WO2017114081A1 - 一种柴油发动机壳的消失模铸造方法 - Google Patents

一种柴油发动机壳的消失模铸造方法 Download PDF

Info

Publication number
WO2017114081A1
WO2017114081A1 PCT/CN2016/107880 CN2016107880W WO2017114081A1 WO 2017114081 A1 WO2017114081 A1 WO 2017114081A1 CN 2016107880 W CN2016107880 W CN 2016107880W WO 2017114081 A1 WO2017114081 A1 WO 2017114081A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
parts
content
particle size
mesh
Prior art date
Application number
PCT/CN2016/107880
Other languages
English (en)
French (fr)
Inventor
张建勋
侯晓翠
Original Assignee
张建勋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张建勋 filed Critical 张建勋
Publication of WO2017114081A1 publication Critical patent/WO2017114081A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/10Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for influencing the hardening tendency of the mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Definitions

  • the invention belongs to the technical field of casting, and in particular relates to a lost foam casting method for a diesel engine casing.
  • modeling materials In the field of casting, in a broad sense, all materials used to make molds (including sand cores, paints, etc.) are collectively referred to as modeling materials.
  • the molds used in foundry production are sand type, metal type, ceramic type, gypsum type, graphite type, etc.
  • the most common and widely used type is sand type.
  • the castings produced by sand type account for various casting production castings. 60%-80% of the output, the 21st century calls for "green casting", protecting the environment and achieving sustainable development is our basic national policy.
  • the modeling materials play an important role in the environmental protection, green and clean production of the foundry. In the production of casting and lost foam casting, a large amount of discarded old sand will be discharged. If it cannot be recycled and reused, it will inevitably cause great pollution damage to the natural environment. Therefore, an environmentally friendly and less polluting molding material has been developed. The current status quo has important significance.
  • the present invention discloses a lost foam casting method for a diesel engine casing, which uses environmentally friendly materials to protect the environment and resources.
  • a lost foam casting method for a diesel engine casing characterized in that the engine shell has a composition content of C: 2% to 2.55%, Si: 1.07% to 1.2%, and Mn 0.65% to 0.78. %, P: ⁇ 0.02%, S: ⁇ 0.02%, Cr: 0.4% to 0.15%, Ni: 1.8% to 2.1%, Mo: 1.1% to 1.4%, Mg: 0.02, and the rest are Fe and other inevitable Impurities, the raw materials containing the above components are smelted into molten iron by electric furnace, molten iron melting temperature: 1480-1520 ° C; spheroidization treatment, inoculation treatment, spheroidization treatment and inoculation treatment of molten iron temperature is controlled at 1380-1450 ° C,
  • the sand type molding sand includes raw sand and functional components
  • the raw sand includes new sand and reclaimed sand, and the mass ratio of the new sand and the reclaimed sand is (65-80): (35-20);
  • the new sand comprises 100-110 parts by weight of silica sand, 6-10 parts of zircon sand, and 10-15 parts of forsterite sand. 5-7 parts of corundum sand, 3-5 parts of refractory clinker, 3-5 parts of carbonaceous sand;
  • the silica sand has a silica content of 90%-95%, an alumina of less than 5%, a balance of unavoidable impurities, a particle size of 140-180 mesh, a compact density of 1.75 g/cm3 or more, and an average fineness. For 52-55;
  • the zircon sand has a zirconia content of more than 70%, a silica content of less than 28%, a titanium oxide content of less than 0.3%, an iron oxide content of less than 0.12%, an alumina content of less than 0.2%, and a particle size of 240-280 meshes;
  • the olivine sand has a magnesium oxide content of 48-55%, a silica content of less than 45%, an iron oxide content of less than 8%, and a particle size of 240-280 mesh;
  • the corundum sand has an alumina content of 99-99.5% and a particle size of 140-180 mesh;
  • the refractory clinker is a mixture of bauxite and coal gangue having a mass ratio of 2:1, wherein the alumina content in the bauxite is 75%, and the refractoriness is greater than 1850 ° C;
