WO2017110351A1 - 内視鏡及び内視鏡用アダプタ - Google Patents

内視鏡及び内視鏡用アダプタ Download PDF

Info

Publication number
WO2017110351A1
WO2017110351A1 PCT/JP2016/084633 JP2016084633W WO2017110351A1 WO 2017110351 A1 WO2017110351 A1 WO 2017110351A1 JP 2016084633 W JP2016084633 W JP 2016084633W WO 2017110351 A1 WO2017110351 A1 WO 2017110351A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
incident
light
imaging
endoscope
Prior art date
Application number
PCT/JP2016/084633
Other languages
English (en)
French (fr)
Inventor
高橋 進
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017530360A priority Critical patent/JPWO2017110351A1/ja
Publication of WO2017110351A1 publication Critical patent/WO2017110351A1/ja
Priority to US15/684,171 priority patent/US11112595B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00013Operational features of endoscopes characterised by signal transmission using optical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00101Insertion part of the endoscope body characterised by distal tip features the distal tip features being detachable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00177Optical arrangements characterised by the viewing angles for 90 degrees side-viewing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00181Optical arrangements characterised by the viewing angles for multiple fixed viewing angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0676Endoscope light sources at distal tip of an endoscope
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2453Optical details of the proximal end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion

Definitions

  • the present invention relates to an endoscope and an endoscope adapter, and more particularly to an endoscope and an endoscope adapter capable of observing a plurality of directions.
  • endoscopes are widely used in the medical field and the industrial field.
  • Endoscopes include not only forward-viewing and side-viewing endoscopes, but also stereo-measuring endoscopes.
  • the endoscope for stereo measurement images the observation region of the subject from two directions, calculates the shift amount of the measurement point by the correlation calculation between the two images obtained by shooting, and calculates the shift amount obtained It is used to measure the size and depth of an object according to the principle of triangulation.
  • two objective lenses forming two light paths with parallax are disposed at the tip of the insertion portion.
  • an endoscope apparatus with an optical adapter has also been proposed.
  • the optical adapter is provided with two objective lenses, an objective lens for forward vision and an objective lens for lateral vision.
  • the present invention relates to an endoscope for switching a plurality of subject images from different directions and projecting them onto a common area of the imaging surface of the imaging device, comprising: a distal end portion of an insertion portion of the endoscope or an adapter for the endoscope It is an object of the present invention to provide an endoscope and an adapter for an endoscope which can suppress the increase in diameter.
  • a first incident optical system on which a first light flux from a first area of a subject is incident, and a second area different from the first area of the subject A second incident optical system into which a second light flux from the light source is incident, the first light flux passing through the first incident optical system, and the second light flux passing through the second incident optical system And a light shielding portion disposed in the predetermined region and selectively shielding one of the first light flux and the second light flux, and an imaging surface And the first light flux which is disposed on the object side or the image pickup element side with respect to the light shielding portion and which passes through the first incident optical system and passes through the second incident optical system. And an imaging optical system for forming an image of the second light flux on a common area of the imaging surface.
  • An endoscope adapter is an endoscope adapter attachable to an insertion portion of an endoscope, and a first light flux from a first region of a subject is incident on the first adapter. And a second incident optical system to which a second light beam from a second area different from the first area of the subject is incident, and the first incident optical system.
  • a cross optical system that crosses a first light flux and the second light flux that has passed through the second incident optical system and emits the light to a predetermined area; and a first light flux that is disposed in the predetermined area.
  • a light shielding portion for selectively shielding one of the second light fluxes, the first light flux passing through the first incident optical system, and the second light flux passing through the second incident optical system
  • an imaging optical system for forming an image of a light flux on a common area of an imaging surface of an imaging device provided in the insertion section.
  • FIG. 1 It is a block diagram which shows the structure of the endoscope apparatus concerning embodiment of this invention. It is a figure which shows the structure of the optical system of the front-end
  • FIG. 4 shows the structure of the light-shielding part 47A which has a different structure from FIG. 4 concerning embodiment of this invention.
  • An optical adapter 2A is attached, which shows the optical path from the concave lens 42 when the light shielding portion 47 according to the embodiment of the present invention functions to pass the optical path of the light beam LT2 from the concave lens 42 for side view.
  • An optical adapter 2A is attached, which shows the optical path from the concave lens 42 when the light shielding portion 47 according to the embodiment of the present invention functions to pass the optical path of the light beam LT2 from the concave lens 42 for side view.
  • FIG. 1 shows the structure of the light-shielding part 47A which has a different structure from FIG. 4 concerning embodiment of this invention.
  • An optical adapter 2A is attached, which shows the optical path from the concave lens 42 when the light shielding portion
  • FIG. 7 is a view showing an image of light in the configuration of the optical system including the distal end portion 21 of the insertion portion 11; It is a perspective view of the prism optical system in connection with the modification 1 of embodiment of this invention. It is a perspective view of the prism optical system in connection with the modification 2 of embodiment of this invention. It is a figure which shows the structure of a part of optical system of the optical adapter 2A in connection with the modification 3 of embodiment of this invention. It is a block diagram for demonstrating the structure of the decentering lens in connection with the modification 3 of embodiment of this invention. It is a schematic cross section which shows the structure of the optical adapter in connection with the modification 4 of embodiment of this invention.
  • FIG. 1 is a configuration diagram showing a configuration of an endoscope apparatus according to the present embodiment.
  • the endoscope apparatus 1 of the present embodiment includes an endoscope 2, a light source device 3 to which the endoscope 2 is connected, a camera control unit (hereinafter referred to as a CCU), and the like. And a monitor 5.
  • a CCU camera control unit
  • the endoscope 2 is an electronic endoscope having an elongated insertion portion 11, an operation portion 12 connected to a proximal end of the insertion portion 11, and a universal cable 13 extending from the operation portion 12.
  • An optical adapter 2A can be attached to the tip of the insertion portion 11.
  • the connector 14 provided at the tip of the universal cable 13 extended from the operation unit 12 can be detachably attached to the light source device 3.
  • a signal cable 15 extends from the connector 14.
  • the connector 16 provided at the end of the signal cable 15 can be detachably attached to the main device 4.
  • the insertion portion 11 of the endoscope 2 has a hard distal end portion 21 at its distal end, and a bendable curved portion 22 is provided adjacent to the distal end portion 21, and further on the proximal end side of the curved portion 22.
  • a long flexible tube portion 23 is provided. The user of the endoscope apparatus 1 can bend the bending portion 22 by operating the bending knob 24 provided on the operation unit 12.
  • the distal end portion 21 incorporates an imaging element 34 (FIG. 2), and an imaging signal obtained by the imaging element 34 is inserted into the insertion portion 11, the operation portion 12, the universal cable 13 and the signal cable 15. The signal is supplied to the main unit 4 via the signal line.
  • an imaging element 34 FIG. 2
  • the light source device 3 is incident on the proximal end face of the universal cable 13 and an optical fiber (not shown) inserted in the insertion portion 11 and generates illumination light for emitting light from the tip end of the insertion portion 11 to illuminate the subject Light source such as a lamp.
  • the optical adapter 2A is attachable to the distal end portion 21 of the insertion portion 11.
  • the optical adapter 2A is an endoscope adapter that enables observation in two forward and lateral viewing directions.
  • the main device 4 incorporates a control unit for controlling the entire endoscope apparatus 1 in addition to the CCU.
  • the main device 4 includes a central processing unit (CPU), a ROM, a RAM, and the like (not shown), and the user can perform various operations on the operation panel 4a.
  • the main body device 4 executes a program according to the function in order to realize the function according to the operation.
  • the main device 4 inputs an imaging signal from the endoscope 2 and outputs an image signal of an endoscope image which is an object image generated in the CCU to the monitor 5, and the endoscope image is the monitor 5. Is displayed on.
  • FIG. 2 is a view showing a configuration of an optical system of the distal end portion 21 of the insertion portion 11 to which the optical adapter 2A is attached.
  • the right side of the two-dot chain line shows the optical system configuration of the distal end portion 21 of the insertion portion 11
  • the left side of the two-dot chain line shows the optical system configuration of the optical adapter 2A.
  • FIG. 2A is a view showing an image of light in the configuration of the optical system of the distal end portion 21 of the insertion portion 11 to which the optical adapter 2A is attached.
  • a cover glass 31 of an observation window of the insertion portion 11 is provided on the front end surface of the distal end portion 21 of the insertion portion 11 having a circular cross section.
  • an imaging optical system 32 and an imaging device 34 with a cover glass 33 attached thereto are disposed in the front end portion 21.
  • the imaging optical system 32 is disposed behind the cover glass 31 and includes a plano-convex lens 32a and a cemented lens 32b.
  • the cemented lens 32b is a lens obtained by cementing a biconvex lens and a plano-concave lens.
  • the imaging device 34 is disposed in the distal end portion 21 so that the light of the object image transmitted through the imaging optical system 32 forms an image on the imaging surface of one imaging device 34.
  • a distal end hard member (not shown) is incorporated in the distal end portion 21, and the cover glass 31, the imaging device 34, and the like are fixed to the distal end hard member.
  • the concave lens 41 of the observation window for forward vision the concave lens 42 of the observation window for lateral vision, the prism optical system 43, the imaging lens 44 for forward vision, and A light blocking portion 47 having an imaging lens 45, an achromatic lens 46, and a stop is disposed.
