg/ml이상이면 그 농도에 관계없이 리포좀 내에 최종적으로 250:7:11=Total lipid:ICG:Cisplatin의 비율로 캡슐화 되는데 비해(도 4), 합성 시 시스플라틴의 농도가 0.25mg/ml보다 떨어질 경우, 예를 들어 리포좀 합성 시 시스플라틴이 0.1mg/ml의 농도일 경우 리포좀에 캡슐화되는 인도시아닌 그린과 시스플라틴의 함께 양이 줄어드는 것을 확인하였다(도 5).
본 발명의 항암제-인도시아닌 그린-리포좀 복합체는 치료적으로 유효한 광 조사시, 인도시아닌 그린이 광열효과를 발생하여 세포사멸을 유도할 뿐만 아니라, 리포좀의 이중막 투과성(bilayer permeability)을 변화시켜 리포좀 내부에 포함된 항암제의 방출을 촉진시키고, 이 때 방출된 항암제가 레이저를 조사한 선택적인 영역에서 암 세포 치료효능을 발휘하게 된다. 즉, 본 발명의 항암제-인도시아닌 그린-리포좀 복합체는 치료적으로 유효한 광 조사시에만 복합체에서 항암제가 방출된다. 이를 통해 기존의 리포좀 치료제보다 뛰어난 항암효과를 발휘하고, 상대적으로 항암제에 의한 부작용을 최소화할 수 있다는 것을 확인하였다.
하나의 실시예에서, 상기 복합체에 근적외선 조사시 열이 발생할 수 있으며, 상기 근적외선은 700-900nm에서 100 mW 이상의 전력으로 3분 이상 조사될 수 있다. 이 때, 열을 발생시키는 전력은 예를 들어 100 mW 이상, 1 W 이하일 수 있으며, 바람직하게 400mW 이상 800mW 이하일 수 있다. 광 조사 시간은 3분 이상 30분 이하일 수 있다. 전술한 범위 보다 낮은 광 조사 조건에서는 인도시아닌 그린이 효과적으로 광열효과 발생에 소모되지 않으며, 높은 광 조사 조건에서는 주변 정상세포가 광 독성에 노출되어 손상이 유발될 수 있다.
이 때 발생하는 열은 예를 들어, 90% 이상의 세포사멸, 바람직하게 95% 이상의 세포사멸이 일어날 수 있는 약 45℃ 이상의 온도, 바람직하게 50℃ 이상의 온도, 더욱 바람직하게 60℃ 이상의 온도일 수 있다.
상기 열을 내는 복합체 중 인도시아닌 그린은 예를 들어, 1-30 ug/ml, 바람직하게 5-10 ug/ml의 농도로 포함할 수 있고, 항암제는 예를 들어, 1-50ug/ml, 바람직하게는 1-20ug/ml의 농도로 포함될 수 있다. 본 출원의 발명자들은 전술한 농도 범위의 인도시아닌 그린 및 항암제를 포함하는 리포좀 복합체에 근적외선 조사시 95% 이상의 세포사멸이 일어날 수 있는 10℃ 이상의 온도 상승을 나타내는 정도로 열이 발생할 수 있음을 확인하였다.
특히, 종양이 발생한 림프절 중 인도시아닌 그린 및 항암제를 포함하는 리포좀 복합체의 축적량이 높을수록 열 발생량 역시 높아져, 주요 세포 파괴에 충분한 정도 이상의 열이 발생하여 세포사멸이 일어날 수 있음을 확인하였다. 이를 통해, FDA 허가받은 물질에 기반하여 개발된 인도시아닌 그린 및 항암제를 포함하는 리포좀 복합체는 큰 임상적 잠재성을 가질 수 있음을 확인하였다.
하나의 실시예에서, 상기 복합체는 인도시아닌 그린 및 항암제가 캡슐화된 리포좀의 종류 및 크기에 따라 크기 (직경)이 결정될 수 있으며, 복합체의 평균 수동력학적 직경(hydrodynamic diameter, HD)은 예를 들어, 50-200nm, 바람직하게 100-150 nm 일 수 있다.
또 다른 실시예에서, 상기 복합체는 낮은 정도의 다분산지수를 나타내어 분자량 및 구조가 균일함을 확인하였는데, 이때 상기 다분산지수는 0.2 이하일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 복합체의 제타 전위(zeta potential)은 -50-0mv인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 항암제는 수용성 저분자 화합물(small molecule)이면 제한 없이 사용가능하나, 바람직하게는 핵산과 공유결합을 형성함으로써 DNA의 합성을 억제할 수 있는 알킬화제일 수 있다.