  • the carbonaceous sand has a particle size of 160-200 mesh
  • the reclaimed sand has a particle size of 180-240 mesh
  • One or two of the functional components of diatomaceous earth or attapulgite have a particle size of 80-120 mesh, which accounts for 3-5% of the total mass of the original sand.
  • the carbonaceous sand is graphite or coke, and has a particle size of 180 mesh.
  • the invention adopts a suitable content of silica sand as the main component of the original sand, reduces the production cost, and adopts zircon sand and olivine sand with small particle diameter, has small expansion coefficient, improves structural stability and good thermal conductivity.
  • the refractory degree is high, and the olivine sand also improves the acid and alkali resistance of the molding sand, the refractory clinker is loose, the refractoriness is improved, and the sand falling treatment is convenient, the reclaimed sand is used, the environmental protection is reused, and the fine-grained reclaimed sand has It is beneficial to improve the quality of the mold, and at the same time, using porous materials such as diatomaceous earth or attapulgite as the sand material, reducing the amount of refractory used and making the mold lighter, which is beneficial to environmental protection and adopts a reasonable ratio. Under the premise of ensuring the strength of the sand, the gas permeability is increased, the porosity defects of the casting are reduced, and the yield is increased.
  • a lost foam casting method for a diesel engine casing characterized in that the engine shell has a composition content of C: 2% to 2.55%, Si: 1.07% to 1.2%, and Mn 0.65% to 0.78. %, P: ⁇ 0.02%, S: ⁇ 0.02%, Cr: 0.4% to 0.15%, Ni: 1.8% to 2.1%, Mo: 1.1% to 1.4%, Mg: 0.02, and the rest are Fe and other inevitable Impurities, the raw materials containing the above components are smelted into molten iron by electric furnace, molten iron melting temperature: 1480-1520 ° C; spheroidization treatment, inoculation treatment, spheroidization treatment and inoculation treatment of molten iron temperature is controlled at 1380-1450 ° C,
  • the sand type molding sand comprises raw sand, a first functional component, a second functional component, and a binder;
  • the raw sand includes new sand and reclaimed sand, and the mass ratio of the new sand and the reclaimed sand is (65-80): (35-20);
  • the new sand comprises 100-110 parts by weight of silica sand, 6-10 parts of zircon sand, 10-15 parts of forsterite sand, 5-7 parts of corundum sand, 3-5 parts of refractory clinker, carbonaceous sand 3 -5 servings;
  • the silica sand has a silica content of 90%-95%, an alumina of less than 5%, a balance of unavoidable impurities, a particle size of 140-180 mesh, a compact density of 1.75 g/cm3 or more, and an average fineness. For 52-55;
  • the zirconium sand has a zirconia content of more than 70%, a silica content of less than 28%, a titanium oxide content of less than 0.3%, an iron oxide content of less than 0.12%, an alumina content of less than 0.2%, and a particle size of 240-280 meshes;
  • the olivine sand has a magnesium oxide content of 48-55%, a silica content of less than 45%, an iron oxide content of less than 8%, and a particle size of 240-280 mesh.
  • the corundum sand has an alumina content of 99-99.5% and a particle size of 140-180 mesh;
  • the refractory clinker is a mixture of bauxite and coal gangue having a mass ratio of 2:1, wherein the bauxite has an alumina content of 75% and a refractoriness of more than 1850 ° C.
  • the carbonaceous sand is graphite or coke, and the particle size is 160-200 mesh.
  • the reclaimed sand has a particle size of 180-240 mesh.
  • the first functional component is a combustible material containing carbon fibers, fine wood chips, crop straws, fine wood chips having a particle size of 160-200 mesh, and crop straw fibers having a diameter of 4-6 mm;
  • the second functional component is one or two of diatomaceous earth or attapulgite, and the particle size is 80-120 mesh, which accounts for 3-5% of the total mass of the original sand.
  • the binder is a mixture of phenolic resin, vegetable oil, tower oil, polyvinyl alcohol, and the volume ratio is (60-65): (4-6): (2: -3): (10-15).

