WO2017113570A1 - 发射功率的校准方法及校准系统及无线射频系统 - Google Patents

发射功率的校准方法及校准系统及无线射频系统 Download PDF

Info

Publication number
WO2017113570A1
WO2017113570A1 PCT/CN2016/082470 CN2016082470W WO2017113570A1 WO 2017113570 A1 WO2017113570 A1 WO 2017113570A1 CN 2016082470 W CN2016082470 W CN 2016082470W WO 2017113570 A1 WO2017113570 A1 WO 2017113570A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power
adaptive filter
output
error signal
Prior art date
Application number
PCT/CN2016/082470
Other languages
English (en)
French (fr)
Inventor
全智
陈新
梁俊宇
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2017113570A1 publication Critical patent/WO2017113570A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/13Monitoring; Testing of transmitters for calibration of power amplifiers, e.g. gain or non-linearity

Definitions

  • the present invention relates to the field of radio frequency, and more particularly to a method and a calibration system for transmitting power and a radio frequency system.
  • the transmission output power needs to be calibrated; in order to ensure the accuracy of the power reported by the receiver, the received power needs to be calibrated.
  • the calibration data is different for different systems and is usually stored in the memory chip of the RF module (such as EER0M or NvRAM).
  • power calibration parameters cannot be equated because each hardware device has hardware differences.
  • the hardware device cannot be recalibrated, and the device needs to be re-calibrated by the manufacturer, which increases the maintenance cost of the device. Therefore, the calibration data inside the device is required to be adapted to new requirements through certain processing.
  • embodiments of the present invention aim to at least solve one of the technical problems existing in the prior art. To this end, embodiments of the present invention need to provide a method and a calibration system for transmitting power and a radio frequency system.
  • a method of calibrating transmit power includes the following steps:
  • the above-mentioned method for calibrating the transmission power obtains the error signal and continuously updates the step size and the tap weight coefficient according to the error signal, so that the error signal is within the error tolerance range, and then adaptively calibrates the transmission power of different hardware devices. Reduced maintenance costs and increased flexibility.
  • the collecting the sample signal of the transmit power signal comprises:
  • the sample signal output by the analog to digital converter is input to the adaptive filter.
  • the method for calibrating the transmit power further includes:
  • the sample signal is input to a delayer and an adder to obtain the target output signal.
  • the current error signal mean square when the current error signal mean square is minimized, the current error signal reaches a range allowed by the error, and the current error signal satisfies the following relationship: min w E(
  • 2 ) Where e(n) d(n)-y(n), e(n) represents the power of the current error signal, d(n) is the power of the target output signal, and y(n) represents the to be calibrated The power of the output signal, n represents the serial number of the measurement data.
  • a calibration system for transmitting power comprising an acquisition module, an adaptive filter and a processing module; the acquisition module is configured to collect a sample signal of a transmit power signal, and input the sample signal to the adaptive filter; the adaptive filter The output module is configured to output a current error signal according to the target output signal and the output signal to be calibrated output by the adaptive filter, and input the current error signal to the adaptive filter; The adaptive filter is configured to update the step size and the tap weight coefficient according to the current error signal, and continuously update the step size and the tap weight coefficient to make the current error signal reach the error tolerance range.
  • the above-mentioned transmitting power calibration system acquires the error signal and continuously updates the step size and the tap weight coefficient according to the error signal, so that the error signal is within the error tolerance range, and then adaptively calibrates the transmission power of different hardware devices. Reduced maintenance costs and increased flexibility.
  • the acquisition module includes a power coupler, a power detector, and an analog to digital converter.
  • the power detector is coupled to the power coupler and the analog to digital converter, and the analog to digital converter is coupled to the adaptive filter.
  • the power coupler is configured to receive the transmit power signal and output the sample signal, and the sample signal is sequentially input to the adaptive filter via the power detector and the analog to digital converter.
  • the processing module includes a delayer, an adder, and a subtractor; the delay is coupled to the adder, the subtractor is coupled to the adder; the processing module is configured to receive the sample signal and pass the delay The timer and the adder process to obtain the target output signal; the subtractor is configured to receive the target output signal and the output signal to be calibrated and output the current error signal.
  • the current error signal mean square when the current error signal mean square is minimized, the current error signal reaches a range allowed by the error, and the current error signal satisfies the following relationship: min w E(
  • 2 ) Where e(n) d(n)-y(n), e(n) represents the power of the current error signal, d(n) is the power of the target output signal, and y(n) represents the to be calibrated The power of the output signal, n represents the serial number of the measurement data.
  • a radio frequency system comprising a transmit power calibration system as described in any of the preceding claims.
  • the above radio frequency system obtains an error signal and continuously updates the step size and the tap weight coefficient according to the error signal, so that the error signal is within the error tolerance range, and thus adaptively calibrates the transmission power of different hardware devices, thereby reducing the frequency. Maintenance costs and increased flexibility.
  • FIG. 1 is a flow chart showing a method of calibrating transmit power according to a preferred embodiment of the present invention
  • FIG. 2 is a block diagram of a radio frequency system in accordance with a preferred embodiment of the present invention.
  • FIG. 3 is a comparison diagram of a fitted power model and measured data of a radio frequency system before and after calibration according to a preferred embodiment of the present invention
