WO2017115671A1 - シクロペンチルアルキルエーテル化合物の製造方法 - Google Patents

シクロペンチルアルキルエーテル化合物の製造方法 Download PDF

Info

Publication number
WO2017115671A1
WO2017115671A1 PCT/JP2016/087639 JP2016087639W WO2017115671A1 WO 2017115671 A1 WO2017115671 A1 WO 2017115671A1 JP 2016087639 W JP2016087639 W JP 2016087639W WO 2017115671 A1 WO2017115671 A1 WO 2017115671A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
group
cyclopentyl
zeolite
alcohol
Prior art date
Application number
PCT/JP2016/087639
Other languages
English (en)
French (fr)
Inventor
直人 小越
貴 笹沼
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2017558932A priority Critical patent/JP6791169B2/ja
Priority to KR1020187019361A priority patent/KR102705202B1/ko
Priority to ES16881647T priority patent/ES2863233T3/es
Priority to US16/064,099 priority patent/US20180354880A1/en
Priority to EP16881647.8A priority patent/EP3398928B1/en
Priority to CN201680074400.4A priority patent/CN108368016B/zh
Publication of WO2017115671A1 publication Critical patent/WO2017115671A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/18Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C43/184Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring to a carbon atom of a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated

Definitions

  • the present invention relates to cyclopentyl alkyl ether useful as a cleaning solvent for electronic parts and precision machine parts, a solvent for chemical reaction, a solvent for extraction, a solvent for crystallization, a chromatographic eluent, a solvent for electronic and electrical materials, and a release agent.
  • the present invention relates to a process for producing a compound industrially advantageously.
  • Patent Document 1 discloses a method for producing cyclopentyl methyl ether using an acidic ion exchange resin having a water content of 5% by weight or less as a catalyst.
  • this method has a problem that the reaction yield is low because it is necessary to react in the gas phase in order to suppress the deterioration of the acidic ion exchange resin.
  • Patent Document 2 discloses a process for producing methyl-t-butyl ether using crystalline aluminosilicate as a catalyst
  • Patent Document 3 discloses cyclohexylmethyl which uses a special aluminosilicate having many external surface acid sites as a catalyst
  • Patent Document 4 describes a method for producing ether, and a method for producing cyclohexyl methyl ether using tungsten oxide having a specific amount of water of crystallization as a catalyst.
  • Patent Documents 2 to 4 do not describe that cyclopentyl methyl ether was actually produced.
  • Patent Document 4 discloses that when high silica zeolite (H-ZSM-5) is used as a solid acid catalyst for the reaction of cyclohexene and methanol, the yield of methylcyclohexyl ether obtained is only 3.7%. It is stated that there was.
  • H-ZSM-5 high silica zeolite
  • Patent Document 5 discloses that a primary alcohol is reacted with a primary alcohol in the presence of a solid acid catalyst such as a pentasil-type zeolite having a silica / alumina ratio of 30 to 350.
  • a solid acid catalyst such as a pentasil-type zeolite having a silica / alumina ratio of 30 to 350.
  • the present invention is a method for producing a cyclopentyl alkyl ether compound by the addition reaction of cyclopentenes and alcohol in the presence of a solid acid catalyst, which can be reacted in a liquid phase with little decrease in catalyst activity over time (catalyst lifetime). It is an object of the present invention to provide a method capable of continuously producing a target cyclopentyl alkyl ether compound with high reaction efficiency and stability for a long period of time even when the raw material supply is increased. To do.
  • the present inventors have found that when cyclopentenes and an alcohol compound are reacted in the presence of an acidic zeolite having a silica / alumina ratio of 80 or more, even when the raw material supply amount is increased, the present invention is high.
  • the inventors have found that the target cyclopentyl alkyl ether compound can be continuously produced with a reaction efficiency and stably for a long period of time, and the present invention has been completed.
  • a method for producing a cyclopentyl alkyl ether compound [2] The cyclopentyl alkyl ether compound according to [1], wherein the cyclopentyl alkyl ether compound represented by the formula (1) is a compound in which R 1 is an alkyl group having 1 to 10 carbon atoms in the formula (1). Compound production method. [3] The process for producing a cyclopentyl alkyl ether compound according to [1] or [2], wherein the acidic zeolite is H-ZSM-5 type zeolite.
  • the target cyclopentyl alkyl ether compound can be continuously produced with high reaction efficiency and stability for a long period of time even when the reaction can be performed in the liquid phase and the raw material supply is increased. be able to.
  • cyclopentenes an optionally substituted cyclopentene (hereinafter sometimes referred to as “cyclopentenes”)
  • formula (2) R Production of cyclopentyl alkyl ether compound represented by the formula (1): R 1 —O—R 2 in which an alcohol compound represented by 1 OH (hereinafter sometimes referred to as “alcohol compound (2)”) is reacted. Is the method.
  • optionally substituted means “unsubstituted or substituted”.
  • the substituent of the cyclopentene which may have a substituent used in the present invention is not particularly limited as long as it is an inert group under the reaction conditions.
  • alkyl group having 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group; methoxy group, ethoxy group, n-propoxy group, isopropoxy group
  • An alkoxy group having 1 to 4 carbon atoms such as n-butoxy group and t-butoxy group
  • an alkylthio group having 1 to 4 carbon atoms such as methylthio group, ethylthio group, n-propylthio group and t-butylthio group
  • a halogen atom such as a chlorine atom or a bromine atom
  • an aryl group optionally having a substituent such as a phenyl group
  • cyclopentenes include cyclopentene, 1-methylcyclopentene, 3-methylcyclopentene, 3-ethylcyclopentene, 3-sec-butylcyclopentene, 2-t-butylcyclopentene, 1,3-dimethylcyclopentene, 3-methoxycyclopentene.
  • cyclopentene is particularly preferable from the viewpoint of availability.
  • the alcohol compound (2) used in the present invention is a compound represented by the formula (2): R 1 OH.
  • R 1 represents an alkyl group having 1 to 10 carbon atoms which may have a substituent, or a cycloalkyl group having 3 to 8 carbon atoms which may have a substituent.
  • alkyl group having 1 to 10 carbon atoms which may have a substituent examples include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec- Examples thereof include a butyl group, isobutyl group, tert-butyl group, n-pentyl group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group and n-decyl group.
  • Examples of the substituent of the alkyl group having 1 to 10 carbon atoms which may have a substituent include an alkoxy group having 1 to 10 carbon atoms such as a methoxy group and an ethoxy group; 1 to 1 carbon atoms such as a methylthio group and an ethylthio group 10 alkylthio groups; halogen atoms such as fluorine atom, chlorine atom and bromine atom;
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms of the cycloalkyl group having 3 to 8 carbon atoms which may have a substituent include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group. Groups and the like.
  • Examples of the substituent of the cycloalkyl group having 3 to 8 carbon atoms which may have a substituent include an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, an n-propyl group and an isopropyl group; a methoxy group And an alkoxy group having 1 to 10 carbon atoms such as ethoxy group; an alkylthio group having 1 to 10 carbon atoms such as methylthio group and ethylthio group; a halogen atom such as fluorine atom, chlorine atom and bromine atom;
  • alcohol compound (2) examples include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, n-pentanol, and n-hexanol.
  • R 1 is an alkyl group having 1 to 10 carbon atoms
  • Alkoxyalkyl alcohols such as methoxymethyl alcohol, 1-methoxyethyl alcohol, 2-methoxyethyl alcohol, 2-ethoxy-tert-butyl alcohol, 2-ethoxy-n-hexyl alcohol
  • methylthiomethyl alcohol 1-methylthioethyl alcohol
  • 2 -Alkylthioalkyl alcohols such as methylthio-tert-butyl alcohol, 3-methylthio-n-butyl alcohol, 4-methylthio-n-hexyl alcohol
  • chloromethyl alcohol, bromomethyl alcohol, 1-chloroethyl alcohol, 2-chloro-n Halogenated alkyl alcohols such as 2-propyl alcohol, 2-bromo-tert-butyl alcohol, 2-bromo-n-butyl alcohol, 2-chloro-n-hexyl alcohol Etc.
  • an alcohol compound R 1 is an alkyl group having 1 to 10 carbon
  • R 1 is an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms in the formula (2) because the effects of the present invention are more easily obtained. It is preferable to use an alcohol compound, and it is more preferable to use an alcohol compound in which R 1 is an alkyl group having 1 to 10 carbon atoms.
  • an acidic zeolite having a silica / alumina ratio of 80 or more (hereinafter sometimes simply referred to as “acidic zeolite”) is used as a reaction catalyst (solid acid catalyst).
  • the silica / alumina ratio is preferably 80 to 300, and more preferably 80 to 180, from the viewpoint of obtaining good catalytic activity.