Abstract

一种柴油发动机壳的消失模铸造方法,所用型砂包括原砂,功能组分和粘结剂,所述的原砂包括新砂和再生砂,新砂按重量份计包括硅砂100-110份,锆砂6-10份,镁橄榄石砂10-15份,刚玉砂5-7份,耐火熟料3-5份,碳质砂3-5份;所述的功能组分为含有碳纤维的可燃物质,所述的粘结剂为酚醛树脂、植物油、塔油、聚乙烯醇的混合物,生产成本低,提高了结构稳定性,导热性好,耐火度高和抗酸碱性好,在保证型砂强度的前提下增加了透气性,降低了铸件气孔缺陷,增加了成品率。

Description

一种柴油发动机壳的消失模铸造方法 技术领域
本发明属于铸造技术领域,尤其是涉及一种柴油发动机壳的消失模铸造方法。
背景技术
在铸造领域,从广义上讲,凡是用来制造铸型(包括砂芯、涂料等)的材料统称为造型材料。铸造生产中使用的铸型有砂型、金属型、陶瓷型、石膏型、石墨型等,其中最普遍和大量使用的是砂型,在世界范围内,应用砂型生产的铸件占各种铸型生产铸件产量的60%-80%,21世纪呼唤“绿色铸造”,保护环境、实现可持续发展是我们的基本国策,造型材料对铸造厂的环保、绿色、清洁化生产起到重要的作用,在砂型铸造和消失模铸造生产中,将排放大量废弃的旧砂,如果不能进行再生处理和再利用,必定对自然环境带来巨大的污染的破坏,因此开发出一种环保、少污染的造型材料对于目前现状,有着重要的意义。
发明内容
基于以上技术问题,本发明公开了一种柴油发动机壳的消失模铸造方法,采用环保材料,保护了环境与资源。
本发明完整的技术方案包括:
一种柴油发动机壳的消失模铸造方法,其特征在于,所述发动机壳其成分含量以重量%计为:C:2%~2.55%,Si:1.07%~1.2%,Mn0.65%~0.78%,P:≤0.02%,S:≤0.02%,Cr:0.4%~0.15%,Ni:1.8%~2.1%,Mo:1.1%~1.4%,Mg:0.02,其余为Fe及其它不可避免的杂质,将包含上述成分的原料采用电炉熔炼成铁水,铁水熔炼温度:1480-1520℃出炉;球化处理,孕育处理,球化处理和孕育处理后的铁水温度控制在1380-1450℃,
采用聚苯乙烯经过发泡制得与发动机壳形状相同的白模、浇注系统、冒口,随后采用一件六至八模(即一套浇注系统配六至八个铸件)的方式粘结成模样组;模样组上涂料烘干、装箱、分次填充型砂振实,刮平箱口,最后覆盖聚乙烯薄膜,将球化处理和孕育处理后的铁水负压浇注,出箱打磨;
所述砂型的型砂包括原砂和功能组分;
所述的原砂包括新砂和再生砂,所述的新砂和再生砂质量比为(65-80):(35-20);
所述的新砂按重量份计包括硅砂100-110份,锆砂6-10份,镁橄榄石砂10-15份, 刚玉砂5-7份,耐火熟料3-5份,碳质砂3-5份;
所述的硅砂中二氧化硅含量为90%-95%,氧化铝小于5%,余量为不可避免的杂质,粒度为140-180目,紧实密度为1.75g/cm3以上,平均细度为52-55;
所述的锆砂中氧化锆含量大于70%,氧化硅含量小于28%,氧化钛含量小于0.3%,氧化铁含量小于0.12%,氧化铝含量小于0.2%,粒度为240-280目;
所述的橄榄石砂中氧化镁含量为48-55%,氧化硅含量小于45%,氧化铁含量小于8%,粒度为240-280目;
所述的刚玉砂中氧化铝含量为99-99.5%,粒度为140-180目;
所述的耐火熟料为质量比为2:1的铝矾土和煤矸石混合物,其中铝矾土中氧化铝含量为75%,耐火度大于1850℃;
