WO2017052255A1 - 탁산계 약물 전달용 리포좀 및 이의 제조방법 - Google Patents

탁산계 약물 전달용 리포좀 및 이의 제조방법 Download PDF

Info

Publication number
WO2017052255A1
WO2017052255A1 PCT/KR2016/010633 KR2016010633W WO2017052255A1 WO 2017052255 A1 WO2017052255 A1 WO 2017052255A1 KR 2016010633 W KR2016010633 W KR 2016010633W WO 2017052255 A1 WO2017052255 A1 WO 2017052255A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycero
phosphoethanolamine
phosphocholine
cholesteryl
liposomes
Prior art date
Application number
PCT/KR2016/010633
Other languages
English (en)
French (fr)
Inventor
임수정
홍순석
Original Assignee
세종대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160114738A external-priority patent/KR101768681B1/ko
Application filed by 세종대학교 산학협력단 filed Critical 세종대학교 산학협력단
Publication of WO2017052255A1 publication Critical patent/WO2017052255A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes

Definitions

  • the present invention relates to a liposome for taxane-based drug delivery and a method for preparing the same.
  • Paclitaxel is one of the leading anticancer drugs used to treat a variety of cancers, including uterine, breast, lung and head and neck cancers.
  • Taxol a commercial formulation of paclitaxel, dissolves paclitaxel in a 1: 1 mixture of Cremophor EL and ethanol and nevertheless is injected into the patient very slowly to prevent precipitation of paclitaxel.
  • side effects such as hypersensitivity, nephrotoxicity, and neurotoxicity caused by Cremophor EL are present in patients.
  • paclitaxel preparations without using Cremophor EL are continuously underway using carriers such as nanoparticles, liposomes, polymeric micelles, bioconjugates, and dendrimers.
  • Abraxane another paclitaxel preparation that has been successfully commercialized as a result of this research and development, is known to bind paclitaxel to protein albumin nanoparticles and has less side effects than taxol.
  • Liposomes are spherical bilayer structures composed of phospholipids that spontaneously form when phospholipids are dispersed in an aqueous solution.
  • it has been actively researched and developed as a drug transporter because of its structural flexibility of encapsulating a water-soluble drug in an internal aqueous phase and intercalating a fat-soluble drug between phospholipid molecules forming a membrane.
  • Encapsulating the drug in liposomes can improve the therapeutic effect by reducing the drug's low solubility, chemical instability, and too short blood half-life after administration, thereby reducing side effects.
  • the beneficial effects of these liposomes can be further enhanced through the regulation of the liposome membrane structure.
  • Non Patent Literatures 1 and 2 it is known that liposomes containing cholesterol prevent leakage of encapsulated drugs and enhance the residence time of liposomes in blood (Non Patent Literatures 1 and 2).
  • Phosphatidylcholine having a saturated fatty acid chain is less oxidized and has a higher phase transition temperature than liposomes made of unsaturated phosphatidylcholine, and thus has the property of maintaining the encapsulated drug better inside (Non Patent Literatures 3 to 5).
  • PEGylated liposomes reduce the interaction between the reticuloendothelial and liposome surfaces by coating the surface with hydrophilic PEG, preventing the intravenous liposomes from rapidly transitioning to the reticuloendothelial system, resulting in blood retention of the loaded drug. Since time can be improved, liposome preparations such as the anticancer drug doxorubicin are commercialized by PEGylation (Doxil).
  • Paclitaxel an anticancer agent
  • liposomes are prepared by mixing lecithin, cholesterol, and PEGylated phospholipids to enhance blood residence time and membrane stability of liposomes
  • destabilization of paclitaxel loaded liposomes is accelerated to precipitate the drug more quickly.
  • hydrophobic drugs like paclitaxel compete for occupancy with the same location between cholesterol, PEGylated phospholipids and phospholipid molecules.
  • Non-Patent Document 10 paclitaxel loading on these liposomes leads to rapid release and precipitation of the drug.
  • Non-Patent Document 1 Deniz, A., Sade, A., Severcan, F., Keskin, D., Tezcaner, A., Banerjee, S., 2010. Celecoxibloaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci. Rep. 30, 365-373
  • Non-Patent Document 2 Senior, J., Gregoriadis, G., 1982. Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components. Life. Sci. 30, 2123-2136.
  • Non-Patent Document 3 Lehtonen, J.Y., Kinnunen, P.K., 1995. Poly (ethylene glycol) -induced and temperature-dependent phase separation in fluid binary phospholipid membranes. Biophys. J. 68, 525-535.
  • Non-Patent Document 4 Mattjus, P., Slotte, J. P., 1996. Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids? Chem. Phys. Lipids 81, 69-80.
  • Non-Patent Document 5 Payton, N.M., Wempe, M.F., Betker, J.L., Randolph, T.W., Anchordoquy, T.J., 2013. Lyophilization of a triply unsaturated phospholipid: effects of trace metal contaminants. Eur. J. Pharm. Biopharm. 85, 306-313.
  • Non-Patent Document 6 Crosasso, P., Ceruti, M., Brusa, P., Arpicco, S., Dosio, F., Cattel, L., 2000. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes . J. Control. Release 63, 19-30.
  • Non-Patent Document 7 Kudelka. S., Turanek-Knotigova. P., Masek. J., Korvasova. Z., Skrabalova. M., Plockova. J., Bartheldyova. E., Turanek. J., 2010 Liposomes with high encapsulation capacity for paclitaxel: Preparation, characterization and in vivo anticancer effect. J. Pharm. Sci. 99 (5): 2309-19.
  • Non-Patent Document 8 Zhang, JA, Anyarambhatla, G., Ma, L., Ugwu, S., Xuan, T., Sardone, T., Ahmad, I., 2005. Development and characterization of a novel Cremophor EL free liposomebased paclitaxel (LEP-ETU) formulation. Eur. J. Pharm. Biopharm. 59, 177-187.
  • Non-Patent Document 9 Immordino, M.L., Brusa, P., Arpicco, S., Stella, B., Dosio, F., Cattel, L., 2003. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J. Control. Release 91, 417-429.
  • Non-Patent Document 10 Hong, S.S., Kim S.H., Lim S.J. 2015. Effects of triglycerides on the hydrophobic drug loading capacity of saturated phosphatidylcholine-based liposomes. Int. J. Pharm. 483, 142-150.
  • the present inventors added oil (medium or long chain triglyceride) to paclitaxel delivery liposomes composed of saturated lecithin, sterol-based compounds and PEGylated phospholipids, thereby destabilizing the liposomes over time and liberating the taxane-based drugs.
  • the present invention has been completed by developing a new taxane-based drug loaded liposome that can significantly inhibit precipitation.
  • an object of the present invention is to provide a liposome for taxane-based drug delivery and a method for preparing the same that can improve storage stability and significantly reduce drug precipitation.
  • the present invention As a means for solving the above problems, the present invention
  • Lipid bilayers comprising saturated lecithin, sterol-based compounds and polyethyleneglycolated phospholipids (PEG-phospholipids);
  • a liposome for taxane-based drug delivery comprising a.
  • It provides a method for producing a liposome encapsulated taxane-based drug comprising a.
  • intravenous pharmaceutical preparations comprising the liposomes.
  • the present invention relates to a liposome that stably enhances the concentration of a taxane-based drug, which is a poorly soluble anticancer agent, and reduces the interaction between the reticuloendothelial system and the surface of liposomes by PEGylation of liposomes, thereby rapidly inducing intravenous liposomes.
  • the transition to the cell line was prevented, which in turn enhanced the residence time of the drug in the blood.
  • the particle size can be reduced to improve membrane filtration and storage stability for sterilization and drug precipitation does not occur, thereby allowing intravenous injection.
  • Example 1 is a graph comparing the paclitaxel release pattern with time from the liposome of Example 1 containing Taxol and paclitaxel.
  • Figure 2 is a photograph confirming the anti-foam forming effect of the paclitaxel-encapsulated liposomes according to the addition of oil (left: liposome prepared without adding oil, the right: liposome of Example 1 prepared by adding oil).
  • Figure 3 is a photograph confirming the change in shape of the paclitaxel-encapsulated liposomes stored by transmission electron microscopy [(a) after the preparation is not filtered Paclitaxel mixed with liposomes (b) Paclitaxel liposome preparation 1 without the addition of C300 7 days after (c) room temperature storage of paclitaxel liposome without addition of C300 (d) 1 day after preparation of paclitaxel liposome with addition of C300 (e) 7 days after room temperature storage with paclitaxel liposome with addition of C300].
  • Figure 4 compares the anticancer activity by MTT assay (A) and colony formation assay (B) in cultured cell lines for liposome formulation of Taxol formulation and oil addition Example 1.
  • FIG. 5 compares the anticancer activity in a cancer transplanted animal model for the Taxol formulation and the liposome formulation of Oil Added Example 1 [arrow: point of administration].
  • Figure 6 compares the toxicity of the Taxol formulation and the liposome formulation of oil addition Example 1 ((A) comparison of weight change after intravenous injection in animals (B) comparison of hemolysis for red blood cell solution).
  • the present invention is a.
  • Lipid bilayers comprising saturated lecithin, sterol-based compounds and polyethyleneglycolated phospholipids (PEG-phospholipids);
  • It relates to a taxane-based drug delivery liposome comprising a.
  • a liposome is a phospholipid bilayer capable of encapsulating an active drug.
  • PEGylated (PEGylated) refers to the chemically bonded polyethylene glycol (PEG).
  • Liposomes according to the present invention is a lipid bilayer composed of saturated lecithin, sterol compounds and PEG-phospholipids; And oils, the taxane-based drugs being enclosed (or loaded).
  • the saturated lecithin is 1,2-dimyristoyl-sn-glycero-3-phosphocholine (1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine, DMPC), 1,2-dipexanoyl-sn 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), 1,2-diheptanoyl-sn-glycero-3-phosphocholine (1,2- diheptanoyl-sn-glycero-3-phosphocholine (DHPC), 1,2-dioctanoyl-sn-glycero-3-phosphocholine (1,2-dioctanoyl-sn-glycero-3-phosphocholine, 1,2- dinonanoyl-sn-glycero-3-phosphocholine), 1,2-didecanoyl-sn-glycero-3-phosphocholine (1,2-didecanoyl-sn-glycer
  • the sterol compound is cholesterol, 3b- [N- (N ', N'-dimethylaminoethane) -carbamyl ⁇ cholesterol (3b- [N- (N', N'-dimethylaminoethane) -cabamyl] cholesterol, DC- Chol, stigmasterol, campesterol, cytosterol, ergosterol, lanosterol, dinosterol, gorosteroster, avenasterol , Saringosterol, fucosterol, cholesteryl hemisuccinate, cholesteryl benzoate, cholesteryl oleate, cholesteryl Cholesteryl oleyl carbonate, cholesteryl isostearate, cholesteryl linoleate, cholesteryl acetate, cholesteryl palmitate, cholesteryl palmitate Steril Steare Cholesteryl stearate, cholesteryl chloride, cholesteryl nonanoate and cholesteryl arachidonate may be
  • the phospholipids are 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (1,2-Distearoyl-sn-Glycero-3-phosphoethanolamine, DSPE), 1,2-dihexanoyl-sn 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine, 1,2-dioctanoyl-sn-glycero-3-phosphoethanolamine (1,2- dioctanoyl-sn-glycero-3-phosphoethanolamine), 1,2-didecanoyl-sn-glycero-3-phosphoethanolamine (1,2-didecanoyl-sn-glycero-3-phosphoethanolamine), 1,2- Diauroyl-sn-glycero-3-phosphoethanolamine (1,2-dilauroyl-sn-glycero-3-phosphoethanolamine, DLPE), 1,2-dimyristoyl-sn-glycero-3-force 1,2-dimyristo
  • the saturated lecithin, the sterol compound, and the PEG-phospholipid constituting the lipid bilayer may include 55 to 88 mol%: 10 to 40 mol%: 2 to 8 mol%.
  • the PEG may be a commercially available one, the PEG molecular weight is preferably 2,000 to 20,000.
  • the use of PEG-phospholipids in the preparation of liposomes has the effect of preventing the destruction of the RES by phagocytosis cells, which has the advantage of increasing the residence time in the blood, thereby increasing the size of liposomes.
  • liposomes of the present invention are preferably administered intravenously because no taxane-based drug precipitation occurs.
  • the molecular weight exceeds 20,000 PEG is more likely to be released into the body through the kidneys without being degraded in the body. Since the long-circulating effect in the blood is known to be lowered compared to the molecular weight, the molecular weight of PEG is preferably 2,000 to 20,000.
  • the oil is used as an element in the present invention to increase the membrane fluidity of liposomes to enhance drug release, and forms the form inserted between the saturated lecithin molecules constituting the lipid bilayer. That is, by including oil in liposomes constituting taxane-based drugs and saturated lecithin, sterol-based compounds and PEG-phospholipids, stability is improved upon storage of final liposomes, and the glass / precipitation problem of the loaded taxane-based drug is remarkably improved.
  • the taxane-based drug-containing liposome according to the present invention includes a small amount of oil, and 1) a phenomenon in which bubbles are formed during the preparation of liposomes by PEG-phospholipid. In order to significantly reduce the phenomenon of foaming when shaking after adding the water phase for the effect of improving the ease of manufacture.
  • the oil may be a fatty acid triglyceride of more than medium-chain (medium or long chain), that is, fatty acid triglycerides having 6 to 22 carbon atoms.
  • fatty acid triglycerides having 6 to 22 carbon atoms e.g., caproic acid triglyceride having 6 carbon atoms, caprylic acid triglyceride having 8 carbon atoms, capric acid triglyceride having 10 carbon atoms, and lauric acid having 12 carbon atoms
  • Natural oils that include soybean oil, coconut oil, sunflower seed oil, sesame oil, castor oil, cottonseed oil
  • the taxane-based drug is a poorly soluble drug of paclitaxel or docetaxel.
  • Liposomes according to the present invention is preferably a lipid, oil and taxane-based drug in a weight ratio of 100: 1 to 30: 3 to 15.
  • the zeta potential value surface charge of liposomes
  • the anti-aggregation of liposomes can be stabilized by electrostatic repulsive force.
  • PEGylation PEGylation
  • the agglomeration of liposomes did not occur and the drug precipitation was also delayed without changing the zeta potential value (Table 3).
  • the liposome added with the oil has a zeta potential value of -70 to -20 mV.
  • the liposome of the present invention was confirmed that the retention rate of the taxane-based drug loading is more than 90% when stored for 2 months at 4 °C compared to the initial drug concentration or 80% or more when stored for 1 week at room temperature (25 °C). This represents a markedly improved storage stability compared to conventional paclitaxel loaded liposomes.
  • the liposome according to the present invention has an average particle size of 50 nm to 500 nm, 50 nm to 450 nm, 50 without undergoing an extrusion process, which is a liposome particle size reduction process, by increasing the curvature of the liposome surface by the electrostatic repulsive force of PEG.
  • nm to 400 nm 100 nm to 500 nm, 100 nm to 450 nm, 150 nm to 500 nm or 150 nm to 400 nm.
  • the present invention provides an intravenous pharmaceutical preparation comprising a liposome encapsulated with the taxane-based drug.
  • It provides a method for producing a liposome encapsulated taxane-based drug comprising a.
  • lipid mixed with saturated lecithin, a sterol compound and a phospholipid (PEG-phospholipid) derivatized with polyethylene glycol is mixed with an alcohol.
  • the saturated lecithin, sterol compounds, phospholipids, lipids are as mentioned above.
  • the alcohol is preferably a lower alcohol having 2 to 6 carbon atoms.
  • the mixing is carried out by stirring for 0.5 to 5 minutes at a speed of 1000-4000 rpm.
  • the taxane-based drug is dissolved in the mixed solution prepared through the mixing process.
  • the taxane-based drug preferably contains 3 to 15 parts by weight based on 100 parts by weight of lipid. Further, the taxane-based drug is dissolved by stirring for 0.5 to 5 minutes at a speed of 1000-4000 rpm.
  • the oil is then mixed into the mixed solution in which the taxane-based drug is dissolved.
  • the oil is as described above, the oil is stirred and mixed for 0.5 to 5 minutes at a speed of 1000-4000 rpm in the mixed solution in which the taxane-based drug is dissolved.