  • FIG. 4 is a partial block diagram of a calibration system for transmitting power in accordance with a preferred embodiment of the present invention
  • FIG. 5 is a block diagram of a feedback model of a steepest descent algorithm in a method of calibrating transmit power in accordance with a preferred embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more, unless specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a method for calibrating transmit power includes the following steps:
  • the method for calibrating the transmit power of the embodiment of the present invention is applicable to the calibration of the transmit power of the radio frequency system.
  • the radio frequency system 100 includes a signal generation module 102, an amplifier drive module 104, a radio frequency amplifier 106, and a calibration system 108.
  • the signal generating module 102 is configured to generate an output signal to be amplified, and input the output signal to be amplified to the amplifier driving module 104.
  • the amplifier drive module 104 is used to adjust the gain of the RF amplifier 106.
  • the RF amplifier 106 is operative to process the output signal to be amplified according to the gain to output a transmit power signal, and the calibration system 108 receives the transmit power signal.
  • the calibration method of the transmission power of the embodiment can be achieved by using a closed loop power control method.
  • a portion of the signal output from the radio frequency amplifier is fed back to the power detector 112 by employing a power coupler 110, and the output of the power detector 112 is passed through an analog to digital converter.
  • the 114 ADC is converted to a digital quantity (a reading of the transmitted power) that is compared to the target power to adjust the gain of the RF amplifier 106 to maintain the transmit power within the required tolerance limits.
  • the embodiment of the present invention proposes a transfer function similar to an infinite impulse response filter (IIR) to describe the relationship between the expected output power P e and T ssi , and express the expected output power as a function with T ssi as a variable:
  • IIR infinite impulse response filter
  • PA radio frequency amplifier
  • Figure 3 shows the fit of the expected output power before calibration (solid line) and after calibration (dashed line) to the actual output data. It can be seen from the observation that if a linear model is used to fit the observation data in the graph, closed-loop power control Larger errors are generated, and segmented polylines are not suitable for fitting these data because their inflection points differ in different modules and greatly increase the complexity of closed-loop power control implementation.
  • the embodiment of the present invention adopts a VSLMS (variable-step least mean square) adaptive filter calibration algorithm to obtain a high-precision, low-complexity recursive algorithm.
  • VSLMS variable-step least mean square
  • T represents a transposed symbol
  • the output signal of the output O1 of the device 116, x and y, can be obtained by measurement.
  • w is the tap weight coefficient of the adaptive filter 116, which represents a vector and as an internal parameter indicator of the RF amplifier 106.
  • step S11 the collecting the sample signal of the transmit power signal includes:
  • the sample signal output by the power coupler 110 is input to the power detector 112;
  • the sample signal output by the power detector 112 is input to the analog to digital converter 114;
  • the sample signal output from the analog to digital converter 114 is input to the adaptive filter 116.
  • the power coupler 110 can be a directional power coupler that is coupled to the output of the RF amplifier 106 for receiving the transmit power signal output by the RF amplifier 106.
  • the power coupler 110 can output the transmit power signal in two ways, one of which is a power signal outputted through the coupling end C1 of the power coupler 110, and the other is a power signal outputted through the through terminal S of the power coupler 110. Coupling The power signal output by the junction C1 is smaller than the power signal output by the through terminal S, where k is the coefficient of the power coupler 110, generally 6dB, 10dB, 15dB, 20dB, etc., and the specific size depends on the directional power coupler. 110 device parameters. In this embodiment, the power signal outputted through the coupling end C1 of the power coupler 110 is used as a sample signal.
  • Power detector 112 may be a power detector that is included with the transmitter of wireless radio system 100 as a local power detector.
  • the input of power detector 112 is coupled to coupling end C1 of power coupler 110.
  • the power coupler 110 inputs the sample signal to the power detector 112, the output of the power detector 112 is connected to the input of the analog to digital converter 114 (ADC), and the sample signal is input to the analog to digital converter 114, the analog to digital converter 114 converts the sample signal into a digital quantity (a reading of the transmitted power).
  • ADC analog to digital converter
  • the output of analog to digital converter 114 is coupled to input I of adaptive filter 116 to input the digitized sample signal to adaptive filter 116.
  • the adaptive filter 116 can be an FIR adaptive filter.
  • the method for calibrating the transmit power further includes:
  • the sample signal is input to the delayer 120 and the adder 122 to obtain the target output signal.
  • the sample signal output by the analog-to-digital converter 114 is input to the adaptive filter 116 on the one hand, and is input to the delayer 120 and the adder 122 including the connection on the other hand.
  • the circuit formed by module 117 finally forms the target output signal d(n).
  • step S12 referring to FIG. 4, the output O1 of the adaptive filter 116 is connected to one input of the subtractor 118, and the other input of the subtractor 118 is connected to the target output signal d(n), the subtractor 118
  • the output signal e(n) (i.e., the error signal) is coupled to the control terminal C of the adaptive filter 116.
  • the target output signal d(n) and the output signal y(n) to be calibrated are subtracted by a subtractor 118 to obtain a current error signal e(n).
  • n is the serial number of the measurement data.
  • step S13 the current error signal e(n) is returned to the adaptive filter 116 via the control terminal C of the adaptive filter 116 to update the step size and the tap weight coefficient.