  • Such an acidic zeolite has little decrease in catalyst activity over time and a long catalyst life. Therefore, the target product can be obtained industrially advantageously with high reaction efficiency and stability for a long period of time.
  • Zeolites are composed of SiO 4 tetrahedrons and AlO 4 tetrahedrons, and many types are known due to differences in the bonding mode of each tetrahedron. Further, zeolite has a three-dimensional framework structure and forms cavities (pores) in the lattice. The size and shape of the pores vary depending on the type of zeolite, and some have a pore diameter of 3 to 12 angstroms and a one-dimensional to three-dimensional pore shape.
  • zeolite for example, silica source (water glass, sodium silicate, etc.) and alumina source (aluminum hydroxide, sodium aluminate) are mixed, and template agent (zeolite seed crystals, etc.) is added as necessary to adjust pH. Then, it can be produced by hydrothermal synthesis. In this case, a zeolite having a silica / alumina ratio of 80 or more can be obtained by adjusting the molar ratio of the silica source and the alumina source.
  • silica source water glass, sodium silicate, etc.
  • alumina source aluminum hydroxide, sodium aluminate
  • template agent zeolite seed crystals, etc.
  • Zeolite has ion exchange capacity, and usually has alkali metal ions such as Na and K in its skeleton, but it can be easily exchanged by contacting with various cations. It is possible.
  • An acidic zeolite is a zeolite having H + groups or Lewis acid sites on its surface.
  • Examples of the acidic zeolite used in the present invention include beta type, faujasite type, mordenite type, L type, Y type, omega type, ZSM-5 type, ferrierite type zeolite, etc.
  • the ZSM-5 type zeolite is preferably the H type (H-ZSM-5 type).
  • the H type acidic zeolite is obtained by, for example, bringing a zeolite into contact with an aqueous ammonium ion solution (an aqueous solution of NH 4 Cl, NH 4 NO 3, etc.) to obtain an ammonium ion type zeolite, which is then calcined at a temperature of 300 ° C. or higher. It can be obtained by removing ammonia. It can also be obtained by bringing zeolite into contact with a strong acid such as hydrochloric acid and directly ion-exchanged with H ions. Moreover, what is marketed as an H-type acidic zeolite can also be used as it is.
  • the acidic zeolite used in the present invention may be a powder or a molded one, but a molded acidic zeolite (zeolite molded product) is preferable from the viewpoint of handling.
  • a molded acidic zeolite zeolite molded product
  • the molded product of acidic zeolite used in the present invention may be a hydrothermally synthesized product, a dried product, a fired product, or an ion exchange product.
  • known methods such as extrusion, compression, tableting, flow, rolling, and spraying can be employed.
  • a forming method it can be formed into a desired shape, for example, spherical (granular), cylindrical (pellet), plate, ring, clover, honeycomb or the like.
  • pellets are required, methods such as extrusion and tableting are adopted.
  • fine particles such as fluidized bed catalysts are required, methods such as spray drying are used. Can be adopted.
  • zeolite used for molding those having a primary particle diameter of 5 ⁇ m or less, preferably 1 ⁇ m or less are usually used.
  • the size of the molded product is not particularly limited.
  • a cylindrical pellet having a diameter of 0.5 to 5 mm and a height of 0.5 to 5 mm, a flat disk type pellet having a diameter of 0.5 to 5 mm, and the like can be given.
  • Zeolite molded products include those formed by mixing zeolite powder and a binder (hereinafter, sometimes referred to as “zeolite-binder molded body”), and those molded without using a binder component ( Hereinafter, it may be referred to as “binderless zeolite compact”.
  • binder used for the production of the former zeolite-binder molded body examples include inorganic oxides such as alumina, silica, and clay. Further, if necessary, it can be molded by adding polyvinyl alcohol, methylcellulose, polyethylene oxide, wax or the like.
  • a zeolite-binder molded body When using a zeolite-binder molded body, the pressure loss is reduced while controlling the morphological characteristics such as the shape and size of the molded body, meso and macropore volume and their distribution to some extent, and at the same time, It is possible to improve the mass transfer rate and achieve high catalyst utilization efficiency.
  • the latter binderless zeolite molded body can be synthesized in advance by a method of crystallizing a precursor dry gel powder after compression molding on a disk, or by a post-synthesis method such as aqueous sodium hydroxide or hydrothermal treatment.
  • Examples include a method of impregnating and supporting an organic structure directing agent (SDA) and crystallization in a pressurized steam atmosphere (Surface Chemistry, 19, 558 (1998), Adv. Mater., 8, 759 (1996), Chem. Lett., 25, 403 (1996), Zeolite, Vol. 29, No. 2, 55-61, Open Patent Publication No. 2001-58817, Bull.Chem.Soc.Jpn., 80,1075 (2007), Surv.Asia, see, 14,116 (2010)).
  • SDA organic structure directing agent
  • a commercially available product of acidic zeolite can be used as it is.
  • the catalytic activity does not decrease over a long period of time.
  • the concentration of the target substance in the reaction liquid at the initial stage of the reaction is 100
  • the period during which the concentration of the target substance in the reaction liquid can be maintained at 80% or more depends on the reaction method, reaction scale, etc.
  • 500 hours or more that is, it can be used continuously for 500 hours or longer without replacing the catalyst.
  • the used catalyst can be activated and reused by a conventionally known method.
  • the present invention is a method for producing a cyclopentyl alkyl ether compound by reacting a cyclopentene with an alcohol compound (2) in the presence of acidic zeolite.
  • the reaction method is not particularly limited.
  • a method (flow type) or the like in which acidic zeolite is packed in a column and the mixture is circulated through the column (hereinafter referred to as “reaction column”) can be used.
  • reaction column it is preferable to adopt the flow type from the viewpoint of working efficiency and the ability to produce the target product continuously over a long period of time.
  • cyclopentenes and alcohol compound (2) may be mixed at a predetermined ratio.
  • a liquid mixture of cyclopentenes and alcohol compound (2) can be prepared in advance, stored in a tank, and sent from the tank to the reaction column, or cyclopentenes and alcohol compound (2) Can be stored in separate tanks, and the cyclopentenes and the alcohol compound (2) can be separately fed therefrom, and both can be mixed and sent immediately before flowing through the reaction column.
  • a predetermined amount of acidic zeolite, cyclopentenes and alcohol compound (2) is added to the reactor, and the reaction mixture is stirred at a predetermined temperature and a predetermined pressure.
  • the amount of acidic zeolite used in this case is usually in the range of 0.01 to 200 parts by weight, preferably 0.1 to 150 parts by weight, more preferably 1 to 100 parts by weight with respect to 100 parts by weight of the cyclopentenes. .
  • the reaction temperature is usually 50 to 250 ° C., preferably 80 to 200 ° C.
  • the reaction pressure is usually from normal pressure (1013 hPa, the same applies hereinafter) to 10 MPa, preferably normal, although it depends on the reaction temperature and the like.
  • the pressure is in the range of 5 MPa.
  • the reaction time is usually 0.5 to 24 hours, preferably 1 to 10 hours.
  • the reaction is preferably performed under an inert atmosphere such as nitrogen.
  • reaction temperature a predetermined temperature
  • FIG. 1 shows an example of a more specific method that is carried out by the flow type.
  • 1 is a raw material (mixture of cyclopentenes and alcohol compound (2)) tank
  • 2 is a liquid feed pump
  • 3 is a preheater
  • 4 is a reaction column
  • 5 is a condenser
  • 6 is a pressure gauge
  • 7 is A back pressure valve 8 is a reaction liquid tank.
  • the number of reaction columns 4 may be one, but the conversion rate of cyclopentenes [or alcohol compound (2)] can be further improved by combining a plurality of reaction columns.
  • the size of the column used is not particularly limited, and various columns can be selected according to the reaction scale. When a plurality of reaction columns are used in combination, the types of acidic zeolite charged in each column may be the same or different.
  • the mixture may be in a gas state, a liquid state, or a mixed state of a gas state and a liquid state.
  • the pressure at which the mixture passes through the reaction column is usually in the range of normal pressure to 10 MPa, preferably normal pressure to 5 MPa, more preferably normal pressure to 3 MPa at the inlet portion of the reaction column.
  • the reaction temperature temperature in the reaction column
  • the reaction temperature is usually 50 to 200 ° C., preferably 80 to 180 ° C.
  • the use ratio of cyclopentenes and alcohol compound (2) is not particularly limited. In the case of a flow-through type, since the time during which the mixture is heated is short, the cyclopentenes do not polymerize. On the other hand, if the alcohol compound (2) is used excessively, the amount of dialkyl ether by-product may increase. Is not preferable. Specifically, the molar ratio of (cyclopentenes) / (alcohol compound (2)) is usually 1/5 to 20/1, preferably 1/4 to 10/1, more preferably 1/3 to 5 /. 1, more preferably 1/3 to 3/1.