  • the mixed solution containing the oil is lyophilized to obtain a powder.
  • the freeze-drying is carried out for 16 to 30 hours at -40 to -80 °C.
  • the powder obtained by lyophilization is hydrated to obtain an aqueous solution.
  • the aqueous solution is sonicated and filtered to prepare liposomes. At this time, it is preferable to sonicate for 30 to 60 minutes at 100 ⁇ 280 watts, 37 °C.
  • prepared liposome of the present invention increases the residence time of the taxane-based drug in the blood to maintain the anti-cancer activity of the taxane-based drug, can be effectively used for the prevention and treatment of cancer.
  • the taxane-based drug used in the present invention may be in the form of the taxane-based drug itself or a pharmaceutically acceptable salt thereof, and an acid addition salt formed by a pharmaceutically acceptable free acid is useful as the salt.
  • Acid addition salts include inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, nitrous acid or phosphorous acid and aliphatic mono and dicarboxylates, phenyl-substituted alkanoates, hydroxy alkanoates and alkanes. Obtained from non-toxic organic acids such as dioates, aromatic acids, aliphatic and aromatic sulfonic acids.
  • Such pharmaceutically nontoxic salts include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate chloride, bromide, and iodide.
  • the acid addition salts according to the invention are dissolved in conventional methods, for example, by dissolving taxane-based drugs in an excess of aqueous acid solution and using the water miscible organic solvents such as methanol, ethanol, acetone or acetonitrile. It can be prepared by precipitation.
  • taxane-based drug and acid or alcohol in water can be heated and then the mixture is evaporated to dryness or prepared by suction filtration of the precipitated salt.
  • Bases can also be used to make pharmaceutically acceptable metal salts.
  • Alkali metal or alkaline earth metal salts are obtained, for example, by dissolving a compound in an excess of alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the insoluble compound salt, and evaporating and drying the filtrate. At this time, it is pharmaceutically suitable to prepare sodium, potassium or calcium salt as the metal salt.
  • Corresponding silver salts are also obtained by reacting alkali or alkaline earth metal salts with a suitable negative salt (eg, silver nitrate).
  • the composition may be used as a pharmaceutical composition, and may be various oral or parenteral formulations.
  • diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, and surfactants are usually used.
  • Solid form preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, which form at least one excipient such as starch, calcium carbonate, sucrose or lactose (at least one compound). lactose) and gelatin.
  • lubricants such as magnesium stearate, talc and the like are also used.
  • Liquid preparations for oral administration include suspensions, solutions, emulsions, and syrups, and may include various excipients, such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin. have.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories.
  • non-aqueous solvent and the suspension solvent propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate, and the like can be used.
  • As the base of the suppository witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.
  • composition of the present invention may be administered parenterally or orally as desired, and may be administered in one to several times so as to be administered in an amount of 0.1 to 500 mg, preferably 1 to 100 mg per kg of body weight per day. have.
  • the dosage for a particular patient may vary depending on the patient's weight, age, sex, health condition, diet, time of administration, method of administration, rate of excretion, severity of the disease, and the like.
  • DMPC Dimyristylphosphatidylcholine
  • DSPE-PEG2000 cholesterol and PEGylated phospholipid
  • the mixture was dissolved in paclitaxel in an amount of 2.6 mg per 31.3 mg (42 umole) of total lipid of DMPC + cholesterol + DSPE-PEG2000, and then dissolved.
  • the mixture solution obtained by mixing 2 mg of oil at a speed of 3,000 rpm for 1 minute was rapidly dissolved.
  • Freeze-drying was performed at -80 ° C and freeze-drying at -45 ° C in a freeze dryer. After lyophilization for 24 hours, 1 ml of physiological saline was added to the lipid + drug powder to hydrate. Liposome dispersion spontaneously formed by hydration by stirring for 30 seconds at 3,000 rpm was pulverized and homogenized at 130 watts in a water bath type ultrasonic dispersion machine at 37 ° C. for 30 minutes at 37 ° C., and then again in a 250 watt century for 7 minutes in an ultrasonic dispersion machine for cell crushing. Ultrasound treatment gave a liposome formulation encapsulated with paclitaxel.
  • the obtained liposomes were filtered through a 0.8 ⁇ m filter to remove unsealed paclitaxel and stored at 4 ° C. until use.
  • Liposomes were prepared by the method of Example 1 by adding Captex300 (Glyceryl Tricaprylate / Tricaprate, hereinafter C300), a kind of heavy chain fatty acid triglyceride in oil, at a ratio of 2 mg / lipid 31.3 mg. After analyzing the concentration of paclitaxel encapsulated in liposomes by HPLC, each liposome was stored at room temperature and 4 ° C., and samples were taken at a predetermined time. The concentration was measured. As a result, compared to liposomes of DMPC: CHOL: DSPE-PEG2000, liposomes prepared with Captex 300 maintained paclitaxel loaded at a much higher concentration during storage.
  • C300 Glyceryl Tricaprylate / Tricaprate
  • DMPC CHOL: DSPE-PEG2000 liposomes after 1 day and 7 days of storage at room temperature (36 ° C.) maintained 36% and 32% of the PTX loading concentration after preparation, respectively. For 95% and 81%, respectively (Table 1).
  • DMPC CHOL: DSPE-PEG2000: C300 liposomes were stored at 4 ° C. for 2 months
  • DMPS CHOL: DSPE-PEG2000: C300 liposomes were maintained at> 93%.
  • Example 3 according to oil type Paclitaxel Mount Liposomes Mount at storage Paclitaxel Check concentration retention
  • paclitaxel loaded at the time of storage compared to liposome of DMPC: CHOL: DSPE-PEG2000 without adding oil was also found in liposomes containing Labrafac or soybean oil. was maintained at a much higher rate (Table 2).
  • DMPC CHOL: DSPE-PEG2000 liposomes were stored at 37% and 32% of the PTX loading concentration after preparation, respectively. 94%, 76% at time, 83%, 63% for DMPC: CHOL: DSPE-PEG2000: soybean oil liposomes were maintained (Table 2).
  • tributyrin tributyrin
  • the initial loading concentration of paclitaxel was significantly low (more than 10 times), and thus the stability experiment could not be performed.
  • the stabilizing effect is commonly observed.
  • Example 4 due to oil addition Paclitaxel Mount Liposomes When storing Liposomes Determine impact on size change
  • Liposomes prepared by the method of Example 1 were added at a ratio of 2 mg / lipid 31.3 mg at room temperature, and the average particle diameter, particle size distribution change and zeta potential of the paclitaxel-loaded liposomes were measured over time, and DMPC: Compared to liposomes of CHOL: DSPE-PEG2000 23.7: 2: 5.6, liposomes prepared with C300 increased the average particle diameter and polydispersity (a measure of polydispersity index, which means that the smaller the uniformity, the more uniform). Was much suppressed.
  • DMPC CHOL: DSPE-PEG2000 liposomes increased to 4.1 times and 3.9 times of the initial size, but C300 added liposomes increased only 1.6 times until 21 days.
  • DMPC CHOL: DSPE-PEG2000 liposomes had increased 1.9 times more than the initial dispersion after 7 days, but the oil-containing liposomes showed no significant difference until 21 days (Table 3).
  • lipid addition of negatively charged is stabilized by enhancing the repulsive force between liposomes, but in the case of DMPC containing paclitaxel: CHOL: DSPE-PEG2000 liposomes, liposomes induced by paclitaxel despite surface negative charge by DSPE-PEG2000 It was thought that the coagulation phenomenon of was not suppressed and that the liposomes induced by paclitaxel were suppressed by DSPE-PEG2000 due to the change in the arrangement position between paclitaxel embedded in the membrane due to increased membrane flexibility when oil was added. .
  • DMPC Average Particle Size, Polydispersity Variation and Zeta Potential of Liposomes Storage time (room temperature) Average particle size of liposomes (nm) DMPC: CHOL: DSPE-PEG2000: C300 DMPC: CHOL: DSPE-PEG2000 0 days 204 ⁇ 27 410 ⁇ 34 7 days 310 ⁇ 5 1512 ⁇ 47 14 days 366 ⁇ 47 1428 ⁇ 94 21st 320 + 47 ND Storage time (room temperature) Polydispersity of Liposomes (PI) DMPC: CHOL: DSPE-PEG: C300 DMPC: CHOL: DSPE-PEG2000 0 days 0.181 ⁇ 0.054 0.203 ⁇ 0.024 7 days 0.129 ⁇ 0.006 0.368 ⁇ 0.037 14 days 0.158 ⁇ 0.008 0.384 ⁇ 0.019 21st 0.137 ⁇ 0.008 ND Storage time (room temperature) Zeta Potential of Liposomes (mV) DMPC
  • Example 5 Confirmation of the possibility of sterile filtration and the change of liposome properties after sterile filtration
  • Particle dispersion type intravenous formulations such as liposomes may cause blood clots if particles larger than 6-8 ⁇ m red blood cells are present, and sterilization is possible only when the membrane is filtered through a 0.2 ⁇ m membrane.
  • the liposomes were prepared by the method of Example 1, and then the liposome dispersion was passed through a syringe equipped with a membrane filter having a hole of 0.2 ⁇ m for filtration sterilization.
  • the membrane filter was clogged rapidly due to the increase in pressure.
  • DMPC CHOL: DSPE-PEG-2000 liposomes added with C300 could easily pass through the membrane filter and thus filter sterilization was possible. This is considered to be an effect of increasing the fluidity by the oil.
  • CHOL DSPE-PEG2000 liposomes
  • filtration sterilization was not possible, and immediately after the preparation, 12.3% of particles having a size of 5 ⁇ m existed and 0% of the particles were present in the case of liposomes prepared by adding C300. Furthermore, even after 8 weeks of storage at 4 ° C., no> 5 ⁇ m particles were found at all in C300-added liposomes.
  • DMPC CHOL: DSPE-PEG2000 liposomes containing 0, 2, 4, 6 mg of C300 were prepared by the method of Example 1 and then stored at room temperature to see how the liposome stabilization effect of the oil depends on the oil content.
  • PTX paclitaxel
  • DMPC CHOL: DSPE-PEG2000 liposomes containing 2 mg of C300 to confirm how the release of paclitaxel over time from the oil stabilized liposomes is different compared to the conventional commercially available Taxol, It was prepared by the method. Add 0.1 ml of DMPC: CHOL: DSPE-PEG2000: C300 liposome or Taxol with 1 mg / ml diluted paclitaxel on top of the Franz-type vertical diffusion cell and 1.35 M sodium salicyate (pH 6.5) was added to prevent the precipitated paclitaxel, and then about 5 ml of 1.35 M sodium salciaate was added to the bottom.
  • a dialysis membrane of cut-off 10,000 molecular weight was mounted between top and bottom and stirred at 600 rpm with a magnet at 37 degrees. At appropriate time intervals until reaching 96 hours 1 ml of the sample was taken at the bottom. After taking a sample, the lower portion was supplemented with sodium saliciaate in eastern blood.
  • the amount of paclitaxel in the sample taken ie, the amount of drug released from DMPC: CHOL: DSPE-PEG2000: C300 liposomes or Taxol loaded with paclitaxel, was quantified by HPLC analysis.
  • both the commercial preparation and the liposome preparation of Example 1 encapsulated with paclitaxel showed a two-phase release pattern, namely a rapid release for the first 48 hours followed by a slowing for 48 hours [Fig. 1].
  • the paclitaxel release pattern from DMPC: CHOL: DSPE-PEG2000: C300 liposome with Paclitaxel encapsulation is very similar to the commercially available formulations, so that both preparations after 96 hours under conditions that promote drug release by sodium salicylate 60% of the drug was released. It is preferred as a transporter of poorly water-soluble drugs because the drug is released slowly, so the likelihood of precipitation due to rapid release after intravenous injection is low.
  • Example 1 by adding Captex300 (Glyceryl Tricaprylate / Tricaprate, C300), a kind of heavy chain fatty acid triglyceride in oil, at a ratio of 2 mg / lipid at 31.3 mg (DMPC: CHOL: DSPE-PEG2000, weight ratio of 23.7: 2: 5.6) Liposomes were prepared by the method.
  • Captex300 Glyceryl Tricaprylate / Tricaprate, C300
  • DMPC CHOL: DSPE-PEG2000, weight ratio of 23.7: 2: 5.6
  • liposomes were prepared in the same manner as in Example 1 except that no oil was added.
  • the liposome dispersion prepared in the method of Example 1 by adding Captex300 (hereinafter C300) at a ratio of 2 mg / lipid 31.3 mg was mixed with the same volume of distilled water dissolved in 240 mM trehalose as a lyophilizer. The mixture was frozen overnight at -80 degrees and then dried with a lyophilizer to obtain a powdered liposome. After cooling the liposome powder formulation overnight, the original volume of distilled water was added to vortex and mixed well, and then the paclitaxel precipitated and released from the liposome was filtered with a 0.8 um filter to measure the concentration of paclitaxel remaining in the liposome.
  • C300 Captex300
  • liposomes containing 2 mg of C300 maintained the loaded paclitaxel at a much higher concentration ratio after lyophilization (Table 6). ).
  • Example 11 Cultured cell lines Used With TAXOL Oil addition Paclitaxel Enclosed Liposome Anticancer activity comparison
  • DMPC CHOL: DSPE-PEG2000 liposomes containing 2 mg of C300 were prepared by the method of Example 1. After inoculating 5,000 human lung cancer H460 cell lines in 96-well plates 24 hours later, the liposomes or taxols of Example 1 were added to physiological saline at various paclitaxel concentrations from 1 nM to 1000 nM.
  • MTT 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide
  • the degree of colony formation of cancer cells was measured to compare the anticancer activity upon repeated administration. After inoculating 500 B16-F10 melanoma cell lines derived from mice overnight in a 60 mm diameter dish, they were left with liposomes or taxols of various paclitaxel concentrations. Every three days, the medium was changed to a fresh medium containing the same concentration of paclitaxel, and the colonies were stained with 0.5% crystal violet on the 8th day to count the number of visually identifiable colonies.
  • paclitaxel concentration that inhibits the growth of H460 cell line by 50% showed similar anticancer activity of 21 and 14 nM for Taxol formulation and liposome formulation, respectively (FIG. 4A).
  • DMPC CHOL: DSPE-PEG2000 liposomes containing 2 mg of C300 were prepared by the method of Example 1.
  • 2 ⁇ 10 6 human head and neck cancer SCC7 cell lines were implanted into the right flank of Balb / c nude mice. After the volume of the transplanted cancer cell line reached about 30 mm 3 , mice were not administered (untreated group), empty oil-added liposome group without emptying paclitaxel (empty liposome group), taxol administered group (taxol group), Paclitaxel loaded oil was randomly divided into liposome groups (liposome group).
  • Taxol has side effects such as hypersensitivity due to the used surfactant (Cremophor EL), and requires pre-treatment to alleviate the hypersensitivity reaction when administered to a patient.
  • DMPC CHOL: DSPE-PEG2000 liposomes containing 2 mg of C300 were prepared by the method of Example 1.
  • the change in mouse weight was measured as an indicator of toxicity after intravenous injection in the cancer transplant animal model of Experimental Example 12.
  • rats in the four groups who had been treated with Taxol showed a temporary recovery (11%) of their weight during the observation period, and no other group observed them. That is, in the liposome-administered group, the weight was gradually increased throughout the observation period similarly to the mice belonging to the untreated group (Fig. 6 (A)).
  • the mixture was left for 1 hour in a 37-degree water bath and left for 5 minutes at 4 degrees to stop the hemolysis. After briefly centrifugation, the supernatant was filtered through a 0.2 mm filter to remove interferences and the absorbance was measured at 540 nm.
  • the absorbance of physiological saline without paclitaxel and the left erythrocyte solution was regarded as 0% hemolysis, and the absorbance of distilled water and the red blood cell solution left as 100% hemolysis was calculated as%.