  • the output signal y(n) to be calibrated is continuously approached to the target output signal d(n) by continuously updating the step size and the tap weight coefficient until the current error signal e(n) reaches the error tolerance.
  • n represents the sequence number of the measurement data, for example, the sequence number of a certain value in the data of a certain measurement, such as the sequence number of the error signal.
  • the output terminal O2 of the adaptive filter 116 outputs the calibrated output signal to the amplifier driving module 104 to complete the current calibration operation.
  • the VSLMS algorithm is in the j-th iteration formula:
  • x j [x 1j ,x 2j ,...,x ni ] T is the jth input vector
  • w T [w 1 ,w 2 ,...,w n ] is the vector set of tap weight coefficients
  • n represents the sequence number of one of the values measured in the jth time, for example: x(n) represents the value of the nth element in the x j vector.
  • correction factor The range of ⁇ j is 0 ⁇ j ⁇ 1/ ⁇ max , and ⁇ max represents the maximum eigenvalue of the autocorrelation of the input signal.
  • the correction factor can be understood as the step size.
  • FIG. 5 is a feedback model diagram for calibrating the tap weight coefficient, that is, a specific process of updating the tap weight coefficient of the filter 116.
  • the steepest descent algorithm causes the weight vector to be proportional to the negative direction of the gradient in each change, and the correction factor ⁇ controls its stability and adaptive rate.
  • the weight coefficient w(n+1) of the current time is determined by the sum of the weight coefficient of the previous moment and the input, error, and correction factor product term ⁇ e(n)x(n).
  • the correction factor should be controlled within a small range, so that the tap coefficient is steadily approached to the optimal value w 0 , instead of using a fixed ⁇ , it is possible to exceed the maximum weight coefficient. Excellent value.
  • the embodiment of the present invention dynamically records the value of ⁇ , Among them, ⁇ (0,2), ⁇ 0, the normalized VSLMS algorithm is obtained, which satisfies the convergence speed and steady state demand throughout the update process, and adaptively adjusts continuously.
  • M is the order of the filter
  • w(n) [w 0 (n), w 1 (n),...,w M-1 (n)] T ;
  • the above-mentioned method for calibrating the transmission power obtains the error signal and continuously updates the step size and the tap weight coefficient according to the error signal, so that the error signal is within the error tolerance range, and thus the transmission power for different hardware devices can be obtained.
  • Adaptive calibration reduces maintenance costs and increases flexibility.
  • a transmit power calibration system 108 in accordance with a preferred embodiment of the present invention.
  • the transmit power calibration system 108 can be applied to the wireless radio frequency system 100.
  • the transmit power calibration system 108 includes an acquisition module 109, an adaptive filter 116, and a processing module 117.
  • the acquisition module 109 is configured to collect a sample signal of a transmit power signal and input the sample signal to the adaptive filter 116.
  • the adaptive filter 116 is for outputting an output signal to be calibrated.
  • the processing module 117 is configured to obtain a current error signal according to the target output signal and the output signal to be calibrated output by the adaptive filter 116, and input the current error signal to the adaptive filter 116.
  • the adaptive filter 116 is configured to update the step size and the tap weight coefficient according to the current error signal, and continuously update the step size and the tap weight coefficient to make the current error signal reach the error tolerance range.
  • the acquisition module 109 includes a power coupler 110, a power detector 112, and an analog-to-digital converter 114.
  • the power detector 112 is connected to the power coupler 110 and the analog-to-digital converter 114.
  • the analog-to-digital converter 114 is connected.
  • the adaptive filter 116 is connected to the acquisition module 109.
  • the power coupler 110 is configured to receive the transmit power signal and output the sample signal, and the sample signal is sequentially input to the adaptive filter 116 via the power detector 112 and the analog to digital converter 114.
  • the processing module 117 includes a delayer 120, an adder 122, and a subtractor 118.
  • the delay 120 The adder 122 is connected, and the subtractor 118 is connected to the adder 122.
  • the processing module 117 is configured to receive the sample signal and process the delay signal 120 and the adder 122 to obtain the target output signal.
  • the subtractor 118 is configured to receive the target output signal and the output signal to be calibrated and output the current error signal.
  • T [1, T ssi , -P 0 T ssi ]
  • T represents the input signal of the input terminal I of the adaptive filter 116
  • T represents the transposed symbol
  • w (b 0 , b 1 , a 1 ) represents the tap weight coefficient of the adaptive filter 116
  • T ssi represents the transmitted signal strength index.
  • the current error signal mean square when the current error signal mean square is minimized, the current error signal reaches a range allowed by the error, and the current error signal satisfies the following relationship:
  • e(n) d(n)-y(n)
  • e(n) represents the power of the current error signal
  • d(n) is the power of the target output signal
  • y(n) represents the output to be calibrated
  • n represents the serial number of the measurement data.
  • the above-mentioned transmit power calibration system 108 obtains the error signal and continuously updates the step size and the tap weight coefficient according to the error signal, so that the error signal is within the error tolerance range, and thus can be transmitted for different hardware devices.
  • Adaptive calibration of power reduces maintenance costs and increases flexibility.
  • a preferred embodiment of the present invention provides a radio frequency system 100 including the above-described transmit power calibration system 108. Therefore, the radio frequency system 100 obtains an error signal and continuously updates the step size and the tap weight coefficient according to the error signal, so that the error signal is within the error tolerance range, and thus can adaptively calibrate the transmission power of different hardware devices. Reduces maintenance costs and increases flexibility.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (mobile terminals) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented with any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