  • the space velocity when cyclopentenes and alcohol compound (2) pass through the reaction column [a value (hr ⁇ 1 ) representing how many times the catalyst volume is treated per unit time] is usually , 0.01 to 100 hr ⁇ 1 , preferably 0.1 to 30 hr ⁇ 1 .
  • reaction temperature, a distribution rate, etc. can be changed for every reaction column.
  • the reaction can be performed without a solvent, or can be performed in an inert solvent in which the raw material cyclopentenes are dissolved and not mixed with water.
  • solvent used examples include aliphatic saturated hydrocarbons such as n-butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; benzene, toluene, ethylbenzene, xylene , Aromatic hydrocarbons such as anisole, cumene, nitrobenzene; cyclopentane, alkyl-substituted cyclopentanes, alkoxy-substituted cyclopentanes, nitro-substituted cyclopentanes, cyclohexane, alkyl-substituted cyclohexanes, alkoxy-substituted cyclohexanes, nitro-substituted cyclohexane , Cycloheptane, alkyl-substituted cycloheptanes,
  • the amount of the solvent used is not particularly limited, and any amount can be selected as long as the reaction is not inhibited.
  • the amount of the solvent used is usually 10 to 90% by volume, preferably 20 to 80% by volume, based on the total amount of the reaction solution.
  • the target cyclopentyl alkyl ether compound can be isolated by a usual separation / purification method such as solvent extraction and distillation of the reaction solution. Distillation may be performed multiple times.
  • the distillation apparatus for example, a known distillation apparatus such as a continuous rectification apparatus having a rectification column can be used.
  • the obtained reaction solution is again passed through the reaction column, and then continuously distilled by, for example, a distillation apparatus filled with Raschig rings. You can also.
  • the unreacted cyclopentenes and alcohol compound (2) can be returned to the reaction column and used again for the reaction, and the target product can be obtained at a higher conversion rate.
  • an acidic zeolite having a silica / alumina ratio of 80 or more is used as the solid acid catalyst, so that even when the raw material supply is increased, the reaction efficiency is high and stable for a long time.
  • the desired cyclopentyl alkyl ether compound represented by the formula (1): R 1 —O—R 2 can be produced continuously.
  • the cyclopentyl alkyl ether compound obtained by the production method of the present invention corresponds to the raw material used, and specifically, cyclopentyl methyl ether, cyclopentyl ethyl ether, cyclopentyl n-propyl ether, cyclopentyl isopropyl ether, cyclopentyl n-butyl ether, Cyclopentyl tert-butyl ether, cyclopentyl n-pentyl ether, cyclopentyl n-hexyl ether, cyclopentyl methoxymethyl ether, cyclopentyl 2-methoxyethyl ether, cyclopentylmethylthiomethyl ether, cyclopentyl chloromethyl ether, cyclopentyl cyclohexyl ether, cyclopentyl 2-chlorocyclohexyl ether; 1-methylcyclopentyl methyl ether, 3-methyl
  • H-ZSM-5 type zeolite powder prepared with a silica / alumina ratio at a predetermined value, alumina as a binder, and a diameter of 2.2 mm
  • a molded product manufactured by JGC Catalysts & Chemicals Co., Ltd. formed and fired into a cylindrical shape having a height of 5 mm was used.
  • Example 1 The following experiment was conducted using the reaction apparatus shown in FIG.
  • the reaction column 4 was packed with 100 ml of a catalyst having a silica / alumina ratio of 80 in a bulk volume.
  • a mixture of cyclopentene and methanol (weight ratio 68:32 (molar ratio 1: 1)) was charged into the raw material tank 1.
  • the gas inside the liquid feed pump 2, preheater 3, reaction column 4, and cooling pipe 5 is replaced with the raw material mixture.
  • the set pressure of the back pressure valve 7 was increased to temporarily stop the flow of the liquid.
  • the liquid feed pump 2 was operated at a flow rate of 5 ml / min, and the back pressure valve 7 was adjusted so that the indicated value of the pressure gauge 6 was 2.8 MPa. Thereafter, the preheater 3 and the reaction column 4 were heated to 145 ° C., and the reaction solution flowing out from the reaction column 4 was cooled to 0 ° C. with the cooling pipe 5 and collected in the reaction solution tank 8.
  • the temperature of the preheater 3 and the reaction column 4 reaches a predetermined 145 ° C.
  • the reaction is started, the liquid at the outlet of the back pressure valve 7 is sampled, and the reaction of the produced target cyclopentyl methyl ether (CPME)
  • the concentration in liquid (initial concentration) was measured with a gas chromatograph. Furthermore, the concentration of CPME for each elapsed time was measured as appropriate, and the ratio (initial ratio) with the initial concentration was calculated.
  • the reaction was stopped after 621 hours when the initial ratio reached 75%.
  • Table 1 below shows the concentration (%) of CPME in the reaction solution after each elapsed time and the ratio (%) of the concentration (% by weight) of CPME to the initial concentration. Further, these results are shown in the graphs of FIGS.
  • the vertical axis indicates the concentration (% by weight) of CPME
  • the horizontal axis indicates the elapsed time (hours).
  • the vertical axis indicates the ratio (%) of the concentration of CPME to the initial concentration
  • the horizontal axis indicates the elapsed time (hour).
  • Example 2 In Example 1, the reaction was carried out in the same manner as in Example 1 except that the solid acid catalyst was changed from a silica / alumina ratio of 80 to a silica / alumina ratio of 180. The reaction was stopped after 816.5 hours when the initial ratio reached 80%. The results are shown in the following Table 1 and the graphs of FIGS.
  • Example 1 (Comparative Example 1) In Example 1, the reaction was performed in the same manner as in Example 1 except that the solid acid catalyst was changed from a silica / alumina ratio of 80 to a silica / alumina ratio of 30. The reaction was stopped after 119 hours when the initial ratio reached 38%. The results are shown in the following Table 1 and the graphs of FIGS.
  • Example 2 In Example 1, the reaction was performed in the same manner as in Example 1 except that the solid acid catalyst was changed from a silica / alumina ratio of 80 to a silica / alumina ratio of 50. The reaction was stopped after 209 hours when the initial ratio reached 80%. The results are shown in Table 1 and the graphs of FIGS.
  • Example 3 In Example 1, the solid acid catalyst was changed from a silica / alumina ratio of 80 to a silica / alumina ratio of 30, and the weight ratio of the mixture of cyclopentene and methanol was 68:32 (molar ratio 1: 1). )) To 41:59 (molar ratio 1: 3), the set temperature of the preheater 3 and the reaction tube 4 is changed from 145 ° C. to 150 ° C., and the indicated value of the pressure gauge 6 is changed from 2.8 MPa to 2. The reaction was performed in the same manner as in Example 1 except that the pressure was 5 MPa. The reaction was stopped after 311 hours when the initial ratio reached 81%. The results are shown in Table 1 and the graphs of FIGS.
  • Example 1 when an acidic zeolite having a silica / alumina ratio of 80 or more was used as the solid acid catalyst (Examples 1 and 2), an acidic zeolite having a silica / alumina ratio of 80 or less was used. It can be seen that the time-dependent decrease in the concentration of CPME in the reaction solution obtained is smaller than in the case (Comparative Examples 1 to 3).
  • Example 1 the target product was obtained at a rate of 80% at the start of the reaction even after 525 hours had elapsed, and the target product was obtained at 42% by mass (wt%) even after 621 hours had elapsed.
  • Example 2 the target product was obtained at a rate substantially equal to that at the start of the reaction even after 575 hours had elapsed, and the target product was obtained at a rate of 80% at the start of the reaction even after 800 hours had elapsed. .
  • Comparative Example 1 the target product was obtained at the same rate as in the Example at the start of the reaction, but after 119 hours, the concentration of the target product decreased to 38% of the initial concentration. Yes. Also in Comparative Example 2, after 209 hours, the concentration of the target decreased to 80% of the initial concentration. In Comparative Example 3, the initial concentration is as low as 38 wt%, and after 311 hours, the concentration of the target object has decreased to 81% of the initial concentration.
  • the decrease in the activity of the catalyst used is small (the catalyst life is long) as compared with the case of the comparative example, so that the target product can be stably obtained over a long period of time. Recognize.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は、シリカ/アルミナ比が80以上の酸性ゼオライトの存在下に、置換基を有していてもよいシクロペンテンと、式(2):ROH(式中、Rは置換基を有していてもよい炭素数1~10のアルキル基、又は置換基を有していてもよい炭素数3~8のシクロアルキル基を表す。)で表されるアルコール化合物を反応させることを特徴とする、式(1):R-O-R(式中、Rは前記と同じ意味を表し、Rは、置換基を有していてもよいシクロペンチル基を表す。)で表されるシクロペンチルアルキルエーテル化合物の製造方法である。本発明によれば、液相でも反応でき、触媒活性の経時的な低下が少なく(触媒寿命が長く)、原料供給を大きくした場合であっても、高い反応効率で、長期間安定して、目的とするシクロペンチルアルキルエーテルを連続的に製造することができる方法が提供される。