본 발명에 있어서, 상기 알킬화제는 메클로레타민(Mechlorethamine), 시클로포스파미드(Cyclophosphamide), 이포스포아미드(Ifosfamide), 멜파란(Melphalan), 클로람부실(Chlorambucil), 부슬판(Busulfan), 치오테파(Thiotepa), 니트로소요소(nitrosourea) 및 백금화합물로 구성된 군에서 선택되는 1종 이상일 수 있고, 가장 바람직하게는 시스플라틴(cisplatin) 또는 카보플라틴일 수 있다.
본 발명에 있어서, '암' 및 '종양'은 비제어적인 세포 성장을 전형적인 특징으로 하는, 포유류에서의 생리학적 상태를 의미하거나 또는 설명하는 것으로, 본 발명의 조성물에 의해 유방, 심장, 폐, 소장, 대장, 비장, 신장, 방광, 두경부, 난소, 전립선, 뇌, 췌장, 피부, 뼈, 골수, 혈액, 흉선, 자궁, 정소, 자궁경부 및 간의 종양과 같은 종양 또는 전이성 종양이 치료될 수 있다.
이를 바탕으로, 본 발명은 다음의 단계를 포함하는 암 치료방법을 제공한다:
(a) 항암제 및 인도시아닌 그린이 리포좀에 캡슐화되어 있는 인도시아닌 그린-리포좀 복합체를 환자에 투여하는 단계; 및
(b) 종양 부위에 축적된 상기 (a) 단계에서 투여된 복합체에 치료적으로 유효한 광을 조사하는 단계.
다른 관점에서, 본 발명은 리포좀에 항암제 및 인도시아닌 그린이 캡슐화(encapsulation)되어 있는 복합체의 제조방법에 관한 것이다.
본 발명에 따른 제조방법은 바람직하게는 하기의 단계를 포함하는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다:
(a) 유기용매 중에 1종 이상의 포스파티딜콜린과 안정화제 및 인도시아닌 그린을 용해시켜 이의 혼합물을 제조하고, 유기용매를 제거하여 케익을 제조하는 단계;
(b) 상기 케익에 항암제를 혼합한 다음, 수화시켜 분산액을 제조하고, 다공성 고분자막에 압출시켜 항암제 및 인도시아닌 그린이 포함된 리포좀을 제조하는 단계; 및
(c) 상기 단계 (b)의 리포좀 중 항암제 및 인도시아닌 그린이 리포좀 내에 캡슐화된 복합체를 분리하는 단계.
본 발명에 따른 제조방법에서 단계 (a)는 유기용매 중에 1종 이상의 포스파티딜콜린과 안정화제 및 인도시아닌 그린을 용해시키고 유기용매를 제거하여 케익을 제조하는 단계이다. 항암제 및 인도시아닌 그린이 리포좀에 캡슐화되어 있는 복합체를 포함한 조성물은 필름 수화/압출법을 통해 제조될 수 있다.
본 발명에 있어서, 상기 리포좀의 재료가 되는 포스파티딜콜린 및 안정화제는 앞서 언급한 내용이 제조방법과 관련된 발명에도 동일하게 적용된다. 상기 유기용매에 포스파티딜콜린 및 안정화제를 용해시킬 수 있다.
본 발명에 있어서, 상기 단계 (a)에서 유기용매는 예를 들어, 메탄올(methanol), 에탄올(ethanol), 프로판올(propanol), 이소프로판올(isopropanol), 부탄올(butanol), 아세톤(acetone), 에테르(ether), 벤젠(benzene), 클로로포름(chloroform), 에틸아세테이트(ethyl acetate), 메틸렌클로라이드(methylene chloride), 헥산(hexane) 및 시클로헥산(cyclohexane)으로 이루어진 군에서 선택된 1종 이상일 수 있으며, 바람직하게 클로로포름을 사용할 수 있다.
이후 (b) 유기용매를 제거하고 건조시켜 제조된 케익에 항암제를 혼합한 다음, 수화시켜 분산액을 제조하고, 다공성 고분자막에 압출시켜 항암제 및 인도시아닌 그린이 포함된 리포좀을 제조하는 단계를 거친다. 상기 분산액은 등장액으로 수화시켜 제조될 수 있는데, 상기 등장액은 등장화제로 예를 들어, 글루코스, 트레할로스 등을 포함할 수 있으며, 등장화제는 예를 들어, 1-10% (w/v), 바람직하게 3-7 % (w/v)의 농도로 포함될 수 있다.