所述的碳质砂粒度为160-200目;
所述的再生砂粒度为180-240目;
所述的功能组分硅藻土或凹凸棒土的一至两种,粒度为80-120目,其占原砂总质量的3-5%。
所述碳质砂为石墨或焦炭、粒度为180目。
本发明相对现有技术,采用合适含量的硅砂作为原砂主成分,降低了生产成本,并采用粒径小的锆砂和橄榄石砂,膨胀系数小,提高了结构稳定性,导热性好,耐火度高,并且橄榄石砂还提高了型砂的抗酸碱性,耐火熟料松散,提高了耐火度,并且便于落砂处理,采用再生砂,利于环保再利用,并且细颗粒的再生砂有利于提高铸型质量,同时采用硅藻土或凹凸棒土等多孔材料作为型砂材料,降低了耐火材料的使用量,使铸型轻质化,既有利于环保,并采用合理的配比,在保证型砂强度的前提下增加了透气性,降低了铸件气孔缺陷,增加了成品率。
具体实施方式
下面结合具体实施方式对本发明做进一步说明。
一种柴油发动机壳的消失模铸造方法,其特征在于,所述发动机壳其成分含量以重量%计为:C:2%~2.55%,Si:1.07%~1.2%,Mn0.65%~0.78%,P:≤0.02%,S:≤0.02%,Cr:0.4%~0.15%,Ni:1.8%~2.1%,Mo:1.1%~1.4%,Mg:0.02,其余为Fe及其它不可避免的杂质,将包含上述成分的原料采用电炉熔炼成铁水,铁水熔炼温度:1480-1520℃出炉;球化处理,孕育处理,球化处理和孕育处理后的铁水温度控制在1380-1450℃,
采用聚苯乙烯经过发泡制得与发动机壳形状相同的白模、浇注系统、冒口,随后采用一件六至八模(即一套浇注系统配六至八个铸件)的方式粘结成模样组;模样组上涂料烘干、装箱、分次填充型砂振实,刮平箱口,最后覆盖聚乙烯薄膜,将球化处理和孕育处理后的铁水负压浇注,出箱打磨;
所述砂型的型砂包括原砂,第一功能组分,第二功能组分,粘结剂;
所述的原砂包括新砂和再生砂,所述的新砂和再生砂质量比为(65-80):(35-20);
所述的新砂按重量份计包括硅砂100-110份,锆砂6-10份,镁橄榄石砂10-15份,刚玉砂5-7份,耐火熟料3-5份,碳质砂3-5份;
所述的硅砂中二氧化硅含量为90%-95%,氧化铝小于5%,余量为不可避免的杂质,粒度为140-180目,紧实密度为1.75g/cm3以上,平均细度为52-55;
锆砂中氧化锆含量大于70%,氧化硅含量小于28%,氧化钛含量小于0.3%,氧化铁含量小于0.12%,氧化铝含量小于0.2%,粒度为240-280目;
所述的橄榄石砂中氧化镁含量为48-55%,氧化硅含量小于45%,氧化铁含量小于8%,粒度为240-280目,
所述的刚玉砂中氧化铝含量为99-99.5%,粒度为140-180目;
所述的耐火熟料为质量比为2:1的铝矾土和煤矸石混合物,其中铝矾土中氧化铝含量为75%,耐火度大于1850℃,
所述的碳质砂为石墨或焦炭、粒度为160-200目,
所述的再生砂粒度为180-240目。
所述的第一功能组分为含有碳纤维的可燃物质,细木屑、农作物秸秆,细木屑粒度为160-200目,农作物秸秆纤维直径为4-6mm;
所述的第二功能组分硅藻土或凹凸棒土的一至两种,粒度为80-120目,其占原砂总质量的3-5%,
所述的粘结剂为酚醛树脂、植物油、塔油、聚乙烯醇的混合物,体积比为(60-65):(4-6):(2:-3):(10-15)。