  • the optical adapter 2A has a cylindrical rigid member, and the concave lens 41 and the like are fixed to the rigid member.
  • the concave lens 41 for forward view constitutes an incident optical system disposed on the front surface of the cylindrical optical adapter 2A.
  • the concave lens 42 for side view constitutes an incident optical system disposed on the side surface of the cylindrical optical adapter 2A.
  • the concave lens 41 is disposed so that light enters from a direction parallel or substantially parallel to the optical axis PO of the imaging optical system 32, and the concave lens 42 is orthogonal to the optical axis PO of the imaging optical system 32. Or it is arrange
  • the concave lens 41 constitutes an incident optical system configured so that a light flux from a region with a subject is incident when the insertion portion 11 is inserted into the inspection target.
  • the concave lens 42 constitutes an incident optical system configured such that a light beam from an area different from the above-described area of the subject is incident when the insertion section 11 is inserted into the inspection object.
  • the prism optical system 43 is composed of a prism 43a of a triangular prism whose cross section is a right triangle, and a glass member 43b of a square prism whose one end is cut obliquely.
  • FIG. 3 is a perspective view of the prismatic optical system 43. As shown in FIG.
  • the prism optical system 43 is disposed inside the optical adapter 2A such that the prism 43a is located on the distal end side of the optical adapter 2A and the glass member 43b is located on the proximal end side of the optical adapter 2A. Will be placed on Further, the prism optical system 43 is disposed in the optical adapter 2A such that one surface of the prism 43a faces the concave lens 41 and one surface of the glass member 43b faces the concave lens 42.
  • a mirror area 43c for reflecting light is provided on a slope of the prism 43a or a part of the cut surface of the glass member 43b. That is, the mirror area 43c is provided in a partial area of the bonding surface between the inclined surface of the prism 43a and the cut surface of the glass member 43b.
  • the mirror area 43c is formed in the prism optical system 43 by aluminum vapor deposition on any one of the inclined surface of the prism 43a and the cut surface of the glass member 43b.
  • the concave lens 41 for forward vision is disposed at a position for emitting the incident light toward the area other than the mirror area 43c
  • the concave lens 42 for lateral view is the mirror area of the incident light It is disposed at a position for emitting toward 43c.
  • the prismatic optical system 43 has a prism, and the light beam LT1 from the concave lens 41 passes through the prismatic optical system 43 and is emitted toward the imaging optical system 32, and the light beam LT2 from the concave lens 42 is prismatic optical system 43 The light beam is reflected by the prism of the light source and emitted toward the imaging optical system 32.
  • the light beam LT1 from the concave lens 41 and the light beam LT2 from the concave lens 42 intersect in the prism optical system 43. That is, the prism optical system 43 intersects the light beam LT1 passing through the concave lens 41 and the light beam LT2 passing through the concave lens 42 to constitute a cross optical system for emitting light to a predetermined area.
  • the cross section of the light flux of the light flux LT1 and the cross section of the light flux of the light flux LT2 along the direction orthogonal to the respective optical axes have areas.
  • the luminous flux LT1 and the luminous flux LT2 intersect so that their optical axes intersect, but the luminous flux LT1 and the luminous flux LT2 may cross each other without their optical axes intersecting. In that case, the luminous flux LT1 and the luminous flux LT2 partially cross each other.
  • the prism optical system 43 as a cross optical system makes the light beam LT1 and the light beam LT2 incident, makes the light beam LT1 and the light beam LT2 cross each other at least partially, and makes the light beam LT1 and the light beam LT2 to the imaging optical system 32 It may be configured to emit towards.
  • the imaging lens 44 is an optical system for forward viewing which is a cylindrical plano-convex lens, and the light beam from the concave lens 41 transmitted through the area other than the mirror area 43 c in the prism optical system 43 is incident.
  • the imaging lens 45 is an optical system for side view that is a cylindrical plano-convex lens, and the light flux from the concave lens 42 reflected by the mirror area 43 c in the prism optical system 43 is incident.
  • an achromatic lens 46 in which a biconvex lens and a plano-concave lens are cemented is disposed.
  • the imaging lens 44 is disposed at a position where the light from the concave lens 41 for forward vision transmitted through the prism optical system 43 is incident and emitted to the achromatic lens 46.
  • the imaging lens 45 is disposed at a position where the light from the side view concave lens 42 reflected by the mirror area 43 c of the prism optical system 43 is incident and emitted to the achromatic lens 46.
  • the imaging lens 45 emits light from the side of the insertion portion 11 toward the achromatic lens 46.
  • Each of the light beam LT1 from the concave lens 41 and the light beam LT2 from the concave lens 42 enters into the prism optical system 43.
  • the light beam LT1 passes through a portion other than the mirror region 43c in the prism optical system 43, and is emitted from the prism optical system 43 toward the imaging lens 44.
  • the luminous flux LT1 and the luminous flux LT2 intersect in the prism optical system 43, and the luminous flux LT2 is reflected by the mirror area 43c and then exits from the prism optical system 43 toward the imaging lens 45.
  • a light shielding portion 47 is disposed between the two imaging lenses 44 and 45 and the achromatic lens 46.
  • FIG. 4 is a view showing the configuration of the light shielding portion 47.
  • the light shielding portion 47 is configured to include a disc-shaped diaphragm plate 47a, a shielding member 47b, and a shaft member 47c for rotating the shielding member 47b.
  • the hole 47a1 is formed in the stop plate 47a so as to be located in the middle of the optical path of the light beam LT1 emitted from the imaging lens 44, and the hole 47a2 is located in the middle of the optical path of the light beam LT2 emitted from the imaging lens 45.
  • the aperture plate 47a is formed in
  • the shielding member 47 b has a disk-shaped shielding plate 47 b 1 and an arm portion 47 b 2 connected such that one end thereof extends from the shielding plate 47 b 1.
  • the other end of the arm portion 47b2 is connected to and fixed to the shaft member 47c.
  • the shaft member 47c is connected to a drive mechanism (not shown).
  • the drive mechanism has a structure for pivoting the shaft member 47c around the axis within a predetermined range, as indicated by the arrow R1.
  • the shaft member 47c is driven by drive means such as an electromagnet which is driven according to a predetermined operation of the user on the operation panel 4a.
  • drive is performed to drive an electromagnet or the like through a signal line inserted in the insertion portion 11, and further through a contact point between the tip portion 21 of the insertion portion 11 and the optical adapter 2A
  • a signal is supplied to the optical adapter 2A, and an electromagnet or the like in the optical adapter 2A is driven to rotate the shaft member 47c.
  • the shielding plate 47b1 is driven to selectively cover one of the two circular holes 47a1 and 47a2.
  • FIG. 4 shows a state in which the shielding plate 47b1 is in a position covering the hole 47a2.
  • the light shielding portion 47 is disposed in a predetermined region, includes the respective stops of the light beam LT1 and the light beam LT2, and selectively shields one of the light beam LT1 and the light beam LT2 emitted from the prism optical system 43.
  • the light shielding portion 47 may have a configuration other than that shown in FIG.
  • FIG. 5 is a view showing the configuration of a light shielding portion 47A having a configuration different from that of FIG.
  • the light shielding portion 47A includes two disk-shaped diaphragm plates 48a and 48b, two shielding members 49a and 49b, and two shaft members 50a and 50b for rotating the two shielding members 49a and 49b. Is configured.
  • the diaphragm plate 48a is disposed in the middle of the light path of the light beam LT1 from the front of the optical adapter 2A emitted from the imaging lens 44, and a hole 47a1 is formed in the diaphragm plate 48a.
  • the stop plate 48b is disposed in the middle of the optical path of the light beam LT2 from the side of the optical adapter 2A emitted from the imaging lens 45, and a hole 47a2 is formed in the stop plate 48b.
  • the shielding member 49a has a disk-shaped shielding plate 49a1 and an arm 49a2 connected such that one end thereof extends from the shielding plate 49a1.
  • the other end of the arm 49a2 is connected to and fixed to the shaft member 50a.
  • the shaft member 50a is rotatable about its axis within a predetermined range.
  • the shielding member 49b includes a disk-shaped shielding plate 49b1 and an arm 49b2 connected such that one end thereof extends from the shielding plate 49b1.
  • the other end of the arm 49b2 is connected to and fixed to the shaft member 50b.
  • the shaft member 50b is rotatable around its axis within a predetermined range.
  • Each shaft member 50a, 50b is driven by an electromagnet or the like driven according to a predetermined operation of the user on the operation panel 4a.
  • drive is performed to drive an electromagnet or the like through a signal line inserted in the insertion portion 11, and further through a contact point between the tip portion 21 of the insertion portion 11 and the optical adapter 2A.
  • a signal is supplied to the optical adapter 2A, and an electromagnet or the like in the optical adapter 2A is driven to rotate the shaft members 50a and 50b separately.
  • FIG. 5 shows a state in which the shielding plate 49a1 is in a position not covering the hole 47a1, and the shielding plate 49b1 is in a position covering the hole 47a2.
  • the two holes 47a1 and 47a2 may be shielded by the two shielding plates 49a1 and 49b1 driven independently.
  • the light from the optical adapter 2A is incident on the imaging optical system 32 in the tip portion 21.
  • the light from the front of the insertion portion 11 and the light from the side are incident on the imaging lens 32.
  • the imaging optical system 32 is in the same region of the imaging surface of one imaging element 34 with the light beam LT1 from the front. Light flux LT2 from one side.
  • the light shielding portion 47 functions to shield the light flux from the concave lens 42 for side view and to pass the light path of the light flux LT1 from the concave lens 41 for forward vision
  • the light flux from the concave lens 41 is shown in FIG.
  • FIG. 2A an image is formed on the imaging surface of the imaging device 34 along an optical path indicated by a dashed dotted line.
  • FIG. 6 shows an optical path from the concave lens 42 when the light shielding portion 47 functions to pass the optical path of the light beam LT2 from the concave lens 42 for side view, of the insertion portion 11 mounted with the optical adapter 2A.
  • FIG. 2 is a view showing the configuration of an optical system including a tip 21.
  • FIG. 6A shows an optical path from the concave lens 42 when the light shielding portion 47 functions to pass the optical path of the light beam LT2 from the concave lens 42 for side view, of the insertion portion 11 attached with the optical adapter 2A.