Abstract

본 발명은 탁산계 약물 전달용 리포좀 및 이의 제조방법에 관한 것이다. 본 발명의 리포좀은 리포좀의 PEG화에 의하여 리포좀의 혈중체류시간 연장 효과를 가져와 혈액 내 체류시간을 증가시키고 오일을 사용함으로써 입자 크기를 감소시키고 약물의 석출을 지연시켜 보관 안정성을 향상시키고 멸균여과가 가능하여 정맥 주사가 가능하다.

Description

탁산계 약물 전달용 리포좀 및 이의 제조방법
본 발명은 탁산계 약물 전달용 리포좀 및 이의 제조방법에 관한 것이다.
파클리탁셀은 자궁, 유방, 폐 및 두경부암 등 다양한 암을 치료하는데 쓰이는 대표적인 항암제 중 하나다. 하지만 0.01 mg/ml의 아주 낮은 수용해도로 인해서 적합한 제형을 만들어 환자에게 정맥 투여하는데 어려움이 있다. 파클리탁셀의 시판 제형인 탁솔은 파클리탁셀을 Cremophor EL과 에탄올의 1:1 혼합액에 용해시키고 있으며 그럼에도 불구하고 파클리탁셀의 침전을 막기 위해 아주 천천히 환자에게 주사된다. 하지만 Cremophor EL로 인한 과민반응, 신독성, 신경독성 등의 부작용이 환자들에게서 나타난다. 따라서 나노입자, 리포좀, 중합성 마이셀(polymeric micelle), 바이오컨쥬게이트(bioconjugate), 덴드리머(dendrimer) 등의 캐리어를 이용해서 Cremophor EL을 사용하지 않는 파클리탁셀 제제를 만들기 위한 연구개발이 끊임없이 진행되고 있다. 이러한 연구 개발결과 상용화에 성공한 또 다른 파클리탁셀 제제인 Abraxane은 단백질인 알부민 나노입자에 파클리탁셀을 결합시킨 형태로 그 부작용이 탁솔에 비해서 낮다고 알려져있다.
리포좀은 인지질로 구성된 구형의 이중막 구조로서 수용액에 인지질을 분산 시 자발적으로 형성되는 구조이다. 인지질의 생체적합성뿐 아니라 내부 수상에는 수용성 약물을 봉입하고 막을 구성하는 인지질 분자 사이에는 지용성 약물을 끼워 넣을 수 있는 구조적 유연성 때문에 약물의 수송체로서 활발히 연구 개발되고 있다. 리포좀에 약물을 봉입하게 되면 약물의 낮은 용해도, 화학적 불안전성, 투여 후 너무 짧은 혈중반감기 등의 약동학적인 한계점 등을 개선함으로써 치료 효과를 높이면서 부작용은 감소시키는 효과를 볼 수 있다. 이런 리포좀의 유익한 효과들은 리포좀 막 구조의 조절을 통해 더욱 증대될 수 있다. 예를 들어 콜레스테롤을 포함한 리포좀은 봉입된 약물의 누출을 막고 리포좀의 혈중 체류 시간을 증진시킨다고 알려져 있다[비특허문헌 1,2]. 포화지방산 사슬을 갖고 있는 포스파티딜콜린은 불포화된 포스파티딜콜린으로 만든 리포좀 보다 산화가 덜되고 높은 상전이 온도를 갖기 때문에 봉입된 약물을 내부에 더 잘 유지하는 특성이 있다[비특허문헌 3~5]. PEG화(PEGylation)된 리포좀은 표면의 친수성 PEG로의 코팅에 의해 세망내피계와 리포좀 표면의 상호작용을 감소시킴으로 정맥 주사된 리포좀이 급격히 세망내피세포계로 이행하는 현상을 방지하여 결국 탑재 약물의 혈중 체류 시간을 증진시킬 수 있기에 항암제 독소루비신(doxorubicin) 등의 리포좀제제는 PEG화되어 시판되어 있다 (Doxil).
항암제인 파클리탁셀은 소수성 및 구조적 비대칭성 등의 특성 때문에 리포좀 막을 구성하는 인지질 분자들의 소수성 부분들 사이에도 끼워 넣기가 쉽지 않으며 설령 끼워 넣는다 하더라도 급격히 불안정화되어 석출되는 경우가 많다. 특히, 리포좀의 혈중 체류시간 및 막 안정성을 증진시키기 위해 레시틴, 콜레스테롤 및 PEG화된 인지질을 섞어 리포좀을 제조하게 되면 파클리탁셀 탑재 리포좀의 불안정화는 가속되어 더 빠르게 약물을 석출시킨다[비특허문헌 6~9]. 이는 파클리탁셀처럼 소수성인 약물들은 콜레스테롤, PEG화된 인지질과 인지질 분자 사이 사이의 동일 위치를 가지고 자리 차지를 위해 경쟁하기 때문이다.
리포좀 막의 유동성 증가는 이미 탑재되어 있는 봉입 약물의 누출을 일반적으로 증가시킨다. 포화된 레시틴 및 콜레스테롤로 구성된 리포좀에 오일을 첨가하게 되면 리포좀 막의 유동성이 증가됨이 자명하며 [비특허문헌 10], 따라서 이 리포좀에의 파클리탁셀 탑재는 급격한 탑재 약물의 방출 및 석출을 예상하게 한다.
[선행기술문헌]
[비특허문헌]
(비특허문헌 1)Deniz, A., Sade, A., Severcan, F., Keskin, D., Tezcaner, A., Banerjee, S., 2010. Celecoxibloaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci. Rep. 30, 365-373
(비특허문헌 2)Senior, J., Gregoriadis, G., 1982. Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components. Life. Sci. 30, 2123-2136.
(비특허문헌 3)Lehtonen, J.Y., Kinnunen, P.K., 1995. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes. Biophys. J. 68, 525-535.
(비특허문헌 4)Mattjus, P., Slotte, J.P., 1996. Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids? Chem. Phys. Lipids 81, 69-80.
(비특허문헌 5)Payton, N.M., Wempe, M.F., Betker, J.L., Randolph, T.W., Anchordoquy, T.J., 2013. Lyophilization of a triply unsaturated phospholipid: effects of trace metal contaminants. Eur. J. Pharm. Biopharm. 85, 306-313.
(비특허문헌 6)Crosasso, P., Ceruti, M., Brusa, P., Arpicco, S., Dosio, F., Cattel, L., 2000. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J. Control. Release 63, 19-30.
(비특허문헌 7)Koudelka. S., Turanek-Knotigova. P., Masek. J., Korvasova. Z., Skrabalova. M., Plockova. J., Bartheldyova. E., Turanek. J., 2010 Liposomes with high encapsulation capacity for paclitaxel: Preparation, characterisation and in vivo anticancer effect. J. Pharm. Sci. 99(5):2309-19.
(비특허문헌 8)Zhang, J.A., Anyarambhatla, G., Ma, L., Ugwu, S., Xuan, T., Sardone, T., Ahmad, I., 2005. Development and characterization of a novel Cremophor EL free liposomebased paclitaxel (LEP-ETU) formulation. Eur. J. Pharm. Biopharm. 59, 177-187.
(비특허문헌 9)Immordino, M.L., Brusa, P., Arpicco, S., Stella, B., Dosio, F., Cattel, L., 2003. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J. Control. Release 91, 417-429.
(비특허문헌 10)Hong, S.S., Kim S.H., Lim S.J. 2015. Effects of triglycerides on the hydrophobic drug loading capacity of saturated phosphatidylcholine-based liposomes. Int. J. Pharm. 483, 142-150.
본 발명자들은 포화레시틴, 스테롤계 화합물 및 PEG화된 인지질로 구성된 파클리탁셀 전달용 리포좀에 탁산계 약물을 탑재 시 오일(medium or long chain triglyceride)을 첨가함으로써 리포좀 보관 시 시간에 따른 불안정화 및 탁산계 약물의 유리/석출을 현저히 저해시킬 수 있는 새로운 탁산계 약물 탑재 리포좀을 개발함으로써 본 발명을 완성하게 되었다.
따라서, 본 발명은 보관 안정성을 향상시키고 약물 석출을 현저히 줄일 수 있는 탁산계 약물 전달용 리포좀 및 이의 제조방법을 제공하는데 목적이 있다.
상기 과제를 해결하기 위한 수단으로, 본 발명은
포화레시틴, 스테롤계 화합물 및 폴리에틸렌글리콜화된 인지질(PEG-인지질)을 포함하는 지질 이중층; 및
오일
을 포함하는 탁산계 약물 전달용 리포좀을 제공한다.
상기 과제를 해결하기 위한 다른 수단으로, 본 발명은
1) 포화 레시틴, 스테롤계 화합물 및 폴리에틸렌글리콜화된 인지질(PEG-인지질)로 혼합된 지질을 알코올에 혼합하는 단계;
2) 상기 1)의 혼합 용액에 탁산계 약물 및 오일을 혼합하여 혼합액을 제조하는 단계;
3) 상기 2) 혼합액을 동결건조하여 분말을 얻는 단계;
4) 상기 3)의 분말을 수화시켜 수용액을 얻는 단계; 및
5) 상기 4)의 수용액을 초음파 처리하고, 여과하여 리포좀을 얻는 단계
를 포함하는 탁산계 약물을 봉입한 리포좀의 제조방법을 제공한다.
상기 과제를 해결하기 위한 또 다른 수단으로, 본 발명은
상기 리포좀을 포함하는 정맥주사용 약학 제제를 제공한다.
본 발명은 난용성의 항암제인 탁산계 약물의 봉입 농도를 안정적으로 증진시킨 리포좀에 관한 것으로, 리포좀의 PEG화에 의하여 세망내피계와 리포좀 표면의 상호작용을 감소시켜 정맥 주사된 리포좀이 급격히 세망내피세포계로 이행하는 현상을 방지하여 결국 탑재 약물의 혈중 체류 시간을 증진시켰다. 또한, 오일을 함께 사용함으로써 입자 크기를 감소시켜 멸균을 위한 막 여과 및 보관 안정성을 향상시키고 약물 석출이 일어나지 않아 정맥 주사가 가능하다.
도 1은 탁솔 및 파클리탁셀이 봉입된 실시예 1의 리포좀으로부터 시간에 따른 파클리탁셀 방출 양상을 비교한 그래프이다.
도 2는 오일 첨가에 따른 파클리탁셀이 봉입된 리포좀의 거품 형성 방지 효과를 확인한 사진이다[좌: 오일을 첨가하지 않고 제조된 리포좀, 우: 오일을 첨가하여 제조된 실시예 1의 리포좀].
도 3은 파클리탁셀이 봉입된 리포좀의 보관 시 형상 변화를 투과전자현미경으로 확인한 사진이다[(a) 제조 후 필터링하지 않아 미탑재 파클리탁셀이 리포좀과 혼재된 상태 (b) C300을 첨가하지 않은 파클리탁셀 리포좀 제조 1일 후 (c) C300을 첨가하지 않은 파클리탁셀 리포좀 상온 보관 7일 후 (d) C300 첨가 파클리탁셀 리포좀 제조 1일 후 (e) C300 첨가 파클리탁셀 리포좀 상온 보관 7일 후].
도 4는 탁솔 제형과 오일 첨가 실시예 1의 리포좀 제형에 대한 배양세포주에서의 MTT assay(A) 및 colony formation assay(B)로 항암 활성을 비교한 것이다.
도 5는 탁솔 제형과 오일 첨가 실시예 1의 리포좀 제형에 대한 암 이식 동물모델에서의 항암 활성을 비교한 것이다[화살표: 투여시점].
도 6은 탁솔 제형과 오일 첨가 실시예 1의 리포좀 제형에 대한 독성을 비교한 것이다[(A) 동물에 정맥주사 후 몸무게 변화 비교 (B) 적혈구 용액에 대한 용혈 현상 비교].
이하, 본 발명을 구체적으로 설명하면 다음과 같다.
본 발명은
포화레시틴, 스테롤계 화합물 및 폴리에틸렌글리콜화된 인지질(PEG-인지질)을 포함하는 지질 이중층; 및
오일
을 포함하는 탁산계 약물 전달용 리포좀에 관한 것이다.
본 발명에 사용된 “리포좀(liposome)"은 활성 약물을 봉입할 수 있는 인지질 이중막(bilayer)이다.
또한, 본 발명의 “폴리에틸렌글리콜화된(PEGylated, PEG화된)"은 폴리에틸렌글리콜(PEG)을 화학적으로 결합시킨 것을 의미한다.
본 발명에 따른 리포좀은 포화레시틴, 스테롤계 화합물 및 PEG-인지질로 구성된 지질이중충; 및 오일을 포함하며, 이에 탁산계 약물이 봉입(또는 탑재)되는 형태로 제공된다.
상기 포화레시틴은 1,2-디미리스토일-sn-글리세로-3-포스포콜린(1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine, DMPC), 1,2-디펙사노일-sn-글리세로-3-포스포콜린(1,2-dihexanoyl-sn-glycero-3-phosphocholine, DHPC), 1,2-디헵타노일-sn-글리세로-3-포스포콜린(1,2-diheptanoyl-sn-glycero-3-phosphocholine, DHPC), 1,2-디옥타노일-sn-글리세로-3-포스포콜린(1,2-dioctanoyl-sn-glycero-3-phosphocholine, 1,2-dinonanoyl-sn-glycero-3-phosphocholine), 1,2-디데카노일-sn-글리세로-3-포스포콜린(1,2-didecanoyl-sn-glycero-3-phosphocholine), 1,2-디운데카노일-sn-글리세로-3-포스포콜린(1,2-diundecanoyl-sn-glycero-3-phosphocholine), 1,2-디라우로일-sn-글리세로-3-포스포콜린(1,2-dilauroyl-sn-glycero-3-phosphocholine, DLPC), 1,2-디트리데카노일-sn-글리세로-3-포스포콜린(1,2-ditridecanoyl-sn-glycero-3-phosphocholine), 1,2-디펜타데카노일-sn-글리세로-3-포스포콜린(1,2-dipentadecanoyl-sn-glycero-3-phosphocholine), 1,2-디팔미토일-sn-글리세로-3-포스포콜린(1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC), 1,2-디헵타데카노일-sn-글리세로-3-포스포콜린(1,2-diheptadecanoyl-sn-glycero-3-phosphocholine), 1,2-디스테아로일-sn-글리세로-3-포스포콜린(1,2-distearoyl-sn-glycero-3-phosphocholine, DSPC), 1,2-디노나데카노일-sn-글리세로-3-포스포콜린(1,2-dinonadecanoyl-sn-glycero-3-phosphocholine), 1,2-디아라키도일-sn-글리세로-3-포스포콜린(1,2-diarachidoyl-sn-glycero-3-phosphocholine), 1,2-디헤나라키도일-sn-글리세로-3-포스포콜린(1,2-dihenarachidoyl-sn-glycero-3-phosphocholine), 1,2-디베헤노일-sn-글리세로-3-포스포콜린(1,2-dibehenoyl-sn-glycero-3-phosphocholine), 1,2-디트리코사노일-sn-글리세로-3-포스포콜린(1,2-ditricosanoyl-sn-glycero-3-phosphocholine), 1,2-디리그노세로일-sn-글리세로-3-포스포콜린(1,2-dilignoceroyl-sn-glycero-3-phosphocholine) 및 하이드로제네이티드포스파티딜콜린(hydrogenated phosphatidylcholine)으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다.
