WO2017110267A1 - トランジスタ、半導体装置、電子機器、およびトランジスタの製造方法 - Google Patents

トランジスタ、半導体装置、電子機器、およびトランジスタの製造方法 Download PDF

Info

Publication number
WO2017110267A1
WO2017110267A1 PCT/JP2016/082867 JP2016082867W WO2017110267A1 WO 2017110267 A1 WO2017110267 A1 WO 2017110267A1 JP 2016082867 W JP2016082867 W JP 2016082867W WO 2017110267 A1 WO2017110267 A1 WO 2017110267A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carrier
transistor
supply layer
carrier supply
Prior art date
Application number
PCT/JP2016/082867
Other languages
English (en)
French (fr)
Inventor
兼松 成
竹内 克彦
将志 柳田
伸一 和田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/781,301 priority Critical patent/US11127743B2/en
Publication of WO2017110267A1 publication Critical patent/WO2017110267A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/098Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being PN junction gate field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Definitions

  • the present disclosure relates to a transistor, a semiconductor device, an electronic device, and a method for manufacturing the transistor.
  • HEMT high electron mobility transistor
  • a high electron mobility transistor is a field effect transistor having a channel formed of a layer made of a two-dimensional electron gas induced by a semiconductor heterojunction.
  • a structure of a high electron mobility transistor the structure described in the following patent document 1 can be illustrated, for example.
  • the contact resistance is lowered by forming a diffusion layer by high-concentration doping or forming an alloy layer by alloying as used in silicon. It was also difficult.
  • the present disclosure proposes a new and improved transistor, semiconductor device, electronic device, and transistor manufacturing method capable of reducing parasitic resistance including contact resistance.
  • a carrier running layer made of a compound semiconductor
  • a carrier supply layer made of a compound semiconductor different from the carrier running layer provided on and in contact with the carrier running layer, and on the carrier supply layer
  • a source electrode and a drain electrode provided on the other surface of the carrier traveling layer opposite to the one surface provided with the carrier supply layer.
  • a carrier running layer made of a compound semiconductor a carrier supply layer made of a compound semiconductor different from the carrier running layer provided in contact with the carrier running layer, and the carrier supply layer
  • a semiconductor device including a transistor comprising: a gate electrode provided on the substrate; and a source electrode and a drain electrode provided on the other surface of the carrier traveling layer opposite to the surface on which the carrier supply layer is provided. Is done.
  • a carrier running layer made of a compound semiconductor a carrier supply layer made of a compound semiconductor different from the carrier running layer provided in contact with the carrier running layer, and the carrier supply layer
  • an electronic device including a transistor comprising: a gate electrode provided on the substrate; and a source electrode and a drain electrode provided on the other surface of the carrier traveling layer opposite to the surface on which the carrier supply layer is provided. Is done.
  • a carrier traveling layer and a carrier supply layer made of different kinds of compound semiconductors are sequentially stacked on a substrate, a gate electrode is formed on the carrier supply layer, and the substrate is There is provided a method of manufacturing a transistor including removing and forming a source electrode and a drain electrode on the other surface of the carrier traveling layer opposite to the one surface provided with the carrier supply layer.
  • the present disclosure it is possible to reduce the contact resistance between the source electrode and the drain electrode and the two-dimensional electron gas layer that is a channel.
  • FIG. 2 is a cross-sectional view illustrating a basic stacked structure of a transistor according to a first embodiment of the present disclosure.
  • FIG. FIG. 3 is a cross-sectional view showing a more specific stacked structure of the transistor according to the same embodiment.
  • FIG. 3 is a cross-sectional view showing a manufacturing step of the transistor shown in FIG. 2.
  • FIG. 3 is a cross-sectional view showing a manufacturing step of the transistor shown in FIG. 2.
  • FIG. 3 is a cross-sectional view showing a manufacturing step of the transistor shown in FIG. 2.
  • FIG. 3 is a cross-sectional view showing a manufacturing step of the transistor shown in FIG. 2.
  • FIG. 3 is a cross-sectional view showing a manufacturing step of the transistor shown in FIG. 2.
  • FIG. 3 is a cross-sectional view showing a manufacturing step of the transistor shown in FIG. 2.
  • FIG. 2 is a cross-sectional view illustrating a basic stacked structure of a transistor according to a first embodiment of
  • FIG. 3 is a cross-sectional view showing a manufacturing step of the transistor shown in FIG. 2. It is sectional drawing which shows the laminated structure of the transistor which has a MIS gate. It is sectional drawing which shows the laminated structure of the transistor which has a 2nd conductivity type gate. It is sectional drawing which shows the laminated structure of the transistor which has a recess gate.
  • 6 is a cross-sectional view illustrating a stacked structure of a transistor according to a second embodiment of the present disclosure.
  • FIG. FIG. 6 is a cross-sectional view illustrating a stacked structure of a transistor according to a third embodiment of the present disclosure. It is sectional drawing which shows the laminated structure of the transistor which concerns on 4th Embodiment of this indication.
  • FIG. 16 is a cross-sectional view of the transistor according to the same embodiment cut along a cutting line shown in FIG. It is sectional drawing which shows the laminated structure of the compound semiconductor transistor which concerns on a comparative example.
  • FIG. 17 is a cross-sectional view showing a stacked structure of a compound semiconductor transistor according to a comparative example.
  • the compound semiconductor transistor 10 according to the comparative example includes a carrier traveling layer 11 stacked on a substrate 50, a carrier supply layer 12 stacked on the carrier traveling layer 11, and a carrier supply layer. 12, a gate electrode 20, a source electrode 30, and a drain electrode 40 provided on 12.
  • the substrate 50 is made of, for example, silicon (Si), silicon carbide (SiC), gallium nitride (GaN), or sapphire.
  • Si silicon
  • SiC silicon carbide
  • GaN gallium nitride
  • sapphire sapphire
  • the carrier traveling layer 11 is made of an i-type (ie, undoped) compound semiconductor
  • the carrier supply layer 12 is made of an n-type compound semiconductor.
  • the carrier traveling layer 11 and the carrier supply layer 12 are composed of compound semiconductors having lattice constants close to each other that allow epitaxial growth and different band gaps. Therefore, the conduction band and the valence band are discontinuous at the interface between the carrier traveling layer 11 and the carrier supply layer 12 having different band gap sizes.
  • the band gap of the carrier transit layer 11 is smaller than that of the carrier supply layer 12, the electrons generated from the donor of the carrier supply layer 12 gather near the interface of the carrier transit layer 11 having a higher electron affinity. Therefore, an electron layer called a two-dimensional electron gas layer is formed by concentrated electrons in the vicinity of the interface between the carrier traveling layer 11 and the carrier supply layer 12.
  • the carrier traveling layer 11 on which the two-dimensional electron gas layer is formed is i-type (that is, undoped)
  • the two-dimensional electron gas layer can function as a high mobility channel with little impurity scattering.
  • HEMT high electron mobility transistor
  • a combination of materials of the carrier running layer 11 and the carrier supply layer 12 that form such a heterojunction for example, a combination of GaAs and AlGaAs, a combination of GaN and AlGaN, a combination of GaAs and InGaP, and GaN A combination of AlInN and the like can be exemplified.
  • the gate electrode 20 is formed of a metal including nickel (Ni), titanium (Ti), gold (Au), and the like.
  • the gate electrode 20 forms a Schottky junction with the carrier supply layer 12, and a depletion layer extending from the gate electrode 20 side is formed in the carrier supply layer 12 by the Schottky junction.
  • the electron concentration of the two-dimensional electron gas layer can be controlled by the field effect.
  • the compound semiconductor transistor 10 according to the comparative example can function as a field effect transistor using the two-dimensional electron gas layer as a channel.
  • the source electrode 30 and the drain electrode 40 are formed of a metal including titanium (Ti) and aluminum (Al).
  • the source electrode 30 and the drain electrode 40 are formed so as to be in ohmic contact with the two-dimensional electron gas layer of the carrier traveling layer 11.
  • the contact resistance between the source electrode 30 and the drain electrode 40 and the two-dimensional electron gas layer of the carrier traveling layer 11 is increased.
  • the carrier supply layer 12 in contact with the source electrode 30 and the drain electrode 40 has a large band gap, and thus the Schottky barrier between the source electrode 30 and the drain electrode 40 and the carrier supply layer 12 is high. That is, since the carrier supply layer 12 having a high Schottky barrier is interposed, the contact resistance from the source electrode 30 and the drain electrode 40 to the two-dimensional electron gas layer is increased.
  • the Schottky barrier is lowered and the contact resistance is lowered by increasing the impurity concentration of the silicon layer by ion implantation or the like.
  • the contact resistance is reduced by alloying (silicide) the metal that forms the source and drain electrodes and the silicon of the silicon layer.