本发明公开了一种发射功率的校准方法,其包括以下步骤:采集发射功率信号的样本信号,并将该样本信号输入至自适应滤波器;根据目标输出信号及该自适应滤波器输出的待校准输出信号获取当前误差信号;将该当前误差信号输入至该自适应滤波器,并根据该当前误差信号更新步长及抽头权系数,通过不断的更新该步长和该抽头权系数使该当前误差信号达到误差允许的范围内为止。上述发射功率的校准方法,通过获取误差信号,并根据误差信号不断更新步长及抽头权系数,使得误差信号在误差允许的范围内,进而可针对不同的硬件设备的发射功率进行自适应校准,降低了维护成本及增加了灵活性。本发明还公开了一种发射功率的校准系统及一种无线射频系统。

Description

发射功率的校准方法及校准系统及无线射频系统
优先权信息
本申请请求在2015年12月30日向中国国家知识产权局提交的、专利申请号为201511020474.3的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及于无线射频领域,更具体而言,涉及一种发射功率的校准方法及校准系统及一种无线射频系统。
背景技术
在无线通讯领域,为了保证输出信号的准确性,需要对发射输出功率进行校准;为了保证接收机上报功率的准确性,需要对接收功率进行校准。
校准数据针对不同的系统而不同,通常存放在射频模块的存储芯片(如EER0M或者NvRAM)中。作为功率校准,由于每台硬件设备都具有硬件的差异性,功率校准参数不能等同。当设备在外场使用过程中,需要对设备的应用改变时,无法对硬件设备重新校准,需要将设备收回厂家重新校准,这样增加了设备的维护成本。因此要求设备内部的校准数据能够通过一定的处理来适应新的需求。
发明内容
本发明实施例旨在至少解决现有技术中存在的技术问题之一。为此,本发明实施例需要提供一种发射功率的校准方法及校准系统及一种无线射频系统。
一种发射功率的校准方法,包括以下步骤:
采集发射功率信号的样本信号,并将该样本信号输入至自适应滤波器;
根据目标输出信号及该自适应滤波器输出的待校准输出信号获取当前误差信号;
将该当前误差信号输入至该自适应滤波器,并根据该当前误差信号更新步长及抽头权系数,通过不断的更新该步长和该抽头权系数使该当前误差信号达到误差允许的范围内为止。
上述发射功率的校准方法,通过获取误差信号,并根据误差信号不断更新步长及抽头权系数,使得误差信号在误差允许的范围内,进而可针对不同的硬件设备的发射功率进行自适应校准,降低了维护成本及增加了灵活性。
在一个实施例中,所述采集该发射功率信号的该样本信号,包括:
将该发射功率信号输入至功率耦合器,该功率耦合器输出该样本信号;
将该功率耦合器输出的该样本信号输入至功率检波器;
将该功率检波器输出的该样本信号输入至模数转换器;
将该模数转换器输出的该样本信号输入至该自适应滤波器。
在一个实施例中,该发射功率的校准方法,还包括:
将该样本信号输入至延时器及加法器以得到该目标输出信号。
在一个实施例中,该自适应滤波器满足以下关系式:y=xTw;其中,x=[1,Tssi,-P0Tssi]T表示该自适应滤波器的输入端的输入信号,T表示转置符号,y=P0是该自适应滤波器的输出端的输出信号,w=(b0,b1,a1)表示该自适应滤波器的该抽头权系数,Tssi表示发射信号强度指标。
在一个实施例中,该当前误差信号均方最小化时,该当前误差信号达到误差允许的范围内,该当前误差信号满足以下关系式:minwE(||e(n)||2);其中,e(n)=d(n)-y(n),e(n)表示该当前误差信号的功率,d(n)是该目标输出信号的功率,y(n)表示该待校准输出信号的功率,n表示测量数据的序号。
一种发射功率的校准系统,包括采集模块、自适应滤波器及处理模块;该采集模块用于采集发射功率信号的样本信号,并将该样本信号输入至该自适应滤波器;该自适应滤波器用于输出待校准输出信号;处理模块用于根据目标输出信号及该自适应滤波器输出的该待校准输出信号获取当前误差信号,并将该当前误差信号输入至该自适应滤波器;该自适应滤波器用于根据该当前误差信号更新步长及抽头权系数,通过不断的更新该步长和该抽头权系数使该当前误差信号达到误差允许的范围内为止。
上述发射功率的校准系统,通过获取误差信号,并根据误差信号不断更新步长及抽头权系数,使得误差信号在误差允许的范围内,进而可针对不同的硬件设备的发射功率进行自适应校准,降低了维护成本及增加了灵活性。
在一个实施例中,该采集模块包括功率耦合器、功率检波器及模数转换器,该功率检波器连接该功率耦合器及该模数转换器,该模数转换器连接该自适应滤波器;该功率耦合器用于接收该发射功率信号,并输出该样本信号,该样本信号依次经该功率检波器及该模数转换器输入至该自适应滤波器。
在一个实施例中,该处理模块包括延时器、加法器及减法器;该延时器连接该加法器,该减法器连接该加法器;该处理模块用于接收该样本信号并经该延时器及该加法器处理以得到该目标输出信号;该减法器用于接收该目标输出信号及该待校准输出信号并输出该当前误差信号。
在一个实施例中,该自适应滤波器满足以下关系式:y=xTw;其中, x=[1,Tssi,-P0Tssi]T表示该自适应滤波器的输入端的输入信号,T表示转置符号,y=P0是该自适应滤波器的输出端的输出信号,w=(b0,b1,a1)表示该自适应滤波器的该抽头权系数,Tssi表示发射信号强度指标。
在一个实施例中,该当前误差信号均方最小化时,该当前误差信号达到误差允许的范围内,该当前误差信号满足以下关系式:minwE(||e(n)||2);其中,e(n)=d(n)-y(n),e(n)表示该当前误差信号的功率,d(n)是该目标输出信号的功率,y(n)表示该待校准输出信号的功率,n表示测量数据的序号。
一种无线射频系统,包括如上任一项所述的发射功率的校准系统。
上述无线射频系统,通过获取误差信号,并根据误差信号不断更新步长及抽头权系数,使得误差信号在误差允许的范围内,进而可针对不同的硬件设备的发射功率进行自适应校准,降低了维护成本及增加了灵活性。
本发明实施例的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实施例的实践了解到。
附图说明
本发明实施例的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明较佳实施例的发射功率的校准方法的流程示意图;