상기 스테롤계 화합물은 콜레스테롤, 3b-[N-(N',N'-디메틸아미노에탄)-카바밀}콜레스테롤(3b-[N-(N',N'-dimethylaminoethane)-cabamyl]cholesterol, DC-Chol), 스티그마스테롤(stigmasterol), 캄페스테롤(campesterol), 시토스테롤(sitosterol), 에르고스테롤(ergosterol), 라노스테롤(lanosterol), 디노스테롤(dinosterol), 고르고스테롤(gorgosterol), 아베나스테롤(avenasterol), 사린고스테롤(saringosterol), 퓨코스테롤(fucosterol), 콜레스테릴 헤미석시네이트(cholesteryl hemisuccinate), 콜레스테릴 벤조에이트(cholesteryl benzoate), 콜레스테릴 올레이트(cholesteryl oleate), 콜레스테릴 올레일 카보네이트(cholesteryl oleyl carbonate), 콜레스테릴 이소스테아레이트(cholesteryl isostearate), 콜레스테릴 리놀레이트(cholesteryl linoleate), 콜레스테릴 아세테이트(cholesteryl acetate), 콜레스테릴 팔미테이트(cholesteryl palmitate), 콜레스테릴 스테아레이트(cholesteryl stearate), 콜레스테릴 클로라이드(Cholesteryl chloride), 콜레스테릴 노나노에이트(Cholesteryl nonanoate) 및 콜레스테릴 아라키도네이트(Cholesteryl arachidonate)로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다.
상기 인지질은 1,2-디스테아로일-sn-글리세로-3-포스포에탄올아민(1,2-Distearoyl-sn-Glycero-3-phosphoethanolamine, DSPE), 1,2-디헥사노일-sn-글리세로-3-포스포에탄올아민(1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디옥타노일-sn-글리세로-3-포스포에탄올아민(1,2-dioctanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디데카노일-sn-글리세로-3-포스포에탄올아민(1,2-didecanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디아우로일-sn-글리세로-3-포스포에탄올아민(1,2-dilauroyl-sn-glycero-3-phosphoethanolamine, DLPE), 1,2-디미리스토일-sn-글리세로-3-포스포에탄올아민(1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, DMPE), 1,2-디펜타데카노일-sn-글리세로-3-포스포에탄올아민(1,2-dipentadecanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디팔미토일-sn-글리세로-3-포스포에탄올아민(1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, DPPE), 1,2-디헵타데카노일-sn-글리세로-3-포스포에탄올아민(1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine), L-α-포스파티딜에탄올아민(L-?-phosphatidylethanolamine (egg, soy)), L-α-포스파티딜에탄올아민 트랜스포스파티딜드(L-α-phosphatidylethanolamine transphosphatidylated), L-α-리소포스파티딜에탄올아민(L-α-lysophosphatidylethanolamine), 1,2-디팔미토에오일-sn-글리세로-3-포스포에탄올아민(1,2-dipalmitoleoyl-sn-glycero-3-phosphoethanolamine), 1,2-디올레오일-sn-글리세로-3-포스포에탄올아민(1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (Δ9-Cis, Trans)), 1,2-디리노에오일-sn-글리세로-3-포스포에탄올아민(1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine), 1,2-디아라키노일-sn-글리세로-3-포스포에탄올아민(1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine), 1,2-디도코사헥사에노일-sn-글리세로-3-포스포에탄올아민(1,2-didocosahexaenoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-올레오일-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-리놀에오일-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-아라키도노일-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-도코사헥사에노일-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-올레오일-sn-글리세로-3-포스포에탄올아민(1-stearoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-리노레오일-sn-글리세로-3-포스포에탄올아민(1-stearoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-아라키도노일-sn-글리세로-3-포스포에탄올아민(1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-도코사헥사에노일-sn-글리세로-3-포스포에탄올아민(1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine), 1-미리스토일-2-하이드록시-sn-글리세로-3-포스포에탄올아민(1-myristoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-하이드록시-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-올레오일-sn-글리세로-3-포스포에탄올아민(1-Stearoyl-2-Hydroxy-sn-Glycero-3-Phosphoethanolamine), 및 1-올레오일-2-하이드록시-sn-글리세로-3-포스포에탄올아민(1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine)으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다.
상기 지질이중층을 구성하는 포화 레시틴, 스테롤계 화합물, 및 PEG-인지질은 55 ~ 88 몰% : 10 ~ 40 몰% : 2 ~ 8 몰%이 포함될 수 있다.
상기 PEG는 시판되는 것을 사용할 수 있으며, PEG 분자량은 2,000 내지 20,000인 것이 바람직하다. 일반적으로 리포좀 제조 시 PEG-인지질을 사용하는 경우, RES의 식균세포에 의한 파괴를 방지하는 효과를 가져와 혈액 내 체류시간을 증가시키는 장점을 갖고, 이에 리포좀 크기의 증가를 가져오게 된다. 특히, 본 발명의 리포좀은 탁산계 약물 석출이 일어나지 않아 정맥 투여하는 것이 바람직한데, 분자량 20,000을 초과하는 경우 PEG가 체내에서 분해되지 않고 신장을 통해 체외로 배출되는 가능성이 높아지며, 2,000 미만인 경우 그 이상의 분자량에 비해 혈액 내 장기간 순환하는 효과(long-circulating effect)가 저하되는 것으로 알려져 있으므로, PEG의 분자량이 2,000 내지 20,000인 것이 바람직하다.
상기 오일은 본 발명에서 리포좀의 막 유동성을 증가시켜 약물 방출을 증진시키는 요소로 사용되며, 상기 지질이중층을 구성하는 포화레시틴 분자들 사이에 삽입되는 형태를 구성한다. 즉, 탁산계 약물과 포화레시틴, 스테롤계 화합물 및 PEG-인지질을 구성하는 리포좀에 오일을 포함시킴으로써 최종 리포좀 보관 시 안정성이 향상되고, 탑재된 탁산계 약물의 유리/석출 문제가 현저히 개선된다. 또한, 본 발명에 따른 탁산계 약물 함유 리포좀은 소량의 오일을 포함함으로써 PEG-인지질에 의해 1) 리포좀의 제조과정에서 거품이 형성되는 현상 2) 제조된 리포좀을 동결건조하여 보관하다가 사용 시 재분산을 위해 수상을 가한 후 흔들 때 거품이 형성되는 현상을 현저히 감소시켜 제조의 용이성을 증진시켜 주는 효과가 있다.
상기 오일은 중쇄(medium-chain) 이상(중쇄 또는 장쇄)의 지방산 트리글리세라이드, 즉 탄소수 6 내지 22의 지방산 트리글리세라이드일 수 있다. 구체적으로, 탄소수 6인 카프로인산 트리글리세라이드(caproic acid triglyceride), 탄소수 8인 카프릴산 트리글리세라이드(caprylic acid triglyceride), 탄소수 10인 카프린산 트리글리세라이드(capric acid triglyceride), 탄소수 12인 라우린산 트리글리세라이드(lauric acid triglyceride) 및 이들의 혼합 오일(예: Glyceryl Tricaprylate/Tricaprate인 Captex300, Labrafac Lipophile WL 1349 등 시판 제품 많음), 중쇄(medium-chain) 이상(중쇄 또는 장쇄)의 지방산 트리글리세라이드들을 다량 포함하는 천연 오일인 콩기름, 코코넛유, 해바라기씨유, 깨기름, 피마자유, 면실유, 야자유, 홍화유, 땅콩기름, 옥수수기름, 올리브유, 카놀라유, 크릴유 등을 포함할 수 있으나, 이에 제한되지 않는다.
상기 탁산계 약물은 파클리탁셀 또는 도세탁셀의 난용성 약물이다.
본 발명에 따른 리포좀은 지질, 오일 및 탁산계 약물은 100 : 1 ~ 30 : 3 ~ 15의 중량비로 포함하는 것이 바람직하다.
상기 오일이 이의 범위를 벗어나게 되면 적합한 입자 크기로 제조하기 어렵고, 보관 안정성 및 약물 석출 문제를 해결하기 어려우며, 약물이 너무 적거나 많으면 봉입 농도가 너무 낮거나 빠르게 침전되는 문제가 있다. 또한, 상기 탁산계 약물이 이의 범위를 초과할 경우 약물 석출이 일어나는 문제가 있다.
일반적으로 제타포텐셜 값(리포좀의 표면 하전)이 절대값으로 30 내지 60 mV 범위이면 정전기적 반발력에 의해 리포좀의 응집 방지 안정화가 가능하다고 알려져 있으나, 오일을 첨가하지 않은 리포좀의 경우 음성 하전을 부여하는 PEG화(PEGylation)에 의해 제타포텐셜이 -50 mV인데도 불구하고 시간에 따른 리포좀의 응집 및 약물 석출이 일어나며, 이는 정전기적 반발력을 이용한 리포좀의 안정화가 탁산계 약물에서는 성립되지 않는다고 볼 수 있다. 하지만 오일을 첨가시켜 제조된 리포좀의 경우 제타포텐셜 값에는 변화가 없으면서 리포좀의 응집이 일어나지 않았고 또한 약물 석출도 지연되는 것을 확인하였다 (표 3).
상기 오일을 첨가한 리포좀은 제타포텐셜 값이 -70 내지 -20 mV인 것이 바람직하다.
또한, 본 발명의 리포좀은 탁산계 약물 탑재 유지율이 초기 약물 농도 대비 4 ℃에서 2개월 동안 보관 시 90% 이상이거나 상온(25 ℃)에서 1주일 보관 시 80% 이상으로 확인되었다. 이는 기존 파클리탁셀 탑재 리포좀에 비해 현저히 개선된 보관 안정성을 나타내는 것이다.
본 발명에 따른 리포좀은 PEG의 정전기적인 반발력에 의해 리포좀 표면의 곡률이 증가함으로써 리포좀 입자경 축소 공정인 압축(extrusion) 공정을 거치지 않고도 평균 입자 크기를 50 nm 내지 500 nm, 50 nm 내지 450 nm, 50 nm 내지 400 nm, 100 nm 내지 500 nm, 100 nm 내지 450 nm, 150 nm 내지 500 nm 또는 150 nm 내지 400 nm으로 조절할 수 있다. 이렇게 입자 크기를 조절함으로써 정맥 주사가 가능한 리포좀을 제공할 수 있다.
따라서, 본 발명은 상기 탁산계 약물이 봉입된 리포좀을 포함하는 정맥주사용 약학 제제를 제공한다.
또한, 본 발명은
포화 레시틴, 스테롤계 화합물 및 폴리에틸렌글리콜화된 인지질(PEG-인지질)로 혼합된 지질을 알코올에 혼합하는 단계;
상기 혼합 용액에 탁산계 약물 및 오일을 혼합하여 혼합액을 제조하는 단계;
상기 혼합액을 동결건조하여 분말을 얻는 단계;
상기 분말을 수화시켜 수용액을 얻는 단계; 및
상기 수용액을 초음파 처리하고, 여과하여 리포좀을 얻는 단계
를 포함하는 탁산계 약물을 봉입한 리포좀의 제조방법을 제공한다.
먼저, 포화 레시틴, 스테롤계 화합물 및 폴리에틸렌글리콜로 유도체화된 인지질(PEG-인지질)로 혼합된 지질을 알코올에 혼합한다.
상기 포화레시틴, 스테롤계 화합물, 인지질, 지질은 상기에서 언급한 바와 같다.