상기 분산액은 다공성 고분자막에 압출시켜 단일 또 멀티 라멜라 소포(vesicle) 형태의 리포좀으로 제조될 수 있으며, 이 때 사용되는 다공성 고분자막은 예를 들어 폴리카보네이트 고분자막일 수 있고, 다공성 고분자막의 공극 직경은 예를 들어 10∼1000 nm, 바람직하게 50∼200 nm일 수 있다.
다음 단계 (c)에서 항암제 및 인도시아닌 그린이 리포좀 내에 캡슐화된 복합체를 분리한다. 제거에 사용되는 방법은 항암제 및 인도시아닌 그린이 리포좀 내에 캡슐화된 복합체와 자유 인도시아닌 그린 및 리포좀 표면에 단순히 결합하거나 노출된 인도시아닌 그린을 분리할 수 있는 방법이라면 제한없이 사용될 수 있으며, 예를 들어 투석 막에 통과시키거나, 크로마토그래피 (예를 들어, 크기 배제 크로마토그래피 등)를 사용하여, 목적하는 인도시아닌 그린이 리포좀 내에 캡슐화된 복합체만을 분리할 수 있다.
본 발명의 암 치료용 조성물은 약학적 조성물의 제조에 통상적으로 사용하는 적절한 부형제 및 희석제를 더 포함할 수 있다. 또한, 본 발명에 따른 암 치료용 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다.
상기 항암제-인도시아닌 그린-리포좀 복합체를 포함하는 조성물에 포함될 수 있는 담체, 부형제, 희석제로는 락토즈, 덱스트로스, 슈크로스, 솔비톨, 만니톨, 자일리톨, 말티톨, 전분, 글리세린, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다.
제제화할 경우에는 보통 사용되는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제할 수 있다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 폴리펩타이드에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(calciumcarbonate), 슈크로스(sucrose) 또는 락토오스 (lactose), 젤라틴 등을 섞어 조제할 수 있다. 또한 단순한 부형제 이 외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용할 수 있다. 경구투여를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비 경구투여를 위한 제제에는 멸균된 수용액, 비수용성제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수용성제제, 현탁제로는 프로필렌글리콜 (propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(Tween) 61, 카카오지, 라우리지, 글리세로제라틴 등이 사용될 수 있다. 또한, 착색제로서는 의약품에 첨가하는 것이 허가되어 있는 것이, 교미교취제로서는 예를 들면 코코아 분말, 박하뇌, 방향산, 박하유, 용뇌, 계피 분말 등이 사용된다. 이들의 정제에는 과립제의 경우 당, 젤라틴, 기타 필요에 따라 적절하게 코팅하는 것을 배제하는 것은 아니다.
또한, 본 발명의 조성물을 주사제로 조제하는 경우에는 필요에 따라, pH 조정제, 완충제, 안정화제, 보존제 등을 첨가하고, 통상적인 방법에 의해 피하, 근육내, 정맥 주사제로 한다.
본 발명의 항암제-인도시아닌 그린-리포좀 복합체 함유 조성물의 사용량은 환자의 나이, 성별, 체중에 따라 달라질 수 있으나, 일반적으로 5~500mg/kg의 양, 바람직하게는 100~250mg/kg의 양을 1일 1~3회로 나누어 투여할 수 있고, 그 투여량은 투여경로, 질병의 정도, 성별, 체중, 나이 등에 따라서 증감될 수 있다. 따라서, 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: Liposomal ICG의 제조
ICG (IR-25, laser grade pure)는 Acros Organics에서 입수하였다. 주성분 지질로 DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine와 DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000])을 95:5의 몰비율로 혼합하여 클로로포름에 녹인 용액에 1mg/ml로 메탄올에 녹인 인도시아닌 그린 (지질 몰농도 총합: ICG = 250:X (M)) 을 필요한 농도만큼 혼합하고 유기용매를 완전히 증발시킨 후 플라스크 바닥에 생성된 지질 케익을 DSPE-PEG2000 0.672mg당 5% 글루코스 수용액 2ml로 수화(hydration)하였다.
이 때, 수화 용액 중 조성은 DPPC와 ICG의 비율이 각각 250:1, 250:4, 250:8, 250:16, 250:32 및 250:64 이었다.
0.1um 폴리카보네이트 막을 이용해 수화 완료한 리포좀 용액을 평균 100nm의 단일 또는 멀티 라멜라 리포좀이 되도록 압출하였다. 압출을 완료한 100nm 단일 또는 멀티 라멜라 리포좀 용액을 Sephadex G-50이 채워진 컬럼을 통과시켜, 크기 배제 크로마토그래피 (Size-exclusion chromatography) 기법을 이용해 리포좀에 포함되지 않은 ICG와 ICG가 함유된 리포좀을 분리한다. 100kDa MWCO (molecular weight cut-off)를 갖는 투석막 (dialysis membrane)을 이용해 투석하여 미량 존재하는 자유 ICG (Free ICG)와 리포좀 표면에 붙어 있는 ICG를 제거하고, ICG가 캡슐화된 리포좀 복합체를 제조하였다.