Description

シクロペンチルアルキルエーテル化合物の製造方法
 本発明は、電子部品・精密機械部品の洗浄用溶剤、化学反応用溶剤、抽出用溶剤、結晶化用溶剤、クロマトグラフィー溶離液、電子・電気材料の溶剤及び剥離剤等として有用なシクロペンチルアルキルエーテル化合物を、工業的に有利に製造する方法に関する。
 従来、固体酸触媒の存在下、オレフィンとアルコールの付加反応によりエーテル類を製造する方法が知られている。
 例えば、特許文献1には、触媒として、含水量が5重量%以下の酸性イオン交換樹脂を用いる、シクロペンチルメチルエーテルの製造方法が開示されている。
 しかしながら、この方法は、酸性イオン交換樹脂の劣化を抑えるために、気相で反応させる必要があり、反応収率が低いという問題があった。
 また、特許文献2には、触媒として結晶性アルミノシリケートを用いる、メチル-t-ブチルエーテルの製造方法が、特許文献3には、触媒として外表面酸点の多い特殊なアルミノシリケートを用いる、シクロヘキシルメチルエーテルの製造方法が、特許文献4には、触媒として、特定量の結晶水を有するタングステン酸化物を用いる、シクロヘキシルメチルエーテルの製造方法がそれぞれ記載されている。
 しかしながら、特許文献2~4には、実際にシクロペンチルメチルエーテルを製造した旨の記載はない。また、特許文献4には、シクロヘキセンとメタノールの反応に、固体酸触媒として、ハイシリカゼオライト(H-ZSM-5)を使用した場合、得られるメチルシクロヘキシルエーテルの収率はわずか3.7%であったと記載されている。
 本発明に関連して、特許文献5には、シリカ/アルミナ比が30~350のペンタシル型ゼオライト等の固体酸触媒の存在下に、第三級アルコールを第一級アルコールと反応させる、第一級アルキル第三級アルキルエーテルの製造方法が開示されている。
WO2003-2500号パンフレット(US2005065060 A1) 特開昭59-25345号公報 特開昭61-249945号公報 特開平5-163188号公報 EP0645360号公報
 本発明は、固体酸触媒の存在下、シクロペンテン類とアルコールの付加反応により、シクロペンチルアルキルエーテル化合物を製造する方法であって、液相で反応でき、触媒活性の経時的な低下が少なく(触媒寿命が長く)、原料供給を大きくした場合であっても、高い反応効率で、長期間安定して、目的とするシクロペンチルアルキルエーテル化合物を連続的に製造することができる方法を提供することを目的とする。
 本出願人は、先に、シリカ/アルミナ比が30の酸性ゼオライトの存在下に、シクロペンテン類とアルコール化合物とを反応させると、原料供給量を大きくした場合でも、高い反応効率でシクロペンチルアルキルエーテル化合物を安定して製造できることを報告している(WO2015/147035A1パンフレット)。
 しかし、その後の研究により、この方法には、触媒活性が経時的に低下していくため、長期間の連続生産が困難であるという問題があることが分かった。
 そこで、本発明者らはさらに検討を進めた結果、シリカ/アルミナ比が80以上の酸性ゼオライトの存在下に、シクロペンテン類とアルコール化合物とを反応させると、原料供給量を大きくした場合でも、高い反応効率で、長期間安定して目的とするシクロペンチルアルキルエーテル化合物を連続的に製造できることを見出し、本発明を完成するに至った。
 かくして本発明によれば、〔1〕~〔5〕のシクロペンチルアルキルエーテル化合物の製造方法が提供される。
〔1〕シリカ/アルミナ比が80以上の酸性ゼオライトの存在下に、置換基を有していてもよいシクロペンテンと、式(2):ROH(式中、Rは置換基を有していてもよい炭素数1~10のアルキル基、又は置換基を有していてもよい炭素数3~8のシクロアルキル基を表す。)で表されるアルコール化合物を反応させることを特徴とする、式(1):R-O-R(式中、Rは前記と同じ意味を表し、Rは、置換基を有していてもよいシクロペンチル基を表す。)で表されるシクロペンチルアルキルエーテル化合物の製造方法。
〔2〕前記式(1)で表されるシクロペンチルアルキルエーテル化合物が、前記式(1)中、Rが炭素数1~10のアルキル基の化合物である、〔1〕に記載のシクロペンチルアルキルエーテル化合物の製造方法。
〔3〕前記酸性ゼオライトが、H-ZSM-5型ゼオライトである、〔1〕又は〔2〕に記載のシクロペンチルアルキルエーテル化合物の製造方法。
〔4〕前記置換基を有していてもよいシクロペンテンと式(2)で表されるアルコール化合物との反応を、流通式で行う、〔1〕~〔3〕のいずれかに記載のシクロペンチルアルキルエーテル化合物の製造方法。
〔5〕前記酸性ゼオライトとして、シリカ/アルミナ比が80以上の酸性ゼオライトの成形物を用いる、〔1〕~〔4〕のいずれかに記載のシクロペンチルアルキルエーテル化合物の製造方法。
 本発明の製造方法によれば、液相でも反応でき、原料供給を大きくした場合であっても、高い反応効率で、長期間安定して、目的とするシクロペンチルアルキルエーテル化合物を連続的に製造することができる。
本発明の製造方法を実施するための反応装置の一例の模式図である。 実施例及び比較例における、反応液中の目的物の濃度と経過時間との関係を示すグラフ図である。 実施例及び比較例における、反応液中の目的物の濃度の、反応開始時の値に対する割合と、経過時間との関係を示すグラフ図である。
 以下、本発明を詳細に説明する。
 本発明は、シリカ/アルミナ比が80以上の酸性ゼオライトの存在下に、置換基を有していてもよいシクロペンテン(以下、「シクロペンテン類」ということがある。)と、式(2):ROHで表されるアルコール化合物(以下、「アルコール化合物(2)」ということがある。)を反応させる、式(1):R-O-Rで表されるシクロペンチルアルキルエーテル化合物の製造方法である。本明細書において、「置換基を有していてもよい」とは、「無置換又は置換基を有する」という意味である。
〔シクロペンテン類〕
 本発明に用いる、置換基を有していてもよいシクロペンテンの置換基としては、反応条件下において不活性な基であれば、特に限定されない。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等の炭素数1~4のアルキル基;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~4のアルコキシ基;メチルチオ基、エチルチオ基、n-プロピルチオ基、t-ブチルチオ基等の炭素数1~4のアルキルチオ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;フェニル基、4-メチルフェニル基等の置換基を有していてもよいアリール基;等が挙げられる。
 シクロペンテン類の具体例としては、シクロペンテン、1-メチルシクロペンテン、3-メチルシクロペンテン、3-エチルシクロペンテン、3-sec-ブチルシクロペンテン、2-t-ブチルシクロペンテン、1,3-ジメチルシクロペンテン、3-メトキシシクロペンテン、3-エトキシシクロペンテン、2-sec-ブトキシシクロペンテン、3-t-ブトキシシクロペンテン、3-メチルチオシクロペンテン、3-エチルチオシクロペンテン、2-sec-ブチルチオシクロペンテン、3-t-ブチルチオシクロペンテン、1-フルオロシクロペンテン、2-クロロシクロペンテン、3-クロロシクロペンテン、2-ブロモシクロペンテン、3-ブロモシクロペンテン、2-クロロ-3-メチルシクロペンテン、1-フェニルシクロペンテン等が挙げられる。
 これらの中でも、入手容易性等の観点から、シクロペンテンが特に好ましい。
〔アルコール化合物(2)〕
 本発明に用いるアルコール化合物(2)は、式(2):ROHで表される化合物である。式(2)中、Rは、置換基を有していてもよい炭素数1~10のアルキル基、又は置換基を有していてもよい炭素数3~8のシクロアルキル基を表す。
 置換基を有していてもよい炭素数1~10のアルキル基の炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。
 置換基を有していてもよい炭素数1~10のアルキル基の置換基としては、メトキシ基、エトキシ基等の炭素数1~10のアルコキシ基;メチルチオ基、エチルチオ基等の炭素数1~10のアルキルチオ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;等が挙げられる。
 置換基を有していてもよい炭素数3~8のシクロアルキル基の炭素数3~8のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
 置換基を有していてもよい炭素数3~8のシクロアルキル基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基等の炭素数1~10のアルキル基;メトキシ基、エトキシ基等の炭素数1~10のアルコキシ基;メチルチオ基、エチルチオ基等の炭素数1~10のアルキルチオ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;等が挙げられる。
 アルコール化合物(2)の具体例としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール、tert-ブタノール、n-ペンタノール、n-ヘキサノール等の、前記式(2)において、Rが炭素数1~10のアルキル基であるアルコール化合物;
メトキシメチルアルコール、1-メトキシエチルアルコール、2-メトキシエチルアルコール、2-エトキシ-tert-ブチルアルコール、2-エトキシ-n-ヘキシルアルコール等のアルコキシアルキルアルコール;メチルチオメチルアルコール、1-メチルチオエチルアルコール、2-メチルチオ-tert-ブチルアルコール、3-メチルチオ-n-ブチルアルコール、4-メチルチオ-n-ヘキシルアルコール等のアルキルチオアルキルアルコール;クロロメチルアルコール、ブロモメチルアルコール、1-クロロエチルアルコール、2-クロロ-n-プロピルアルコール、2-ブロモ-tert-ブチルアルコール、2-ブロモ-n-ブチルアルコール、2-クロロ-n-ヘキシルアルコール等のハロゲン化アルキルアルコール;等の、前記式(2)において、Rが置換基を有する炭素数1~10のアルキル基であるアルコール化合物;