图2是根据本发明较佳实施例的无线射频系统的模块示意图;
图3是根据本发明较佳实施例的无线射频系统在校准前和校准后的输出功率模型与测量数据的拟合比较图;
图4是根据本发明较佳实施例的发射功率的校准系统的部分模块示意图;
图5是根据本发明较佳实施例的发射功率的校准方法中最速下降算法的反馈模型框图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本 发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设定之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参图1,本发明较佳实施例提供的一种发射功率的校准方法,包括以下步骤:
S11,采集该发射功率信号的样本信号,并将该样本信号输入至自适应滤波器;
S12,根据目标输出信号及该自适应滤波器输出的待校准输出信号获取当前误差信号;
S13,将该当前误差信号输入至该自适应滤波器,并根据该当前误差信号更新步长及抽头权系数,通过不断的更新该步长和该抽头权系数使该当前误差信号达到误差允许的范围内为止。
具体地,本发明实施例的发射功率的校准方法可适用于无线射频系统的发射功率的校准。
请参图2,在一个示例中,无线射频系统100包括信号产生模块102、放大器驱动模块104、射频放大器106及校准系统108。
信号产生模块102用于产生待放大的输出信号,并将该待放大的输出信号输入至放大器驱动模块104。
放大器驱动模块104用于调节射频放大器106的增益。射频放大器106用于根据增益处理待放大的输出信号以输出发射功率信号,校准系统108接收发射功率信号。
为实现控制射频放大器的功率输出,本实施例的发射功率的校准方法可采用闭环功率控制方式来达成。
具体地,在校准系统108中,通过采用功率耦合器110(power coupler)把射频放大器输出的一部分信号反馈回功率检波器112,功率检波器112的输出经过模数转换器 114(ADC)转化为数字量(发射功率的读数),与目标功率进行比较,以调节射频放大器106的增益,使发射功率保持在要求的容限值范围之内。
为了对图2所示的无线射频系统100建立准确的数学模型,需要先表征功率检波器112经过模数转换器114输出的信号(Tssi,发射信号强度指标)和标定功率(dBm)之间的关系。
因此,本发明实施例提出一个类似无限冲击响应滤波器(IIR)的传递函数来描述预期输出功率Pe与Tssi之间的关系,将预期输出功率表示成以Tssi为变量的函数:
Figure PCTCN2016082470-appb-000001
其中,w=(b0,b1,a1)等效于射频放大器106(PA)的内部参数指标。这样无线射频系统100的预期输出功率就可以用三个参数来表征。射频功率校准就变成了参数估值的问题。
图3显示校准前(实线)和校准后(虚线)的预期输出功率与实际输出数据的拟合情况,通过观察可以看出,如果使用线性模型来拟合图中的观测数据,闭环功率控制会产生较大的误差,分段折线也不适合用来拟合这些数据,因为其拐点在不同模块上有所差别,而且还会大大增加闭环功率控制实现的复杂度。
因此,在上述基础上,本发明实施例采用VSLMS(variable-step least mean square)的自适应滤波校准算法来获取高精度、低复杂度的递归算法。
具体地,把公式(1)变成一个有限冲击响应滤波器(FIR)的表达式为:
y=xTw。
其中,请结合图4,x=[1,Tssi,-P0Tssi]T是自适应滤波器116的输入端I的输入信号,T表示转置符号,y=P0是自适应滤波器116的输出端O1的输出信号,x和y都可以通过测量得到。w是自适应滤波器116的抽头权系数,其表示的是一个向量及作为射频放大器106的内部参数指标。
因此,在步骤S11中,所述采集该发射功率信号的该样本信号,包括:
将该发射功率信号输入至功率耦合器110,该功率耦合器110输出该样本信号;
将该功率耦合器110输出的该样本信号输入至功率检波器112;
将该功率检波器112输出的该样本信号输入至模数转换器114;
将该模数转换器114输出的该样本信号输入至该自适应滤波器116。
更具体地,请参图2,功率耦合器110可为定向功率耦合器,其连接射频放大器106的输出端,用于接收射频放大器106输出的发射功率信号。
功率耦合器110可将发射功率信号分两路输出,其中一路是经功率耦合器110的耦合端C1输出的功率信号,另一路是经功率耦合器110的直通端S输出的功率信号。耦 合端C1输出的功率信号比直通端S输出的功率信号小k dB,其中k是功率耦合器110的系数,一般有6dB、10dB、15dB、20dB等等,其具体大小取决于定向功率耦合器110的器件参数。本实施例中,经功率耦合器110的耦合端C1输出的功率信号作为样本信号。
功率检波器112可为无线射频系统100的发射机自带的功率检测器,其作为本地的功率检测器。
功率检波器112的输入端连接功率耦合器110的耦合端C1。功率耦合器110将样本信号输入至功率检波器112,功率检波器112的输出端连接模数转换器114(ADC)的输入端,并将样本信号输入至模数转换器114,模数转换器114可将样本信号转化为数字量(发射功率的读数)。
模数转换器114的输出端连接自适应滤波器116的输入端I,以将数字化后的样本信号输入至自适应滤波器116。自适应滤波器116可为FIR自适应滤波器。
本实施例中,发射功率的校准方法,还包括:
将该样本信号输入至延时器120及加法器122以得到该目标输出信号。
具体地,请参图4,本实施例中,模数转换器114输出的样本信号一方面输入至自适应滤波器116,另一方面输入至包括连接的延时器120和加法器122的处理模块117形成的电路,最后形成目标输出信号d(n)。
在步骤S12中,请参图4,自适应滤波器116的输出端O1连接减法器118的一个输入端,减法器118的另一个输入端接入目标输出信号d(n),减法器118的输出信号e(n)(即误差信号)与自适应滤波器116的控制端C相连接。目标输出信号d(n)和待校准输出信号y(n)经过减法器118相减得到当前误差信号e(n)。n是测量数据的序号。
在步骤S13中,将当前误差信号e(n)经自适应滤波器116的控制端C返回到自适应滤波器116中,以更新步长和抽头权系数。通过不断的更新步长和抽头权系数使待校准输出信号y(n)不断地逼近目标输出信号d(n),直至当前误差信号e(n)达到误差允许的范围内为止。