상기 알코올은 탄소수 2 내지 6의 저급 알코올이 바람직하다.
상기 혼합은 1000-4000 rpm의 속도로 0.5 내지 5분 동안 교반하여 실시한다.
상기 혼합과정을 거쳐 제조된 혼합 용액에 탁산계 약물을 용해시킨다.
이때, 탁산계 약물은 지질 100 중량부에 대하여 3 내지 15 중량부를 포함하는 것이 바람직하다. 또한, 1000-4000 rpm의 속도로 0.5 내지 5분 동안 교반하여 탁산계 약물을 용해시킨다.
그런 다음, 탁산계 약물이 용해된 혼합 용액에 오일을 혼합한다.
상기 오일은 상술한 바와 같으며, 탁산계 약물이 용해된 혼합 용액에 1000-4000 rpm의 속도로 0.5 내지 5분 동안 오일을 교반하여 혼합시킨다.
오일이 포함된 혼합액을 동결건조시켜 분말을 얻는다. 이때, -40 내지 -80 ℃에서 16 내지 30시간 동안 동결건조를 실시한다.
상기 동결건조하여 얻은 분말을 수화시켜 수용액을 얻는다. 상기 수용액을 초음파 처리하고 여과하여 리포좀을 제조한다. 이때, 100 ~ 280 와트, 37 ℃에서 30~60분 동안 초음파 처리하는 것이 바람직하다.
이렇게 제조된 본 발명의 리포좀은 탁산계 약물의 혈액 내 체류시간을 증가시켜 탁산계 약물의 항암 활성을 유지시켜주는 역할을 하는 바, 암의 예방 및 치료에 효과적으로 이용될 수 있다.
본 발명에 사용한 탁산계 약물은 탁산계 약물 자체 또는 이의 약학적으로 허용 가능한 염의 형태일 수 있으며, 염으로는 약학적으로 허용 가능한 유리산(free acid)에 의해 형성된 산 부가염이 유용하다. 산 부가염은 염산, 질산, 인산, 황산, 브롬화수소산, 요드화수소산, 아질산 또는 아인산과 같은 무기산류와 지방족 모노 및 디카르복실레이트, 페닐-치환된 알카노에이트, 하이드록시 알카노에이트 및 알칸디오에이트, 방향족 산류, 지방족 및 방향족 설폰산류와 같은 무독성 유기산으로부터 얻는다. 이러한 약학적으로 무독한 염류로는 설페이트, 피로설페이트, 바이설페이트, 설파이트, 바이설파이트, 니트레이트, 포스페이트, 모노하이드로겐 포스페이트, 디하이드로겐 포스페이트, 메타포스페이트, 피로포스페이트 클로라이드, 브로마이드, 아이오다이드, 플루오라이드, 아세테이트, 프로피오네이트, 데카노에이트, 카프릴레이트, 아크릴레이트, 포메이트, 이소부티레이트, 카프레이트, 헵타노에이트, 프로피올레이트, 옥살레이트, 말로네이트, 석시네이트, 수베레이트, 세바케이트, 푸마레이트, 말리에이트, 부틴-1,4-디오에이트, 헥산-1,6-디오에이트, 벤조에이트, 클로로벤조에이트, 메틸벤조에이트, 디니트로 벤조에이트, 하이드록시벤조에이트, 메톡시벤조에이트, 프탈레이트, 테레프탈레이트, 벤젠설포네이트, 톨루엔설포네이트, 클로로벤젠설포네이트, 크실렌설포네이트, 페닐아세테이트, 페닐프로피오네이트, 페닐부티레이트, 시트레이트, 락테이트, β-하이드록시부티레이트, 글리콜레이트, 말레이트, 타트레이트, 메탄설포네이트, 프로판설포네이트, 나프탈렌-1-설포네이트, 나프탈렌-2-설포네이트 또는 만델레이트를 포함한다.
본 발명에 따른 산 부가염은 통상의 방법, 예를 들면, 탁산계 약물을 과량의 산 수용액 중에 용해시키고, 이 염을 수혼화성 유기 용매, 예를 들면 메탄올, 에탄올, 아세톤 또는 아세토니트릴을 사용하여 침전시켜서 제조할 수 있다.
동량의 탁산계 약물 및 물 중의 산 또는 알코올을 가열하고, 이어서 이 혼합물을 증발시켜서 건조시키거나 또는 석출된 염을 흡입 여과시켜 제조할 수도 있다.
또한, 염기를 사용하여 약학적으로 허용 가능한 금속염을 만들 수 있다. 알칼리 금속 또는 알칼리 토금속 염은 예를 들면 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해하고, 비용해 화합물 염을 여과하고, 여액을 증발, 건조시켜 얻는다. 이때, 금속 염으로는 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하다. 또한, 이에 대응하는 은 염은 알칼리 금속 또는 알칼리 토금속 염을 적당한 음염(예, 질산은)과 반응시켜 얻는다.
상기 조성물은 약학적 조성물로 사용할 수 있으며, 경구 또는 비경구의 여러 가지 제형일 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구 투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 하나 이상의 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로오스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 스테아린산 마그네슘, 탈크 등과 같은 윤활제들도 사용된다. 경구 투여를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.
본 발명의 조성물은 목적하는 바에 따라 비경구 투여하거나 경구 투여할 수 있으며, 하루에 체중 1 ㎏당 0.1~500 ㎎, 바람직하게는 1~100 ㎎의 양으로 투여되도록 1 내지 수회에 나누어 투여할 수 있다. 특정 환자에 대한 투여용량은 환자의 체중, 연령, 성별, 건강 상태, 식이, 투여 시간, 투여 방법, 배설률, 질환의 중증도 등에 따라 변화될 수 있다.
이하, 본 발명의 실시예를 통해 상세히 설명한다. 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식이 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
[실시예]
실시예 1: 파클리탁셀이 봉입된 리포좀(DMPC:CHOL:DSPE-PEG2000:오일) 제조
3차 부틸 알코올에 디미리스틸포스파티딜콜린(DMPC)과 콜레스테롤 및 PEG화된 인지질(DSPE-PEG2000)을 35:5:2의 몰 비(23.7:2:5.6의 중량비)로 3,000 rpm의 속도로 1분 혼합하고 이에 파클리탁셀을 DMPC+콜레스테롤+DSPE-PEG2000의 총 지질 31.3 mg(42 umole)당 2.6 mg의 양으로 섞어 모두 용해시킨 후, 2 mg의 오일을 3,000 rpm의 속도로 1분 혼합하여 얻어진 혼합용액을 신속하게 - 80 ℃에서 얼리고, 동결건조기에서 -45 ℃에서 동결 건조를 시행하였다. 24시간 동안 동결건조한 후에 얻은 지질+약물 파우더에 생리식염액 1 ml을 가해 수화시켰다. 3,000 rpm에서 30초 교반하여 수화에 의해 자발적으로 형성된 리포좀 분산액을 37 ℃에서 30분간 수조 형식의 초음파 분산기에서 130 와트로 분쇄 및 균질화, 다시 수조 형식의 세포 파쇄용 초음파 분산기에서 7분간 250 와트 세기의 초음파를 처리하여 파클리탁셀이 봉입된 리포좀 제형을 얻었다.
얻은 리포좀은 봉입되지 않은 파클리탁셀을 제거하기 위해서 0.8 ㎛의 필터로 여과하여 사용시까지 4 ℃에 보관하였다.
실시예 2: 오일 첨가로 인한 파클리탁셀 탑재 리포좀 보관 시 탑재된 파클리탁셀 농도 유지율 확인
오일 중 중쇄 지방산 트리글리세라이드의 일종인 Captex300 (Glyceryl Tricaprylate/Tricaprate, 이하 C300)을 2 mg/지질 31.3 mg의 비율로 첨가하여 실시예 1의 방법으로 리포좀을 제조하였다. 리포좀에 봉입된 파클리탁셀의 농도를 HPLC로 분석 후 각 리포좀을 상온 및 4 ℃에서 보관하면서 정해진 시간에 샘플을 취하여 다시 0.8 ㎛의 필터로 리포좀으로부터 방출되어 석출된 파클리탁셀을 여과 후 리포좀에 남아있는 파클리탁셀의 농도를 측정하였다. 그 결과, DMPC:CHOL:DSPE-PEG2000의 리포좀에 비해 Captex 300를 포함하여 제조한 리포좀은 탑재한 파클리탁셀을 보관기간 동안 훨씬 높은 농도비율로 유지하였다. 즉, 상온(25 ℃) 보관 1일 및 7일 후에 DMPC:CHOL:DSPE-PEG2000 리포좀의 경우는 각각 제조 후 PTX 탑재 농도의 36%, 32%를 유지하였으며 DMPC:CHOL:DSPE-PEG2000:C300 리포좀의 경우는 각각 95%, 81%였다 (표 1). 한편, DMPC:CHOL:DSPE-PEG2000:C300 리포좀을 4 ℃에 2개월 보관한 경우, DMPS:CHOL:DSPE-PEG2000:C300 리포좀의 경우는 >93% 유지되었다.
보관시간(실온) 리포좀막에의 C300 첨가 여부에 따른 보관시 탑재된 PTX의 유지비율 변화 (초기 농도 대비) 단위:%
DMPC:CHOL:C300: DSPE-PEG2000 DMPC:CHOL:DSPE-PEG2000
0 h 100 100
2 h 93.5±0.7 66.1±3.3
8 h 93.2±2.3 62.0±5.9
1 day 94.5±2.2 35.9±10.4
2 days 88.5±2.1 37.1±7.2
4 days 86.8±2.9 43.6±8.4
7 days 81.4±3.9 31.8±4.2
실시예 3: 오일 종류에 따른 파클리탁셀 탑재 리포좀 보관 시 탑재 파클리탁셀 농도 유지율 확인
오일 중 중쇄 트리글리세라이드인 C300 외에 또 다른 중쇄 트리글리세라이드인 Labrafac Lipophile WL 1349 또는 장쇄 트리글리세라이드인 콩기름(soybean oil)을 2 mg/지질 31.3 mg의 비율로 첨가하여 실시예 1의 방법으로 제조한 리포좀을 실온에 보관하며 시간에 따른 리포좀 탑재 파클리탁셀의 농도 변화를 측정한 결과, Labrafac 또는 soybean oil을 첨가한 리포좀의 경우도 오일을 첨가하지 않은 DMPC:CHOL:DSPE-PEG2000의 리포좀에 비해 보관 시 탑재한 파클리탁셀을 훨씬 높은 비율로 유지하였다 (표 2). 즉 상온 보관 2일 및 7일 후에 DMPC:CHOL:DSPE-PEG2000 리포좀의 경우는 각각 제조 후 PTX 탑재 농도의 37%, 32%를 유지하는데 비해 DMPC:CHOL:DSPE-PEG2000:Labrafac 리포좀의 경우는 각 시간에 94%, 76%를, DMPC:CHOL:DSPE-PEG2000:soybean oil 리포좀의 경우는 83%, 63%를 유지하였다 (표 2). 한편 단쇄 트리글리세라이드인 트리부티린(tributyrin)을 동량 첨가한 리포좀의 경우는 파클리탁셀의 초기 탑재 농도가 현저히 낮아서 (10배 이상) 안정성 실험을 진행할 수 없었다. 중쇄(문헌기준 C6 이상) 또는 장쇄 트리글리세라이드(C16 이상)의 경우 공통적으로 일어나는 안정화 효과로 판단된다.
보관 시간 0 h 8시간 2일 7일
리포좀 조성 AVE (%) AVE(%) AVE(%) AVE(%)
DMPC:CHOL:DSPE-PEG2000 100 62±5.9 37.1±7.2 31.8±4.2
DMPC:CHOL:DSPE-PEG2000:soybean oil 100 88.3±2.1 83.1±3.2 62.6±1.7
DMPC:CHOL:DSPE-PEG2000:LABRAFAC 100 95.3±1.9 93.5±2 75.7±1.9
DMPC:CHOL:DSPE-PEG2000:Captex 300 100 93.2±2.3 88.5±2.1 81.4±3.9
실시예 4: 오일 첨가로 인한 파클리탁셀 탑재 리포좀 보관 시 리포좀 크기 변화에 미치는 영향 확인
Captex300를 2 mg/지질 31.3 mg의 비율로 첨가하여 실시예 1의 방법으로 제조한 리포좀을 상온에 보관하며 시간에 따른 파클리탁셀 탑재 리포좀의 평균 입자경, 입도분포 변화 및 제타포텐셜을 측정한 결과, DMPC:CHOL:DSPE-PEG2000 23.7:2:5.6의 리포좀에 비해 C300를 포함하여 제조한 리포좀은 보관 시 평균 입자경 및 다분산도(polydispersity index, 분산 균일성의 척도로서, 작을수록 균일함을 의미함)의 증가가 훨씬 억제되었다. 즉, 상온 보관 7, 14일 후 DMPC:CHOL:DSPE-PEG2000 리포좀의 경우는 초기 사이즈의 4.1배, 3.9 배로 증가하였으나 C300 첨가 리포좀의 경우는 21일까지도 1.6배 만이 증가하였다. 다분산도의 경우도 DMPC:CHOL:DSPE-PEG2000 리포좀의 경우는 7일 후 이미 초기 분산도의 1.9 배 이상 증가하였으나 오일 첨가 리포좀의 경우는 21일까지도 유의성있는 차이를 보이지 않았다 (표 3).
일반적으로 음성 하전의 지질 첨가는 리포좀 막간의 반발력을 증진시켜 안정화한다고 알려져 있으나 파클리탁셀을 봉입한 DMPC: CHOL:DSPE-PEG2000 리포좀의 경우 DSPE-PEG2000에 의한 표면 음성 하전에도 불구하고 파클리탁셀에 의해 유도되는 리포좀의 응집 현상이 억제되지 못했고, 오일을 첨가 시 막 유연성 증가에 의해 막에 끼워 넣어진 파클리탁셀 간의 배열 위치 등이 변화되어 파클리탁셀에 의해 유도되는 리포좀 간 응집이 DSPE-PEG2000에 의해 억제되게 된 것으로 생각된다.
리포좀의 평균입자경, 다분산도 변화 및 제타포텐셜
보관시간(상온) 리포좀의 평균입자경 (nm)
DMPC:CHOL: DSPE-PEG2000:C300 DMPC:CHOL: DSPE-PEG2000
0일 204±27 410 ± 34
7일 310±5 1512±47
14일 366±47 1428±94
21일 320+47 ND
보관시간(상온) 리포좀의 다분산도(PI)
DMPC:CHOL:DSPE-PEG:C300 DMPC:CHOL:DSPE-PEG2000
0일 0.181±0.054 0.203 ± 0.024
7일 0.129±0.006 0.368±0.037
14일 0.158±0.008 0.384±0.019
21일 0.137±0.008 ND
보관시간(실온) 리포좀의 제타포텐셜(mV)
DMPC:CHOL:DSPE-PEG:C300 DMPC:CHOL:DSPE-PEG2000
0일 -51.2 ± 1.0 -49.5 ± 1.2
실시예 5: 멸균여과 가능 여부 및 멸균여과 후의 리포좀 물성 변화 확인