シクロプロピルアルコール、シクロブチルアルコール、シクロペンチルアルコール、シクロヘキシルアルコール、シクロヘプチルアルコール、シクロオクチルアルコール等の、前記式(2)において、Rが炭素数3~8のシクロアルキル基であるアルコール化合物;
2-クロロシクロペンチルアルコール、4-メトキシシクロヘキシルアルコール、3-メチルチオシクロヘプチルアルコール等の、前記式(2)において、Rが置換基を有する炭素数3~8のシクロアルキル基であるアルコール化合物;等が挙げられる。
 これらの中でも、本発明においては、本発明の効果がより得られやすいことから、前記式(2)においてRが炭素数1~10のアルキル基又は炭素数3~8のシクロアルキル基であるアルコール化合物を用いるのが好ましく、Rが炭素数1~10のアルキル基であるアルコール化合物を用いるのがより好ましい。
〔酸性ゼオライト〕
 本発明においては、反応触媒(固体酸触媒)として、シリカ/アルミナ比が80以上の酸性ゼオライト(以下、単に「酸性ゼオライト」ということがある。)を用いる。
 シリカ/アルミナ比は、良好な触媒活性が得られる観点から、80~300であるのが好ましく、80~180であるのがより好ましい。
 このような酸性ゼオライトは、触媒活性の経時的な低下が少なく、触媒寿命が長いため、高い反応効率で、長期間安定して、工業的に有利に目的物を得ることができる。
 ゼオライトは、SiO四面体およびAlO四面体から構成され、各四面体の結合様式の相違等により多くの種類が知られている。また、ゼオライトは、3次元骨格構造を有しており、格子中に空洞(細孔)を形成している。この細孔の大きさ、形状はゼオライトの種類によって異なり、3~12オングストロームの細孔径を持ち、1次元~3次元の細孔形状を持つものがある。
 ゼオライトは、例えば、シリカ源(水ガラス、ケイ酸ナトリウム等)、アルミナ源(水酸化アルミニウム、アルミン酸ナトリウム)を混合し、必要によりテンプレート剤(ゼオライトの種結晶等)を加えて、pHを調整した後、水熱合成により製造することができる。この場合に、シリカ源とアルミナ源のモル比を調整することにより、シリカ/アルミナ比が80以上のゼオライトを得ることができる。
 ゼオライトはイオン交換能を有しており、通常はその骨格内にNa、K等のアルカリ金属イオンを有しているが、種々の陽イオンと接触させることにより、容易にイオンを交換することが可能なものである。
 酸性ゼオライトは、H基またはルイス酸サイトをその表面上に有するゼオライトである。
 本発明で用いる酸性ゼオライトとしては、ベータ型、フォージャサイト型、モルデナイト型、L型、Y型、オメガ型、ZSM-5型、フェリエライト型等のゼオライトを、下記方法等により、H型ゼオライトとしたものが好ましく、ZSM-5型のゼオライトをH型としたもの(H-ZSM-5型)であるのがより好ましい。
 H型の酸性ゼオライトは、例えば、ゼオライトを、アンモニウムイオン水溶液(NHCl、NHNO等の水溶液)と接触させ、アンモニウムイオン型ゼオライトとした後、これを300℃以上の温度で焼成してアンモニアを除去することにより得ることができる。また、ゼオライトを、塩酸等の強酸と接触させ、直接Hイオンとイオン交換することによっても得ることができる。
 また、H型の酸性ゼオライトとして市販されているものをそのまま使用することもできる。
 本発明に用いる酸性ゼオライトは、粉末であっても、成形されたものであってもよいが、取扱い性の観点から、成形された酸性ゼオライト(ゼオライトの成形物)が好ましい。特に流通式の反応においては、成形された酸性ゼオライト(ゼオライトの成形物)を用いるのが圧力損失等の観点から望ましい。
 本発明に用いる酸性ゼオライトの成形物は、水熱合成品、乾燥品、焼成品、イオン交換品のいずれを成形したものであってもよい。ゼオライトを成形するにあたっては、押出、圧縮、打錠、流動、転動、噴霧等の、公知の方法を採用することができる。このような成形方法により、所望の形状、例えば、球状(粒状)、円筒状(ペレット状)、板状、リング状、クローバー状、ハニカム状等に成形することができる。例えば、ペレット状のものが必要な場合は、押出、打錠等の方法を採用することにより、また流動床用の触媒などのように微粒子状のものが必要な場合は、噴霧乾燥等の方法を採用することができる。
 また、成形に供するゼオライトとしては、通常、1次粒子径が5μm以下、好ましくは1μm以下のものが使用される。
 成形物の大きさは、特に限定されない。例えば、ペレット状物の場合、直径0.5~5mm、高さ0.5~5mmの円筒状ペレット、直径0.5~5mmの扁平円盤型ペレット等が挙げられる。
 ゼオライトの成形物としては、ゼオライト粉末とバインダとを混合して成形されたもの(以後、「ゼオライト-バインダ成形体」ということがある。)や、結合剤成分を用いずに成形されたもの(以後、「バインダレスゼオライト成形体」ということがある)が挙げられる。
 前者のゼオライト-バインダ成形体の製造に用いられるバインダとしては、アルミナ・シリカ・粘土のような無機酸化物が挙げられる。また、必要に応じて、ポリビニルアルコール、メチルセルロース、ポリエチレンオキシド、ワックス類等を添加して成形することもできる。
 ゼオライト-バインダ成形体を用いる場合には、成形物の形状や大きさ、メソおよびマクロ細孔容積とその分布などの形態的特性をある程度制御して、圧力損失を低減させると同時に、成形体内部における物質移動速度を向上させて、高い触媒利用効率を実現することができる。
 後者のバインダレスゼオライト成形体を得る方法としては、前駆体のドライゲル粉体をディスク上に圧縮成型した後に結晶化させる方法、水酸化ナトリウム水溶液や水熱処理などにポストシンセシス処理法により、予め合成されたゼオライト粒子から脱ケイ素、脱アルミニウムする方法、カーボンブラックやポリスチレン粒子共存下で水熱合成して得られたゼオライト粒子から共存粒子を焼成除去する方法、ケイ素源であるシリカ成形体にアルカリ金属と有機構造規定剤(SDA)とを含浸担持し、加圧水蒸気雰囲気下で結晶化する方法等が挙げられる(表面化学、19,558(1998)、Adv.Mater.,8,759(1996)、Chem.Lett.,25,403(1996),ゼオライト、29巻、2号、55-61、特開2001-58817号公報、Bull.Chem.Soc.Jpn.,80,1075(2007),Surv.Asia,14,116(2010)など参照)。
 バインダレスゼオライト成形体を用いる場合には、前記ゼオライト-バインダ成形体を用いる場合に得られる効果に加えて、ゼオライトのバインダ成分への埋没、希釈効果による効率の低下、無機バインダとの副反応という問題の発生を回避できるという効果も得られる。
 また、本発明においては、酸性ゼオライトの成形品として市販されているものを、そのまま使用することもできる。
 本発明に用いる酸性ゼオライトは、触媒活性が長期にわたり低下することがない。具体的には、反応初期の反応液中の目的物の濃度を100とすると、反応液中の目的物の濃度をその80%以上に保持できる期間が、反応方法、反応規模等にもよるが、通常500時間以上である。すなわち、通常500時間以上、触媒を取替え等することなく、連続して使用することができる。
 なお、使用後の触媒は、従来公知の方法により活性化して、再利用が可能である。
〔製造方法〕
 本発明は、酸性ゼオライトの存在下に、シクロペンテン類と、アルコール化合物(2)とを接触させて反応を行うことにより、シクロペンチルアルキルエーテル化合物を製造する方法である。
 反応方法としては特に制限されない。例えば、密閉された反応器内に、シクロペンテン類とアルコール化合物(2)との混合物(以下、「混合物」ともいう。)を入れ、さらに酸性ゼオライトを添加して全容を撹拌する方法(バッチ式)や、酸性ゼオライトをカラム内に充填し、該カラム(以下、「反応カラム」という。)中に混合物を流通させる方法(流通式)等を用いることができる。
 これらの中でも、作業効率及び長期にわたり連続的に目的物を製造することができる観点から、流通式を採用するのが好ましい。
 前記混合物を調製するには、シクロペンテン類とアルコール化合物(2)とを所定割合で混合すればよい。この場合、シクロペンテン類とアルコール化合物(2)との混合液を予め調製しておき、それをタンクに貯蔵し、該タンクから反応カラムに送り込むこともできるし、シクロペンテン類とアルコール化合物(2)とをそれぞれ別のタンクに貯蔵しておき、そこからシクロペンテン類とアルコール化合物(2)とを別々に送液し、反応カラム内を流通させる直前に両者を混合して送り込むこともできる。
 バッチ式を採用する場合には、反応器に、酸性ゼオライト、シクロペンテン類及びアルコール化合物(2)の所定量を添加して、所定温度、所定圧力で、反応混合物を撹拌する。この場合の酸性ゼオライトの使用量は、通常、シクロペンテン類100質量部に対し、0.01~200質量部、好ましくは0.1~150質量部、より好ましくは1~100質量部の範囲である。
 反応温度は、通常50~250℃、好ましくは80~200℃であり、反応圧力は、反応温度等にもよるが、通常、常圧(1013hPa、以下にて同じ。)から10MPa、好ましくは常圧から5MPaの範囲である。
 反応時間は、反応規模等にもよるが、通常0.5~24時間、好ましくは1~10時間である。
 反応は、窒素等の不活性雰囲気下で行うのが好ましい。
 流通式を採用する場合には、酸性ゼオライトがカラム内に充填された反応カラム中に、混合物を流通させる。この場合、用いるカラムは加熱装置を有するものを使用し、所定温度(反応温度)に加熱した反応カラム中に混合物を流通させるのが好ましい。
 この方法によれば、触媒活性の経時的な低下が少ないため、頻繁に触媒を交換したり、活性化を施したりすることなく、長期間にわたって安定して連続的に反応を行うことができる。
 流通式により実施するより具体的な方法の一例を図1に示す。図1中、1は、原料(シクロペンテン類とアルコール化合物(2)の混合物)タンク、2は送液ポンプ、3は予熱器、4は反応カラム、5は冷却管、6は圧力計、7は背圧弁、8は反応液タンクである。