也就是说,当前误差信号e(n)均方最小化时,当前误差信号e(n)达到误差允许的范围内,当前误差信号e(n)满足以下关系式:
minwE(||e(n)||2);
其中,e(n)=d(n)-y(n),n表示测量数据的序号,例如,在某一次测量的数据中的某一个值的序号,比如误差信号的序号。
此时自适应滤波器116的输出端O2输出校准后的输出信号至放大器驱动模块104,完成当前校准工作。
自适应滤波器116采用VSLMS算法进行上述处理时,VSLMS算法在第j次的迭代公式:
滤波输出:
Figure PCTCN2016082470-appb-000002
其中xj=[x1j,x2j,...,xni]T是第j次输入向量,wT=[w1,w2,...,wn]是抽头权系数的向量集合,n表示在第j次测量的数据中的某一个值的序号,例如:x(n)表示的是xj向量中的第n个元素的值。
在j时刻的估计误差:
Figure PCTCN2016082470-appb-000003
抽头权系数的更新:
wj+1=wj+2μjejxj
其中修正因子
Figure PCTCN2016082470-appb-000004
μj的范围:0<μj<1/λmax,λmax表示输入信号自相关的最大特征值,本实施例中,修正因子可理解为步长。
请参图5,图5所示的是对抽头权系数进行校准的反馈模型图,即滤波器116抽头权系数更新的具体过程。
最速下降算法的一个重要特点是存在反馈,也就是说这一过程使用循环递归的过程。因此必须特别注重算法的稳定性,而其稳定性受制于算法反馈中的两个重要参数,修正因子μ和抽头输入协方差矩阵Ru
由于不可能精确的测量到代价函数J(w),可以先用所获取的数据对其进行梯度估计
Figure PCTCN2016082470-appb-000005
最速下降算法使得权向量在每一次改变中与梯度的负方向成比例,修正因子μ通过控制其稳定性和自适应速率。
当自适应算法收敛时候,存在Pdu-Ruw(n)=0,即可获得最优权值w0的关系式Pdu=Ruw0,其中Pdu是目标输出信号d(n)和样本信号x(n)的相关函数。在传统的LMS算法中,当前时刻的权系数w(n+1)是由上一时刻的权系数和输入、误差、修正因子乘积项μe(n)x(n)之和决定。然而在算法接近稳态过程中,对修正因子应该控制在一个较小的范围内,使抽头系数稳步逼近最优值w0,并不是采用一个固定的μ,这样有可能超过了权系数的最优值。
所以本发明实施例对μ值进行动态的规划,取
Figure PCTCN2016082470-appb-000006
其中α∈(0,2),β≥0,得到归一化的VSLMS算法,使其在整个更新过程中满足收敛速度和稳态的需求,不断进行自适应调整。
本发明实施例的VSLMS算法可用如下公式进一步说明:
步骤一:
初始化:w(0)=(0,0,0)T
步骤二:
更新:n=1,2,…
滤波输出:y(n)=xT(n)w(n);
其中x(n)=[x(n),x(n-1),...,x(n-M+1)];
M为滤波器的阶数,
w(n)=[w0(n),w1(n),...,wM-1(n)]T
误差估计:e(n)=d(n)-y(n)=d(n)-xT(n)w(n);
修正因子(步长):
Figure PCTCN2016082470-appb-000007
其中α∈(0,2),β≥0;
抽头权系数更新:w(n+1)=w(n)+μ(n)e(n)xT(n)。
综上所述,上述发射功率的校准方法,通过获取误差信号,并根据误差信号不断更新步长及抽头权系数,使得误差信号在误差允许的范围内,进而可针对不同的硬件设备的发射功率进行自适应校准,降低了维护成本及增加了灵活性。
请参图2及图4,本发明较佳实施例的一种发射功率的校准系统108。发射功率的校准系统108可适用于无线射频系统100。
发射功率的校准系统108包括采集模块109、自适应滤波器116及处理模块117。
该采集模块109用于采集发射功率信号的样本信号,并将该样本信号输入至该自适应滤波器116。该自适应滤波器116用于输出待校准输出信号。
处理模块117用于根据目标输出信号及该自适应滤波器116输出的该待校准输出信号获取当前误差信号,并将该当前误差信号输入至该自适应滤波器116。
该自适应滤波器116用于根据该当前误差信号更新步长及抽头权系数,通过不断的更新该步长和该抽头权系数使该当前误差信号达到误差允许的范围内为止。
具体地,该采集模块109包括功率耦合器110、功率检波器112及模数转换器114,该功率检波器112连接该功率耦合器110及该模数转换器114,该模数转换器114连接该自适应滤波器116。
该功率耦合器110用于接收该发射功率信号,并输出该样本信号,该样本信号依次经该功率检波器112及该模数转换器114输入至该自适应滤波器116。
需要说明的是,前述对发射功率的校准方法的较佳实施例的解释说明也适用于本实施例的发射功率的校准系统108,此处不再赘述。
较佳地,该处理模块117包括延时器120、加法器122及减法器118。该延时器120 连接该加法器122,该减法器118连接该加法器122。
该处理模块117用于接收该样本信号并经该延时器120及该加法器122处理以得到该目标输出信号。
该减法器118用于接收该目标输出信号及该待校准输出信号并输出该当前误差信号。
需要说明的是,前述对发射功率的校准方法的较佳实施例的解释说明也适用于本实施例的发射功率的校准系统108,此处不再赘述。
较佳地,该自适应滤波器116满足以下关系式:y=xTw;
其中,x=[1,Tssi,-P0Tssi]T表示该自适应滤波器116的输入端I的输入信号,T表示转置符号,y=P0是该自适应滤波器116的输出端O1的输出信号,w=(b0,b1,a1)表示该自适应滤波器116的该抽头权系数,Tssi表示发射信号强度指标。
需要说明的是,前述对发射功率的校准方法的较佳实施例的解释说明也适用于本实施例的发射功率的校准系统108,此处不再赘述。
较佳地,该当前误差信号均方最小化时,该当前误差信号达到误差允许的范围内,该当前误差信号满足以下关系式:
minwE(||e(n)||2);
其中,e(n)=d(n)-y(n),e(n)表示该当前误差信号的功率,d(n)是该目标输出信号的功率,y(n)表示该待校准输出信号的功率,n表示测量数据的序号。