리포좀과 같은 입자분산형 정맥주사 제형의 경우 6-8 ㎛인 적혈구 보다 큰 입자가 존재하는 경우 혈전을 일으킬 우려가 있으며, 또한 0.2 ㎛의 멤브레인으로 막 여과가 가능해야 멸균이 가능하다. 이를 고려하여 실시예 1의 방법으로 리포좀을 제조 후 여과멸균을 위하여 리포좀 분산액을 0.2 ㎛의 구멍을 가지는 멤브레인필터를 장착한 주사기를 통과시키고자 하였다. 그 결과, DMPC:CHOL:DSPE-PEG2000 리포좀의 경우는 압력의 증가로 멤브레인필터가 빠르게 막히는 현상을 보였다. 한편 C300 첨가한 DMPC:CHOL:DSPE-PEG-2000 리포좀의 경우는 막필터를 쉽게 통과할 수 있어서 여과멸균이 가능했다. 이는 오일에 의한 유동성 증가 효과로 생각된다. DMPC:CHOL:DSPE-PEG2000 리포좀의 경우 여과 멸균이 불가능함과 더불어 제조 직후부터 > 5 ㎛ 입자가 12.3% 존재하였으며 C300을 첨가하여 제조한 리포좀의 경우는 해당 입자가 0% 존재하였다. 또한, 4 ℃에 8 주 보관 후에도 C300 첨가 리포좀에서만 > 5 ㎛ 입자는 전혀 발견되지 않았다.
여과멸균 전후 리포좀의 특성은 하기 표 4와 같다. 이러한 결과로, 실시예 1의 리포좀의 경우 오일에 의해 정맥 주사가 가능함을 확인하였다.
구분 DMPC:CHOL:DSPE-PEG2000:C300 DMPC:CHOL:DSPE-PEG2000
평균 입자경(nm, 멸균 전) 204±27 410±34
평균 입자경(nm, 멸균 후) 200±22 여과불가능
다분산도(멸균 전) 0.181±0.054 0.203±0.024
다분산도(멸균 후) 0.150±0.042 여과불가능
파클리탁셀 탑재 농도(mg/ml, 멸균 전) 2.29±0.15 1.52±0.24
파클리탁셀 탑재 농도(mg/ml 멸균 후) 1.93±0.11 여과 불가능
제조 직후 >5 ㎛ 입자(%) 0 12.3±7.5
4 ℃ 8주 보관 후 >5 ㎛ 입자(%) 0 측정 불가능
실시예 6: 오일 함량과 시간에 따른 파클리탁셀의 유지율(석출 양상) 확인
오일의 리포좀 안정화 효과가 오일 함량에 따라 어떻게 달라지는지 보기 위하여 C300을 0, 2, 4, 6 mg 함유하는 DMPC:CHOL:DSPE-PEG2000 리포좀을 실시예 1의 방법으로 제조하여 그 후 상온에서 보관하면서 시간에 따른 파클리탁셀(PTX) 유지율을 고찰한 결과(표 5), 2-6 mg 범위에서 유의성있는 차이는 보이지 않았다. 즉, 오일을 소량 함유하기만 하면 PTX의 석출이 억제되었으며 오일을 더 증가시켜도 PTX의 석출이 더 억제되지는 않았다. 이는 오일의 직접적인 PTX 가용화 효과에 의해 PTX의 석출이 지연된 것은 아님을 시사한다.
보관시간 (상온)  리포좀 중 첨가된 오일량 (지질 31.3 mg당mg)
C300 0 mg C300 2 mg C300 4 mg C300 6 mg
0 h 100 100 100 100
8 h 62.0±5.9 93.2±2.3 99.2±4.9 100.2±2.3
2 days 37.1±7.2 88.5±2.1 92.4±3.2 94.1±3.1
7 days 31.8±4.2 81.4±3.9 81.0±1.3 86.1±4.5
실험예 7: 파클리탁셀 봉입 리포좀의 in vitro 에서 약물 방출 확인
오일로 안정화시킨 리포좀으로부터의 시간에 따른 파클리탁셀의 방출이 기존 시판제제인 탁솔(Taxol)과 비교 시 어떻게 달라지는지 확인하기 위하여 C300을 2 mg 함유하는 DMPC:CHOL:DSPE-PEG2000 리포좀을 실시예 1의 방법으로 제조하였다. Franz-type vertical diffusion cell 의 상부에 1 mg/ml로 희석된 파클리탁셀이 봉입된 DMPC:CHOL:DSPE-PEG2000:C300 리포좀 또는 Taxol 0.1 ml을 넣고 1.35 M 소듐 살리시아에이트(sodium salicyate) (pH 6.5)를 넣어 방출된 파클리탁셀이 침전되지 않도록 하여 준 후 하부에 역시 1.35 M 소듐 살리시아에이트를 약 5 ml 넣었다. 분자량 cut-off 10,000의 투석용 멤브레인을 상부와 하부 사이에 장착 후 37도에서 자석으로 600 rpm으로 교반하였다. 96시간에 이를 때까지 적당한 시간 간격으로 하부에서 샘플을 1 ml씩 취했다. 샘플을 취한 후 하부에는 동부피의 소듐 살리시아에이트를 보충하여 주었다. 취한 샘플 중 파클리탁셀의 양, 즉 파클리탁셀이 봉입된 DMPC:CHOL:DSPE-PEG2000:C300 리포좀이나 탁솔로부터 방출된 약물의 양은 HPLC 분석법으로 정량하였다. 그 결과 시판제제 및 파클리탁셀이 봉입된 실시예 1의 리포좀 제제 둘 다 파클리탁셀은 2단계 방출 양상, 즉 초기 48시간 동안의 빠른 방출에 이은 이후 48시간 동안의 느린 양상을 보였다[도 1]. 즉, 파클리탁셀이 봉입된 DMPC:CHOL:DSPE-PEG2000:C300 리포좀으로부터의 파클리탁셀 방출 양상은 시판제제와 매우 비슷하여서 두 가지 제제 둘 다 소듐 살리시아에이트에 의해 약물 방출을 촉진시킨 조건에서 96시간 후 약 60%의 약물을 방출시켰다. 수난용성 약물의 수송체로서 바람직함을 의미하는데 이는 약물을 천천히 방출시킴으로써 정맥 주사 후 급격한 방출로 인한 침전의 가능성이 낮기 때문이다.
실험예 8: 오일 첨가에 의한 파클리탁셀 봉입 리포좀의 거품 형성 방지 효과
오일 중 중쇄 지방산 트리글리세라이드의 일종인 Captex300 (Glyceryl Tricaprylate/Tricaprate, 이하 C300)을 2 mg/지질 31.3 mg (DMPC:CHOL:DSPE-PEG2000, 23.7:2:5.6의 중량비) 비율로 첨가하여 실시예 1의 방법으로 리포좀을 제조하였다.
또한, 오일을 첨가하지 않은 것을 제외하고 실시예 1의 방법과 동일하게 리포좀을 제조하였다.
도 2에 나타낸 바와 같이, 오일을 첨가하지 않은 리포좀을 제조하는 과정에서 거품이 형성된 것을 확인할 수 있었다[도 2의 좌]. 반면에, 오일을 첨가한 실시예 1의 리포좀의 경우에는 거품이 형성되지 않았다[도 2의 우].
실험예 9: 파클리탁셀 봉입 리포좀 보관 안정성 확인
Captex300 (이하 C300)을 2 mg/지질 31.3 mg의 비율로 첨가하여 실시예 1의 방법으로 제조한 리포좀 분산액을 동결건조보조제로서 트레할로즈(trehalose) 240 mM을 녹인 증류수 동 부피와 혼합하였다. 혼합액을 -80도에서 하룻밤 얼린 후 동결건조기로 건조시켜 분말상의 리포좀을 얻었다. 리포좀 분말 제형을 하룻밤 냉장 보관 후 원부피의 증류수를 넣어 vortex하여 잘 섞은 후 다시 0.8 um의 필터로 리포좀으로부터 방출되어 석출된 파클리탁셀을 여과 후 리포좀에 남아있는 파클리탁셀의 농도를 측정하였다.
그 결과, DMPC:CHOL:DSPE-PEG2000 (23.7:2:5.6의 중량비)의 리포좀에 비해 C300를 2 mg 포함하여 제조한 리포좀은 탑재한 파클리탁셀을 동결건조 후 훨씬 높은 농도 비율로 유지하였다 (표 6).
동결건조 후 리포좀에 탑재된 채로 남아있는 파클리탁셀의 농도에 오일 삽입이 미치는 영향.
리포좀 조성 남아 있는 파클리탁셀(%)
DMPC:CHOL:DSPE-PEG2000 49.0±0.6
DMPC:CHOL:DSPE-PEG2000:Captex 300 84.0±1.0
실험예 10: 전자현미경으로 확인한 오일 첨가 파클리탁셀 봉입 리포좀의 안정화 효과
오일 첨가에 의한 리포좀의 크기와 형상의 변화를 투과형 전자현미경으로 확인하기 위해, 지질 31.3 mg(DMPC:CHOL:DSPE-PEG2000, 23.7:2:5.6의 중량비)에 C300을 2 mg 첨가한/첨가하지 않은 두 종의 리포좀 분산액을 실시예 1의 방법으로 제조하였다. 각 리포좀 분산액 소량을 생리식염액으로 70배 희석 후 탄소로 코팅한 200 메쉬 구리 격자판에 떨어뜨렸다. 이어서 2% uranyl acetate 용액으로 음성 염색 후 건조시켜 Tecnai G2 spirit (FEI company, Hillsboro, Oregon, USA)로 120 kV에서 이미지를 촬영하였다. 이미지 사진은 30,000-42,000배로 확대하였다.
그 결과, C300이 혼합되지 않은 리포좀을 제조 1일 후 리포좀의 융합(fusion)과 응집(aggregation)이 관찰되기 시작했으며, 상온에서 7일 보관 후 얻은 이미지에서는 매우 거대한 융합/응집된 리포좀과 함께 막대형 결정체가 관찰되었다. 리포좀에의 미탑재 파클리탁셀을 필터하지 않아 리포좀과 혼재된 상태에서 얻은 이미지에서 막대형 결정체가 파클리탁셀임을 확인할 수 있었다. 반면 C300을 혼합한 리포좀의 크기와 형태는 동일 조건에서 보관시 별 변화를 보이지 않았다 (도 3). 이상의 결과는 C300의 첨가가 PEG화되고 포화지방산으로 구성된 리포좀의 융합과 응집을 억제함으로써 파클리탁셀의 유리와 석출을 지연시켜줌을 시사한다.
실시예 11: 배양세포주를 이용한 TAXOL과 오일 첨가 파클리탁셀 봉입 리포좀의 항암 활성 비교
오일로 안정화시킨 파클리탁셀 봉입 리포좀과 탁솔(Taxol)의 항암 활성을 비교하기 위하여, C300을 2 mg 함유하는 DMPC:CHOL:DSPE-PEG2000 리포좀을 실시예 1의 방법으로 제조하였다. 인간 폐암 H460 세포주를 96-well plate에 5,000개씩 접종 후 24시간 후 실시예 1의 리포좀 또는 탁솔을 1 nM부터 1000 nM까지 다양한 파클리탁셀 농도로 생리식염액으로 가하였다. 48시간 세포 배양 후 MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)를 가하고 이어 생성된 formazan 결정을 dimethylsulfoxide에 용해시킨 후 540 nm에서 흡광도를 재어 세포의 성장도를 평가하였다.
반복 투여 시의 항암 활성 비교를 위해 암세포의 군집체 형성 정도를 측정하였다. 60 mm 직경의 디쉬에 마우스 유래의 B16-F10 흑색종 세포주를 500개씩 접종 하룻밤 방치 후 다양한 파클리탁셀 농도의 리포좀 또는 탁솔과 방치하였다. 3일마다 배지를 동일 농도의 파클리탁셀을 함유하는 새 배지로 바꿔 준 후 8일째 되는 날 0.5% 크리스탈 바이올렛으로 colony들을 염색하여 육안으로 식별 가능한 colony의 개수를 세었다.
MTT assay 결과, H460 세포주의 성장을 50% 억제하는 파클리탁셀 농도는 탁솔 제형과 리포좀 제형의 경우 각각 21, 14 nM로 유사한 항암 활성을 나타내었다(도 4의 (A)).
Colony formation assay 결과, B16-F10 세포주에 8 nM의 파클리탁셀 투여 후 탁솔 제형과 리포좀 제형의 경우 형성된 colony의 수를 각각 64.7%, 75.8% 억제함으로서 반복 투여시도 역시 유사한 항암 활성을 나타내었다(도 4의 (B)).
실험예 12. 동물모델에서의 TAXOL과 오일 첨가 파클리탁셀 봉입 리포좀의 항암 활성 비교
오일로 안정화시킨 파클리탁셀 봉입 리포좀과 탁솔(Taxol)의 암 이식 동물모델에서의 항암 활성을 비교하기 위하여, C300을 2 mg 함유하는 DMPC:CHOL:DSPE-PEG2000 리포좀을 실시예 1의 방법으로 제조하였다. 인간 유래의 두경부암 SCC7 세포주 2×106 개를 Balb/c nude mice의 오른쪽 넓적다리(flank)에 이식하였다. 이식한 암세포주의 부피가 약 30 mm3에 도달한 후 마우스들을 미투여 군 (미처치 그룹), 파클리탁셀을 탑재하지 않은, 빈 오일 첨가 리포좀 군 (빈 리포좀 그룹), 탁솔 투여 군 (탁솔 그룹), 파클리탁셀 탑재 오일 첨가 리포좀 군 (리포좀 그룹)로 무작위로 나누었다. 그룹 마다 15 mg/마우스 kg의 파클리탁셀 농도로 희석한 각 샘플을 3일에 한번씩 4회 정맥 주사하였다. 암 덩어리의 가장 짧은 직경(L)과 가장 긴 직경(W)을 미리 정한 시간마다 측정 후 암 부피를 (L × W2)/2의 공식에 의해 계산하였다.
그 결과, 오일 첨가 리포좀 제형은 탁솔와 유사하게 암세포의 성장을 억제시켰다(도 5).
실험예 13: TAXOL과 오일 첨가 파클리탁셀 봉입 리포좀의 부작용/독성 비교
탁솔은 사용한 계면활성제(Cremophor EL)로 인한 과민성 반응 등 부작용이 있어 환자에게 투여 시 과민성 반응을 경감시키기 위한 전처치 등을 필요로 한다.
오일로 안정화시킨 파클리탁셀 봉입 리포좀과 탁솔(Taxol)의 독성 유발 정도를 비교하기 위하여, C300을 2 mg 함유하는 DMPC:CHOL:DSPE-PEG2000 리포좀을 실시예 1의 방법으로 제조하였다. 상기 실험예 12의 암 이식 동물모델에 정맥 주사 후 독성의 지표로서 마우스 몸무게의 변화를 측정하였다. 그 결과 네 개의 그룹 중 탁솔을 투여한 그룹 쥐들만이 관찰기간 동안 몸무게가 일시적으로 감소되었다 (11%) 다시 회복되는 현상을 보였으며 다른 그룹에서는 그러한 현상이 관찰되지 않았다. 즉, 리포좀 투여 그룹에서는 미처치 그룹에 속한 마우스들과 유사하게 관찰기간 내내 몸무게가 점차적으로 증가되었다(도 6의 (A)).
한편, 실시예 1의 방법으로 제조한 오일 첨가 리포좀 제형과 탁솔의 용혈 독성을 비교하였다. SD 랫트의 경동맥으로부터 혈액을 얻은 후 10분간 3,000g에서 원심분리하여 적혈구를 얻었다. 적혈구를 생리식염수로 2회 세척 후 생리식염수를 가해 2% 의 적혈구 분산액을 얻었다. 탁솔 및 리포좀 각각을 생리식염수로 희석하여 파클리탁셀 농도로서 0.3, 0.6, 0.9 mg/ml로 맞춘 샘플들을 제조 후 이 샘플들을 각각 적혈구 분산액과 1:1의 부피비로 혼합하였다. 혼합액을 37도 수조에서 1시간 방치 후 4도에서 5분간 방치하여 용혈반응을 중단시켰다. 짧게 원심분리 후 상등액을 0.2 mm 필터로 여과하여 간섭물질을 없앤 후 540 nm에서 흡광도를 측정하였다. 파클리탁셀이 없는 생리식염수와 방치한 적혈구 용액의 흡광도를 0% 용혈로, 증류수와 방치한 적혈구 용액의 흡광도를 100% 용혈로 간주하여 각 샘플의 용혈유발 정도를 %로 계산하였다.
탁솔과 방치한 적혈구 용액의 경우 탁솔 농도 의존적으로 적혈구의 용혈 현상이 증가하여 0.6 mg/ml 파클리탁셀과 방치 1시간 후 69.7%의 적혈구 용혈이 일어났으며 리포좀과 방치한 적혈구 용액의 경우는 같은 조건에서 용혈유발 정도가 13.1%로 탁솔 대비 약 5.3배 감소하였다(도 6의 (B)). 이상의 결과는 오일 첨가 리포좀 제형이 시판 탁솔에 비해 현저히 낮은 독성을 보임을 시사한다.