  • the activation method used in the above-described silicon transistor when the activation method used in the above-described silicon transistor is applied to the compound semiconductor transistor 10, it is necessary to increase the temperature of the heat treatment. Further, in the silicon transistor, it is only necessary to reduce the resistance of the surface of the silicon layer in contact with the source electrode and the drain electrode. However, in the compound semiconductor transistor 10, it is necessary to reduce the resistance of the entire carrier supply layer 12. It is necessary to form the layer deeply, and a heat treatment for a long time or a heat treatment at a high temperature is required. In addition, in order to apply the silicide technology used in silicon transistors, there are few reported examples of suitable metal materials to be alloyed with compound semiconductors.
  • the compound semiconductor transistor 10 when heat treatment at a high temperature is performed for a long time, elements are interdiffused at the heterointerface between the carrier running layer 11 and the carrier supply layer 12, and the heterointerface is deteriorated. In such a case, the carrier mobility of the channel of the compound semiconductor transistor 10 decreases, and the characteristics of the compound semiconductor transistor 10 deteriorate. Therefore, it is difficult to apply the technique used in the silicon transistor described above to the compound semiconductor transistor 10.
  • the carrier supply layer 12 immediately below the source electrode 30 and the drain electrode 40 is removed or a thin film is formed. It has been proposed to
  • the source electrode 30 and the drain electrode 40 are electrically connected to the two-dimensional electron gas layer on the side surfaces of the electrodes. Will be.
  • the connection between the source electrode 30 and the drain electrode 40 and the two-dimensional electron gas layer is a point contact, and there is a possibility that the contact resistance increases or the connection becomes unstable.
  • the carrier supply layer 12 immediately below the source electrode 30 and the drain electrode 40 is thinned, it has been difficult to uniformly thin the carrier supply layer 12 by etching or the like. This is because the film thickness variation of the carrier supply layer 12 is large, and the etching variation when removing the carrier supply layer 12 is large, so that the residual film variation of the carrier supply layer 12 after etching becomes large.
  • the stacking order of the carrier traveling layer 11 and the carrier supply layer 12 is reversed, and the source electrode 30 and the drain electrode 40 are disposed so as to contact the carrier traveling layer 11.
  • Structures (so-called inverse HEMT type structures) have been proposed.
  • a transistor according to an embodiment of the present disclosure reduces a contact resistance between a source electrode and a drain electrode and a two-dimensional electron gas layer that is a channel by a novel and improved structure, and reduces the parasitic resistance of the transistor. It is to reduce.
  • FIG. 1 is a cross-sectional view showing a basic stacked structure of a transistor 1 according to this embodiment.
  • the transistor 1 includes a carrier transit layer 110, a carrier supply layer 120 provided on the carrier transit layer 110, and a gate electrode provided on the carrier supply layer 120. 200, and a source electrode 300 and a drain electrode 400 provided on the other surface of the carrier traveling layer 110 opposite to the surface on which the carrier supply layer 120 is provided.
  • the carrier traveling layer 110 is formed of, for example, an i-type (ie, undoped) compound semiconductor.
  • the carrier supply layer 120 is formed of, for example, a first conductivity type (for example, n-type) compound semiconductor having a lattice constant that is close enough to allow epitaxial growth with the carrier traveling layer 110 and has a large band gap.
  • the carrier traveling layer 110 and the carrier supply layer 120 are provided adjacent to each other. As a result, the conduction band and the valence band become discontinuous at the interface between the carrier traveling layer 110 and the carrier supply layer 120, so that a two-dimensional electron gas layer is formed near the interface of the carrier traveling layer 110.
  • the carrier traveling layer 110 may be formed of GaN, and the carrier supply layer 120 may be formed of AlGaN.
  • the carrier traveling layer 110 and the carrier supply layer 120 may be formed of a combination of other compound semiconductors.
  • the carrier traveling layer 110 and the carrier supply layer 120 may be formed of a combination of GaAs and AlGaAs, a combination of GaAs and InGaP, and a combination of GaN and AlInN.
  • the carrier supply layer 120 may be i-type (ie, undoped).
  • the gate electrode 200 is provided on the surface of the carrier supply layer 120 that faces the surface on which the carrier traveling layer 110 is provided.
  • the gate electrode 200 is formed of a metal that can form a Schottky junction with the carrier supply layer 120.
  • the gate electrode 200 may be formed of a stacked body of Ni and Au.
  • the source electrode 300 and the drain electrode 400 are provided on the other surface of the carrier traveling layer 110 facing the one surface on which the carrier supply layer 120 is provided. That is, in the transistor 1 according to this embodiment, the gate electrode 200, the source electrode 300, and the drain electrode 400 are provided on different surfaces that face each other.
  • the source electrode 300 and the drain electrode 400 are formed of a metal that can form an ohmic junction with the carrier traveling layer 110.
  • the source electrode 300 and the drain electrode 400 may be formed of a laminate of Ti and Al.
  • a concave portion is provided on the other surface of the carrier traveling layer 110, and the concave portion may be filled with the source electrode 300 and the drain electrode 400. According to such a configuration, the distance between the source electrode 300 and the drain electrode 400 and the two-dimensional electron gas layer formed in the carrier traveling layer 110 can be further shortened, so that the contact resistance can be further reduced. it can.
  • the source electrode 300 and the drain electrode 400 may be formed by laminating metals such as Ti, Al, Ni, and Au, and then alloyed with the contact surface of the carrier traveling layer 110 by alloying treatment. Good. According to such a configuration, since the Schottky barrier between the source electrode 300 and the drain electrode 400 and the carrier traveling layer 110 can be further reduced, the contact resistance can be further reduced.
  • the slope of the barrier at the heterointerface between the carrier transit layer 110 and the carrier supply layer 120 is steep on the carrier supply layer 120 side, but is gentle on the carrier transit layer 110 side. Therefore, by providing the source electrode 300 and the drain electrode 400 on the other surface of the carrier traveling layer 110 opposite to the surface on which the carrier supply layer 120 is provided, the source electrode 300 and the drain electrode 400 are not changed without changing the thickness of the carrier supply layer 120. The contact resistance between the electrode 400 and the two-dimensional electron gas layer can be reduced.
  • the electron concentration of the two-dimensional atomic gas can be increased by the piezoelectric effect by increasing the thickness of the carrier supply layer 120.
  • the transistor 1 since the carrier supply layer 120 does not need to be thinned in order to reduce the contact resistance between the source electrode 300 and the drain electrode 400, the transistor 1 is a compound semiconductor transistor using GaN and AlGaN. Can be suitably used.
  • the source electrode 300 and the drain electrode 400 and the two-dimensional electron gas layer can form a conduction path on the entire bottom surface of the source electrode 300 and the drain electrode 400. Therefore, the transistor 1 according to this embodiment can further reduce the contact resistance between the source electrode 300 and the drain electrode 400.
  • the gate electrode 200, the source electrode 300, and the drain electrode 400 are provided on different surfaces facing each other.
  • the plane area of 1 can be reduced. This is because, in the transistor 1 according to this embodiment, the distance between the gate electrode 200 and the source electrode 300 and the drain electrode 400 provided on different surfaces is made smaller than the design rule (minimum processing dimension) determined by the manufacturing process. It is because it can do.
  • the gate electrode 200, the source electrode 300, and the drain electrode 400 are provided on different surfaces facing each other. The capacity can be reduced.
  • the distance between the gate electrode 200, the source electrode 300, and the drain electrode 400 is substantially equal to the thickness of the transistor 1 in the stacking direction. Therefore, in the transistor 1 according to this embodiment, the distance between the gate electrode and the source electrode and the distance between the gate electrode and the drain electrode can be increased, so that the parasitic capacitance between these electrodes can be reduced. . Therefore, the transistor 1 according to this embodiment in which the parasitic capacitance is reduced can operate at higher speed.
  • FIG. 2 is a cross-sectional view showing a more specific stacked structure of the transistor 1A according to the present embodiment.
  • the transistor 1A is different from the transistor 1 shown in FIG. 1 in that the gate electrode 200, the source electrode 300, and the drain electrode 400 are the first interlayer film 510, the second interlayer film 520, and the third It has a structure embedded with the interlayer film 530 and the fourth interlayer film 540. Note that the configuration other than the first interlayer film 510, the second interlayer film 520, the third interlayer film 530, and the fourth interlayer film 540 is the same as that of the transistor 1 shown in FIG. Omitted.
  • the first interlayer film 510, the second interlayer film 520, the third interlayer film 530, and the fourth interlayer film 540 are formed of an insulating material.
  • the first interlayer film 510, the second interlayer film 520, the third interlayer film 530, and the fourth interlayer film 540 are made of SiN, Si 3 N 4 , SiO, SiO 2 , Al 2 O 3 , or the like.
  • a single layer structure or a stacked structure may be used.
  • the first interlayer film 510, the second interlayer film 520, the third interlayer film 530, and the fourth interlayer film 540 can protect each electrode from the external environment by embedding each electrode.
  • the first interlayer film 510, the second interlayer film 520, the third interlayer film 530, and the fourth interlayer film 540 can insulate the buried electrodes and wirings from each other.