ICG가 리포좀에 캡슐화되어 생기는 분산효과로 인한 형광세기 증가 및 흡광도 변화를 이용해, 리포좀 ICG 용액에 존재 하는 자유 ICG 및 리포좀 표면에 노출된 ICG의 유무를 확인하였다.
그 결과, 제조 단계에서 포스파티딜콜린:ICG 비율이 250:4 이하일 때 ICG가 리포좀 내에 안정적으로 분포하며 고르게 분산되어 존재한다는 것을 확인할 수 있었다. 또한 제조 단계 포스파티딜콜린:ICG 비율이 250:4 일 때, 리포좀 당 형광세기가 가장 큰 것을 확인하였다(도 1, 도 2).
실시예 2: Cisplatin loaded Liposomal ICG(Cis-liposomal ICG)의 제조
실시예 1의 방법에서, lipid 케익을 수화시킬 때 cisplatin 1mg/ml 수용액을 혼합한 다음 수화시켜 Cis-liposomal ICG를 제조하였고, 실시예 1의 방법으로, cis-liposomal ICG 용액에 존재하는 자유 ICG 및 리포좀 표면에 노출된 ICG의 유무를 확인한 결과, 초기 포스파티딜콜린:ICG 비율이 250:4일 때, cis-liposomal ICG에 ICG가 최대로 캡슐화 될 수 있음을 확인할 수 있었다(도 2).
그 다음에는 상기의 방법으로 Cis-liposomal ICG를 제조함에 있어서, 포스파티딜콜린:ICG:시스플라틴의 최적화된 몰 비율을 도출하기 위하여, 수화(Hydration) 시 시스플라틴의 농도를 1mg/ml로 고정하고, 포스파티딜콜린과 ICG의 비율을 달리하여, 리포좀을 구성하는 포스파티딜콜린과 DSPE-PEG200 중 포스파티딜콜린의 농도를 알 수 있는 Stewart assay를 통해 자유 ICG를 제거한 리포좀-ICG 복합체에서 포스파티딜콜린의 농도를 구한 {(ICG 농도)/(전체 포스파티딜콜린 농도)*100/95 }결과, 제조단계 Total lipid(전체 지질) :ICG 비율이 250:4인 경우, ICG의 loading efficiency가 최대임을 확인할 수 있었다(도 3).
상기 방법으로 실험을 수행하되, 포스파티딜콜린과 시스플라틴의 비율을 고정하고, ICG의 비율을 달리하였을 때, 최종산물의 포스파티틸 콜린의 농도를 stewart awway를 통해 계산하고, 최종산물의 시스플라틴 농도를 ICP-MS를 통해 도출한 결과, 적어도 Total lipid(전체 지질) :ICG의 비율이 250:0 ~ 250:8인 범위 내에서는 ICG의 비율에 상관 없이 일정한 비율의 시스플라틴이 리포좀 내에 캡슐화 되는 것을 확인할 수 있었다(도 4).
상기 방법으로 실험을 수행하되, 포스파티딜콜린과 ICG의 비율을 고정하고, 시스플라틴의 비율을 달리하였을 때, 최종산물의 시스플라틴 농도를 ICP-MS를 통해 도출한 결과, 시스플라틴의 농도가 0.25mg/ml 이상이면 시스플라틴과 ICG를 최대효율로 loading 가능하다는 것을 확인할 수 있었다(도 5).
또한, 포스파티딜콜린:ICG 비율이 250:1, 250:4 또는 250:8인 liposomal ICG와 Cis-liposomal ICG를 제작한 다음, 이들의 수동력학적 직경(hydrodynamic diameter), 다분산지수(polydispersity index) 및 제타전위(zeta potential)을 측정한 결과, 시스플라틴의 유무에 의해 상기 복합체의 물리적 특성이 변화하지 않는다는 것을 확인할 수 있었다(도 6).
시험예 1:Cis-liposomal ICG의 광열효과
실시예 1에서 제조된 Liposomal ICG 복합체와 실시예 2에서 제조한 Cis-liposomal ICG 복합체 중 모든 Liposomal ICG와 Free ICG의 ICG 농도를 5μg/ml에 맞추었고, 실시예 1 및 2에서 제조된 Liposomal ICG 복합체 및 Cis-liposomal ICG 복합체에 808nm의 레이저를 650mW로 3분간 조사하고(81J, Joule), 열화상카메라(FLIR)를 통해 리포좀 용액 총 부피 100ul에 의해 발생하는 광열효과를 측정하였다.