  • FIG. 2 is a view showing an image of light in the configuration of an optical system including a tip portion 21.
  • the light shielding portion 47 functions to pass the light beam LT2 from the concave lens 42 for side view
  • the light beam LT2 from the concave lens 42 is, as shown in FIG.
  • An image is formed on the imaging surface of the imaging element 34.
  • the imaging optical system 32 is disposed on the object side or the imaging device 34 side with respect to the light shielding unit 47, and the luminous flux LT1 passing through the concave lens 41 for forward vision and the luminous flux LT2 passing through the concave lens 42 for lateral vision , And forms an image on a common area of the imaging surface of the imaging element 34. Since the subject image is projected onto a common area of the imaging surface of the imaging device 34, a high-definition subject image can be obtained by the imaging signal output from the imaging device 34.
  • the front and lateral In order to make the cross section of the light flux from each direction thick, it is necessary to enlarge the outer diameter of the lens of each observation window and to arrange the lenses of the two observation windows apart, as a result, the optical adapter and The outer diameter of the distal end portion of the endoscope insertion portion becomes large.
  • the endoscope 2 with the optical adapter 2A of the present embodiment described above passes through the luminous flux LT1 passing through the concave lens 41 for forward vision and the concave lens 42 for lateral vision.
  • the luminous flux LT2 is crossed. Therefore, even if the outer diameter of the lens of each observation window is increased, the lenses of the two observation windows can be arranged close to each other, and as a result, the outer diameter of the tip of the optical adapter and the endoscope insertion portion is It can be suppressed from becoming large.
  • the two images in the two forward and lateral visual field directions are switched to be common to the imaging surface of one imaging element
  • the outer diameters of the tip portions of the optical adapter and the endoscope insertion portion do not increase.
  • the diameter increase of the tip of the optical device is suppressed. It is possible to provide an endoscope adapter that can
  • the modification 1 relates to a modification of the prism optical system 43.
  • the prism optical system 43 is configured of a prism 43a of a triangular prism whose cross section is a right triangle, and a glass member 43b of a quadrangular prism whose one end is obliquely cut.
  • the optical system is composed of a rectangular glass member and a square prism glass member whose one end is cut at a predetermined angle.
  • FIG. 7 is a perspective view of a prismatic optical system according to Modification 1 of the embodiment.
  • the prism optical system 43A of the modification 1 is configured by bonding a rectangular glass member 51 and a square prism glass member 52 whose one end is cut at a predetermined angle, here 45 degrees, with an adhesive.
  • the glass member so that the longitudinal axis of the rectangular glass member 51 is parallel to the optical axis of the light beam from the concave lens 41 and the longitudinal axis of the square prism glass member 52 is also parallel to the optical axis of the light beam from the concave lens 41 51 and 52 are provided.
  • the cut surface 52a of the glass member 52 is a mirror area by aluminum deposition.
  • the light shielding portion 47 (not shown) functions to pass the light beam LT1 from the concave lens 41 for forward view
  • the light beam LT1 from the concave lens 41 is along the light path shown by a dashed dotted line in FIG.
  • the light passes through the glass member 51 and is imaged by the imaging optical system 32 in a common area on the imaging surface of the imaging device 34.
  • the light shielding portion 47 functions to pass the light beam LT2 from the concave lens 42 for side view
  • the light beam LT2 from the concave lens 42 is a glass along the light path shown by a dashed dotted line in FIG.
  • the light passes through the member 51, enters the glass member 52, is reflected by the cut surface 52a, and forms an image in a common region on the imaging surface of the imaging device 34 by the imaging optical system 32.
  • Modification 2 The modification 2 relates to a modification of the prism optical system 43.
  • the prism optical system of the second modification is configured of a rectangular glass member and a quadrangular glass member whose one end is cut at a predetermined angle.
  • FIG. 8 is a perspective view of a prismatic optical system according to a second modification of the embodiment.
  • the prism optical system 43B of the modification 2 is configured by bonding a rectangular glass member 53 and a quadrangular prism glass member 54 whose one end is cut at a predetermined angle, here 45 degrees, with an adhesive.
  • the cut surface 54a of the glass member 54 is a mirror area by aluminum deposition.
  • the light shielding portion 47 (not shown) functions to pass the light beam LT1 from the concave lens 41 for forward vision
  • the light beam LT1 from the concave lens 41 is along the light path shown by a dashed dotted line in FIG.
  • the light passes through the glass members 53 and 54, and forms an image in a common area on the imaging surface of the imaging device 34 by the imaging optical system 32.
  • the light shielding portion 47 functions to pass the light beam LT2 from the concave lens 42 for side view
  • the light beam LT2 from the concave lens 42 is a glass along the light path shown by an alternate long and short dash line in FIG.
  • the light is incident on the member 54, is reflected by the cut surface 54 a, and is imaged by the imaging optical system 32 in a common region on the imaging surface of the imaging device 34.
  • Modification 3 The third modification relates to the imaging lenses 44 and 45 provided in the optical adapter 2A.
  • FIG. 9 is a diagram showing a configuration of part of an optical system of the optical adapter 2A according to the third modification of the embodiment. In FIG. 9, the achromatic lens 46 and the light shielding portion 47 are omitted.
  • each of the imaging lens 44A for forward vision and the imaging lens 45A for side vision of the third modification is an eccentric lens as shown in FIG.
  • the decentering lens constitutes a deflection optical system.
  • FIG. 10 is a configuration diagram for explaining the configuration of the decentering lens.
  • the imaging lenses 44A and 45A have a shape obtained by cutting out a part of the plano-convex lens 61 indicated by a two-dot chain line.
  • Each of the imaging lenses 44A and 45A has a shape in which a part including the central axis C of the plano-convex lens 61 is cut.
  • the planar portions face the surface of the prismatic optical system 43, the convex portions face the achromatic lens 46, and the central axes C of each other.
  • the central axes C of each other are disposed on the proximal end side of the prism optical system 43 so as to be close to each other.
  • the optical adapter 2A includes the imaging lens 44A, which is an decentering lens for deflecting the light beam LT1 emitted from the prism optical system 43, and the decentering lens, which deflects the light beam LT2 emitted from the prism optical system 43.
  • the luminous flux LT1 and the luminous flux LT2 are incident on the imaging optical system 32 after passing through the imaging lens 44A and the imaging lens 45A, respectively.
  • the imaging lens 44A By using an eccentric lens for the imaging lens 44A, even if the concave lens 41 is disposed near the optical axis PO of the imaging optical system 32 as shown by the arrow P1, the light flux LT1 from the front is the imaging surface of the imaging device 34 Since it is possible to direct the light beam LT1 from the front to the light shielding portion 47 and the achromatic lens 46 so as to form an image in the common area, it is possible to suppress an increase in the outer diameter of the optical adapter 2A.
  • the light flux LT2 from the side is the imaging surface of the imaging device 34
  • the side light flux LT2 can be directed to the achromatic lens 46 and the light shielding portion 47 so as to form an image in a common area of Also in the third modification, the same effect as that of the above-described embodiment can be obtained.
  • light may be deflected using an optical system including prisms 44A1 and 45A1 as shown by a two-dot chain line in place of the decentering lens.
  • Modification 4 Although the embodiment and each modification mentioned above are the optical adapters for endoscopes which enable a forward view and a side view, this modification 4 can observe two diagonal directions from which a field of view direction mutually differs.
  • the present invention relates to a modification of the optical adapter.
  • the configuration of the distal end portion of the insertion portion of the endoscope of the present modification 4 is the same as the configuration of the distal end portion 21 of the insertion portion 11 of the endoscope 2 of the embodiment described above, so the description is omitted.
  • the configuration of the adapter will be described.
  • FIG. 11 is a schematic cross-sectional view showing the configuration of the optical adapter according to the fourth modification.
  • the achromatic lens 46 and the light shielding portion 47 are omitted.
  • the optical adapter 2Aa of the fourth modification is attached to the distal end portion 21 of the insertion portion 11, and a field of view inclined by a predetermined angle, here 60 degrees with respect to the optical axis PO direction of the imaging optical system 32 of the insertion portion
  • An observation window 71A for observing the direction, and an observation window 71B for observing a direction of view which is inclined at a predetermined angle with respect to the axial direction of the insertion portion 11, here, -60 degrees, are provided.
  • a concave lens 72A as an incident optical system is disposed in the observation window 71A
  • a concave lens 72B as an incident optical system is disposed in the observation window 71B. That is, the concave lens 72A is disposed such that the light LTA is incident at a predetermined angle (60 degrees) with respect to the optical axis PO of the imaging optical system 32, and the concave lens 72B is a light of the light LTB of the imaging optical system 32. It is arranged to be incident at a predetermined angle ( ⁇ 60 degrees) with respect to the axis PO.
  • a prismatic optical system 73 having an equilateral triangle in cross section is provided such that the first surface 73a faces the concave lens 72A and the second surface 73b faces the concave lens 72B.
  • Image forming lenses 74A and 74B, which are plano-convex lenses, are bonded to the third surface 73c of the prismatic optical system 73 with an adhesive.
  • the light LTA incident on the concave lens 72A is incident on the first surface 73a of the prismatic optical system 73, totally reflected on the inner side of the second surface 73b, and emitted from the third surface 73c to the imaging lens 74A. It will be incident.
  • the light LTB incident on the concave lens 72B is incident on the second surface 73b of the prism optical system 73, is totally reflected inside the first surface 73a, exits from the third surface 73c, and is transmitted to the imaging lens 74B. It will be incident.
  • the light LTA from the concave lens 72A and the light LTB from the concave lens 72B intersect each other in the prism optical system 73, and then enter the imaging lenses 74A and 74B, respectively, so the large diameter of the optical adapter 2Aa Can be suppressed.
  • the tip of the optical device It is possible to provide an optical device capable of suppressing the diameter increase of the lens.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