  • An electrode, a wiring, a terminal, or the like can be formed.
  • FIGS. 3 to 8 are cross-sectional views showing manufacturing steps of the transistor 1A shown in FIG.
  • a buffer layer 130 is stacked on a substrate 500 by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (Molecular Beam Epitaxy: MBE), or the like.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the substrate 500 is, for example, a silicon (Si) substrate.
  • the substrate 500 may be a silicon carbide (SiC) substrate, a gallium nitride (GaN) substrate, a sapphire substrate, a diamond substrate, a gallium arsenide (GaAs) substrate, or the like.
  • the substrate 500 may be formed of a material different from the carrier traveling layer 110 and the carrier supply layer 120 stacked on the substrate 500. In such a case, the substrate 500 can be easily removed in a process described later.
  • the buffer layer 130 is made of a compound semiconductor, and is a layer for epitaxially growing the carrier traveling layer 110 and the carrier supply layer 120 on the substrate 500.
  • the buffer layer 130 is a layer that improves the crystalline state of the carrier traveling layer 110 by appropriately controlling the lattice constant when the lattice constants of the substrate 500 and the carrier traveling layer 110 are greatly different. It is.
  • the buffer layer 130 may be a single layer of AlN, AlGaN, or GaN, or a stacked structure thereof. .
  • the carrier traveling layer 110 and the carrier supply layer 120 are sequentially epitaxially grown and stacked on the buffer layer 130 using MOCVD, MBE, or the like.
  • the carrier traveling layer 110 may be formed of GaN
  • the carrier supply layer 120 may be formed of AlGaN.
  • an element isolation step may be performed in order to isolate each element such as a transistor on the substrate 500.
  • a second conductivity type impurity such as boron
  • the elements on the substrate 500 may be separated by removing the carrier supply layer 120 by etching or the like and removing the heterointerface that forms the two-dimensional electron gas layer.
  • the first interlayer film 510 is stacked on the carrier supply layer 120 by chemical vapor deposition (CVD) or the like.
  • the first interlayer film 510 may be formed as a single layer film such as SiN, Si 3 N 4 , SiO, SiO 2 , or Al 2 O 3 , or a laminated film thereof.
  • a partial region of the first interlayer film 510 is opened by photolithography and etching, and a metal such as Ni and Au is stacked in the opening, and then patterned to form a gate.
  • An electrode 200 is formed. Thereby, a Schottky junction is formed between the gate electrode 200 and the carrier supply layer 120.
  • a second interlayer film 520 is laminated on the entire surface of the gate electrode 200 by CVD or the like. Similar to the first interlayer film 510, the second interlayer film 520 is formed as a single layer film such as SiN, Si 3 N 4 , SiO, SiO 2 , or Al 2 O 3 , or a laminated film thereof. Also good. In the second interlayer film 520, various wirings (not shown) may be formed as necessary.
  • the support substrate 550 is attached on the second interlayer film 520, the front and the back are reversed, and the substrate 500 and the buffer layer 130 are formed by chemical mechanical polishing (CMP) or the like.
  • CMP chemical mechanical polishing
  • the carrier traveling layer 110 is thinned to an appropriate thickness. Since the film thickness of the carrier traveling layer 110 affects the contact resistance between the source electrode 300 and the drain electrode 400 and the two-dimensional electron gas layer, the film thickness of the thinned carrier traveling layer 110 can maintain the strength. It is preferable to be as thin as possible.
  • the support substrate 550 may be any substrate, but a substrate similar to the substrate 500 may be used.
  • the process shown in FIG. 6 can be performed by a method other than the above.
  • the substrate 500 is a silicon substrate
  • the support substrate 550 side is protected with a resist or the like, and wet etching using a basic solution (KOH or the like) or the like is performed.
  • KOH or the like a basic solution
  • the substrate 500 and the buffer layer 130 may be removed, and the carrier traveling layer 110 may be thinned.
  • the substrate 500 is a sapphire substrate or the like
  • the substrate 500 may be peeled off by using a laser lift-off method.
  • a third interlayer film 530 is formed by CVD or the like on the surface of the carrier traveling layer 110 exposed by removing the substrate 500 and the buffer layer 130.
  • the third interlayer film 530 is formed as a single layer film such as SiN, Si 3 N 4 , SiO, SiO 2 , or Al 2 O 3 , or a laminated film thereof, as with the first interlayer film 510. May be.
  • a partial region of the third interlayer film 530 is opened by photolithography and etching, and a metal such as Ti and Al is stacked in the opening, followed by patterning, whereby the source electrode 300 and the drain electrode 400 are formed. Is formed.
  • the recesses may be formed in the carrier traveling layer 110 by simultaneously etching the carrier traveling layer 110.
  • the distance between the source electrode 300 and the drain electrode 400 and the two-dimensional electron gas layer can be further shortened, the contact resistance of the source electrode 300 and the drain electrode 400 can be further reduced.
  • a fourth interlayer film 540 is laminated on the entire surface of the source electrode 300 and the drain electrode 400 by CVD or the like. Similar to the first interlayer film 510, the fourth interlayer film 540 is formed as a single layer film such as SiN, Si 3 N 4 , SiO, SiO 2 , or Al 2 O 3 , or a laminated film thereof. Also good. Various wirings (not shown) may be formed in the fourth interlayer film 540 as necessary.
  • the transistor 1A according to the present embodiment shown in FIG. 2 is manufactured.
  • the support substrate 550 may be removed by a method similar to the removal of the substrate 500.
  • the transistor according to this modification is a transistor having a gate structure different from that of the transistor 1 shown in FIG. 2 are substantially the same as the contents described with reference to FIG. 2, and thus the description thereof is omitted here.
  • FIG. 9 is a cross-sectional view showing a stacked structure of a transistor 1B having a MIS (Metal-Insulator-Semiconductor) gate.
  • FIG. 10 is a cross-sectional view showing a stacked structure of a transistor 1C having a second conductivity type (for example, p-type) gate.
  • FIG. 11 is a cross-sectional view illustrating a stacked structure of a transistor 1D having a recess gate.
  • the gate electrode 200 is provided on the carrier supply layer 120 via the insulating layer 210.
  • the insulating layer 210 is formed of an insulating dielectric.
  • the insulating layer 210 may be formed of SiO 2 or Al 2 O 3 by using CVD or atomic layer deposition (ALD).
  • the gate electrode 200 is provided on the carrier supply layer 120 via the insulating layer 210, whereby a MIS gate is formed.
  • the electron concentration of the two-dimensional electron gas layer is controlled by controlling the thickness of the inversion layer, and the amount of current flowing between the source electrode 300 and the drain electrode 400 is controlled. can do.
  • the transistor 1B having such a MIS gate has a higher gate structure withstand voltage than the transistor 1A having a Schottky gate shown in FIG. 2, a higher voltage can be applied to the gate electrode 200. is there.
  • the gate electrode 200 is provided on the carrier supply layer 120 via the semiconductor layer 220.
  • the semiconductor layer 220 is formed of a second conductivity type (for example, p-type) semiconductor.
  • the semiconductor layer 220 may be formed by epitaxially growing GaN added with magnesium (Mg), which is a p-type impurity, on the carrier supply layer 120.
  • the semiconductor layer 220 may be formed by doping the surface of the carrier supply layer 120 with p-type impurities such as magnesium (Mg).
  • the gate electrode 200 is provided on the carrier supply layer 120 via the semiconductor layer 220, thereby forming a second conductivity type (p-type) gate.
  • a depletion layer is formed at the interface between the semiconductor layer 220 and the carrier supply layer 120 by a pn junction. Therefore, the electron concentration of the two-dimensional electron gas layer can be controlled by changing the voltage applied to the gate electrode 200 and controlling the thickness of the depletion layer formed in the carrier supply layer 120. Therefore, in the transistor 1C according to this modification, the source electrode 300 and the drain electrode 400 are controlled by controlling the voltage applied to the gate electrode 200 and controlling the electron concentration of the two-dimensional electron gas layer from the thickness of the depletion layer. The amount of current flowing between the two can be controlled.
  • the transistor 1C having such a second conductivity type gate can have a higher threshold voltage than the transistor 1A having the Schottky gate shown in FIG. 2, the normally-off operation can be more easily realized. Is possible.
  • the transistor 1C having the second conductivity type gate can have a higher breakdown voltage in the reverse direction of the gate than the Schottky gate, leakage current can be suppressed.
  • the gate electrode 200 is provided by removing a part of the lower carrier supply layer 120. Specifically, the carrier supply layer 120 is formed with a partially removed recess, and the gate electrode 200 is provided so as to fill the recess of the carrier supply layer 120.
  • the transistor 1D reduces the thickness of the carrier supply layer 120 to reduce the thickness of the carrier supply layer 120 under the influence of the piezoelectric effect.
  • the electron concentration of the dimensional electron gas layer can be lowered.
  • the threshold voltage of the transistor can be appropriately controlled by controlling the film thickness of the carrier supply layer 120 immediately below the gate electrode 200.