 なお、反応カラム4は、一つでもよいが、複数の反応カラムを組み合わせれば、シクロペンテン類〔又はアルコール化合物(2)〕の転化率をさらに向上させることができる。
 用いるカラムの大きさは特に限定されず、反応規模に応じて種々の大きさのものを選択することができる。複数の反応カラムを組み合わせて用いる場合には、それぞれのカラムに充填する酸性ゼオライトの種類は、同じであっても、異なるものであってもよい。
 また、混合物を、酸性ゼオライトが充填された反応カラム中を流通させる方法としては、反応カラムの上部から混合物を流通させるダウンフロー式であっても、反応カラムの下部から混合物を流通させるアップフロー式であってもよい。より高い転化率及び選択率で目的物が得られる観点から、ダウンフロー方式が好ましい。また、混合物を、酸性ゼオライトが充填された反応カラム中を流通させる場合、混合物は気体状態であっても、液体状態であっても、気体状態と液体状態の混合状態であってもよい。
 混合物が反応カラム中を通過するときの圧力は、反応カラムの入口部分において、通常、常圧から10MPa、好ましくは常圧から5MPa、より好ましくは常圧から3MPaの範囲である。触媒として、前記ゼオライトの成形物を用いると、粉末の触媒を用いる場合に比して、低い圧力で操作を行うことができる。
 反応温度(反応カラム内の温度)は、通常50~200℃、好ましくは80~180℃である。
 シクロペンテン類とアルコール化合物(2)との使用割合は特に制約されない。流通式の場合は、混合物が加熱されている時間が短いので、シクロペンテン類が重合することがない一方で、アルコール化合物(2)をあまりに過剰に用いると、ジアルキルエーテルの副生量が増大するおそれがあり好ましくない。具体的には、(シクロペンテン類)/(アルコール化合物(2))のモル比で、通常1/5~20/1、好ましくは1/4~10/1、より好ましくは1/3~5/1、さらに好ましくは1/3~3/1である。
 シクロペンテン類とアルコール化合物(2)が反応カラム中を通過するときの空間速度〔単位時間あたりに触媒体積の何倍相当分の容積を処理しているかを表す値(hr-1)〕は、通常、0.01~100hr-1の範囲、好ましくは、0.1~30hr-1である。
 また、複数の反応カラムを使用する場合には、反応温度、流通速度等を反応カラムごとに変化させることができる。
 いずれの方法においても、反応は、無溶媒で行うこともできるし、原料のシクロペンテン類を溶解し、水と混合しない不活性な溶媒中で行うこともできる。
 用いる溶媒としては、例えば、n-ブタン、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等の脂肪族飽和炭化水素類;ベンゼン、トルエン、エチルベンゼン、キシレン、アニソール、クメン、ニトロベンゼン等の芳香族炭化水素類;シクロペンタン、アルキル置換シクロペンタン類、アルコキシ置換シクロペンタン類、ニトロ置換シクロペンタン類、シクロヘキサン、アルキル置換シクロヘキサン類、アルコキシ置換シクロヘキサン類、ニトロ置換シクロヘキサン類、シクロヘプタン、アルキル置換シクロヘプタン類、アルコキシ置換シクロヘプタン類、ニトロ置換シクロヘプタン類、シクロオクタン、アルキル置換シクロオクタン類、アルコキシ置換シクロオクタン類、ニトロ置換シクロオクタン類等の脂環式飽和炭化水素類;窒素、アルゴン、空気、ヘリウム等が挙げられる。
 溶媒の使用量は特に制限されず、反応を阻害しない範囲で任意の量を選択できる。溶媒を使用する場合の溶媒の使用量は、通常、全反応液量の10~90容量%、好ましくは20~80容量%である。
 いずれの方法においても、反応終了後は、反応液を溶媒抽出、蒸留等の通常の分離・精製方法によって、目的とするシクロペンチルアルキルエーテル化合物を単離することができる。蒸留は複数回行ってもよい。
 蒸留装置としては、例えば、精留塔を有する連続精留装置等の公知の蒸留装置を使用することができる。
 また、酸性ゼオライトを充填した反応カラム中に混合液を流通させた後、得られた反応液を、再度反応カラム中を通過させ、その後、例えばラシヒリングを充填した蒸留装置により連続的に蒸留することもできる。この方法によれば、未反応のシクロペンテン類及びアルコール化合物(2)を、反応カラムに戻し、再度反応に供することができ、より高い転化率で目的物を得ることができる。
 本発明によれば、固体酸触媒として、シリカ/アルミナ比が80以上の酸性ゼオライトを用いることにより、原料供給を大きくした場合であっても、高い反応効率で、長期間安定して、工業的に有利に、連続して、目的とする式(1):R-O-Rで表されるシクロペンチルアルキルエーテル化合物を製造することができる。
 本発明の製造方法により得られるシクロペンチルアルキルエーテル化合物としては、用いる原料に対応するが、具体的には、シクロペンチルメチルエーテル、シクロペンチルエチルエーテル、シクロペンチルn-プロピルエーテル、シクロペンチルイソプロピルエーテル、シクロペンチルn-ブチルエーテル、シクロペンチルtert-ブチルエーテル、シクロペンチルn-ペンチルエーテル、シクロペンチルn-ヘキシルエーテル、シクロペンチルメトキシメチルエーテル、シクロペンチル2-メトキシエチルエーテル、シクロペンチルメチルチオメチルエーテル、シクロペンチルクロロメチルエーテル、シクロペンチルシクロヘキシルエーテル、シクロペンチル2-クロロシクロヘキシルエーテル;
1-メチルシクロペンチルメチルエーテル、3-メチルシクロペンチルメチルエーテル、3-エチルシクロペンチルメチルエーテル、1,3-ジメチルシクロペンチルメチルエーテル、3-メトキシシクロペンチルエチルエーテル、3-メチルチオシクロペンチルエチルエーテル、1-フルオロシクロペンチルメチルエーテル、2-クロロシクロペンチルn-ペンチルエーテル、3-ブロモシクロペンチルn-ヘキシルエーテル、3-クロロシクロペンチル2-メトキシエチルエーテル、1-フェニルシクロペンチルメチルエーテル;等が挙げられる。
 以下、本発明を実施例により、さらに詳細に説明する。但し、本発明は実施例により何ら制限されるものではない。
 各化合物の含有量の測定は、以下の機器、条件にて行った。
・機器 :Shimadzu社製、GC-2010
・カラム:DB-WAX(長さ30m、内径0.25mm、膜厚0.25μm)
・カラム温度:40℃で10分保持後、毎分10℃で昇温して230℃とし、同温度で1分保持
・注入口温度:200℃
・キャリアーガス:窒素(毎分流量0.7ml)
・検出器: FID
・検出器温度:250℃
 以下の実施例、比較例においては、固体酸触媒(触媒)として、シリカ/アルミナ比を所定の値で調製したH-ZSM-5型ゼオライトの粉末を、アルミナを結合剤として、直径2.2mm、高さ5mmの円筒状に成形して焼成した成形物(日揮触媒化成社製)を用いた。
(実施例1)
 図1に示す反応装置を使用して、以下の実験を行った。
 反応カラム4に、シリカ/アルミナ比が80の触媒を、バルク体積にして100ml詰めた。シクロペンテンとメタノールの混合物(重量比68:32(モル比1:1))を原料タンク1に充填した。
 原料タンク1を窒素で0.2MPaに加圧して原料混合液を送液し、送液ポンプ2、予熱器3、反応カラム4、及び冷却管5の内部のガスを原料混合液で置換した後、背圧弁7の設定圧力を上げて液の流れを一旦止めた。
 送液ポンプ2を5ml/分の流量で稼働させ、圧力計6の指示値が2.8MPaとなるよう背圧弁7を調整した。その後予熱器3と反応カラム4を145℃に加熱し、反応カラム4から流出する反応液を冷却管5で0℃に冷却して反応液タンク8に回収した。
 予熱器3及び反応カラム4の温度が所定の145℃に達した時点を反応開始時とし、背圧弁7の出口の液をサンプリングして、生成した目的物のシクロペンチルメチルエーテル(CPME)の、反応液中の濃度(初期の濃度)をガスクロマトグラフで測定した。さらに、適宜、経過時間ごとのCPMEの濃度を測定し、初期の濃度との比(初期比)を算出した。初期比が75%となった621時間経過後に反応を停止させた。
 各経過時間後の、反応液中のCPMEの濃度(%)と、初期の濃度に対する、CPMEの濃度(重量%)の割合(%)を下記表1に示す。さらに、これらの結果を、図2、3のグラフに示す。
 図2のグラフにおいて、縦軸はCPMEの濃度(重量%)を示し、横軸は経過時間(時間)を示す。図3のグラフにおいて、縦軸は、初期の濃度に対する、CPMEの濃度の割合(%)を示し、横軸は経過時間(時間)を示す。
(実施例2)
 実施例1において、固体酸触媒を、シリカ/アルミナ比が80のものからシリカ/アルミナ比が180のものに変更した以外は、実施例1と同様にして反応を行った。初期比が80%となった816.5時間経過後に反応を停止させた。結果を下記表1及び図2、3のグラフに示す。
(比較例1)
 実施例1において、固体酸触媒を、シリカ/アルミナ比が80のものからシリカ/アルミナ比が30のものに変更した以外は、実施例1と同様にして反応を行った。初期比が38%となった119時間経過後に反応を停止させた。結果を下記表1及び図2、3のグラフに示す。
(比較例2)
 実施例1において、固体酸触媒を、シリカ/アルミナ比が80のものからシリカ/アルミナ比が50のものに変更した以外は、実施例1と同様にして反応を行った。初期比が80%となった209時間経過後に反応を停止させた。結果を表1及び図2、3のグラフに示す。
(比較例3)
 実施例1において、固体酸触媒を、シリカ/アルミナ比が80のものからシリカ/アルミナ比が30のものに変更し、シクロペンテンとメタノールの混合物の重量比を、68:32(モル比1:1))から41:59(モル比1:3)に変更し、予熱器3及び反応管4の設定温度を145℃から150℃に変更し、圧力計6の指示値が2.8MPaから2.5MPaとなるようにした以外は、実施例1と同様にして反応を行った。初期比が81%となった311時間経過後に反応を停止させた。結果を表1及び図2、3のグラフに示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図2、3から、固体酸触媒として、シリカ/アルミナ比が80以上の酸性ゼオライトを用いた場合(実施例1、2)は、シリカ/アルミナ比が80以下の酸性ゼオライトを用いた場合(比較例1~3)に比して、得られる反応液中のCPMEの濃度の経時的低下が小さいことがわかる。
 実施例1では、525時間経過後においても、反応開始時の80%の割合で目的物が得られ、621時間経過後においても、42質量%(wt%)で目的物が得られている。
 実施例2では、575時間経過後においても、反応開始時とほぼ同等の割合で目的物が得られ、800時間経過後においても、反応開始時の80%の割合で目的物が得られている。
 一方、比較例1では、反応開始時は、実施例と同等の割合で目的物が得られているが、119時間経過後には、目的物の濃度は、初期の濃度の38%に低下している。
 比較例2でも、209時間後には、目的物の濃度は、初期の濃度の80%に低下している。
 比較例3では、初期の濃度が38wt%と低い上、311時間経過後には、目的物の濃度は、初期の濃度の81%に低下している。
 これらのことから、実施例の場合には、比較例の場合に比して、用いる触媒の活性低下が少ない(触媒寿命が長い)ため、長期に渡り、目的物を安定して得られることがわかる。
1・・・原料タンク
2・・・送液ポンプ
3・・・予熱器
4・・・反応カラム
5・・・冷却管
6・・・圧力計
7・・・背圧弁
8・・・反応液タンク