측정된 광열 효과를 도 7에 나타내었다. 도 7에 개시된 바와 같이, Cis-liposomal ICG 복합체가 같은 양의 ICG로 광열효과를 극대화하는 것을 확인할 수 있었다.
또한, 상기 실시예2의 방법으로 Cis-liposomal ICG를 제조하되, 포스파티딜 콜린을 HSPC를 이용하여 제조한 Cis-liposomal ICG(HSPC)와 DPPC를 이용한 Cis-liposomal ICG에서, ICG의 광열효과로 인해 시스플라틴이 리포좀 외부로 방출되는 양을 하기의 식으로 측정하였다.
시스플라틴 방출량={(LC-C)/(O-C)}*100
LC=Laser irradiation 이후에 centrifugal filter를 사용하여 리포좀을 제거한 용액의 시스플라틴의 농도
C=Laser irradiation 이전에 centrifugal filter를 사용하여 리포좀을 제거한 용액의 시스플라틴의 농도
O=Laser irradiation 이전에 리포좀을 포함한 전체 용액의 시스플라틴의 농도
그 결과, DPPC를 이용할 경우, thermosensitive release를 구현할 수 있는 것을 확인하였다(도 8).
시험예 2: Cis-liposomal ICG의 세포 사멸 효과
HeLa 세포 (ATCC® CCL-2™)를 5000 Cells/100μl 1 Well의 양으로 준비하였다. Hela 세포에 지질:ICG비율이 250:1 또는 250:4이고, 지질의 종류가 DPPC 또는 HSPC이며, 시스플라틴 농도가 11uM인 Cis-liposomal ICG 복합체를 5 μg/ml (ICG의 농도 기준)로 각각 처리한 뒤, 808nm, 650mW의 레이져를 3분 동안 조사하였다. 레이저를 조사하고 30분 이후에 세포 배양액 내에 잔존하는 인도시아닌 그린을 포함한 리포좀을 제거하고 24시간 동안 세포를 배양한 후, MTT Assay를 통해 세포사멸 효과를 측정하였다.
그 결과를 도 9에 나타내었다. 도 9에 개시된 바와 같이, DPPC를 포함하고, 제조 시 지질:ICG 비율이 250:4인 시스플라틴 함유 복합체(최종적으로 지질:ICG:시스플라틴의 몰 비율이 250:7:11) 에서 가장 향상된 세포사멸 효과를 나타냄을 확인하였다.
시험예 3: Cis-liposomal ICG의 생체 내 안정성 및 축적 장소 확인
실시예 1 및 2의 방법으로 Liposomal ICG와 Cis-liposomal ICG를 초기 lipid:ICG:시스플라틴 비율을 250:1:11, 250:4:11 및 250:8:11 로 제조한 복합체를 ICG 농도 기준 100μg/ml이 되도록 농축한 다음, 200μl을 C57BL/6 mouse에 각각 정맥주사하여, 30분, 2시간, 6시간, 12시간 및 24시간 후의 정맥혈을 채취하여, 형광세기를 측정하여 혈중 ICG의 양을 측정하였다.
그 결과, 도 10에 개시된 바와 같이, 초기 lipid:ICG 비율이 250:4인 Cis-liposomal ICG의 혈류 내 안정성이 가장 높은 것을 확인하였다.
또한, 실시예 1 및 2의 방법으로 Liposomal ICG와 Cis-liposomal ICG를 lipid:ICG 비율이 250:4를 가지도록 제조한 복합체를 ICG 농도 기준 400μg/ml이 되도록 농축한 다음, 200μl을 C57BL/6 mouse에 각각 정맥주사 한 다음, 24시간 후에 쥐를 안락사하고, 장기내 ICG의 분포를 확인하기 위하여, 주요 장기를 적출하고 질량을 측정한 다음, 조직을 파쇄하고, 파쇄된 혼합물 100ul을 96well plate에 옮기고, 형광측정기를 이용해 조직 내에 포함된 ICG의 형광세기를 측정하여, 해당 조직의 질량을 나눈 뒤, 그 비율을 각각 비교하였다.
그 결과, 도 11에 개시된 바와 같이, Free ICG는 신장, 간, 폐, 종양, 비장, 심장, 뇌의 순서로 축적되고, Liposomal ICG의 경우에는 비장, 간, 종양, 폐, 신장, 심장, 뇌 순서로 축적되며, Cis-liposomal ICG의 경우에는 간=비장, 종양, 신장, 폐, 심장, 뇌 순서로 축적되는 것을 확인할 수 있었다.