  • FIG. 12 is a cross-sectional view showing the stacked structure of the transistor 2 according to this embodiment. 2 are substantially the same as the contents described with reference to FIG. 2, and thus the description thereof is omitted here.
  • an opening is provided in the carrier supply layer 120, and the gate electrode 202 penetrates the carrier supply layer 120 through the opening.
  • the gate electrode 202 is in contact with the carrier traveling layer 110 through the insulating layer 212.
  • the gate electrode 202 passes through the carrier supply layer 120 through an opening provided in the carrier supply layer 120 and is in contact with the carrier traveling layer 110 through the insulating layer 212. Note that the material of the gate electrode 202 is the same as that of the gate electrode 200 shown in FIG.
  • the insulating layer 212 is formed of a dielectric having an insulating property.
  • the insulating layer 212 may be formed of SiO 2 or Al 2 O 3 using CVD or ALD.
  • the carrier supply layer 120 is not provided in the region immediately below the gate electrode 202, but a MIS gate using the insulating layer 212 is provided. According to such a configuration, when a voltage is applied to the gate electrode 202, a channel composed of an inversion layer is formed by the MIS gate in the carrier traveling layer 110 immediately below the gate electrode 202. Thereby, the transistor 2 according to the present embodiment can function as a field effect transistor.
  • the transistor 2 according to this embodiment can use a two-dimensional electron gas layer with high mobility for electrical connection between the channel formed by the MIS gate and the source electrode 300 and the drain electrode 400, the transistor 2 on-resistance can be reduced.
  • FIG. 13 is a cross-sectional view showing a stacked structure of the transistor 3 according to this embodiment. 2 are substantially the same as the contents described with reference to FIG. 2, and thus the description thereof is omitted here.
  • insulating films 310 and 410 are provided on the side surfaces of the concave portion of the carrier traveling layer 110 embedded by the source electrode 300 and the drain electrode 400.
  • the insulating films 310 and 410 are formed of an insulating material.
  • the insulating films 310 and 410 may be formed by forming recesses in the carrier traveling layer 110 and then filling the recesses in the carrier traveling layer 110 with an insulating film made of SiO 2 or Al 2 O 3 using CVD or the like. It may be formed by performing etching. That is, the insulating films 310 and 410 may be formed as a sidewall of the recess.
  • the insulating film on the bottom surface of the concave portion does not need to be completely removed, and the source electrode 300, the drain electrode 400, and the carrier traveling layer 110 are in a state where a part of the insulating film on the bottom surface of the concave portion is removed. It may be in contact.
  • the transistor 3 according to this embodiment formation of the current path from the side surfaces of the source electrode 300 and the drain electrode 400 can be suppressed by forming the insulating films 310 and 410 on the side surfaces of the recess. Therefore, in the transistor 3 according to the present embodiment, it is possible to suppress the occurrence of leakage current between the source electrode 300 and the drain electrode 400, particularly when the transistor is off.
  • FIG. 14 is a cross-sectional view showing the stacked structure of the transistor 4 according to this embodiment. 2 are substantially the same as the contents described with reference to FIG. 2, and thus the description thereof is omitted here.
  • the first conductivity type (for example, n-type) regions 320 and 420 are formed on the bottom surface of the concave portion of the carrier traveling layer 110 embedded by the source electrode 300 and the drain electrode 400. Provided.
  • the first conductivity type regions 320 and 420 are regions of the first conductivity type having a higher concentration than the concentration of the first conductivity type impurities in the carrier traveling layer 110.
  • the first conductivity type regions 320 and 420 can be formed by ion-implanting a first conductivity type impurity such as Si into the carrier traveling layer 110 on the bottom surface of the recess and then activating it by annealing.
  • the first conductivity type regions 320 and 420 use a metal such as Ti at the bottoms of the source electrode 300 and the drain electrode 400 and react the metal with GaN. It may be formed. Since a metal such as Ti extracts nitrogen (N) from a nitride such as GaN, the carrier traveling layer 110 in contact with the bottoms of the source electrode 300 and the drain electrode 400 is deficient in nitrogen and becomes the first conductivity type. Even when such a method is used, the first conductivity type regions 320 and 420 can be formed.
  • the Schottky barrier between the source electrode 300 and the drain electrode 400 and the carrier traveling layer 110 is lowered by forming the first conductivity type regions 320 and 420 on the side surfaces of the bottom surface of the recess. be able to. Therefore, in the transistor 4 according to the present embodiment, a good ohmic junction can be formed between the source electrode 300 and the drain electrode 400 and the carrier traveling layer 110, so that the contact resistance can be further reduced.
  • FIG. 15 is a plan view showing a planar structure of the transistor 5 according to the present embodiment
  • FIG. 16 is a cross-sectional view of the transistor 5 according to the present embodiment taken along a cutting line in FIG. . 2 are substantially the same as the contents described with reference to FIG. 2, and thus the description thereof is omitted here.
  • the transistor 5 according to this embodiment is provided on the cutting line indicated by (B) in the transistor region 600.
  • the cross-sectional view of the transistor 5 taken along the cutting line (B) may be any of the first to fourth embodiments.
  • an element isolation region having high insulation is formed on the outer periphery of the transistor region 600 in order to isolate the transistor 5 from other elements.
  • the element isolation region is formed, for example, by removing the carrier supply layer 120 in the corresponding region and then embedding the region from which the carrier supply layer 120 has been removed with an insulator such as SiO 2 . Note that the step of burying the insulator may be performed simultaneously with the step of forming the first interlayer film 510 and the like.
  • the element isolation region is formed by, for example, ion-implanting a second conductivity type impurity (boron or the like) into the carrier supply layer 120 to destroy the heterointerface between the carrier supply layer 120 and the carrier traveling layer 110, thereby increasing the resistance. It may be formed by forming.
  • FIG. 16 shows a cross-sectional view of the transistor 5 according to the present embodiment cut in FIG.
  • the transistor 5 according to this embodiment further includes an extraction electrode 230 connected to the gate electrode 200 and a wiring layer 240 connected to the extraction electrode 230.
  • the extraction electrode 230 penetrates the carrier traveling layer 110 and protrudes from the surface of the carrier traveling layer 110 where the source electrode 300 and the drain electrode 400 are provided.
  • the wiring layer 240 is provided on the same surface as the surface on which the source electrode 300 and the drain electrode 400 of the carrier traveling layer 110 are provided.
  • the extraction electrode 230 and the wiring layer 240 can apply a voltage to the gate electrode 200 from the same surface as the surface on which the source electrode 300 and the drain electrode 400 are provided. According to this, the transistor 5 according to the present embodiment can more easily perform wiring routing with other elements.
  • the source electrode 300 and the drain electrode 400 are provided on the other surface of the carrier traveling layer 110 facing one surface on which the carrier supply layer 120 is provided. . Thereby, the transistor according to each embodiment of the present disclosure can reduce the contact resistance between the source electrode 300 and the drain electrode 400 and the two-dimensional electron gas layer.
  • the gate electrode 200, the source electrode 300, and the drain electrode 400 are provided on different surfaces facing each other. , Parasitic capacitance can be reduced. Therefore, the transistor according to each embodiment of the present disclosure can operate at higher speed.
  • the gate electrode 200, the source electrode 300, and the drain electrode 400 are provided on different surfaces facing each other, the source electrode 300, the drain electrode 400, and the gate electrode 200 are provided.
  • the planar area of the transistor 1 can be reduced without being restricted by the design rule (minimum processing dimension) between
  • the transistor according to each embodiment of the present disclosure can be suitably used for, for example, a radio frequency (RF) module used for a radio communication device or the like, or a power conversion module used for a power conditioner or the like.
  • RF radio frequency
  • a mobile phone having a high-frequency module including a transistor and a smartphone according to each embodiment of the present disclosure also belong to the technical scope of the present disclosure.
  • an AC (Alternating Current) adapter having a power conversion module including a transistor according to each embodiment of the present disclosure, an AC-DC (Alternating Current-Direct Current) such as a power conditioner, or a DC-DC (Direct Current-Direct Current)
  • AC-DC Alternating Current-Direct Current
  • DC-DC Direct Current-Direct Current
  • a carrier traveling layer made of a compound semiconductor; A carrier supply layer provided on and in contact with the carrier running layer, the carrier running layer being made of a compound semiconductor different from the carrier running layer; A gate electrode provided on the carrier supply layer; A source electrode and a drain electrode provided on the other surface of the carrier running layer opposite to the one surface provided with the carrier supply layer; Comprising a transistor.
  • the transistor according to (1) wherein a band gap of the carrier traveling layer is smaller than a band gap of the carrier supply layer.
  • the carrier supply layer is provided with a second conductivity type region of a second conductivity type, and the gate electrode is provided on the second conductivity type region, any one of (1) to (5)
  • the transistor according to item. (9)
  • the carrier supply layer is provided with an opening,
  • the gate electrode is provided through any one of the above (1) to (5), which penetrates the carrier supply layer through the opening and is in contact with the carrier traveling layer through an insulating layer.