Claims (2)

  1. 一种柴油发动机壳的消失模铸造方法,其特征在于,所述发动机壳其成分含量以重量%计为:C:2%~2.55%,Si:1.07%~1.2%,Mn0.65%~0.78%,P:≤0.02%,S:≤0.02%,Cr:0.4%~0.15%,Ni:1.8%~2.1%,Mo:1.1%~1.4%,Mg:0.02,其余为Fe及其它不可避免的杂质,将包含上述成分的原料采用电炉熔炼成铁水,铁水熔炼温度:1480-1520℃出炉;球化处理,孕育处理,球化处理和孕育处理后的铁水温度控制在1380-1450℃,
    采用聚苯乙烯经过发泡制得与发动机壳形状相同的白模、浇注系统、冒口,随后采用一件六至八模(即一套浇注系统配六至八个铸件)的方式粘结成模样组;模样组上涂料烘干、装箱、分次填充型砂振实,刮平箱口,最后覆盖聚乙烯薄膜,将球化处理和孕育处理后的铁水负压浇注,出箱打磨;
    所述砂型的型砂包括原砂和功能组分;
    所述的原砂包括新砂和再生砂,所述的新砂和再生砂质量比为(65-80):(35-20);
    所述的新砂按重量份计包括硅砂100-110份,锆砂6-10份,镁橄榄石砂10-15份,刚玉砂5-7份,耐火熟料3-5份,碳质砂3-5份;
    所述的硅砂中二氧化硅含量为90%-95%,氧化铝小于5%,余量为不可避免的杂质,粒度为140-180目,紧实密度为1.75g/cm3以上,平均细度为52-55;
    所述的锆砂中氧化锆含量大于70%,氧化硅含量小于28%,氧化钛含量小于0.3%,氧化铁含量小于0.12%,氧化铝含量小于0.2%,粒度为240-280目;
    所述的橄榄石砂中氧化镁含量为48-55%,氧化硅含量小于45%,氧化铁含量小于8%,粒度为240-280目;
    所述的刚玉砂中氧化铝含量为99-99.5%,粒度为140-180目;
    所述的耐火熟料为质量比为2:1的铝矾土和煤矸石混合物,其中铝矾土中氧化铝含量为75%,耐火度大于1850℃;
    所述的碳质砂粒度为160-200目;
    所述的再生砂粒度为180-240目;
    所述的功能组分为硅藻土或凹凸棒土的一至两种,粒度为80-120目,其占原砂总质量的3-5%。
  2. 如权利要求2所述的一种柴油发动机壳的消失模铸造方法,其特征在于,所述碳质砂为石墨或焦炭、粒度为180目。
PCT/CN2016/107880 2015-12-30 2016-11-30 一种柴油发动机壳的消失模铸造方法 WO2017114081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511022099.6A CN105583365A (zh) 2015-12-30 2015-12-30 一种柴油发动机壳的消失模铸造方法
CN201511022099.6 2015-12-30

Publications (1)

Publication Number Publication Date
WO2017114081A1 true WO2017114081A1 (zh) 2017-07-06

Family

ID=55923479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107880 WO2017114081A1 (zh) 2015-12-30 2016-11-30 一种柴油发动机壳的消失模铸造方法

Country Status (2)

Country Link
CN (1) CN105583365A (zh)
WO (1) WO2017114081A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112548031A (zh) * 2020-11-09 2021-03-26 天津达祥精密工业有限公司 铬锰氮系奥氏体耐热钢涡轮壳潮模砂的生产工艺
CN115255281A (zh) * 2022-07-19 2022-11-01 石家庄市宏森熔炼铸造有限公司 一种高精度铸件的铸造工艺及铸件