内視鏡2は、凹レンズ41と、凹レンズ42と、撮像素子34と、凹レンズ41を通った光束と、凹レンズ42を通った光束を撮像素子34の撮像面の共通の領域に結像する結像光学系32と、プリズム光学系43と、遮光部47とを有する。プリズム光学系43は、凹レンズ41を通った光束と凹レンズ42を通った光束とを入射して、2つの光束を交差させて、2つの光束を結像光学系32へ向けて出射する。遮光部47は、プリズム光学系43から出射した2つの光束のうちの一方を選択的に遮蔽する。

Description

内視鏡及び内視鏡用アダプタ
 本発明は、内視鏡及び内視鏡用アダプタに関し、特に、複数の方向を観察することができる内視鏡及び内視鏡用アダプタに関する。
 従来より、内視鏡が医療分野及び工業分野において広く利用されている。内視鏡には、前方視内視鏡、側方視内視鏡だけでなく、ステレオ計測用内視鏡もある。 
 ステレオ計測用内視鏡は、被写体の観察部位を2方向から撮像し、撮像して得られた2つの画像間の相関演算による計測点のずれ量を算出し、算出して得られたずれ量から三角測量の原理で物体の大きさや深さなどを計測するために用いられる。その場合、挿入部の先端部には、視差のある2つの光路を形成する2つの対物レンズが配設される。
 従来のステレオ計測内視鏡においては1つの撮像素子の撮像面上の別々な領域に、視差のある左右の2つの像を投影しているが、より高精度な画像を得るために、例えば特開2010-128354号公報に開示のように、左右の像を時分割で切り替えて1つの撮像素子の撮像面の共通の領域に投影するようにした内視鏡が提案されている。
 また、パイプなどの管路内を短時間で検査をすることができるように、例えば、特開2003-164418号公報に開示のように、前方及び側方の2つの視野方向を観察可能とする光学アダプタ付きの内視鏡装置も提案されている。2つの視野方向を観察可能とするために、光学アダプタには、前方視用の対物レンズと側方視用の対物レンズの2つの対物レンズが配設される。
 しかし、ステレオ計測用内視鏡ではなく、異なる視野方向の2つの画像を得ることができる内視鏡において、より高精度な画像を得るために、2つの光路の光束を1つの撮像素子の共通領域に投影しようとすると、各対物光学系の外径が大きくなって、結果として光学アダプタ及び内視鏡挿入部の先端部の外径が太くなるという問題が生じる。
 例えば、上述した前方及び側方の2つの視野方向を観察可能とする内視鏡において、2つの像を切り替えて1つの撮像素子の撮像面の共通の領域に投影するようにすると、前方及び側方の各方向からの光束の断面が太くなるために、各観察窓のレンズの外径を大きくして、かつ2つの観察窓のレンズを離して配置しなければならない。その結果、光学アダプタ及び内視鏡挿入部の先端部の外径が大きくなってしまうという問題が生じる。
 そこで、本発明は、異なる方向からの複数の被写体像を切り替えて撮像素子の撮像面の共通の領域に投影する内視鏡において、内視鏡の挿入部の先端部あるいは内視鏡用アダプタの太径化を抑制することができる内視鏡及び内視鏡用アダプタを提供することを目的とする。
 本発明の一態様の内視鏡は、被写体の第1の領域からの第1の光束が入射される第1の入射光学系と、前記被写体の前記第1の領域とは異なる第2の領域からの第2の光束が入射される第2の入射光学系と、前記第1の入射光学系を通った前記第1の光束と前記第2の入射光学系を通った前記第2の光束とを交差させて所定の領域に出射する交差光学系と、前記所定の領域に配置され、前記第1の光束と前記第2の光束のうちの一方を選択的に遮蔽する遮光部と、撮像面を有する撮像素子と、前記遮光部に対して前記被写体側あるいは前記撮像素子側に配置され、前記第1の入射光学系を通った前記第1の光束と、前記第2の入射光学系を通った前記第2の光束を前記撮像面の共通の領域に結像する結像光学系と、を有する。
 本発明の一態様の内視鏡用アダプタは、内視鏡の挿入部に装着可能な内視鏡用アダプタであって、被写体の第1の領域からの第1の光束が入射される第1の入射光学系と、前記被写体の前記第1の領域とは異なる第2の領域からの第2の光束が入射される第2の入射光学系と、前記第1の入射光学系を通った前記第1の光束と前記第2の入射光学系を通った前記第2の光束とを交差させて所定の領域に出射する交差光学系と、前記所定の領域に配置され、前記第1の光束と前記第2の光束のうちの一方を選択的に遮蔽する遮光部と、前記第1の入射光学系を通った前記第1の光束と、前記第2の入射光学系を通った前記第2の光束を、前記挿入部に設けられた撮像素子の撮像面の共通の領域に結像する結像光学系と、を有する。
本発明の実施の形態に係わる内視鏡装置の構成を示す構成図である。 本発明の実施の形態に係わる、光学アダプタ2Aが装着された挿入部11の先端部21の光学系の構成を示す図である。 本発明の実施の形態に係わる、光学アダプタ2Aが装着された挿入部11の先端部21の光学系の構成において、光の結像を示す図である。 本発明の実施の形態に係わるプリズム光学系43の斜視図である。 本発明の実施の形態に係わる遮光部47の構成を示す図である。 本発明の実施の形態に係わる、図4とは異なる構成を有する遮光部47Aの構成を示す図である。 本発明の実施の形態に係わる、遮光部47が側方視用の凹レンズ42からの光束LT2の光路を通すように機能しているときの凹レンズ42からの光路を示す、光学アダプタ2Aが装着された挿入部11の先端部21を含む光学系の構成を示す図である。 本発明の実施の形態に係わる、遮光部47が側方視用の凹レンズ42からの光束LT2の光路を通すように機能しているときの凹レンズ42からの光路を示す、光学アダプタ2Aが装着された挿入部11の先端部21を含む光学系の構成において、光の結像を示す図である。 本発明の実施の形態の変形例1に関わる、プリズム光学系の斜視図である。 本発明の実施の形態の変形例2に関わる、プリズム光学系の斜視図である。 本発明の実施の形態の変形例3に関わる、光学アダプタ2Aの光学系の一部の構成を示す図である。 本発明の実施の形態の変形例3に関わる偏芯レンズの構成を説明するための構成図である。 本発明の実施の形態の変形例4に関わる光学アダプタの構成を示す模式的断面図である。
 以下、図面を参照して本発明の実施の形態を説明する。 
 図1は、本実施の形態に係わる内視鏡装置の構成を示す構成図である。図1に示すように、本実施の形態の内視鏡装置1は、内視鏡2と、この内視鏡2が接続される光源装置3と、カメラコントロールユニット(以下、CCUという)などを含む本体装置4と、モニタ5とを備えている。
 内視鏡2は、細長の挿入部11と、この挿入部11の基端に接続された操作部12と、この操作部12から延出するユニバーサルケーブル13を有する電子内視鏡である。挿入部11の先端には、光学アダプタ2Aが装着可能となっている。
 操作部12から延出されたユニバーサルケーブル13の先端に設けられたコネクタ14は、光源装置3に対して着脱自在に装着することができるようになっている。このコネクタ14から信号ケーブル15が延出している。信号ケーブル15の端部に設けたコネクタ16は、本体装置4に着脱自在に装着することができるようになっている。
 内視鏡2の挿入部11は、その先端に硬質の先端部21を有し、この先端部21に隣接して湾曲自在の湾曲部22が設けられ、さらにこの湾曲部22の基端側に長尺の可撓管部23が設けられている。内視鏡装置1のユーザは、操作部12に設けた湾曲ノブ24を操作することにより、湾曲部22を湾曲させることができる。
 また、先端部21は、撮像素子34(図2)を内蔵しており、撮像素子34において得られた撮像信号は、挿入部11、操作部12、ユニバーサルケーブル13及び信号ケーブル15内に挿通された信号線を介して本体装置4へ供給される。
 光源装置3は、ユニバーサルケーブル13及び挿入部11内に挿通された光ファイバ(図示せず)の基端面に入射して、挿入部11の先端から出射して被検体を照明する照明光を生成するランプ等の光源を含む。
 光学アダプタ2Aは、挿入部11の先端部21に装着可能となっている。光学アダプタ2Aは、前方及び側方の2つの視野方向の観察を可能とする内視鏡用アダプタである。 