Claims (20)

  1. 포화레시틴, 스테롤계 화합물 및 폴리에틸렌글리콜화된 인지질(PEG-인지질)을 포함하는 지질 이중층; 및
    오일
    을 포함하는 탁산계 약물 전달용 리포좀.
  2. 제 1 항에 있어서,
    상기 포화레시틴은 1,2-디미리스토일-sn-글리세로-3-포스포콜린(1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine, DMPC), 1,2-디펙사노일-sn-글리세로-3-포스포콜린(1,2-dihexanoyl-sn-glycero-3-phosphocholine, DHPC), 1,2-디헵타노일-sn-글리세로-3-포스포콜린(1,2-diheptanoyl-sn-glycero-3-phosphocholine, DHPC), 1,2-디옥타노일-sn-글리세로-3-포스포콜린(1,2-dioctanoyl-sn-glycero-3-phosphocholine, 1,2-dinonanoyl-sn-glycero-3-phosphocholine), 1,2-디데카노일-sn-글리세로-3-포스포콜린(1,2-didecanoyl-sn-glycero-3-phosphocholine), 1,2-디운데카노일-sn-글리세로-3-포스포콜린(1,2-diundecanoyl-sn-glycero-3-phosphocholine), 1,2-디라우로일-sn-글리세로-3-포스포콜린(1,2-dilauroyl-sn-glycero-3-phosphocholine, DLPC), 1,2-디트리데카노일-sn-글리세로-3-포스포콜린(1,2-ditridecanoyl-sn-glycero-3-phosphocholine), 1,2-디펜타데카노일-sn-글리세로-3-포스포콜린(1,2-dipentadecanoyl-sn-glycero-3-phosphocholine), 1,2-디팔미토일-sn-글리세로-3-포스포콜린(1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC), 1,2-디헵타데카노일-sn-글리세로-3-포스포콜린(1,2-diheptadecanoyl-sn-glycero-3-phosphocholine), 1,2-디스테아로일-sn-글리세로-3-포스포콜린(1,2-distearoyl-sn-glycero-3-phosphocholine, DSPC), 1,2-디노나데카노일-sn-글리세로-3-포스포콜린(1,2-dinonadecanoyl-sn-glycero-3-phosphocholine), 1,2-디아라키도일-sn-글리세로-3-포스포콜린(1,2-diarachidoyl-sn-glycero-3-phosphocholine), 1,2-디헤나라키도일-sn-글리세로-3-포스포콜린(1,2-dihenarachidoyl-sn-glycero-3-phosphocholine), 1,2-디베헤노일-sn-글리세로-3-포스포콜린(1,2-dibehenoyl-sn-glycero-3-phosphocholine), 1,2-디트리코사노일-sn-글리세로-3-포스포콜린(1,2-ditricosanoyl-sn-glycero-3-phosphocholine), 1,2-디리그노세로일-sn-글리세로-3-포스포콜린(1,2-dilignoceroyl-sn-glycero-3-phosphocholine) 및 하이드로제네이티드포스파티딜콜린(hydrogenated phosphatidylcholine)로 이루어진 군에서 선택된 하나 이상인 리포좀.
  3. 제 1 항에 있어서,
    상기 스테롤계 화합물은 콜레스테롤, 3b-[N-(N',N'-디메틸아미노에탄)-카바밀}콜레스테롤(3b-[N-(N',N'-dimethylaminoethane)-cabamyl]cholesterol, DC-Chol), 스티그마스테롤(stigmasterol), 캄페스테롤(campesterol), 시토스테롤(sitosterol), 에르고스테롤(ergosterol), 라노스테롤(lanosterol), 디노스테롤(dinosterol), 고르고스테롤(gorgosterol), 아베나스테롤(avenasterol), 사린고스테롤(saringosterol), 퓨코스테롤(fucosterol), 콜레스테릴 헤미석시네이트(cholesteryl hemisuccinate), 콜레스테릴 벤조에이트(cholesteryl benzoate), 콜레스테릴 올레이트(cholesteryl oleate), 콜레스테릴 올레일 카보네이트(cholesteryl oleyl carbonate), 콜레스테릴 이소스테아레이트(cholesteryl isostearate), 콜레스테릴 리놀레이트(cholesteryl linoleate), 콜레스테릴 아세테이트(cholesteryl acetate), 콜레스테릴 팔미테이트(cholesteryl palmitate), 콜레스테릴 스테아레이트(cholesteryl stearate), 콜레스테릴 클로라이드(Cholesteryl chloride), 콜레스테릴 노나노에이트(Cholesteryl nonanoate) 및 콜레스테릴 아라키도네이트(Cholesteryl arachidonate)로 이루어진 군에서 선택된 하나 이상인 리포좀.
  4. 제 1 항에 있어서,
    상기 인지질은 1,2-디스테아로일-sn-글리세로-3-포스포에탄올아민(1,2-Distearoyl-sn-Glycero-3-phosphoethanolamine, DSPE), 1,2-디헥사노일-sn-글리세로-3-포스포에탄올아민(1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디옥타노일-sn-글리세로-3-포스포에탄올아민(1,2-dioctanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디데카노일-sn-글리세로-3-포스포에탄올아민(1,2-didecanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디아우로일-sn-글리세로-3-포스포에탄올아민(1,2-dilauroyl-sn-glycero-3-phosphoethanolamine, DLPE), 1,2-디미리스토일-sn-글리세로-3-포스포에탄올아민(1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, DMPE), 1,2-디펜타데카노일-sn-글리세로-3-포스포에탄올아민(1,2-dipentadecanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디팔미토일-sn-글리세로-3-포스포에탄올아민(1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, DPPE), 1,2-디헵타데카노일-sn-글리세로-3-포스포에탄올아민(1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine), L-α-포스파티딜에탄올아민(L-α-phosphatidylethanolamine (egg, soy)), L-α-포스파티딜에탄올아민 트랜스포스파티딜드(L-α-phosphatidylethanolamine transphosphatidylated), L-α-리소포스파티딜에탄올아민(L-α-lysophosphatidylethanolamine), 1,2-디팔미토에오일-sn-글리세로-3-포스포에탄올아민(1,2-dipalmitoleoyl-sn-glycero-3-phosphoethanolamine), 1,2-디올레오일-sn-글리세로-3-포스포에탄올아민(1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (Δ9-Cis, Trans)), 1,2-디리노에오일-sn-글리세로-3-포스포에탄올아민(1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine), 1,2-디아라키노일-sn-글리세로-3-포스포에탄올아민(1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine), 1,2-디도코사헥사에노일-sn-글리세로-3-포스포에탄올아민(1,2-didocosahexaenoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-올레오일-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-리놀에오일-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-아라키도노일-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-도코사헥사에노일-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-올레오일-sn-글리세로-3-포스포에탄올아민(1-stearoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-리노레오일-sn-글리세로-3-포스포에탄올아민(1-stearoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-아라키도노일-sn-글리세로-3-포스포에탄올아민(1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-도코사헥사에노일-sn-글리세로-3-포스포에탄올아민(1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine), 1-미리스토일-2-하이드록시-sn-글리세로-3-포스포에탄올아민(1-myristoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-하이드록시-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-올레오일-sn-글리세로-3-포스포에탄올아민(1-Stearoyl-2-Hydroxy-sn-Glycero-3-Phosphoethanolamine), 및 1-올레오일-2-하이드록시-sn-글리세로-3-포스포에탄올아민(1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine)으로 이루어진 군에서 선택된 하나 이상인 리포좀.
  5. 제 1 항에 있어서,
    상기 지질이중층을 구성하는 포화 레시틴, 스테롤계 화합물, 및 PEG-인지질은 55 ~ 88 몰% : 10 ~ 40 몰% : 2 ~ 8 몰%이 포함된 리포좀.
  6. 제 1 항에 있어서,
    상기 PEG는 분자량이 2,000 내지 20,000인 리포좀.
  7. 제 1 항에 있어서,
    상기 오일은 탄소수 6 내지 22의 지방산 트리글리세라이드인 리포좀.
  8. 제 1 항에 있어서,
    상기 지질, 오일 및 탁산계 약물은 100 : 1 ~ 30 : 3 ~ 15의 중량비로 포함하는 리포좀.
  9. 제 1 항에 있어서,
    상기 탁산계 약물은 파클리탁셀 또는 도세탁셀인 리포좀.
  10. 제 1 항에 있어서,
    상기 리포좀은 평균 입자 크기가 50 nm 내지 500 nm인 리포좀.
  11. 제 1 항에 있어서,
    상기 리포좀은 제타포텐셜 값이 -70 내지 -20 mV인 리포좀.
  12. 제 1 항에 있어서,
    상기 리포좀의 탁산계 약물 탑재 유지율은 초기 약물 농도 대비 4 ℃에서 2개월 동안 보관 시 90% 이상이거나 상온(25 ℃)에서 1주일 보관 시 80% 이상인 리포좀.
  13. 1) 포화 레시틴, 스테롤계 화합물 및 폴리에틸렌글리콜화된 인지질(PEG-인지질)로 혼합된 지질을 알코올에 혼합하는 단계;
    2) 상기 1)의 혼합 용액에 탁산계 약물 및 오일을 혼합하여 혼합액을 제조하는 단계;
    3) 상기 2) 혼합액을 동결건조하여 분말을 얻는 단계;
    4) 상기 3)의 분말을 수화시켜 수용액을 얻는 단계; 및
    5) 상기 4)의 수용액을 초음파 처리하고, 여과하여 리포좀을 얻는 단계
    를 포함하는 탁산계 약물을 봉입한 리포좀의 제조방법.
  14. 제 13 항에 있어서,
    상기 포화레시틴은 포화레시틴은 1,2-디미리스토일-sn-글리세로-3-포스포콜린(1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine, DMPC), 1,2-디펙사노일-sn-글리세로-3-포스포콜린(1,2-dihexanoyl-sn-glycero-3-phosphocholine, DHPC), 1,2-디헵타노일-sn-글리세로-3-포스포콜린(1,2-diheptanoyl-sn-glycero-3-phosphocholine, DHPC), 1,2-디옥타노일-sn-글리세로-3-포스포콜린(1,2-dioctanoyl-sn-glycero-3-phosphocholine, 1,2-dinonanoyl-sn-glycero-3-phosphocholine), 1,2-디데카노일-sn-글리세로-3-포스포콜린(1,2-didecanoyl-sn-glycero-3-phosphocholine), 1,2-디운데카노일-sn-글리세로-3-포스포콜린(1,2-diundecanoyl-sn-glycero-3-phosphocholine), 1,2-디라우로일-sn-글리세로-3-포스포콜린(1,2-dilauroyl-sn-glycero-3-phosphocholine, DLPC), 1,2-디트리데카노일-sn-글리세로-3-포스포콜린(1,2-ditridecanoyl-sn-glycero-3-phosphocholine), 1,2-디펜타데카노일-sn-글리세로-3-포스포콜린(1,2-dipentadecanoyl-sn-glycero-3-phosphocholine), 1,2-디팔미토일-sn-글리세로-3-포스포콜린(1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC), 1,2-디헵타데카노일-sn-글리세로-3-포스포콜린(1,2-diheptadecanoyl-sn-glycero-3-phosphocholine), 1,2-디스테아로일-sn-글리세로-3-포스포콜린(1,2-distearoyl-sn-glycero-3-phosphocholine, DSPC), 1,2-디노나데카노일-sn-글리세로-3-포스포콜린(1,2-dinonadecanoyl-sn-glycero-3-phosphocholine), 1,2-디아라키도일-sn-글리세로-3-포스포콜린(1,2-diarachidoyl-sn-glycero-3-phosphocholine), 1,2-디헤나라키도일-sn-글리세로-3-포스포콜린(1,2-dihenarachidoyl-sn-glycero-3-phosphocholine), 1,2-디베헤노일-sn-글리세로-3-포스포콜린(1,2-dibehenoyl-sn-glycero-3-phosphocholine), 1,2-디트리코사노일-sn-글리세로-3-포스포콜린(1,2-ditricosanoyl-sn-glycero-3-phosphocholine), 1,2-디리그노세로일-sn-글리세로-3-포스포콜린(1,2-dilignoceroyl-sn-glycero-3-phosphocholine) 및 하이드로제네이티드포스파티딜콜린(hydrogenated phosphatidylcholine)로 이루어진 군에서 선택된 하나 이상인 리포좀의 제조방법.
  15. 제 13 항에 있어서,
    상기 스테롤계 화합물은 콜레스테롤, 3b-[N-(N',N'-디메틸아미노에탄)-카바밀}콜레스테롤(3b-[N-(N',N'-dimethylaminoethane)-cabamyl]cholesterol, DC-Chol), 스티그마스테롤(stigmasterol), 캄페스테롤(campesterol), 시토스테롤(sitosterol), 에르고스테롤(ergosterol), 라노스테롤(lanosterol), 디노스테롤(dinosterol), 고르고스테롤(gorgosterol), 아베나스테롤(avenasterol), 사린고스테롤(saringosterol), 퓨코스테롤(fucosterol), 콜레스테릴 헤미석시네이트(cholesteryl hemisuccinate), 콜레스테릴 벤조에이트(cholesteryl benzoate), 콜레스테릴 올레이트(cholesteryl oleate), 콜레스테릴 올레일 카보네이트(cholesteryl oleyl carbonate), 콜레스테릴 이소스테아레이트(cholesteryl isostearate), 콜레스테릴 리놀레이트(cholesteryl linoleate), 콜레스테릴 아세테이트(cholesteryl acetate), 콜레스테릴 팔미테이트(cholesteryl palmitate), 콜레스테릴 스테아레이트(cholesteryl stearate), 콜레스테릴 클로라이드(Cholesteryl chloride), 콜레스테릴 노나노에이트(Cholesteryl nonanoate) 및 콜레스테릴 아라키도네이트(Cholesteryl arachidonate)로 이루어진 군에서 선택된 하나 이상인 리포좀의 제조방법.
  16. 제 13 항에 있어서,
    상기 인지질은 1,2-디스테아로일-sn-글리세로-3-포스포에탄올아민(1,2-Distearoyl-sn-Glycero-3-phosphoethanolamine, DSPE), 1,2-디헥사노일-sn-글리세로-3-포스포에탄올아민(1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디옥타노일-sn-글리세로-3-포스포에탄올아민(1,2-dioctanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디데카노일-sn-글리세로-3-포스포에탄올아민(1,2-didecanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디아우로일-sn-글리세로-3-포스포에탄올아민(1,2-dilauroyl-sn-glycero-3-phosphoethanolamine, DLPE), 1,2-디미리스토일-sn-글리세로-3-포스포에탄올아민(1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, DMPE), 1,2-디펜타데카노일-sn-글리세로-3-포스포에탄올아민(1,2-dipentadecanoyl-sn-glycero-3-phosphoethanolamine), 1,2-디팔미토일-sn-글리세로-3-포스포에탄올아민(1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, DPPE), 1,2-디헵타데카노일-sn-글리세로-3-포스포에탄올아민(1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine), L-α-포스파티딜에탄올아민(L-α-phosphatidylethanolamine (egg, soy)), L-α-포스파티딜에탄올아민 트랜스포스파티딜드(L-α-phosphatidylethanolamine transphosphatidylated), L-α-리소포스파티딜에탄올아민(L-?-lysophosphatidylethanolamine), 1,2-디팔미토에오일-sn-글리세로-3-포스포에탄올아민(1,2-dipalmitoleoyl-sn-glycero-3-phosphoethanolamine), 1,2-디올레오일-sn-글리세로-3-포스포에탄올아민(1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (Δ9-Cis, Trans)), 1,2-디리노에오일-sn-글리세로-3-포스포에탄올아민(1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine), 1,2-디아라키노일-sn-글리세로-3-포스포에탄올아민(1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine), 1,2-디도코사헥사에노일-sn-글리세로-3-포스포에탄올아민(1,2-didocosahexaenoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-올레오일-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-리놀에오일-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-아라키도노일-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-도코사헥사에노일-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-올레오일-sn-글리세로-3-포스포에탄올아민(1-stearoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-리노레오일-sn-글리세로-3-포스포에탄올아민(1-stearoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-아라키도노일-sn-글리세로-3-포스포에탄올아민(1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-도코사헥사에노일-sn-글리세로-3-포스포에탄올아민(1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine), 1-미리스토일-2-하이드록시-sn-글리세로-3-포스포에탄올아민(1-myristoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine), 1-팔미토일-2-하이드록시-sn-글리세로-3-포스포에탄올아민(1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine), 1-스테아로일-2-올레오일-sn-글리세로-3-포스포에탄올아민(1-Stearoyl-2-Hydroxy-sn-Glycero-3-Phosphoethanolamine), 및 1-올레오일-2-하이드록시-sn-글리세로-3-포스포에탄올아민(1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine)으로 이루어진 군에서 선택된 하나 이상인 리포좀의 제조방법.
  17. 제 13 항에 있어서,
    상기 지질을 구성하는 포화레시틴, 스테롤계 화합물, 및 PEG-인지질은 55 ~ 88 몰% : 10 ~ 40 몰% : 2 ~ 8 몰%이 포함된 리포좀의 제조방법.
  18. 제 13 항에 있어서,
    상기 오일은 탄소수 6 내지 22의 지방산 트리글리세라이드인 리포좀의 제조방법.
  19. 제 13 항에 있어서,
    상기 지질, 오일 및 탁산계 약물은 100 : 1 ~ 30 : 3 ~ 15의 중량비로 포함하는 리포좀의 제조방법
  20. 제 1 항의 리포좀을 포함하는 정맥주사용 약학 제제.
PCT/KR2016/010633 2015-09-23 2016-09-23 탁산계 약물 전달용 리포좀 및 이의 제조방법 WO2017052255A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150134666 2015-09-23
KR10-2015-0134666 2015-09-23
KR10-2016-0114738 2016-09-07
KR1020160114738A KR101768681B1 (ko) 2015-09-23 2016-09-07 탁산계 약물 전달용 리포좀 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2017052255A1 true WO2017052255A1 (ko) 2017-03-30