시험예 4: Cis-liposomal ICG의 생체 내 광열효과 및 종양 치료효과 확인
실시예 1 및 2의 방법으로 Liposomal ICG와 Cis-liposomal ICG를 lipid:ICG 비율이 250:4를 가지도록 제조한 복합체를 ICG 농도 기준 400μg/ml이 되도록 농축한 다음, 200μl을 C57BL/6 mouse에 각각 정맥주사 하였고(이 때 시스플라틴의 주입 시 농도는 약 240μg/ml 임), Free ICG는 400μg/ml 농도로 녹인 다음, 200μl을 정맥주사 하였으며, 5% glucose는 200μl를 정맥주사 하였다. 30분 뒤, 808nm laser를 0.6W/cm2의 세기로 20분간 irradiation한 다음, 시간마다 변화하는 온도 분포를 시각화 하고, 암 조직 내 온도의 최대값을 측정하였다.
그 결과, 동일양을 ICG를 기준으로 정맥주사 하였을 때, Cis-liposomal ICG가 높은 광열효과를 오래 유지하는 것을 확인하였다(도 12).
또한, 상기 방법으로 처치한 생쥐들을 2일 간격으로 tumor size와 생존여부를 모니터링 하여 이를 그래프화 하고, 레이저 조사 전, 조사 후, 조사 후 3일, 7일 및 20일 후의 생쥐를 사진 촬영하였다.
그 결과, Cis-liposomal ICG의 경우, 광열효과와 항암치료효과에 의해 레이저 조사 후 3일 뒤부터 암 조직이 변성되고, 20일 후에 완치되는 것을 확인 할 수 있었다(도 13).
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 암 치료용 조성물은 항암제 및 인도시아닌 그린이 캡슐화된 리포좀을 포함하는 복합체에 치료적으로 유효한 광을 조사하여 유의한 세포사멸 효과를 나타냄으로써, 우수한 암 치료 효과를 나타낼 수 있을 뿐 아니라, 외과 수술법에 의하지 않고도 종양을 제거할 수 있다. 또한, 정상세포에의 영향을 최소화하면서도 암 세포에 대하여 선별적으로 세포사멸 효과를 나타낼 수 있다.

Claims (14)

  1. 포스파티딜콜린, 안정화제, 항암제 및 인도시아닌 그린을 원료로 하여 제조되고, 리포좀에 항암제 및 인도시아닌 그린이 캡슐화(encapsulation) 되어 있는, 복합체를 유효성분으로 함유하고,
    치료적으로 유효한 광 조사시, 인도시아닌 그린에 의한 암 세포 광열치료효능과 복합체로부터 선택적으로 방출되는 항암제에 의한 암 치료효능을 동시에 가지는 암 치료용 조성물.
  2. 제1항에 있어서, 상기 안정화제는 폴리에틸렌글리콜에 컨쥬게이션된 포스파티딜에탄올아민 (phosphatidylethanolamine)인 것을 특징으로 하는 암 치료용 조성물.
  3. 제2항에 있어서, 상기 폴리에틸렌글리콜은 1, 000 내지 10, 000의 분자량을 가지는 것을 특징으로 하는 암 치료용 조성물.
  4. 제1항에 있어서, 상기 인도시아닌 그린은 1-50 ug/ml의 농도로 포함되는 것을 특징으로 하는 암 치료용 조성물.
  5. 제1항에 있어서, 상기 포스파티딜콜린, 인도시아닌 그린 및 항암제의 함량은 250:0.1-32:1-200(몰비)인 것을 특징으로 하는 암 치료용 조성물.
  6. 제1항에 있어서, 상기 치료적으로 유효한 광은 700-900nm에서 100 mW 이상 1 W 이하의 전력으로 3분 이상 30분 이하로 조사되는 것을 특징으로 하는 암 치료용 조성물.
  7. 제1항에 있어서, 상기 복합체의 평균 수동력학적 직경(hydrodynamic diameter, HD)은 50-200nm인 것을 특징으로 하는 암 치료용 조성물.
  8. 제1항에 있어서, 상기 복합체의 다분산지수(polydispersity index)는 0.2 이하인 것을 특징으로 하는 암 치료용 조성물.
  9. 제1항에 있어서, 상기 복합체의 제타 전위(zeta poteintial)는 -50 -0mV인 것을 특징으로 하는 암 치료용 조성물.