 本体装置4は、CCUに加えて、内視鏡装置1全体を制御するための制御部を内蔵している。本体装置4は、図示しない中央処理装置(CPU)、ROM、RAM等を含み、ユーザは、操作パネル4aに対して各種操作を行うことができる。本体装置4は、操作に応じた機能を実現するために、その機能に応じたプログラムを実行する。本体装置4は、内視鏡2からの撮像信号を入力して、CCUにおいて生成された被検体画像である内視鏡画像の画像信号をモニタ5へ出力して、内視鏡画像がモニタ5に表示される。
 内視鏡2は、挿入部11の先端部21に光学アダプタ2Aを装着することにより、前方と側方の2つの視野方向の観察が可能となる。 
 図2は、光学アダプタ2Aが装着された挿入部11の先端部21の光学系の構成を示す図である。図2において、二点鎖線の右側が、挿入部11の先端部21の光学系構成を示し、二点鎖線の左側が、光学アダプタ2Aの光学系構成を示している。図2Aは、光学アダプタ2Aが装着された挿入部11の先端部21の光学系の構成において、光の結像を示す図である。
 断面が円形である挿入部11の先端部21の先端面には、挿入部11の観察窓のカバーガラス31が設けられている。先端部21内には、結像光学系32と、カバーガラス33が貼り付けられた撮像素子34とが配設されている。結像光学系32は、カバーガラス31の後ろ側に配設され、平凸レンズ32aと接合レンズ32bとを含み、接合レンズ32bは、両凸レンズと平凹レンズとを接合したレンズである。
 結像光学系32を透過した被検体像の光が1つの撮像素子34の撮像面上に結像するように、撮像素子34は、先端部21内に配設される。図示しない先端硬質部材が、先端部21に内蔵されており、カバーガラス31、撮像素子34等は、先端硬質部材に対して固定されている。
 円柱状の光学アダプタ2A内には、前方視用の観察窓の凹レンズ41、側方視用の観察窓の凹レンズ42、プリズム光学系43、前方視用の結像レンズ44、側方視用の結像レンズ45、色消しレンズ46、及び絞りを有する遮光部47が配設されている。光学アダプタ2Aは、円筒状の硬質な部材を有し、凹レンズ41等は、その硬質な部材に対して固定される。
 前方視用の凹レンズ41は、円柱状の光学アダプタ2Aの前面に配設される入射光学系を構成する。側方視用の凹レンズ42は、円柱状の光学アダプタ2Aの側面に配設される入射光学系を構成する。
 ここでは、凹レンズ41は、光が結像光学系32の光軸POに平行又は略平行な方向から入射するように配置され、凹レンズ42は、光が結像光学系32の光軸POに直交又は略直交する方向から入射するように配置されている。
 すなわち、凹レンズ41は、挿入部11が検査対象内に挿入されたとき、被写体のある領域からの光束が入射されるように構成された入射光学系を構成する。凹レンズ42は、挿入部11が検査対象内に挿入されたとき、被写体の上記のある領域とは異なる領域からの光束が入射されるように構成された入射光学系を構成する。
 プリズム光学系43は、断面が直角三角形の三角柱のプリズム43aと、一端が斜めにカットされた四角柱のガラス部材43bとから構成される。図3は、プリズム光学系43の斜視図である。
 プリズム43aの斜面部と、ガラス部材43bのカット面とが接合されている。図2及び図3に示すように、プリズム43aが光学アダプタ2Aの先端側に位置し、ガラス部材43bが光学アダプタ2Aの基端側に位置するように、プリズム光学系43は、光学アダプタ2A内に配設される。さらに、プリズム43aの一面が凹レンズ41に対向し、ガラス部材43bの一面が凹レンズ42に対向するように、プリズム光学系43は、光学アダプタ2A内に配設される。
 プリズム43aの斜面部又はガラス部材43bのカット面の一部に、光を反射するミラー領域43cが設けられている。すなわち、ミラー領域43cは、プリズム43aの斜面部とガラス部材43bのカット面との接合面の一部の領域に設けられている。ミラー領域43cは、プリズム43aの斜面部とガラス部材43bのカット面のいずれ一方の表面上に、アルミ蒸着によって、プリズム光学系43に形成されている。
 光学アダプタ2A内において、前方視用の凹レンズ41は、入射した光をミラー領域43c以外の領域に向けて出射する位置に配設され、側方視用の凹レンズ42は、入射した光をミラー領域43cに向けて出射する位置に配設される。
 プリズム光学系43は、プリズムを有し、凹レンズ41からの光束LT1は、プリズム光学系43を通って、結像光学系32へ向けて出射され、凹レンズ42からの光束LT2は、プリズム光学系43のプリズムで反射されて、結像光学系32へ向けて出射される。
 よって、図3に示すように、凹レンズ41からの光束LT1と、凹レンズ42からの光束LT2は、プリズム光学系43内で交差する。 
 すなわち、プリズム光学系43は、凹レンズ41を通った光束LT1と凹レンズ42を通った光束LT2とを交差させて、所定の領域に出射する交差光学系を構成する。
 なお、それぞれの光軸に直交する方向に沿った光束LT1の光束の断面と光束LT2の光束の断面は、面積を有する。ここでは、光束LT1と光束LT2は、互いの光軸が交差するように、交差しているが、光束LT1と光束LT2が、互いの光軸が交差しないで交差するようにしてもよい。その場合、光束LT1と光束LT2は、一部が交差する。
 すなわち、交差光学系としてのプリズム光学系43は、光束LT1と光束LT2を入射して、光束LT1と光束LT2が互いに少なくとも一部を交差させて、光束LT1と光束LT2を結像光学系32へ向けて出射するように構成されていてもよい。
 プリズム光学系43の基端側には、平凸レンズである2つの結像レンズ44,45が接着されている。結像レンズ44は、円柱形状の平凸レンズである前方視用の光学系であり、プリズム光学系43内のミラー領域43c以外の領域を透過した凹レンズ41からの光束が入射する。結像レンズ45は、円柱形状の平凸レンズである側方視用の光学系であり、プリズム光学系43内のミラー領域43cで反射した凹レンズ42からの光束が入射する。
 結像レンズ44、45の基端側には、両凸レンズと平凹レンズとが接合された色消しレンズ46が配設されている。 
 以上のように、結像レンズ44は、プリズム光学系43を透過した前方視用の凹レンズ41からの光を入射して色消しレンズ46へ出射する位置に、配設されている。結像レンズ45は、プリズム光学系43のミラー領域43cで反射した側方視用の凹レンズ42からの光を入射して色消しレンズ46へ出射する位置に、配設される。
 よって、図3に示すように、前方視用の凹レンズ41からの光束LT1は、プリズム光学系43に入射すると、ミラー領域43c以外の部分を透過して、プリズム光学系43から結像レンズ44に向かって出射する。そして、結像レンズ44は、挿入部11の前方からの光を、色消しレンズ46に向かって出射する。
 側方視用の凹レンズ42からの光束LT2は、プリズム光学系43に入射すると、ミラー領域43cで直角に反射して、プリズム光学系43から結像レンズ45に向かって出射する。そして、結像レンズ45は、挿入部11の側方からの光を、色消しレンズ46に向かって出射する。
 凹レンズ41からの光束LT1と凹レンズ42からの光束LT2の各々は、プリズム光学系43内に入射する。光束LT1は、プリズム光学系43内のミラー領域43c以外の部分を透過して、プリズム光学系43から結像レンズ44に向かって出射する。
 光束LT1と光束LT2はプリズム光学系43内で交差して、光束LT2は、ミラー領域43cで反射してから、プリズム光学系43から結像レンズ45に向かって出射する。
 また、2つの結像レンズ44,45と、色消しレンズ46との間には、遮光部47が配設されている。 
 図4は、遮光部47の構成を示す図である。遮光部47は、円板状の絞り板47aと、遮蔽部材47bと、遮蔽部材47bを回動させるための軸部材47cとを有して構成されている。
 絞り板47aには、2つの円形の孔47a1、47a2が形成されている。孔47a1は、結像レンズ44から出射した光束LT1の光路の途中に位置するように絞り板47aに形成され、孔47a2は、結像レンズ45から出射した光束LT2の光路の途中に位置するように絞り板47aに形成されている。
 遮蔽部材47bは、円板状の遮蔽板47b1と、一端が遮蔽板47b1から延出するように接続されたアーム部47b2を有している。アーム部47b2の他端は、軸部材47cに接続されて固定されている。
 軸部材47cは、図示しない駆動機構に接続されている。駆動機構は、矢印R1で示すように、軸部材47cを所定の範囲で軸回りに回動させるための構造を有している。 