  • Transistor Any of (1) to (9), further comprising an extraction electrode that is electrically connected to the gate electrode and protrudes through the carrier transit layer and protrudes from the surface on which the source electrode and the drain electrode are provided.
  • a semiconductor device including a transistor comprising: (12) A carrier traveling layer made of a compound semiconductor; A carrier supply layer provided on and in contact with the carrier running layer, the carrier running layer being made of a compound semiconductor different from the carrier running layer; A gate electrode provided on the carrier supply layer; A source electrode and a drain electrode provided on the other surface of the carrier running layer opposite to the one surface provided with the carrier supply layer;
  • An electronic device including a transistor comprising: (13) Laminating a carrier running layer and a carrier supply layer made of different kinds of compound semiconductors on a substrate in order; Forming a gate electrode on the carrier supply layer; Removing the substrate; Forming a source electrode and a drain electrode on

Abstract

【課題】寄生抵抗が低下したトランジスタ、半導体装置、電子機器を提供する。 【解決手段】化合物半導体からなるキャリア走行層と、前記キャリア走行層の上に接して設けられ、前記キャリア走行層とは異種の化合物半導体からなるキャリア供給層と、前記キャリア供給層の上に設けられたゲート電極と、前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面に設けられたソース電極およびドレイン電極と、を備える、トランジスタ。

Description

トランジスタ、半導体装置、電子機器、およびトランジスタの製造方法
 本開示は、トランジスタ、半導体装置、電子機器、およびトランジスタの製造方法に関する。
 近年、化合物半導体を用いたトランジスタとして、高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)が注目されている。
 高電子移動度トランジスタは、半導体ヘテロ接合によって誘起された二次元電子ガスからなる層をチャネルとする電界効果トランジスタである。高電子移動度トランジスタの構造としては、例えば、下記の特許文献1に記載された構造を例示することができる。
特開2002-359256号公報
 しかし、化合物半導体を用いた高電子移動度トランジスタでは、ソース電極およびドレイン電極とチャネルとの間の接触抵抗を低下させることが困難であった。これは、高電子移動度トランジスタでは、ソース電極およびドレイン電極と接するキャリア供給層のバンドギャップが大きく、ショットキー障壁が高いためである。
 また、化合物半導体の融点は、シリコンなどと比較して高いため、シリコンに用いられているように、高濃度ドーピングによる拡散層の形成、または合金化による合金層の形成などによって接触抵抗を低下させることも困難であった。
 そこで、本開示では、接触抵抗を含む寄生抵抗を低下させることが可能な、新規かつ改良されたトランジスタ、半導体装置、電子機器、およびトランジスタの製造方法を提案する。
 本開示によれば、化合物半導体からなるキャリア走行層と、前記キャリア走行層の上に接して設けられ、前記キャリア走行層とは異種の化合物半導体からなるキャリア供給層と、前記キャリア供給層の上に設けられたゲート電極と、前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面に設けられたソース電極およびドレイン電極と、を備える、トランジスタが提供される。
 また、本開示によれば、化合物半導体からなるキャリア走行層と、前記キャリア走行層の上に接して設けられ、前記キャリア走行層とは異種の化合物半導体からなるキャリア供給層と、前記キャリア供給層の上に設けられたゲート電極と、前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面に設けられたソース電極およびドレイン電極と、を備えるトランジスタを含む、半導体装置が提供される。
 また、本開示によれば、化合物半導体からなるキャリア走行層と、前記キャリア走行層の上に接して設けられ、前記キャリア走行層とは異種の化合物半導体からなるキャリア供給層と、前記キャリア供給層の上に設けられたゲート電極と、前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面に設けられたソース電極およびドレイン電極と、を備えるトランジスタを含む、電子機器が提供される。
 さらに、本開示によれば、基板の上に異種の化合物半導体からなるキャリア走行層およびキャリア供給層を順に積層することと、前記キャリア供給層の上にゲート電極を形成することと、前記基板を除去することと、前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面にソース電極およびドレイン電極を形成することと、を含むトランジスタの製造方法が提供される。
 本開示によれば、ソース電極およびドレイン電極と、チャネルである二次元電子ガス層との間の接触抵抗を低下させることが可能である。
 以上説明したように本開示によれば、寄生抵抗が低下したトランジスタ、半導体装置、電子機器を提供することが可能である。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の第1の実施形態に係るトランジスタの基本的な積層構造を示す断面図である。 同実施形態に係るトランジスタのより具体的な積層構造を示す断面図である。 図2で示すトランジスタの製造工程を示す断面図である。 図2で示すトランジスタの製造工程を示す断面図である。 図2で示すトランジスタの製造工程を示す断面図である。 図2で示すトランジスタの製造工程を示す断面図である。 図2で示すトランジスタの製造工程を示す断面図である。 図2で示すトランジスタの製造工程を示す断面図である。 MISゲートを有するトランジスタの積層構造を示す断面図である。 第2導電型ゲートを有するトランジスタの積層構造を示す断面図である。 リセスゲートを有するトランジスタの積層構造を示す断面図である。 本開示の第2の実施形態に係るトランジスタの積層構造を示す断面図である。 本開示の第3の実施形態に係るトランジスタの積層構造を示す断面図である。 本開示の第4の実施形態に係るトランジスタの積層構造を示す断面図である。 本開示の第5の実施形態に係るトランジスタの平面構造を示す平面図である。 図15の(A)で示した切断線にて同実施形態に係るトランジスタを切断した断面図である。 比較例に係る化合物半導体トランジスタの積層構造を示す断面図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 0.本開示の技術的背景
 1.第1の実施形態
  1.1.トランジスタの構造
  1.2.トランジスタの製造方法
  1.3.変形例
 2.第2の実施形態
 3.第3の実施形態
 4.第4の実施形態
 5.第5の実施形態
 6.まとめ
 <<0.本開示の技術的背景>>
 まず、図17を参照して、本開示の技術的背景について説明する。図17は、比較例に係る化合物半導体トランジスタの積層構造を示す断面図である。
 図17に示すように、比較例に係る化合物半導体トランジスタ10は、基板50の上に積層されたキャリア走行層11と、キャリア走行層11の上に積層されたキャリア供給層12と、キャリア供給層12の上に設けられたゲート電極20、ソース電極30およびドレイン電極40と、を備える。
 基板50は、例えば、シリコン(Si)、炭化シリコン(SiC)、窒化ガリウム(GaN)、またはサファイアなどで構成される。なお、図示しないが、基板50と、キャリア走行層11との格子定数が大きく異なる場合、基板50と、キャリア走行層11との間には、キャリア走行層11をエピタキシャル成長させるために格子定数を適切に制御したバッファ層が設けられる。
 キャリア走行層11は、i型(すなわち、アンドープ)の化合物半導体で構成され、キャリア供給層12は、n型の化合物半導体で構成される。また、キャリア走行層11と、キャリア供給層12とは、エピタキシャル成長することが可能な程度に格子定数が近く、かつバンドギャップの大きさが異なる化合物半導体で構成される。したがって、バンドギャップの大きさが異なるキャリア走行層11と、キャリア供給層12との界面では、導電帯および価電子帯がそれぞれ不連続になる。