  10. 제1항에 있어서, 상기 광열치료효능은 치료적으로 유효한 광 조사시, 인도시아닌 그린에 의해 암 세포의 사멸을 유도하는 것임을 특징으로 하는 암 치료용 조성물.
  11. 제1항에 있어서, 상기 항암제는 알킬화제인 것을 특징으로 하는 암 치료용 조성물.
  12. 제11항에 있어서, 상기 알킬화제는 시스플라틴(cisplatin) 또는 카보플라틴인(Carboplatin)인 것을 특징으로 하는 암 치료용 조성물.
  13. 하기 단계를 포함하는 리포좀에 항암제 및 인도시아닌 그린이 캡슐화(encapsulation)되어 있는 복합체의 제조방법:
    (a) 유기용매 중에 1종 이상의 포스파티딜콜린과 안정화제 및 인도시아닌 그린을 용해시키고, 유기용매를 제거하여 케익을 제조하는 단계;
    (b) 상기 케익에 항암제를 혼합한 다음, 수화시켜 분산액을 제조하고, 다공성 고분자막에 압출시켜 항암제 및 인도시아닌 그린이 포함된 리포좀을 제조하는 단계; 및
    (c) 상기 단계 (b)의 리포좀 중 항암제 및 인도시아닌 그린이 리포좀 내에 캡슐화된 복합체를 분리하는 단계.
  14. 제13항에 있어서, 상기 다공성 고분자막은 공극의 직경이 50-200nm인 폴리카보네이트로 이루어진 것임을 특징으로 하는 암 치료용 조성물의 제조방법.
PCT/KR2016/011909 2015-12-31 2016-10-21 항암제-인도시아닌 그린-리포좀 복합체를 포함하는 암 치료용 조성물 WO2017115991A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150191434A KR101630397B1 (ko) 2015-12-31 2015-12-31 항암제-인도시아닌 그린-리포좀 복합체를 포함하는 암 치료용 조성물
KR10-2015-0191434 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017115991A1 true WO2017115991A1 (ko) 2017-07-06

Family

ID=56343493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011909 WO2017115991A1 (ko) 2015-12-31 2016-10-21 항암제-인도시아닌 그린-리포좀 복합체를 포함하는 암 치료용 조성물

Country Status (2)

Country Link
KR (1) KR101630397B1 (ko)
WO (1) WO2017115991A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018121674A1 (zh) * 2016-12-29 2018-07-05 上海交通大学 一种利用红外光增加rna序列在皮肤中生物活性的给药方法
CN111588853A (zh) * 2020-06-01 2020-08-28 南京林业大学 一种化疗-光疗协同抗肿瘤微球的制备方法及其应用
CN112402619A (zh) * 2020-11-25 2021-02-26 贺州学院 基于近红外碳量子点化学-光热协同治疗肿瘤的载药体系及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101630397B1 (ko) * 2015-12-31 2016-06-24 한국과학기술원 항암제-인도시아닌 그린-리포좀 복합체를 포함하는 암 치료용 조성물
KR101935989B1 (ko) 2017-01-18 2019-01-07 서강대학교산학협력단 하이드로젤 마이크로웰을 이용한 멀티셀룰라 스페로이드의 제조 방법
KR102582064B1 (ko) 2018-07-11 2023-09-25 한국과학기술연구원 근적외선 흡수 염료 함유 나노입자, 이의 제조방법, 및 이의 용도

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231375A1 (en) * 2006-04-03 2007-10-04 Taipei Medical University Liposome combination and the use thereof
KR20110105666A (ko) * 2010-03-19 2011-09-27 연세대학교 산학협력단 시라스 다공성 유리막을 이용한 리포좀의 제조 방법
US20130115273A1 (en) * 2011-10-31 2013-05-09 Mallinckrodt Llc Combinational Liposome Compositions for Cancer Therapy
KR20140147605A (ko) * 2013-06-20 2014-12-30 한국생명공학연구원 형광 특성이 향상된 인도사이아닌 그린-퍼플루오르카본 나노에멀젼 및 그 제조방법
KR101630397B1 (ko) * 2015-12-31 2016-06-24 한국과학기술원 항암제-인도시아닌 그린-리포좀 복합체를 포함하는 암 치료용 조성물

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634179A1 (en) * 2012-02-28 2013-09-04 Sanofi Functional PLA-PEG copolymers, the nanoparticles thereof, their preparation and use for targeted drug delivery and imaging