 軸部材47cは、操作パネル4aにおけるユーザの所定の操作に応じて駆動される電磁石等の駆動手段によって駆動される。ユーザの操作パネル4aに対する操作に応じて、挿入部11内に挿通された信号線を介して、さらに挿入部11の先端部21と光学アダプタ2Aとの接点を介して、電磁石等を駆動する駆動信号が光学アダプタ2Aに供給され、光学アダプタ2A内の電磁石等が駆動されて軸部材47cが回動する。その結果、遮蔽板47b1が、2つの円形の孔47a1、47a2のいずれかを選択的に覆うように駆動される。図4は、遮蔽板47b1が孔47a2を覆う位置にある状態を示している。
 図4に示すように、遮蔽板47b1が、実線で示すように孔47a2を覆う位置にあるとき、前方視のための光束LT1が、色消しレンズ46に入射する。遮蔽板47b1が、二点鎖線で示すように孔47a1を覆う位置にあるとき、側方視のための光束LT2(図6)が、色消しレンズ46に入射する。 
 すなわち、遮光部47は、所定の領域に配置され、光束LT1と光束LT2のそれぞれの絞りを含み、プリズム光学系43から出射した光束LT1と光束LT2のうちの一方を選択的に遮蔽する。
 なお、遮光部47は、図4に示す構成以外の構成でもよい。図5は、図4とは異なる構成を有する遮光部47Aの構成を示す図である。遮光部47Aは、2つの円板状の絞り板48a、48bと、2枚の遮蔽部材49a、49bと、2つの遮蔽部材49a、49bを回動させるための2本の軸部材50a、50bとを有して構成されている。
 絞り板48aは、結像レンズ44から出射した光学アダプタ2Aの前方からの光束LT1の光路の途中に配設され、絞り板48aには、孔47a1が形成されている。絞り板48bは、結像レンズ45から出射した光学アダプタ2Aの側方からの光束LT2の光路の途中に配設され、絞り板48bには、孔47a2が形成されている。
 遮蔽部材49aは、円板状の遮蔽板49a1と、一端が遮蔽板49a1から延出するように接続されたアーム部49a2を有している。アーム部49a2の他端は、軸部材50aに接続されて固定されている。矢印R2で示すように、軸部材50aは、所定の範囲で軸回りに回動可能となっている。
 遮蔽部材49bは、円板状の遮蔽板49b1と、一端が遮蔽板49b1から延出するように接続されたアーム部49b2を有している。アーム部49b2の他端は、軸部材50bに接続されて固定されている。矢印R3で示すように、軸部材50bは、所定の範囲で軸回りに回動可能となっている。
 各軸部材50a、50bは、操作パネル4aにおけるユーザの所定の操作に応じて駆動される電磁石等によって駆動される。ユーザの操作パネル4aに対する操作に応じて、挿入部11内に挿通された信号線を介して、さらに挿入部11の先端部21と光学アダプタ2Aとの接点を介して、電磁石等を駆動する駆動信号が光学アダプタ2Aに供給され、光学アダプタ2A内の電磁石等が駆動されて軸部材50a、50bが別々に回動する。その結果、遮蔽部材49aと49bがそれぞれの対応する孔47a1と47a2を、一方が覆っているときは、他方は覆わないように、軸部材50a、50bは駆動される。図5は、遮蔽板49a1が孔47a1を覆わない位置にあり、遮蔽板49b1が孔47a2を覆う位置にある状態を示している。
 図5に示すように、遮蔽板49a1が孔47a1を覆わず、遮蔽板49b1が孔47a2を覆うように位置しているとき、前方からの光束LT1が色消しレンズ46に入射する。逆に、遮蔽板49b1が孔47a2を覆わず、遮蔽板49a1が孔47a2を覆うように位置しているとき、側方からの光束LT2が色消しレンズ46に入射する(図6)。
 すなわち、独立して駆動される2つの遮蔽板49a1と49b1により、2つの孔47a1と47a2が遮蔽されるようにしてもよい。 
 光学アダプタ2Aからの光は、先端部21内の結像光学系32に入射する。結像レンズ32には、挿入部11の前方からの光と、側方からの光と入射される。
 前方からの光束LT1の光路と側方からの光束LT2の光路は異なっているが、結像光学系32が、1つの撮像素子34の撮像面の共通の領域に、前方からの光束LT1と側方からの光束LT2を結像させる。
 遮光部47が、側方視用の凹レンズ42からの光束を遮蔽して、前方視用の凹レンズ41からの光束LT1の光路を通すように機能しているとき、凹レンズ41からの光束は、図2Aに示すように、一点鎖線で示す光路に沿って、撮像素子34の撮像面上において結像する。
 図6は、遮光部47が側方視用の凹レンズ42からの光束LT2の光路を通すように機能しているときの凹レンズ42からの光路を示す、光学アダプタ2Aが装着された挿入部11の先端部21を含む光学系の構成を示す図である。図6Aは、遮光部47が側方視用の凹レンズ42からの光束LT2の光路を通すように機能しているときの凹レンズ42からの光路を示す、光学アダプタ2Aが装着された挿入部11の先端部21を含む光学系の構成において、光の結像を示す図である。
 遮光部47が、側方視用の凹レンズ42からの光束LT2を通すように機能しているとき、凹レンズ42からの光束LT2は、図6Aに示すように、一点鎖線で示す光路に沿って、撮像素子34の撮像面上において結像する。
 結像光学系32は、遮光部47に対して被写体側あるいは撮像素子34側に配置され、前方視用の凹レンズ41を通った光束LT1と、側方視用の凹レンズ42を通った光束LT2を、撮像素子34の撮像面の共通の領域に結像する。被写体像が撮像素子34の撮像面の共通の領域に投影されるので、撮像素子34から出力される撮像信号により、高精細な被写体の画像を得ることができる。
 従来の前方及び側方の2つの視野方向を観察可能とする内視鏡において、2つの像を切り替えて1つの撮像素子の撮像面の共通の領域に投影するようにすると、前方及び側方の各方向からの光束の断面が太くするために、各観察窓のレンズの外径を大きくして、かつ2つの観察窓のレンズを離して配置しなければならず、結果として、光学アダプタ及び内視鏡挿入部の先端部の外径が大きくなってしまう。
 しかし、上述した本実施の形態の光学アダプタ2A付きの内視鏡2によれば、プリズム光学系43内において、前方視用の凹レンズ41を通った光束LT1及び側方視用の凹レンズ42を通った光束LT2は、交差させている。そのため、各観察窓のレンズの外径を大きくしても、2つの観察窓のレンズを近接して配置することができ、結果として、光学アダプタ及び内視鏡挿入部の先端部の外径が大きくなるのを抑えることができる。
 以上のように、上述した内視鏡2によれば、より高精度な画像を得るために、前方及び側方の2つの視野方向の2つの像を切り替えて1つの撮像素子の撮像面の共通の領域に投影するときに、光学アダプタ及び内視鏡挿入部の先端部の外径が大きくなることがない。
 よって、本実施の形態によれば、異なる方向からの2つの光学像を切り替えて撮像素子の撮像面の共通の領域に投影する内視鏡において、光学装置の先端部の太径化を抑制することができる内視鏡用アダプタを提供することができる。
 次に、上述した実施の形態の変形例について説明する。
(変形例1)
 変形例1は、プリズム光学系43の変形例に関する。
 上述した実施の形態では、プリズム光学系43は、断面が直角三角形の三角柱のプリズム43aと、一端が斜めにカットされた四角柱のガラス部材43bとから構成されるが、本変形例1のプリズム光学系は、直方体のガラス部材と、一端が所定の角度でカットされた四角柱のガラス部材とから構成されている。
 図7は、実施の形態の変形例1に関わる、プリズム光学系の斜視図である。変形例1のプリズム光学系43Aは、直方体のガラス部材51と、一端が所定の角度、ここでは45度でカットされた四角柱のガラス部材52とを接着剤で貼り合わせて構成されている。直方体のガラス部材51の長手軸が凹レンズ41からの光束の光軸に平行になり、かつ四角柱のガラス部材52の長手軸も凹レンズ41からの光束の光軸に平行になるように、ガラス部材51と52は配設される。ガラス部材52のカット面52aは、アルミ蒸着によるミラー領域となっている。
 図7において、図示しない遮光部47が、前方視用の凹レンズ41からの光束LT1を通すように機能しているとき、凹レンズ41からの光束LT1は、図7において、一点鎖線で示す光路に沿って、ガラス部材51を透過して、結像光学系32により、撮像素子34の撮像面上の共通の領域において結像する。