 ここで、キャリア走行層11のバンドギャップの大きさがキャリア供給層12よりも小さい場合、キャリア供給層12のドナーから発生した電子は、電子親和力がより大きなキャリア走行層11の界面近傍に集まる。そのため、キャリア走行層11のキャリア供給層12との界面近傍には、集中した電子によって二次元電子ガス層とも呼ばれる電子層が形成される。
 二次元電子ガス層が形成されたキャリア走行層11は、i型(すなわち、アンドープ)であるため、二次元電子ガス層は、不純物散乱が少ない高移動度のチャネルとして機能することができる。なお、このような二次元電子ガス層をチャネルとする化合物半導体トランジスタは、高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)とも呼ばれる。
 このようなヘテロ接合を形成するキャリア走行層11とキャリア供給層12との材質の組み合わせとしては、例えば、GaAsとAlGaAsとの組み合わせ、GaNとAlGaNとの組み合わせ、GaAsとInGaPとの組み合わせ、およびGaNとAlInNとの組み合わせなどを例示することができる。
 ゲート電極20は、ニッケル(Ni)、チタン(Ti)、および金(Au)などを含む金属にて形成される。また、ゲート電極20は、キャリア供給層12とショットキー接合を形成し、該ショットキー接合によってキャリア供給層12にゲート電極20側から延びる空乏層を形成する。
 そのため、ゲート電極20に印加される電圧を変化させ、キャリア供給層12に形成される空乏層の厚さを制御することにより、電界効果によって二次元電子ガス層の電子濃度を制御することができる。このような制御により、比較例に係る化合物半導体トランジスタ10は、二次元電子ガス層をチャネルとする電界効果トランジスタとして機能することが可能である。
 ソース電極30、およびドレイン電極40は、チタン(Ti)およびアルミニウム(Al)などを含む金属にて形成される。また、ソース電極30、およびドレイン電極40は、キャリア走行層11の二次元電子ガス層とオーミック接合するように形成される。
 ここで、化合物半導体トランジスタ10では、ソース電極30およびドレイン電極40と、キャリア走行層11の二次元電子ガス層との間の接触抵抗が高くなってしまう。これは、ソース電極30およびドレイン電極40と接触するキャリア供給層12のバンドギャップが大きいため、ソース電極30およびドレイン電極40と、キャリア供給層12との間のショットキー障壁が高いためである。すなわち、ショットキー障壁が高いキャリア供給層12が介在するために、ソース電極30およびドレイン電極40から二次元電子ガス層までの接触抵抗が高くなってしまう。
 例えば、シリコントランジスタでは、イオン注入などによってシリコン層の不純物濃度を高くすることによって、ショットキー障壁を低下させ、接触抵抗を低下させることが行われている。また、シリコントランジスタでは、ソース電極およびドレイン電極を形成する金属と、シリコン層のシリコンとを合金化(シリサイド化)することによって、接触抵抗を低下させることが行われている。
 しかしながら、化合物半導体トランジスタ10では、接触抵抗を低下させるために、上述したシリコントランジスタで用いられる手法を適用することは困難であった。
 具体的には、上述したシリコントランジスタで用いられる活性化の手法を化合物半導体トランジスタ10に適用する場合、熱処理の温度を高くする必要がある。また、シリコントランジスタでは、ソース電極およびドレイン電極と接触するシリコン層の表面のみを低抵抗化すればよいが、化合物半導体トランジスタ10では、キャリア供給層12全体を低抵抗化する必要があるため、反応層を深く形成する必要があり、長時間の熱処理、または高温での熱処理が必要になる。加えて、シリコントランジスタで用いられるシリサイド技術を適用するには、化合物半導体と合金化する適切な金属材料の報告例が少ない。
 したがって、化合物半導体トランジスタ10において、高温での熱処理が長時間行われた場合、キャリア走行層11とキャリア供給層12との間のヘテロ界面で元素が相互拡散し、ヘテロ界面が劣化してしまう。このような場合、化合物半導体トランジスタ10のチャネルのキャリア移動度が低下し、化合物半導体トランジスタ10の特性が低下してしまう。よって、上述したシリコントランジスタで用いられる手法を化合物半導体トランジスタ10に適用することは困難であった。
 そこで、化合物半導体トランジスタ10では、ソース電極30およびドレイン電極40と、キャリア走行層11との接触抵抗を低下させるために、ソース電極30およびドレイン電極40の直下のキャリア供給層12を除去、または薄膜化することが提案されている。
 しかしながら、ソース電極30およびドレイン電極40の直下のキャリア供給層12を完全に除去した場合、ソース電極30およびドレイン電極40と、二次元電子ガス層とは、各電極の側面で電気的に接続されることになる。このような場合、ソース電極30およびドレイン電極40と、二次元電子ガス層との接続は点接触になり、接触抵抗の増加または接続が不安定化してしまう可能性がある。
 また、ソース電極30およびドレイン電極40の直下のキャリア供給層12を薄膜化する場合、キャリア供給層12をエッチング等によって均一に薄膜化することは困難であった。これは、キャリア供給層12の膜厚ばらつきが大きく、かつキャリア供給層12を除去する際のエッチングばらつきが大きいため、エッチング後のキャリア供給層12の残膜ばらつきが大きくなるためである。
 したがって、化合物半導体トランジスタ10において、ソース電極30およびドレイン電極40と、キャリア走行層11に形成された二次元電子ガス層との間の接触抵抗を低下させることは困難であった。
 なお、化合物半導体トランジスタ10の他の構造として、キャリア走行層11とキャリア供給層12との積層順を反転させ、ソース電極30およびドレイン電極40と、キャリア走行層11とが接触するように配置した構造(いわゆる、逆HEMT型構造)が提案されている。
 このような逆HEMT型構造の化合物半導体トランジスタでは、ソース電極30およびドレイン電極40と、キャリア走行層11とが直接接触するため、図17で示した化合物半導体トランジスタ10と比較して接触抵抗を低下させることができる。しかしながら、逆HEMT型構造の化合物半導体トランジスタでは、ゲート電極20がキャリア走行層11と直接接触するため、図17で示した化合物半導体トランジスタ10と比較して、二次元電子ガスの濃度を適切に制御することが困難であった。したがって、化合物半導体トランジスタ10において、接触抵抗を低下させるために逆HEMT型構造を採用した場合、トランジスタとしての動作が不安定になってしまう。
 本発明者らは、上記事情を鋭意検討することによって、本開示に係る技術を想到するに至った。本開示の一実施形態に係るトランジスタは、新規かつ改良された構造によって、ソース電極およびドレイン電極と、チャネルである二次元電子ガス層との間の接触抵抗を低下させ、該トランジスタの寄生抵抗を低下させるものである。
 以下では、上述した本開示の一実施形態に係るトランジスタについて、詳細に説明する。
 <<1.第1の実施形態>>
 <1.1.トランジスタの構造>
 まず、図1を参照して、本開示の第1の実施形態に係るトランジスタの構造について説明する。図1は、本実施形態に係るトランジスタ1の基本的な積層構造を示す断面図である。
 図1に示すように、本実施形態に係るトランジスタ1は、キャリア走行層110と、キャリア走行層110の上に設けられたキャリア供給層120と、キャリア供給層120の上に設けられたゲート電極200と、キャリア走行層110のキャリア供給層120が設けられた一面と対向する他面に設けられたソース電極300およびドレイン電極400と、を備える。
 キャリア走行層110は、例えば、i型(すなわち、アンドープ)の化合物半導体で形成される。キャリア供給層120は、例えば、キャリア走行層110とエピタキシャル成長可能な程度に格子定数が近く、かつバンドギャップが大きい第1導電型(例えば、n型)の化合物半導体で形成される。また、キャリア走行層110とキャリア供給層120とは、互いに隣接して設けられる。これにより、キャリア走行層110と、キャリア供給層120との界面では、導電帯および価電子帯がそれぞれ不連続になるため、キャリア走行層110の界面近傍に二次元電子ガス層が形成される。
 例えば、キャリア走行層110は、GaNで形成され、キャリア供給層120は、AlGaNで形成されてもよい。なお、二次元電子ガス層が形成されれば、キャリア走行層110と、キャリア供給層120とは、他の化合物半導体の組み合わせで形成されていてもよい。例えば、キャリア走行層110と、キャリア供給層120とは、GaAsとAlGaAsとの組み合わせ、GaAsとInGaPとの組み合わせ、およびGaNとAlInNとの組み合わせで形成されていてもよい。また、化合物半導体によっては(例えば、AlGaNなどでは)、キャリア供給層120は、i型(すなわち、アンドープ)であってもよい。
 ゲート電極200は、キャリア供給層120のキャリア走行層110が設けられた面と対向する面上に設けられる。また、ゲート電極200は、キャリア供給層120とショットキー接合を形成可能な金属で形成される。例えば、ゲート電極200は、NiおよびAuの積層体にて形成されていてもよい。
 ソース電極300およびドレイン電極400は、キャリア走行層110のキャリア供給層120が設けられた一面と対向する他面上に設けられる。すなわち、本実施形態に係るトランジスタ1では、ゲート電極200と、ソース電極300およびドレイン電極400とは、互いに対向する異なる面上に設けられる。また、ソース電極300およびドレイン電極400は、キャリア走行層110とオーミック接合を形成可能な金属で形成される。例えば、ソース電極300およびドレイン電極400は、TiおよびAlの積層体にて形成されてもよい。
 また、キャリア走行層110の他面には、凹部が設けられ、該凹部は、ソース電極300およびドレイン電極400によって埋め込まれていてもよい。このような構成によれば、ソース電極300およびドレイン電極400と、キャリア走行層110に形成される二次元電子ガス層との距離をさらに短くすることができるため、接触抵抗をさらに低下させることができる。