需要说明的是,前述对发射功率的校准方法的较佳实施例的解释说明也适用于本实施例的发射功率的校准系统108,此处不再赘述。
综上所述,上述发射功率的校准系统108,通过获取误差信号,并根据误差信号不断更新步长及抽头权系数,使得误差信号在误差允许的范围内,进而可针对不同的硬件设备的发射功率进行自适应校准,降低了维护成本及增加了灵活性。
请参图2及图4,本发明较佳实施例提供一种无线射频系统100,其包括上述发射功率的校准系统108。因此,上述无线射频系统100,通过获取误差信号,并根据误差信号不断更新步长及抽头权系数,使得误差信号在误差允许的范围内,进而可针对不同的硬件设备的发射功率进行自适应校准,降低了维护成本及增加了灵活性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式 结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施例的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(移动终端),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施例中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施例中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,所述程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种发射功率的校准方法,其特征在于,包括以下步骤:
    采集发射功率信号的样本信号,并将该样本信号输入至自适应滤波器;
    根据目标输出信号及该自适应滤波器输出的待校准输出信号获取当前误差信号;
    将该当前误差信号输入至该自适应滤波器,并根据该当前误差信号更新步长及抽头权系数,通过不断的更新该步长和该抽头权系数使该当前误差信号达到误差允许的范围内为止。
  2. 如权利要求1所述的发射功率的校准方法,其特征在于,所述采集该发射功率信号的该样本信号,包括:
    将该发射功率信号输入至功率耦合器,该功率耦合器输出该样本信号;
    将该功率耦合器输出的该样本信号输入至功率检波器;
    将该功率检波器输出的该样本信号输入至模数转换器;
    将该模数转换器输出的该样本信号输入至该自适应滤波器。
  3. 如权利要求1所述的发射功率的校准方法,其特征在于,还包括:
    将该样本信号输入至延时器及加法器以得到该目标输出信号。
  4. 如权利要求1所述的发射功率的校准方法,其特征在于,该自适应滤波器满足以下关系式:
    y=xTw;
    其中,x=[1,Tssi,-P0Tssi]T表示该自适应滤波器的输入端的输入信号,T表示转置符号,y=P0是该自适应滤波器的输出端的输出信号,w=(b0,b1,a1)表示该自适应滤波器的该抽头权系数,Tssi表示发射信号强度指标。
  5. 如权利要求1所述的发射功率的校准方法,其特征在于,该当前误差信号均方最小化时,该当前误差信号达到误差允许的范围内,该当前误差信号满足以下关系式:
    minwE(||e(n)||2);
    其中,e(n)=d(n)-y(n),e(n)表示该当前误差信号的功率,d(n)是该目标输出信号的功率,y(n)表示该待校准输出信号的功率,n表示测量数据的序号。
  6. 一种发射功率的校准系统,其特征在于,包括采集模块、自适应滤波器及处理模块;
    该采集模块用于采集发射功率信号的样本信号,并将该样本信号输入至该自适应滤波器;
    该自适应滤波器用于输出待校准输出信号;
    处理模块用于根据目标输出信号及该自适应滤波器输出的该待校准输出信号获取当前误差信号,并将该当前误差信号输入至该自适应滤波器;
    该自适应滤波器用于根据该当前误差信号更新步长及抽头权系数,通过不断的更新该步长和该抽头权系数使该当前误差信号达到误差允许的范围内为止。
  7. 如权利要求6所述的发射功率的校准系统,其特征在于,该采集模块包括功率耦合器、功率检波器及模数转换器,该功率检波器连接该功率耦合器及该模数转换器,该模数转换器连接该自适应滤波器;
    该功率耦合器用于接收该发射功率信号,并输出该样本信号,该样本信号依次经该功率检波器及该模数转换器输入至该自适应滤波器。
  8. 如权利要求6所述的发射功率的校准系统,其特征在于,该处理模块包括延时器、加法器及减法器;
    该延时器连接该加法器,该减法器连接该加法器;
    该处理模块用于接收该样本信号并经该延时器及该加法器处理以得到该目标输出信号;
    该减法器用于接收该目标输出信号及该待校准输出信号并输出该当前误差信号。
  9. 如权利要求6所述的发射功率的校准系统,其特征在于,该自适应滤波器满足以下关系式:
    y=xTw;
    其中,x=[1,Tssi,-P0Tssi]T表示该自适应滤波器的输入端的输入信号,T表示转置符 号,y=P0是该自适应滤波器的输出端的输出信号,w=(b0,b1,a1)表示该自适应滤波器的该抽头权系数,Tssi表示发射信号强度指标。
  10. 如权利要求6所述的发射功率的校准系统,其特征在于,该当前误差信号均方最小化时,该当前误差信号达到误差允许的范围内,该当前误差信号满足以下关系式:
    minwE(||e(n)||2);
    其中,e(n)=d(n)-y(n),e(n)表示该当前误差信号的功率,d(n)是该目标输出信号的功率,y(n)表示该待校准输出信号的功率,n表示测量数据的序号。
  11. 一种无线射频系统,其特征在于,包括如权利要求6~10任一项所述的发射功率的校准系统。
PCT/CN2016/082470 2015-12-30 2016-05-18 发射功率的校准方法及校准系统及无线射频系统 WO2017113570A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511020474.3 2015-12-30
CN201511020474.3A CN105656570A (zh) 2015-12-30 2015-12-30 发射功率的校准方法及校准系统及无线射频系统