 また、遮光部47が、側方視用の凹レンズ42からの光束LT2を通すように機能しているとき、凹レンズ42からの光束LT2は、図7において、一点鎖線で示す光路に沿って、ガラス部材51を透過して、ガラス部材52に入射し、カット面52aで反射して、結像光学系32により、撮像素子34の撮像面上の共通の領域において結像する。
 変形例1のプリズム光学系43Aによっても、上述した実施の形態と同様の効果を得ることができる。
(変形例2)
 変形例2は、プリズム光学系43の変形例に関する。
 本変形例2のプリズム光学系は、変形例1と同様に、直方体のガラス部材と、一端が所定の角度でカットされた四角柱のガラス部材とから構成されている。 
 図8は、実施の形態の変形例2に関わる、プリズム光学系の斜視図である。変形例2のプリズム光学系43Bは、直方体のガラス部材53と、一端が所定の角度、ここでは45度でカットされた四角柱のガラス部材54とを接着剤で貼り合わせて構成されている。直方体のガラス部材53の長手軸が凹レンズ41からの光束の光軸に直交し、かつ四角柱のガラス部材54の長手軸も凹レンズ41からの光束の光軸に直交するように、ガラス部材53と54は配設される。ガラス部材54のカット面54aは、アルミ蒸着によるミラー領域となっている。
 図8において、図示しない遮光部47が、前方視用の凹レンズ41からの光束LT1を通すように機能しているとき、凹レンズ41からの光束LT1は、図8において、一点鎖線で示す光路に沿って、ガラス部材53と54を透過して、結像光学系32により、撮像素子34の撮像面上の共通の領域において結像する。
 また、遮光部47が、側方視用の凹レンズ42からの光束LT2を通すように機能しているとき、凹レンズ42からの光束LT2は、図8において、一点鎖線で示す光路に沿って、ガラス部材54に入射し、カット面54aで反射して、結像光学系32により、撮像素子34の撮像面上の共通の領域において結像する。
 変形例2のプリズム光学系43Bによっても、上述した実施の形態と同様の効果を得ることができる。
(変形例3)
 変形例3は、光学アダプタ2Aに設けられる結像レンズ44、45に関する。
 実施の形態における光学アダプタ2Aに設けられる2つの結像レンズ44、45は、円柱形状の平凸レンズであるが、本変形例3の2つの結像レンズは、偏芯レンズである。 
 図9は、実施の形態の変形例3に関わる、光学アダプタ2Aの光学系の一部の構成を示す図である。図9では、色消しレンズ46及び遮光部47は省略されている。
 本変形例3において、上述した実施の形態と同じ構成要素については、同じ符号を付して説明は省略し、異なる構成についてのみ説明する。 
 本変形例3の前方視用の結像レンズ44A及び側方視用の結像レンズ45Aの各々は、図9に示すように偏芯レンズである。偏芯レンズは、偏向光学系を構成する。
 図10は、偏芯レンズの構成を説明するための構成図である。結像レンズ44A及び45Aは、二点鎖線で示す平凸レンズ61の一部を切り出した形状を有する。結像レンズ44A及び45Aの各々は、平凸レンズ61の中心軸Cを含む一部をカットした形状を有している。
 図10に示すように、平凸レンズである結像レンズ44A及び45Aは、平面部がプリズム光学系43の面に対向し、凸部が色消しレンズ46に対向し、さらに、互いの中心軸Cが近接するように、プリズム光学系43の基端側に配設される。
 以上のように、光学アダプタ2Aは、プリズム光学系43から出射された光束LT1を偏向する偏芯レンズである結像レンズ44Aと、プリズム光学系43から出射された光束LT2を偏向する偏芯レンズである結像レンズ45Aと、を有し、光束LT1と光束LT2は、それぞれ結像レンズ44Aと結像レンズ45Aを通った後に、結像光学系32に入射される。
 結像レンズ44Aに偏芯レンズを用いることにより、矢印P1で示すように凹レンズ41を結像光学系32の光軸PO寄りに配置しても、前方からの光束LT1が撮像素子34の撮像面の共通の領域において結像するように、前方からの光束LT1を遮光部47及び色消しレンズ46に向けることができるので、光学アダプタ2Aの外径が太くなるのを抑制することができる。
 また、結像レンズ45Aに偏芯レンズを用いることにより、矢印P2で示すように凹レンズ42を光学アダプタ2Aの先端側寄りに配置しても、側方からの光束LT2が撮像素子34の撮像面の共通の領域において結像するように、側方からの光束LT2を色消しレンズ46及び遮光部47に向けることができる。 
 変形例3によっても、上述した実施の形態と同様の効果を得ることができる。
 なお、結像レンズ44A、45Aにおいて、偏芯レンズに代えて、二点鎖線で示すようなプリズム44A1、45A1を含む光学系を用いて、光を偏向するようにしてもよい。
(変形例4)
 上述した実施の形態及び各変形例は、前方視及び側方視を可能とする内視鏡用の光学アダプタであるが、本変形例4は、視野方向が互いに異なる2つの斜め前方を観察可能とする光学アダプタの変形例に関する。
 本変形例4の内視鏡の挿入部の先端部の構成は、上述した実施の形態の内視鏡2の挿入部11の先端部21の構成と同じであるので、説明は省略し、光学アダプタの構成について説明する。
 図11は、本変形例4に関わる光学アダプタの構成を示す模式的断面図である。図11では、色消しレンズ46及び遮光部47は省略されている。 
 本変形例4の光学アダプタ2Aaは、挿入部11の先端部21に取り付けられ、挿入部11の結像光学系32の光軸PO方向に対して所定の角度、ここでは60度だけ傾いた視野方向を観察するための観察窓71Aと、挿入部11の軸方向に対して所定の角度、ここでは-60度だけ傾いた視野方向を観察するための観察窓71Bとを有している。
 観察窓71Aには、入射光学系としての凹レンズ72Aが配設され、観察窓71Bには、入射光学系としての凹レンズ72Bが配設されている。すなわち、凹レンズ72Aは、光LTAが結像光学系32の光軸POに対して所定の角度(60度)で入射するように配置され、凹レンズ72Bは、光LTBが結像光学系32の光軸POに対して所定の角度(-60度)で入射するように配置されている。
 光学アダプタ2Aa内には、断面が正三角形であるプリズム光学系73が、第1の面73aが凹レンズ72Aに対向し、第2の面73bが凹レンズ72Bに対向するように、設けられている。プリズム光学系73の第3の面73cには、平凸レンズである結像レンズ74Aと74Bが接着材により貼り合わされている。
 凹レンズ72Aに入射した光LTAは、プリズム光学系73の第1の面73aに入射し、第2の面73bの内側で全反射して、第3の面73cから出射し、結像レンズ74Aに入射する。
 凹レンズ72Bに入射した光LTBは、プリズム光学系73の第2の面73bに入射し、第1の面73aの内側で全反射して、第3の面73cから出射し、結像レンズ74Bに入射する。
 本変形例においても、凹レンズ72Aからの光LTAと凹レンズ72Bからの光LTBは、プリズム光学系73内において交差してから、それぞれ結像レンズ74Aと74Bに入射するので、光学アダプタ2Aaの太径化を抑制することができる。
 変形例4によっても、上述した実施の形態と同様の効果を得ることができる。
(変形例5)
 上述した実施の形態及び各変形例1~4では、光学アダプタ2A、2Aaを内視鏡2の挿入部11の先端部21に取り付けることにより、異なる方向からの2つの光学像を切り替えて撮像素子の撮像面の共通領域に投影する光学装置を実現しているが、図2において、2点鎖線で示すように、上述した各光学アダプタの構成を、内視鏡2の挿入部11の先端部21に内蔵させて、光学アダプタ無しで、異なる方向からの2つの光学像を切り替えて撮像素子34の撮像面の共通の領域に投影する内視鏡2を実現するようにしてもよい。
 以上のように、上述した実施の形態及び各変形例によれば、異なる方向からの複数の光学像を切り替えて撮像素子の撮像面の共通の領域に投影する光学装置において、光学装置の先端部の太径化を抑制することができる光学装置を提供することができる。
 本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。 
 本出願は、2015年12月25日に日本国に出願された特願2015-254254号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。