Family

ID=58386330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010633 WO2017052255A1 (ko) 2015-09-23 2016-09-23 탁산계 약물 전달용 리포좀 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2017052255A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111701026A (zh) * 2020-06-28 2020-09-25 吴燕 抗肿瘤的组合药物纳米载体及其制备方法
CN112480200A (zh) * 2020-11-18 2021-03-12 宁波大学 一种羊栖菜中抑藻活性化合物的制备方法及用途
CN113350512A (zh) * 2021-06-07 2021-09-07 沈阳药科大学 PEG2,n-脂质衍生物修饰的纳米载体、制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040082590A (ko) * 2003-03-19 2004-09-30 학교법인 이화학당 약제 내성을 극복할 수 있고 폐조직 지향성인 리포좀-백금착물 항암제 조성물 및 그 제조방법
KR20140017486A (ko) * 2010-09-02 2014-02-11 더 스크립스 리서치 인스티튜트 나노입자-기반 종양-표적 약물 전달

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040082590A (ko) * 2003-03-19 2004-09-30 학교법인 이화학당 약제 내성을 극복할 수 있고 폐조직 지향성인 리포좀-백금착물 항암제 조성물 및 그 제조방법
KR20140017486A (ko) * 2010-09-02 2014-02-11 더 스크립스 리서치 인스티튜트 나노입자-기반 종양-표적 약물 전달

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CROSASSO, P. ET AL.: "Preparation, Characterization and Properties of Sterically Stabilized Paditaxel-containing Liposomes", JOURNAL OF CONTROLLED RELEASE, vol. 63, no. 1, 2000, pages 19 - 30 *
HONG, S. -S. ET AL.: "Development of Paclitaxel-loaded Liposomal Nanocarrier Stabilized by Triglyceride Incorporation", INTERNATIONAL JOURNAL OF NANOMEDICINE, vol. 11, 6 September 2016 (2016-09-06), pages 4465 - 4477 *
HONG, S. -S. ET AL.: "Effects of Triglycerides on the Hydrophobic Drug Loading Capacity of Saturated Phosphatidyleholine-based Liposomes", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 483, February 2015 (2015-02-01), pages 142 - 150 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111701026A (zh) * 2020-06-28 2020-09-25 吴燕 抗肿瘤的组合药物纳米载体及其制备方法
CN111701026B (zh) * 2020-06-28 2022-10-21 吴燕 抗肿瘤的组合药物纳米载体及其制备方法
CN112480200A (zh) * 2020-11-18 2021-03-12 宁波大学 一种羊栖菜中抑藻活性化合物的制备方法及用途
CN113350512A (zh) * 2021-06-07 2021-09-07 沈阳药科大学 PEG2,n-脂质衍生物修饰的纳米载体、制备方法及应用
CN113350512B (zh) * 2021-06-07 2023-10-27 沈阳药科大学 PEG2,n-脂质衍生物修饰的纳米载体、制备方法及应用

Similar Documents

Publication Publication Date Title
AU2008346121B2 (en) Nanodispersion
EP3143996A1 (en) Intravenous formulations of neurokinin 1-antagonists
KR101768681B1 (ko) 탁산계 약물 전달용 리포좀 및 이의 제조방법
US20060222716A1 (en) Colloidal solid lipid vehicle for pharmaceutical use
US10300023B1 (en) Stabilized assembled nanostructures for delivery of encapsulated agents
EP2750667A1 (en) Sustained-release lipid pre-concentrate of pharmacologically active substance and pharmaceutical composition comprising the same
KR101132626B1 (ko) 난용성 약물의 전달을 위한 고밀도지단백 나노입자의 제조방법
WO2017052255A1 (ko) 탁산계 약물 전달용 리포좀 및 이의 제조방법
WO2008080369A1 (fr) Composition liposomale stable
US20240082154A1 (en) Disease-site-specific liposomal formulation
Tang et al. Liprosomes loading paclitaxel for brain-targeting delivery by intravenous administration: In vitro characterization and in vivo evaluation
AU2018374593B2 (en) Composition of docetaxel liposomal injection with high drug loading
KR101561610B1 (ko) 난용성 약물이 봉입된 리포좀 나노입자를 포함하는 장기 안정성이 우수한 약학적 제제 및 이의 제조방법
WO2011043532A1 (ko) 경구용 지질 나노입자 및 그의 제조방법
CN1326525C (zh) 10-羟基喜树碱长循环脂质体及其冻干制剂
CN103040764B (zh) 一种盐酸平阳霉素脂质体注射剂
CA3123002A1 (en) Stable formulations of anesthetics and associated dosage forms
CN1875946A (zh) 10-羟基喜树碱纳米粒及其制备方法
KR20150062205A (ko) 난용성 약물이 봉입된 마이셀 나노입자를 포함하는 장기 안정성이 우수한 약학적 제제 및 이의 제조방법
CN110496103B (zh) 一种多西他赛棕榈酸酯脂质体及其制备方法
JP7186385B2 (ja) 疾患部位特異的リポソーム製剤
CN114533682A (zh) 一种多西他赛白蛋白纳米组合物及其制备方法
TWI500430B (zh) 伊立替康或鹽酸伊立替康脂質體及其製備方法
BRPI0705126B1 (pt) formulação farmacêutica para uso parenteral de compostos derivados de metotrexato associados a ésteres de colesterol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848980

Country of ref document: EP

Kind code of ref document: A1