Claims (5)

  1.  シリカ/アルミナ比が80以上の酸性ゼオライトの存在下に、置換基を有していてもよいシクロペンテンと、式(2):ROH(式中、Rは、置換基を有していてもよい炭素数1~10のアルキル基、又は置換基を有していてもよい炭素数3~8のシクロアルキル基を表す。)で表されるアルコール化合物とを反応させることを特徴とする、式(1):R-O-R(式中、Rは前記と同じ意味を表し、Rは置換基を有していてもよいシクロペンチル基を表す。)で表されるシクロペンチルアルキルエーテル化合物の製造方法。
  2.  前記式(1)で表されるシクロペンチルアルキルエーテル化合物が、前記式(1)中、Rが炭素数1~10のアルキル基の化合物である、請求項1に記載のシクロペンチルアルキルエーテル化合物の製造方法。
  3.  前記酸性ゼオライトが、H-ZSM-5型ゼオライトである、請求項1又は2に記載のシクロペンチルアルキルエーテル化合物の製造方法。
  4.  前記置換基を有していてもよいシクロペンテンと式(2)で表されるアルコール化合物との反応を、流通式で行う、請求項1~3のいずれかに記載のシクロペンチルアルキルエーテル化合物の製造方法。
  5.  前記酸性ゼオライトとして、シリカ/アルミナ比が80以上の酸性ゼオライトの成形物を用いる、請求項1~4のいずれかに記載のシクロペンチルアルキルエーテル化合物の製造方法。
PCT/JP2016/087639 2015-12-28 2016-12-16 シクロペンチルアルキルエーテル化合物の製造方法 WO2017115671A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017558932A JP6791169B2 (ja) 2015-12-28 2016-12-16 シクロペンチルアルキルエーテル化合物の製造方法
KR1020187019361A KR102705202B1 (ko) 2015-12-28 2016-12-16 시클로펜틸알킬에테르 화합물의 제조 방법
ES16881647T ES2863233T3 (es) 2015-12-28 2016-12-16 Procedimiento de producción de un compuesto de ciclopentil alquil éter
US16/064,099 US20180354880A1 (en) 2015-12-28 2016-12-16 Method for producing cyclopentyl alkyl ether compound
EP16881647.8A EP3398928B1 (en) 2015-12-28 2016-12-16 Method for producing cyclopentyl alkyl ether compound
CN201680074400.4A CN108368016B (zh) 2015-12-28 2016-12-16 环戊基烷基醚化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015256479 2015-12-28
JP2015-256479 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115671A1 true WO2017115671A1 (ja) 2017-07-06

Family

ID=59225120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087639 WO2017115671A1 (ja) 2015-12-28 2016-12-16 シクロペンチルアルキルエーテル化合物の製造方法