 なお、ソース電極300およびドレイン電極400は、Ti、Al、Ni、およびAuなどの金属を積層して形成した後、合金化処理を行うことによってキャリア走行層110の接触面と合金化させてもよい。このような構成によれば、ソース電極300およびドレイン電極400と、キャリア走行層110とのショットキー障壁をさらに低下させることができるため、接触抵抗をさらに低下させることができる。
 化合物半導体トランジスタにおけるキャリア走行層110とキャリア供給層120とのヘテロ界面の障壁の傾きは、キャリア供給層120側では急峻であるが、キャリア走行層110側ではなだらかである。そのため、ソース電極300およびドレイン電極400をキャリア走行層110のキャリア供給層120が設けられた一面と対向する他面に設けることにより、キャリア供給層120の厚みを変えることなく、ソース電極300およびドレイン電極400と二次元電子ガス層との接触抵抗を低下させることができる。
 特に、キャリア走行層110がGaNで形成され、キャリア供給層120がAlGaNで形成される場合、キャリア供給層120を厚くすることで、ピエゾ効果により二次元原子ガスの電子濃度を高くすることができる。本実施形態に係るトランジスタ1では、ソース電極300およびドレイン電極400の接触抵抗を低下させるためにキャリア供給層120を薄膜化する必要がないため、トランジスタ1は、GaNおよびAlGaNを用いた化合物半導体トランジスタとして、好適に用いることができる。
 また、本実施形態に係るトランジスタ1では、ソース電極300およびドレイン電極400と二次元電子ガス層とは、ソース電極300およびドレイン電極400の底面全体で導通路を形成することができる。したがって、本実施形態に係るトランジスタ1は、ソース電極300およびドレイン電極400の接触抵抗をさらに低下させることができる。
 さらに、本実施形態に係るトランジスタ1では、ゲート電極200と、ソース電極300およびドレイン電極400とが互いに対向する異なる面上に設けられるため、各電極が同一面に設けられる場合に対して、トランジスタ1の平面面積を小さくすることができる。これは、本実施形態に係るトランジスタ1では、ゲート電極200と、異なる面上に設けられるソース電極300およびドレイン電極400との間隔を製造プロセスによって決まるデザインルール(最小加工寸法)よりも小さくすることができるためである。
 さらに、本実施形態に係るトランジスタ1では、ゲート電極200と、ソース電極300およびドレイン電極400とが互いに対向する異なる面上に設けられるため、各電極が同一面に設けられる場合に対して、寄生容量を減少させることができる。
 具体的には、本実施形態に係るトランジスタ1では、ゲート電極200と、ソース電極300およびドレイン電極400との間隔は、トランジスタ1の積層方向の厚みにほぼ等しくなる。したがって、本実施形態に係るトランジスタ1では、ゲート電極とソース電極との距離、およびゲート電極とドレイン電極との距離を長くすることができるため、これらの電極間の寄生容量を減少させることができる。よって、寄生容量が減少した本実施形態に係るトランジスタ1は、より高速の動作を行うことが可能である。
 続いて、図2を参照して、本実施形態に係るトランジスタ1Aのより具体的な構造について説明する。図2は、本実施形態に係るトランジスタ1Aのより具体的な積層構造を示す断面図である。
 図2に示すように、トランジスタ1Aは、図1で示したトランジスタ1に対して、ゲート電極200、ソース電極300、およびドレイン電極400が、第1層間膜510、第2層間膜520、第3層間膜530、および第4層間膜540によって埋め込まれた構造を有する。なお、第1層間膜510、第2層間膜520、第3層間膜530、および第4層間膜540以外の構成については、図1で示したトランジスタ1と同様であるため、ここでの説明は省略する。
 第1層間膜510、第2層間膜520、第3層間膜530、および第4層間膜540は、絶縁性を有する材質で形成される。例えば、第1層間膜510、第2層間膜520、第3層間膜530、および第4層間膜540は、SiN、Si、SiO、SiO、またはAlなどを用いて、単層構造または積層構造にて形成されてもよい。
 第1層間膜510、第2層間膜520、第3層間膜530、および第4層間膜540は、各電極を埋め込むことにより、各電極を外部環境から保護することができる。また、第1層間膜510、第2層間膜520、第3層間膜530、および第4層間膜540は、埋め込んだ各電極および配線を互いに絶縁することができるため、各層間膜上に他の電極、配線または端子などを形成することが可能である。
 <1.2.トランジスタの製造方法>
 次に、図3~図8を参照して、本実施形態に係るトランジスタ1Aの製造方法について説明する。図3~図8は、図2で示すトランジスタ1Aの製造工程を示す断面図である。
 まず、図3に示すように、基板500上に、有機金属気相成長法(Metal Organic Chemical Vapor Deposition:MOCVD)または分子線エピタキシー法(Molecular Beam Epitaxy:MBE)等によって、バッファ層130が積層される。
 基板500は、例えば、シリコン(Si)基板である。また、基板500は、炭化シリコン(SiC)基板、窒化ガリウム(GaN)基板、またはサファイア基板、ダイヤモンド基板、またはヒ化ガリウム(GaAs)基板などであってもよい。ただし、基板500は、基板500上に積層するキャリア走行層110、およびキャリア供給層120と異なる材質で形成されてもよい。このような場合、後述する工程において、基板500の除去を容易に行うことができる。
 バッファ層130は、化合物半導体からなり、基板500の上にキャリア走行層110、およびキャリア供給層120をエピタキシャル成長させるための層である。具体的には、バッファ層130は、基板500と、キャリア走行層110との格子定数が大きく異なる場合に、格子定数を適切に制御することにより、キャリア走行層110の結晶状態を良好にする層である。例えば、基板500がSi基板であり、キャリア走行層110がGaNにて形成される場合、バッファ層130には、AlN、AlGaN、もしくはGaNの単層、またはこれらの積層構造などを用いることができる。
 続いて、バッファ層130上に、MOCVD、またはMBE等を用いて、キャリア走行層110、およびキャリア供給層120が順にエピタキシャル成長して積層される。例えば、キャリア走行層110は、GaNにて形成され、キャリア供給層120は、AlGaNにて形成されてもよい。
 ここで、図示しないが、基板500上のトランジスタ等の各素子を分離するために、素子分離の工程が行われてもよい。具体的には、キャリア供給層120に、第2導電型の不純物(ホウ素など)をイオン注入し、高抵抗化された非活性領域を形成することで、基板500上の各素子を分離してもよい。また、キャリア供給層120をエッチング等で除去し、二次元電子ガス層を形成するヘテロ界面を除去することで、基板500上の各素子を分離してもよい。
 次に、キャリア供給層120上に、化学気相成長法(Chemical Vapor Deposition:CVD)等によって第1層間膜510が積層される。第1層間膜510は、例えば、SiN、Si、SiO、SiO、またはAlなどの単層膜、またはこれらの積層膜として形成されてもよい。
 続いて、図4に示すように、フォトリソグラフィおよびエッチングによって、第1層間膜510の一部領域が開口され、該開口部にNiおよびAuなどの金属を積層した後、パターニングすることにより、ゲート電極200が形成される。これにより、ゲート電極200と、キャリア供給層120との間でショットキー接合が形成される。
 次に、図5に示すように、ゲート電極200上に、CVD等によって第2層間膜520が全面にわたって積層される。第2層間膜520は、第1層間膜510と同様に、例えば、SiN、Si、SiO、SiO、またはAlなどの単層膜、またはこれらの積層膜として形成されてもよい。なお、第2層間膜520中には、必要に応じて各種配線(図示せず)が形成されてもよい。
 続いて、図6に示すように、第2層間膜520上に支持基板550を貼り付けた後、表裏を反転させ、化学機械研磨(Chemical Mechanical Polishing:CMP)などによって、基板500、バッファ層130が除去され、さらにキャリア走行層110が適切な膜厚まで薄膜化される。キャリア走行層110の膜厚は、ソース電極300およびドレイン電極400と、二次元電子ガス層との間の接触抵抗に影響するため、薄膜化したキャリア走行層110の膜厚は、強度を維持できる程度に薄いことが好ましい。また、支持基板550は、いかなる基板であってもよいが、基板500と同様の基板を用いてもよい。
 なお、図6に示す工程は、上記以外の方法でも実行することが可能である。例えば、基板500がシリコン基板の場合、第2層間膜520上に支持基板550を貼り付けた後、支持基板550側をレジスト等で保護し、塩基性溶液(KOHなど)などを用いたウェットエッチングを行うことによって、基板500、バッファ層130を除去し、キャリア走行層110を薄膜化してもよい。また、基板500がサファイア基板などである場合、レーザリフトオフ法を用いることによって、基板500を剥離してもよい。
 次に、図7に示すように、基板500、およびバッファ層130の除去によって露出したキャリア走行層110の面に、CVD等によって第3層間膜530が形成される。なお、第3層間膜530は、第1層間膜510と同様に、例えば、SiN、Si、SiO、SiO、またはAlなどの単層膜、またはこれらの積層膜として形成されてもよい。
 続いて、フォトリソグラフィおよびエッチングによって、第3層間膜530の一部領域が開口され、該開口部にTiおよびAlなどの金属を積層した後、パターニングすることにより、ソース電極300、およびドレイン電極400が形成される。