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105499497B (zh) * 2015-12-30 2018-07-27 繁峙县中兴华徳联铸有限公司 一种v法铸造工艺
CN105458158A (zh) * 2015-12-30 2016-04-06 青岛博泰美联化工技术有限公司 一种环保铸造型砂组合物
CN105618667B (zh) * 2015-12-30 2018-12-14 韶关市晟发有色金属有限公司 一种耐火铸造型砂
CN105436411B (zh) * 2015-12-30 2018-08-17 青岛立准金属有限公司 一种高透气消失模铸造方法
CN105397020A (zh) * 2015-12-30 2016-03-16 青岛博泰美联化工技术有限公司 一种透气铸造用砂
CN105618668A (zh) * 2015-12-30 2016-06-01 青岛博泰美联化工技术有限公司 一种高强度铸造型砂
CN105583365A (zh) * 2015-12-30 2016-05-18 青岛博泰美联化工技术有限公司 一种柴油发动机壳的消失模铸造方法
CN105537502A (zh) * 2015-12-30 2016-05-04 青岛博泰美联化工技术有限公司 一种柴油机部件的砂型铸造方法
CN105537516B (zh) * 2015-12-30 2018-08-24 泊头市亚奇铸业有限公司 一种柴油发动机壳砂型铸造方法
CN105583354A (zh) * 2015-12-30 2016-05-18 青岛博泰美联化工技术有限公司 一种铸铁砂型铸造方法
CN105817569B (zh) * 2016-05-31 2017-12-22 温岭市新动力机械有限公司 耐高温铸造砂及其制备方法
CN111167997B (zh) * 2019-12-31 2021-04-27 南京信息工程大学 一种铝合金水基铸造涂料及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773989A (zh) * 2010-01-29 2010-07-14 迁安市津唐球墨铸管有限公司 短流程熔炼、水玻璃砂造型生产球墨铸铁件的工艺
CN104128599A (zh) * 2014-08-14 2014-11-05 济南圣泉倍进陶瓷过滤器有限公司 熔融金属过滤装置
CN104889327A (zh) * 2015-06-18 2015-09-09 山西威龙铁路机车制动配件制造有限公司 制动盘消失模铸造模具及其消失模铸造方法
CN105397020A (zh) * 2015-12-30 2016-03-16 青岛博泰美联化工技术有限公司 一种透气铸造用砂
CN105436411A (zh) * 2015-12-30 2016-03-30 青岛博泰美联化工技术有限公司 一种高透气消失模铸造方法
CN105458158A (zh) * 2015-12-30 2016-04-06 青岛博泰美联化工技术有限公司 一种环保铸造型砂组合物
CN105499497A (zh) * 2015-12-30 2016-04-20 青岛博泰美联化工技术有限公司 一种v法铸造工艺
CN105522111A (zh) * 2015-12-29 2016-04-27 青岛博泰美联化工技术有限公司 一种透气型壳的制备方法
CN105537516A (zh) * 2015-12-30 2016-05-04 青岛博泰美联化工技术有限公司 一种柴油发动机壳砂型铸造方法
CN105537502A (zh) * 2015-12-30 2016-05-04 青岛博泰美联化工技术有限公司 一种柴油机部件的砂型铸造方法
CN105583365A (zh) * 2015-12-30 2016-05-18 青岛博泰美联化工技术有限公司 一种柴油发动机壳的消失模铸造方法
CN105583354A (zh) * 2015-12-30 2016-05-18 青岛博泰美联化工技术有限公司 一种铸铁砂型铸造方法
CN105618668A (zh) * 2015-12-30 2016-06-01 青岛博泰美联化工技术有限公司 一种高强度铸造型砂
CN105618667A (zh) * 2015-12-30 2016-06-01 青岛博泰美联化工技术有限公司 一种耐火铸造型砂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19654893C2 (de) * 1996-07-25 1999-06-10 Federal Mogul Burscheid Gmbh Kolbenringe von Verbrennungskraftmaschinen aus einer Gußeisenlegierung
CN101716651B (zh) * 2009-08-06 2012-01-04 上海华新合金有限公司 大型船用涡轮增压器涡壳铸件的铸造方法
CN102259167B (zh) * 2010-05-25 2013-06-05 上海华新合金有限公司 涡轮增压器罩壳铸件铸造方法
CN102363198B (zh) * 2011-04-11 2013-08-28 中方阀业淅川制造有限公司 球墨铸铁飞轮机壳消失模铸造方法
CN104985111A (zh) * 2015-07-30 2015-10-21 张燕 刚玉渣-煤矸石消失模铸造涂料及其制备方法
CN104999031A (zh) * 2015-08-12 2015-10-28 宁波高新区多维时空科技有限公司 一种喷射固化型砂的快速制造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773989A (zh) * 2010-01-29 2010-07-14 迁安市津唐球墨铸管有限公司 短流程熔炼、水玻璃砂造型生产球墨铸铁件的工艺
CN104128599A (zh) * 2014-08-14 2014-11-05 济南圣泉倍进陶瓷过滤器有限公司 熔融金属过滤装置
CN104889327A (zh) * 2015-06-18 2015-09-09 山西威龙铁路机车制动配件制造有限公司 制动盘消失模铸造模具及其消失模铸造方法
CN105522111A (zh) * 2015-12-29 2016-04-27 青岛博泰美联化工技术有限公司 一种透气型壳的制备方法
CN105499497A (zh) * 2015-12-30 2016-04-20 青岛博泰美联化工技术有限公司 一种v法铸造工艺
CN105458158A (zh) * 2015-12-30 2016-04-06 青岛博泰美联化工技术有限公司 一种环保铸造型砂组合物
CN105436411A (zh) * 2015-12-30 2016-03-30 青岛博泰美联化工技术有限公司 一种高透气消失模铸造方法
CN105397020A (zh) * 2015-12-30 2016-03-16 青岛博泰美联化工技术有限公司 一种透气铸造用砂
CN105537516A (zh) * 2015-12-30 2016-05-04 青岛博泰美联化工技术有限公司 一种柴油发动机壳砂型铸造方法
CN105537502A (zh) * 2015-12-30 2016-05-04 青岛博泰美联化工技术有限公司 一种柴油机部件的砂型铸造方法
CN105583365A (zh) * 2015-12-30 2016-05-18 青岛博泰美联化工技术有限公司 一种柴油发动机壳的消失模铸造方法
CN105583354A (zh) * 2015-12-30 2016-05-18 青岛博泰美联化工技术有限公司 一种铸铁砂型铸造方法
CN105618668A (zh) * 2015-12-30 2016-06-01 青岛博泰美联化工技术有限公司 一种高强度铸造型砂
CN105618667A (zh) * 2015-12-30 2016-06-01 青岛博泰美联化工技术有限公司 一种耐火铸造型砂