Country Status (8)

Country Link
US (1) US20180354880A1 (ja)
EP (1) EP3398928B1 (ja)
JP (1) JP6791169B2 (ja)
KR (1) KR102705202B1 (ja)
CN (1) CN108368016B (ja)
ES (1) ES2863233T3 (ja)
TW (2) TWI740870B (ja)
WO (1) WO2017115671A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131733A (en) * 1980-12-19 1982-08-14 Ici Ltd Manufacture of ether
JPS5925345A (ja) 1982-08-02 1984-02-09 Mitsubishi Gas Chem Co Inc 第三級エ−テルの製造法
JPS61249945A (ja) 1985-04-26 1986-11-07 Asahi Chem Ind Co Ltd エ−テルの製造法
JPH05163188A (ja) 1991-12-16 1993-06-29 Mitsui Toatsu Chem Inc エーテル類の製造方法
EP0645360A1 (en) 1993-09-23 1995-03-29 Texaco Chemical Inc. Synthesis of alkyl t-Alkyl ether using pentasil zeolite Catalysts
JP2001058817A (ja) 1999-06-18 2001-03-06 Nippon Shokubai Co Ltd バインダーレス結晶性アルミノシリケート成型体、その製造方法およびその用途
WO2003002500A1 (fr) 2001-06-28 2003-01-09 Zeon Corporation Solvants contenant des cycloalkyl alkyl ethers et procede de production de ces ethers
JP2004300076A (ja) * 2003-03-31 2004-10-28 Nippon Zeon Co Ltd シクロアルキルアルキルエーテルの製造方法
JP2011523618A (ja) * 2008-06-06 2011-08-18 トータル・ペトロケミカルズ・リサーチ・フエリユイ 結晶質メタロシリケートの製造方法
WO2015147035A1 (ja) 2014-03-28 2015-10-01 日本ゼオン株式会社 シクロペンチルアルキルエーテル化合物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438215A (en) * 1981-11-09 1984-03-20 Mobil Oil Corporation Activity enhancement of high silica zeolites
US4427786A (en) * 1982-03-08 1984-01-24 Mobil Oil Corporation Activation of high silica zeolites
US4665269A (en) * 1984-06-13 1987-05-12 Mobil Oil Corporation Conversion of oxygenates over novel catalyst composition
CN1057451A (zh) * 1986-07-29 1992-01-01 美孚石油公司 一种醚的制备方法
US9182554B2 (en) * 2013-11-27 2015-11-10 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical connector having improved guide pin retention

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131733A (en) * 1980-12-19 1982-08-14 Ici Ltd Manufacture of ether
JPS5925345A (ja) 1982-08-02 1984-02-09 Mitsubishi Gas Chem Co Inc 第三級エ−テルの製造法
JPS61249945A (ja) 1985-04-26 1986-11-07 Asahi Chem Ind Co Ltd エ−テルの製造法
JPH05163188A (ja) 1991-12-16 1993-06-29 Mitsui Toatsu Chem Inc エーテル類の製造方法
EP0645360A1 (en) 1993-09-23 1995-03-29 Texaco Chemical Inc. Synthesis of alkyl t-Alkyl ether using pentasil zeolite Catalysts
JP2001058817A (ja) 1999-06-18 2001-03-06 Nippon Shokubai Co Ltd バインダーレス結晶性アルミノシリケート成型体、その製造方法およびその用途
WO2003002500A1 (fr) 2001-06-28 2003-01-09 Zeon Corporation Solvants contenant des cycloalkyl alkyl ethers et procede de production de ces ethers
US20050065060A1 (en) 2001-06-28 2005-03-24 Idan Kin Solvents containing cycloakyl alkyl ethers and process for production of the ethers
JP2004300076A (ja) * 2003-03-31 2004-10-28 Nippon Zeon Co Ltd シクロアルキルアルキルエーテルの製造方法
JP2011523618A (ja) * 2008-06-06 2011-08-18 トータル・ペトロケミカルズ・リサーチ・フエリユイ 結晶質メタロシリケートの製造方法
WO2015147035A1 (ja) 2014-03-28 2015-10-01 日本ゼオン株式会社 シクロペンチルアルキルエーテル化合物の製造方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ADV. MATER., vol. 8, 1996, pages 759
BULL. CHEM. SOC. JPN., vol. 80, 2007, pages 1075
CHEM. LETT., vol. 25, 1996, pages 403
DEROUANE, ERIC G. ET AL.: "Titanium-substituted zeolite beta: an efficient catalyst in the xy- functionalisation of cyclic alkenes using hydrogen peroxide in organic solvents", NEW JOURNAL OF CHEMISTRY, vol. 22, no. 8, 1998, pages 797 - 799, XP 055168374, ISSN: 1144-0546, DOI: doi:10.1039/a804478c *
HULEA, VASILE ET AL.: "Oxidation of cyclopentene with H202 over B, Ga, or Al modified silicalites of MFI topology", PROGRESS IN CATALYSIS, vol. 9, no. 1-2, 2000, pages l3 - 18, XP009511388, ISSN: 1220-8698 *
JOURNAL OF THE SURFACE SCIENCE SOCIETY OF JAPAN, vol. 19, 1998, pages 558
SURV. ASIA, vol. 14, 2010, pages 116
UGUINA, MARIA A. ET AL.: "Synthesis of Titanium Silicalite-1 from an SiO2-TiO2 Cogel using a Wetness Impregnation Method", CHEMICAL COMMUNICATIONS, JOURNAL OF THE CHEMICAL SOCIETY, vol. 1, 1994, pages 27 - 28, XP 055508466, ISSN: 0022-4936 *
ZEOLITE, vol. 29, no. 2, pages 55 - 61

Also Published As

Publication number Publication date
CN108368016A (zh) 2018-08-03
EP3398928A4 (en) 2019-08-07
ES2863233T3 (es) 2021-10-11
JP6791169B2 (ja) 2020-11-25
TWI777818B (zh) 2022-09-11
TW202204301A (zh) 2022-02-01
TWI740870B (zh) 2021-10-01
KR20180098286A (ko) 2018-09-03
EP3398928A1 (en) 2018-11-07
KR102705202B1 (ko) 2024-09-09
EP3398928B1 (en) 2021-01-20
JPWO2017115671A1 (ja) 2018-10-18
US20180354880A1 (en) 2018-12-13
CN108368016B (zh) 2023-09-26
TW201736330A (zh) 2017-10-16

Similar Documents

Publication Publication Date Title
JP6461807B2 (ja) ゼオライト材料の製造方法及び酸素含有物質のオレフィンへの転化方法におけるゼオライト材料の使用
US7651968B2 (en) Shaped body comprising a microporous material and at least one silicon-containing binding agent method for production and use thereof as catalyst in particular in a method for continuous synthesis of methylamines
US20130204061A1 (en) Method for making a catalyst comprising a phosphorus modified zeolite to be used in a mto process
RU2563649C2 (ru) Способ получения катализатора на основе цеолита для превращения метанола в олефины
KR20100016236A (ko) 헤테로원자 함유 실리케이트의 제조 방법
JP5744730B2 (ja) 低級オレフィン製造用触媒およびそれを用いた低級オレフィンの製造方法
KR101742360B1 (ko) 제올라이트 코팅층을 갖는 비스무스 몰리브데이트계 촉매, 이의 제조방법 및 이를 이용한 1,3-부타디엔의 제조방법
CN110372464B (zh) 将氧合物转化成烯烃的方法
WO2017115671A1 (ja) シクロペンチルアルキルエーテル化合物の製造方法
JP5415432B2 (ja) 第3級アルコールとアンモニアとを反応させることにより第3級αC原子を有する第1級アミンを製造する方法
JP2015535742A (ja) ホウ素ゼオライトをベースとする触媒の製造
JP5355889B2 (ja) モノ低級アルキルモノアルカノールアミン連続製造用成形触媒及びその製造方法
US9636668B2 (en) Production and use of a zeolitic material in a process for the conversion of oxygenates to olefins
US9598326B2 (en) Process for the conversion of oxygenates to olefins
JPH01233246A (ja) フェニルエタノールの製法
JP7039807B2 (ja) ゼオライト触媒及び該ゼオライト触媒を用いた低級オレフィンの製造方法
WO2015147035A1 (ja) シクロペンチルアルキルエーテル化合物の製造方法
KR101585471B1 (ko) 2,6-디아이소프로필나프탈렌 제조용 개질 촉매, 그 제조방법 및 상기 개질 촉매를 이용하여 2,6-디아이소프로필나프탈렌의 제조방법
EP3672931A1 (en) Process
JP2004238357A (ja) メチルアミンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558932

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201680074400.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187019361

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019361

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016881647

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881647

Country of ref document: EP

Effective date: 20180730