Claims (10)

  1.  被写体の第1の領域からの第1の光束が入射される第1の入射光学系と、
     前記被写体の前記第1の領域とは異なる第2の領域からの第2の光束が入射される第2の入射光学系と、
     前記第1の入射光学系を通った前記第1の光束と前記第2の入射光学系を通った前記第2の光束とを交差させて所定の領域に出射する交差光学系と、
     前記所定の領域に配置され、前記第1の光束と前記第2の光束のうちの一方を選択的に遮蔽する遮光部と、
     撮像面を有する撮像素子と、
     前記遮光部に対して前記被写体側あるいは前記撮像素子側に配置され、前記第1の入射光学系を通った前記第1の光束と、前記第2の入射光学系を通った前記第2の光束を前記撮像面の共通の領域に結像する結像光学系と、
    を有することを特徴とする内視鏡。
  2.  前記第1の入射光学系は、前記第1の光束が前記結像光学系の光軸に平行又は略平行な方向から入射するように配置され、
     前記第2の入射光学系は、前記第2の光束が前記結像光学系の光軸に直交又は略直交する方向から入射するように配置されていることを特徴とする請求項1に記載の内視鏡。
  3.  前記交差光学系は、プリズムを有し、
     前記第1の光束は、前記交差光学系を通って、前記結像光学系へ向けて出射され、
     前記第2の光束は、前記プリズムで反射されて、前記結像光学系へ向けて出射されることを特徴とする請求項2に記載の内視鏡。
  4.  前記交差光学系から出射された前記第1の光束を偏向する第1の偏向光学系と、
     前記交差光学系から出射された前記第2の光束を偏向する第2の偏向光学系と、
    を有し、
     前記第1の光束と前記第2の光束は、それぞれ前記第1の偏向光学系と前記第2の偏向光学系を通った後に、前記結像光学系に入射されることを特徴とする請求項3に記載の内視鏡。
  5.  前記第1の偏向光学系と前記第2の偏向光学系は、偏芯レンズであることを特徴とする請求項4に記載の内視鏡。
  6.  前記第1の偏向光学系と前記第2の偏向光学系は、プリズムを含むことを特徴とする請求項4に記載の内視鏡。
  7.  前記第1の入射光学系は、前記第1の光束が前記結像光学系の光軸に対して第1の角度で入射するように配置され、
     前記第2の入射光学系は、前記第2の光束が前記結像光学系の光軸に対して第2の角度で入射するように配置されていることを特徴とする請求項1に記載の内視鏡。
  8.  前記交差光学系は、プリズムを有し、
     前記第1の光束及び第2の光束は、前記プリズム内で反射されて、前記結像光学系へ向けて出射されることを特徴とする請求項7に記載の内視鏡。
  9.  前記遮光部は、前記第1の光束と前記第2の光束のそれぞれの絞りを含むことを特徴とする請求項1から8のいずれか1つに記載の内視鏡。
  10.  内視鏡の挿入部に装着可能な内視鏡用アダプタであって、
     被写体の第1の領域からの第1の光束が入射される第1の入射光学系と、
     前記被写体の前記第1の領域とは異なる第2の領域からの第2の光束が入射される第2の入射光学系と、
     前記第1の入射光学系を通った前記第1の光束と前記第2の入射光学系を通った前記第2の光束とを交差させて所定の領域に出射する交差光学系と、
     前記所定の領域に配置され、前記第1の光束と前記第2の光束のうちの一方を選択的に遮蔽する遮光部と、
     前記第1の入射光学系を通った前記第1の光束と、前記第2の入射光学系を通った前記第2の光束を、前記挿入部に設けられた撮像素子の撮像面の共通の領域に結像する結像光学系と、
    を有することを特徴とする内視鏡用アダプタ。
PCT/JP2016/084633 2015-12-25 2016-11-22 内視鏡及び内視鏡用アダプタ WO2017110351A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017530360A JPWO2017110351A1 (ja) 2015-12-25 2016-11-22 内視鏡及び内視鏡用アダプタ
US15/684,171 US11112595B2 (en) 2015-12-25 2017-08-23 Endoscope and adaptor for endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015254254 2015-12-25
JP2015-254254 2015-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/684,171 Continuation US11112595B2 (en) 2015-12-25 2017-08-23 Endoscope and adaptor for endoscope

Publications (1)

Publication Number Publication Date
WO2017110351A1 true WO2017110351A1 (ja) 2017-06-29

Family

ID=59089298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084633 WO2017110351A1 (ja) 2015-12-25 2016-11-22 内視鏡及び内視鏡用アダプタ

Country Status (3)

Country Link
US (1) US11112595B2 (ja)
JP (1) JPWO2017110351A1 (ja)
WO (1) WO2017110351A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012896A (ja) * 2018-07-13 2020-01-23 オリンパス株式会社 撮像光学系及び内視鏡
WO2020225924A1 (ja) * 2019-05-09 2020-11-12 オリンパス株式会社 広角光学系、撮像装置、及び撮像システム
US11344186B2 (en) 2018-04-19 2022-05-31 Fujifilm Corporation Endoscope optical system and endoscope

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113274A1 (de) * 2017-06-16 2018-12-20 avateramedical GmBH Kameraobjektiv für ein Endoskop und Endoskop
WO2020122814A1 (en) * 2018-12-11 2020-06-18 National University Of Singapore Assembly and method for switching direction of camera view

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311348A (ja) * 1994-05-17 1995-11-28 Olympus Optical Co Ltd 複数視野方向型内視鏡
JPH09248276A (ja) * 1996-03-14 1997-09-22 Olympus Optical Co Ltd 視野方向可変硬性鏡装置
JP2009000506A (ja) * 2007-05-22 2009-01-08 Hoya Corp 内視鏡
JP2012526293A (ja) * 2009-05-07 2012-10-25 オリンパス・ウィンター・アンド・イベ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 2つの視野方向を有する内視鏡用対物レンズ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5743846A (en) 1994-03-17 1998-04-28 Olympus Optical Co., Ltd. Stereoscopic endoscope objective lens system having a plurality of front lens groups and one common rear lens group
US5940126A (en) * 1994-10-25 1999-08-17 Kabushiki Kaisha Toshiba Multiple image video camera apparatus
WO1997037582A1 (en) * 1996-04-03 1997-10-16 Street Graham S B Apparatus and method for stereoscopic endoscopy
JP3401215B2 (ja) * 1998-12-15 2003-04-28 オリンパス光学工業株式会社 内視鏡用光学アダプタ及び内視鏡装置
JP2001299679A (ja) * 2000-04-25 2001-10-30 Keyence Corp 光路変更用アダプタおよび内視鏡
JP2003164418A (ja) 2001-11-30 2003-06-10 Olympus Optical Co Ltd 内視鏡装置
JP2005261557A (ja) * 2004-03-17 2005-09-29 Olympus Corp 視野方向可変型内視鏡および内視鏡システム
JP4653834B2 (ja) * 2008-11-14 2011-03-16 オリンパスメディカルシステムズ株式会社 光学系
JP4750175B2 (ja) 2008-11-28 2011-08-17 オリンパスメディカルシステムズ株式会社 ステレオ光学系、並びにそれを用いたステレオ計測用光学装置、ステレオ計測装置及びステレオ観察装置
JP5318142B2 (ja) * 2011-03-31 2013-10-16 富士フイルム株式会社 電子内視鏡
DE202013008329U1 (de) * 2013-09-19 2015-01-05 Schölly Fiberoptic GmbH Endoskop

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311348A (ja) * 1994-05-17 1995-11-28 Olympus Optical Co Ltd 複数視野方向型内視鏡
JPH09248276A (ja) * 1996-03-14 1997-09-22 Olympus Optical Co Ltd 視野方向可変硬性鏡装置
JP2009000506A (ja) * 2007-05-22 2009-01-08 Hoya Corp 内視鏡
JP2012526293A (ja) * 2009-05-07 2012-10-25 オリンパス・ウィンター・アンド・イベ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 2つの視野方向を有する内視鏡用対物レンズ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11344186B2 (en) 2018-04-19 2022-05-31 Fujifilm Corporation Endoscope optical system and endoscope
JP2020012896A (ja) * 2018-07-13 2020-01-23 オリンパス株式会社 撮像光学系及び内視鏡
WO2020225924A1 (ja) * 2019-05-09 2020-11-12 オリンパス株式会社 広角光学系、撮像装置、及び撮像システム
US11906712B2 (en) 2019-05-09 2024-02-20 Olympus Corporation Wide-angle optical system, image pickup apparatus, and image pickup system

Also Published As

Publication number Publication date
JPWO2017110351A1 (ja) 2018-10-18
US11112595B2 (en) 2021-09-07
US20170351086A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2017110351A1 (ja) 内視鏡及び内視鏡用アダプタ
US8072483B2 (en) Endoscope optical system and endoscope
JP2002301014A (ja) 内視鏡装置
JP2010117665A (ja) 光学系
JPH02287311A (ja) 計測機構付内視鏡装置
JP5138125B2 (ja) 内視鏡撮像ユニットの組立方法及び内視鏡
CN110996749B (zh) 3d视频内窥镜
JP2018200417A (ja) 撮像装置及び内視鏡装置
JP2016007273A (ja) 内視鏡装置
JP3980672B2 (ja) 屈曲した覗き方向を有する立体内視鏡
JP5086661B2 (ja) 内視鏡アダプタ光学系及び内視鏡
JPH05341207A (ja) 立体視内視鏡装置
WO2021131921A1 (ja) 硬性鏡装置
JP2010011916A (ja) 内視鏡
US11009694B2 (en) Side-viewing optical adapter
JPH05341206A (ja) 立体視内視鏡装置
JP4493141B2 (ja) 内視鏡
JP4827636B2 (ja) 拡大観察用内視鏡装置
JP2008136671A (ja) 二眼式立体内視鏡用レーザープローブ
WO2020016980A1 (ja) 先端フード及び内視鏡システム
WO2018020927A1 (ja) 内視鏡
JP2015204973A (ja) 超拡大観察用内視鏡
JP2013094259A (ja) 内視鏡
WO2019235006A1 (ja) 内視鏡
JP2021101752A (ja) スコープ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017530360

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878245

Country of ref document: EP

Kind code of ref document: A1