Publications (1)

Publication Number Publication Date
WO2017113570A1 true WO2017113570A1 (zh) 2017-07-06

Family

ID=56478494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082470 WO2017113570A1 (zh) 2015-12-30 2016-05-18 发射功率的校准方法及校准系统及无线射频系统

Country Status (2)

Country Link
CN (1) CN105656570A (zh)
WO (1) WO2017113570A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114448884A (zh) * 2022-03-02 2022-05-06 深圳市友华通信技术有限公司 一种路由设备、路由设备的功率校准方法及存储介质
CN117110700A (zh) * 2023-08-23 2023-11-24 易集康健康科技(杭州)有限公司 一种射频电源脉冲功率检测方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712863B (zh) * 2017-03-10 2018-12-28 深圳市中承科技有限公司 用于蓝牙发射功率校准的方法及装置
CN109695447B (zh) * 2019-01-04 2021-06-08 电子科技大学 一种感应测井仪发射功率自适应调整方法
CN109695446B (zh) * 2019-01-04 2021-06-08 电子科技大学 一种感应测井仪发射功率自适应调整装置
CN110518989B (zh) * 2019-09-10 2022-03-29 深圳市共进电子股份有限公司 校准无线保真模块射频功率的方法、装置、设备及介质
CN112290996A (zh) * 2020-11-05 2021-01-29 四川天邑康和通信股份有限公司 一种应用于pon组件自动测试系统的光衰减器补偿方法
CN117310590B (zh) * 2023-11-27 2024-02-06 上海知白智能科技有限公司 基于测试机的校验方法、系统及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710825A (zh) * 2009-08-26 2010-05-19 深圳市云海通讯股份有限公司 一种自适应滤波器及其实现方法、直放站
US20130012149A1 (en) * 2011-07-06 2013-01-10 Telefonaktiebolaget L M Ericsson (Publ) Adaptive Real-time Control System for Transceiver Level and Gain Regulation
CN103078640A (zh) * 2013-01-16 2013-05-01 华南理工大学 一种用于adc的rls自适应滤波校准算法
CN103227623A (zh) * 2013-03-29 2013-07-31 北京邮电大学 可变步长的lms自适应滤波算法及滤波器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119146B (zh) * 2007-09-03 2011-04-13 北京天碁科技有限公司 一种对通信终端发射功率进行校准的方法、系统和装置
CN101888211B (zh) * 2010-07-22 2013-08-07 华为终端有限公司 射频功率放大器的校准方法及装置
CN102300226B (zh) * 2011-09-06 2014-05-28 惠州Tcl移动通信有限公司 Wcdma移动终端功率校准的方法及校准系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710825A (zh) * 2009-08-26 2010-05-19 深圳市云海通讯股份有限公司 一种自适应滤波器及其实现方法、直放站
US20130012149A1 (en) * 2011-07-06 2013-01-10 Telefonaktiebolaget L M Ericsson (Publ) Adaptive Real-time Control System for Transceiver Level and Gain Regulation
CN103078640A (zh) * 2013-01-16 2013-05-01 华南理工大学 一种用于adc的rls自适应滤波校准算法
CN103227623A (zh) * 2013-03-29 2013-07-31 北京邮电大学 可变步长的lms自适应滤波算法及滤波器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, XIN ET AL.: "RF Power Calibration Algorithm for Wireless OFDM System", COMMUNICATIONS TECHNOLOGY, vol. 48, no. 12, 15 December 2015 (2015-12-15), ISSN: 1002-0802 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114448884A (zh) * 2022-03-02 2022-05-06 深圳市友华通信技术有限公司 一种路由设备、路由设备的功率校准方法及存储介质
CN114448884B (zh) * 2022-03-02 2023-10-20 深圳市友华通信技术有限公司 一种路由设备、路由设备的功率校准方法及存储介质
CN117110700A (zh) * 2023-08-23 2023-11-24 易集康健康科技(杭州)有限公司 一种射频电源脉冲功率检测方法及系统
CN117110700B (zh) * 2023-08-23 2024-06-04 易集康健康科技(杭州)有限公司 一种射频电源脉冲功率检测方法及系统

Also Published As

Publication number Publication date
CN105656570A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2017113570A1 (zh) 发射功率的校准方法及校准系统及无线射频系统
EP1875553B1 (en) Method and system for self-calibrating transmit power
EP2202879B1 (en) A predistortion apparatus and predistortion method
JP2009177668A (ja) 歪補償装置及びこれを備えた電力増幅装置
EP2051371A1 (en) Systems, methods and devices for dual closed loop modulation controller for non-linear RF amplifier
CN106301247A (zh) 一种用于mri功率放大器的增益补偿电路及方法
US20170343661A1 (en) Pulse radar, method of correcting transmission pulse in pulse radar, and method of correcting reception pulse in pulse radar
US9252742B2 (en) Analog filter in wireless transmission/reception device and method for setting cut-off frequency using the same
CN113258999B (zh) 校准光接收模块上报光功率的方法、光接收模块和介质
JP5146404B2 (ja) 歪補償装置
CN112182493B (zh) 模拟量校准方法、装置、电子设备及存储介质
US20080187078A1 (en) Receiver with fast gain control and digital signal processing unit with transient signal compensation
JP5126364B2 (ja) 送信装置および調整値測定方法
CN101374124A (zh) 信道增益数字均衡自适应校准系统与方法
CN112262397A (zh) 最优化系统和最优化方法
CN108925143B (zh) 驻波检测方法、驻波检测装置和电子枪
JP6150005B2 (ja) 非線形補償装置及びその方法、送信機並びに通信システム
CN110380794B (zh) 一种用于无线通信系统的数据驱动射频发射功率校准方法和装置
WO2019138054A1 (en) Calibration of microphone arrays with an uncalibrated source
WO2018157321A1 (zh) 发射机及数字预失真校准方法
CN110912616A (zh) 消除相干光通信系统功率振荡的方法及相干光通信系统
JP4545477B2 (ja) 平衡伝送装置
CN108923783B (zh) 一种tiadc误差检测系统
CN115102509A (zh) 数字预失真方法和数字预失真系统
CN116879829A (zh) 一种基于线性温漂修正的电能测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880378

Country of ref document: EP

Kind code of ref document: A1