EP2740491A1 (en) * 2012-12-05 2014-06-11 Institut Curie Conjugates of the B-subunit of shiga toxin for use as contrasting agents for imaging and therapy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231375A1 (en) * 2006-04-03 2007-10-04 Taipei Medical University Liposome combination and the use thereof
KR20110105666A (ko) * 2010-03-19 2011-09-27 연세대학교 산학협력단 시라스 다공성 유리막을 이용한 리포좀의 제조 방법
US20130115273A1 (en) * 2011-10-31 2013-05-09 Mallinckrodt Llc Combinational Liposome Compositions for Cancer Therapy
KR20140147605A (ko) * 2013-06-20 2014-12-30 한국생명공학연구원 형광 특성이 향상된 인도사이아닌 그린-퍼플루오르카본 나노에멀젼 및 그 제조방법
KR101630397B1 (ko) * 2015-12-31 2016-06-24 한국과학기술원 항암제-인도시아닌 그린-리포좀 복합체를 포함하는 암 치료용 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LOZANO, N.: "Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 482, no. 1-2, 23 October 2014 (2014-10-23) - 30 March 2015 (2015-03-30), pages 2 - 10, XP055599584, ISSN: 0378-5173, DOI: 10.1016/j.ijpharm.2014.10.045 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018121674A1 (zh) * 2016-12-29 2018-07-05 上海交通大学 一种利用红外光增加rna序列在皮肤中生物活性的给药方法
CN111588853A (zh) * 2020-06-01 2020-08-28 南京林业大学 一种化疗-光疗协同抗肿瘤微球的制备方法及其应用
CN112402619A (zh) * 2020-11-25 2021-02-26 贺州学院 基于近红外碳量子点化学-光热协同治疗肿瘤的载药体系及其制备方法

Also Published As

Publication number Publication date
KR101630397B1 (ko) 2016-06-24

Similar Documents

Publication Publication Date Title
WO2017115991A1 (ko) 항암제-인도시아닌 그린-리포좀 복합체를 포함하는 암 치료용 조성물
WO2016186429A1 (ko) 인도시아닌 그린-리포좀 복합체를 포함하는 암 치료용 조성물
US5776488A (en) Liposome preparation
JP2008534525A (ja) リン脂質のポリエチレングリコール誘導体に包み込まれたアンスラサイクリン系抗腫瘍抗生物質のナノミセル製剤
WO2019245142A1 (ko) 탈모 치료용 약물이 봉입된 나노 리포좀-마이크로버블 결합체 및 이를 함유하는 탈모 개선 또는 치료용 조성물
WO2013044734A1 (zh) 骨靶向脂质体及其制备方法
CN112546062B (zh) 一种全氟化碳硅质体及其制备方法和应用
JPH10507454A (ja) 水不溶性カンプトテシンの脂質複合体の凍結乾燥
CN111214459B (zh) 全氟化碳白蛋白纳米粒及其在制备肿瘤治疗药物中的应用
WO2020197021A1 (ko) 염증성 비정상 조직 또는 종양 조직의 선택적 염색이 가능한 나노 진단 제제의 제조 방법
WO2017213328A1 (ko) 합성 수용체-인지질의 접합체를 포함하는 리포좀 및 상기 합성 수용체에 결합 가능한, 기능성 물질이 결합된 리간드를 유효성분으로 함유하는 기능성 물질 전달용 조성물
CN106109415B (zh) 一种载喜树碱类抗肿瘤药物脂质体、制备方法及其应用
CN106913882B (zh) 一种聚乙二醇-藤黄酸脂质体和制备方法及其在治疗恶性肿瘤中的应用
CN1939315A (zh) 单唾液酸四己糖神经节苷脂固体脂质纳米粒及其制备方法
WO2017052255A1 (ko) 탁산계 약물 전달용 리포좀 및 이의 제조방법
CN1326525C (zh) 10-羟基喜树碱长循环脂质体及其冻干制剂
JPWO2005021012A1 (ja) ゲムシタビン封入薬剤担体
CN105616354A (zh) 一种新藤黄酸脂质体注射剂及其制备方法
DE10306724A1 (de) Vesikuläre Verkapselung von Bendamustin
CN104546718B (zh) 一种长循环雷贝拉唑脂质体组合物及其制备方法和应用
WO2024053974A1 (ko) 광열치료용 조성물 및 이의 제조방법
CN101147728A (zh) 6-甲氧基双脱氧鸟苷长循环脂质体制剂及制备方法
CN106913522B (zh) 硫酸长春新碱脂质体及制备方法和应用
KR101002672B1 (ko) 크로몰린 함유 페길화된 리포좀 및 그 제조방법
Song et al. Single-step assembly of lipid-gelatin-epigallocatechin-3-gallate hybrid nanoparticles for cancer therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881944

Country of ref document: EP

Kind code of ref document: A1