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112548031A (zh) * 2020-11-09 2021-03-26 天津达祥精密工业有限公司 铬锰氮系奥氏体耐热钢涡轮壳潮模砂的生产工艺
CN115255281A (zh) * 2022-07-19 2022-11-01 石家庄市宏森熔炼铸造有限公司 一种高精度铸件的铸造工艺及铸件
CN115255281B (zh) * 2022-07-19 2024-04-09 石家庄市宏森熔炼铸造有限公司 一种高精度铸件的铸造工艺及铸件

Also Published As

Publication number Publication date
CN105583365A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2017114081A1 (zh) 一种柴油发动机壳的消失模铸造方法
WO2017114082A1 (zh) 一种柴油机部件的砂型铸造方法
CN105618667B (zh) 一种耐火铸造型砂
WO2017114072A1 (zh) 一种环保铸造型砂组合物
WO2017114080A1 (zh) 一种柴油发动机壳砂型铸造方法
WO2017114075A1 (zh) 一种高强度铸造型砂
WO2017114083A1 (zh) 一种铸铁砂型铸造方法
WO2017114076A1 (zh) 一种高透气消失模铸造方法
WO2017114073A1 (zh) 一种透气铸造用砂
WO2017114077A1 (zh) 一种v法铸造工艺
CN106040965B (zh) 一种铸造用型砂
CN109465378B (zh) 利用熔模铸造废弃型壳制备铸造用人造球形陶瓷砂的工艺
CN102029354B (zh) 用于金属铸件湿型铸造的型砂添加剂
CN104550677A (zh) 铸铁消失模涂料及其制备方法
CN103302230A (zh) 一种铸造用特种型砂配比
CN110465622A (zh) 风力发电机球铁轮毂铸造用涂料及制备方法和应用
CN106513565A (zh) 一种铸造用型砂
JP5600472B2 (ja) 鋳物砂及び鋳物砂組成物並びにそれを用いて得られた鋳造用鋳型
CN105347826A (zh) 一种连铸水口内壁涂料
CN103553642A (zh) 一种节能环保中间包干式工作衬料
CN103084540B (zh) 一种用于铸造耐热钢或耐磨合金钢的消失模涂料配制方法
CN110315024A (zh) 一种新型铸造型砂
CN114769501A (zh) 一种商用车缸体水套冷芯及制备方法
CN1186143C (zh) 镁橄榄石铸造砂的制造方法
CN104150924B (zh) 一种熔模铸造旧型壳回用料保温发热冒口套及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880871

Country of ref document: EP

Kind code of ref document: A1