 なお、第3層間膜530の一部領域を開口する工程において、同時にキャリア走行層110をエッチングすることで、キャリア走行層110に凹部を形成してもよい。このような場合、ソース電極300、およびドレイン電極400と、二次元電子ガス層との距離をより短くすることができるため、ソース電極300、およびドレイン電極400の接触抵抗をさらに低下させることができる。
 続いて、図8に示すように、ソース電極300、およびドレイン電極400上に、CVD等によって第4層間膜540が全面にわたって積層される。第4層間膜540は、第1層間膜510と同様に、例えば、SiN、Si、SiO、SiO、またはAlなどの単層膜、またはこれらの積層膜として形成されてもよい。なお、第4層間膜540中には、必要に応じて各種配線(図示せず)が形成されてもよい。
 さらに、支持基板550を除去することで、図2で示した本実施形態に係るトランジスタ1Aが製造される。なお、支持基板550の除去は、基板500の除去と同様の方法を用いてもよい。
 <1.3.変形例>
 続いて、図9~図11を参照して、本実施形態に係るトランジスタ1の変形例について説明する。本変形例に係るトランジスタは、図2で示したトランジスタ1とは異なるゲート構造を有するトランジスタである。なお、図2と同一符号を付した構成の内容は、図2で説明した内容と実質的に同様であるため、ここでの説明は省略する。
 図9は、MIS(Metal-Insulator-Semiconductor)ゲートを有するトランジスタ1Bの積層構造を示す断面図である。また、図10は、第2導電型(例えば、p型)ゲートを有するトランジスタ1Cの積層構造を示す断面図である。図11は、リセスゲートを有するトランジスタ1Dの積層構造を示す断面図である。
 図9に示すように、本実施形態の一変形例に係るトランジスタ1Bでは、ゲート電極200は、キャリア供給層120上に絶縁層210を介して設けられる。
 絶縁層210は、絶縁性を有する誘電体で形成される。例えば、絶縁層210は、CVDまたは原子層体積法(Atomic Layer Deposition:ALD)を用いて、SiOまたはAlによって形成されていてもよい。本変形例に係るトランジスタ1Bでは、絶縁層210を介してキャリア供給層120上にゲート電極200が設けられることによって、MISゲートが形成される。
 MISゲートでは、ゲート電極200に電圧が印加された場合、キャリア供給層120と絶縁層210との界面にキャリアが引き寄せられ、反転層が形成される。したがって、本変形例に係るトランジスタ1Bでは、反転層の厚さを制御することによって、二次元電子ガス層の電子濃度を制御し、ソース電極300とドレイン電極400との間に流れる電流量を制御することができる。
 このようなMISゲートを有するトランジスタ1Bは、図2で示したショットキーゲートを有するトランジスタ1Aよりも、ゲート構造の耐圧性が向上するため、ゲート電極200にさらに高い電圧を印加することが可能である。
 一方、図10に示すように、本実施形態の他の変形例に係るトランジスタ1Cでは、ゲート電極200は、キャリア供給層120上に半導体層220を介して設けられる。
 半導体層220は、第2導電型(例えば、p型)の半導体にて形成される。例えば、半導体層220は、キャリア供給層120上に、p型不純物であるマグネシウム(Mg)を添加したGaNをエピタキシャル成長させることによって形成されてもよい。また、半導体層220は、キャリア供給層120の表面近傍にp型不純物であるマグネシウム(Mg)などをドーピングすることによって形成されてもよい。本変形例に係るトランジスタ1Cでは、半導体層220を介してキャリア供給層120上にゲート電極200が設けられることによって、第2導電型(p型)ゲートが形成される。
 第2導電型ゲートでは、pn接合によって半導体層220とキャリア供給層120との界面に空乏層が形成される。そのため、ゲート電極200に印加される電圧を変化させ、キャリア供給層120に形成される空乏層の厚さを制御することにより、二次元電子ガス層の電子濃度を制御することができる。したがって、本変形例に係るトランジスタ1Cでは、ゲート電極200に印加される電圧を制御し、空乏層の厚さから二次元電子ガス層の電子濃度を制御することによって、ソース電極300とドレイン電極400との間に流れる電流量を制御することができる。
 このような第2導電型ゲートを有するトランジスタ1Cは、図2で示したショットキーゲートを有するトランジスタ1Aよりも、閾値電圧を高くすることができるため、ノーマリーオフ動作をより容易に実現することが可能である。また、第2導電型ゲートを有するトランジスタ1Cは、ショットキーゲートよりもゲートの逆方向の耐圧を高くすることができるため、リーク電流を抑制することができる。
 また、図11に示すように、本実施形態の他の変形例に係るトランジスタ1Dでは、ゲート電極200は、下方のキャリア供給層120の一部が除去されて設けられる。具体的には、キャリア供給層120に一部が除去された凹部が形成され、ゲート電極200は、キャリア供給層120の凹部を埋め込むように設けられる。
 例えば、キャリア供給層120がAlGaNで形成され、キャリア走行層110がGaNで形成される場合、トランジスタ1Dは、キャリア供給層120の膜厚を薄くすることで、ピエゾ効果などの影響により直下の二次元電子ガス層の電子濃度を低くすることができる。
 このようなリセスゲートを有するトランジスタ1Dは、ゲート電極200の直下のキャリア供給層120の膜厚を制御することにより、トランジスタの閾値電圧を適切に制御することが可能である。
 <<2.第2の実施形態>>
 次に、図12を参照して、本開示の第2の実施形態に係るトランジスタ2について説明する。図12は、本実施形態に係るトランジスタ2の積層構造を示す断面図である。なお、図2と同一符号を付した構成の内容は、図2で説明した内容と実質的に同様であるため、ここでの説明は省略する。
 図12に示すように、本実施形態に係るトランジスタ2では、キャリア供給層120に開口部が設けられ、ゲート電極202は、開口部を通ってキャリア供給層120を貫通する。また、ゲート電極202は、絶縁層212を介してキャリア走行層110と接する。
 ゲート電極202は、キャリア供給層120に設けられた開口部を通ってキャリア供給層120を貫通し、絶縁層212を介してキャリア走行層110と接する。なお、ゲート電極202の材質は、図2で示したゲート電極200と同様である。
 絶縁層212は、絶縁性を有する誘電体で形成される。例えば、絶縁層212は、CVDまたはALDを用いて、SiOまたはAlによって形成されていてもよい。
 すなわち、本実施形態に係るトランジスタ2では、ゲート電極202の直下の領域にキャリア供給層120が設けられず、絶縁層212を用いたMISゲートが設けられる。このような構成によれば、ゲート電極202に電圧が印加された場合、ゲート電極202の直下のキャリア走行層110には、MISゲートによって反転層からなるチャネルが形成される。これにより、本実施形態に係るトランジスタ2は、電界効果トランジスタとして機能することが可能である。
 本実施形態に係るトランジスタ2は、MISゲートによって形成されたチャネルと、ソース電極300およびドレイン電極400との電気的な接続に、高移動度の二次元電子ガス層を用いることができるため、トランジスタ2のオン抵抗を低下させることができる。
 <<3.第3の実施形態>>
 続いて、図13を参照して、本開示の第3の実施形態に係るトランジスタ3について説明する。図13は、本実施形態に係るトランジスタ3の積層構造を示す断面図である。なお、図2と同一符号を付した構成の内容は、図2で説明した内容と実質的に同様であるため、ここでの説明は省略する。
 図13に示すように、本実施形態に係るトランジスタ3では、ソース電極300およびドレイン電極400によって埋め込まれるキャリア走行層110の凹部の側面に絶縁膜310、410が設けられる。
 絶縁膜310、410は、絶縁性を有する材質で形成される。例えば、絶縁膜310、410は、キャリア走行層110に凹部を形成した後、CVDなどを用いてキャリア走行層110の凹部をSiOまたはAlからなる絶縁膜で埋め込み、さらに垂直異方性エッチングを行うことによって形成されてもよい。すなわち、絶縁膜310、410は、凹部のサイドウォールとして形成されてもよい。このとき、凹部の底面の絶縁膜は、全て除去されている必要はなく、凹部の底面の絶縁膜の一部が除去された状態でソース電極300およびドレイン電極400と、キャリア走行層110とは接触していてもよい。
 本実施形態に係るトランジスタ3では、凹部の側面に絶縁膜310、410を形成することにより、ソース電極300およびドレイン電極400の側面から電流パスが形成されることを抑制することができる。したがって、本実施形態に係るトランジスタ3では、特に、トランジスタがオフの際にソース電極300とドレイン電極400との間でリーク電流が発生することを抑制することができる。
 <<4.第4の実施形態>>
 次に、図14を参照して、本開示の第4の実施形態に係るトランジスタ4について説明する。図14は、本実施形態に係るトランジスタ4の積層構造を示す断面図である。なお、図2と同一符号を付した構成の内容は、図2で説明した内容と実質的に同様であるため、ここでの説明は省略する。
 図14に示すように、本実施形態に係るトランジスタ4では、ソース電極300およびドレイン電極400によって埋め込まれるキャリア走行層110の凹部の底面に第1導電型(例えば、n型)領域320、420が設けられる。
 第1導電型領域320、420は、キャリア走行層110の第1導電型不純物の濃度よりも高濃度の第1導電型の領域である。例えば、第1導電型領域320、420は、凹部の底面のキャリア走行層110に、Siなどの第1導電型不純物をイオン注入した後、アニールによって活性化させることで形成することができる。
 また、キャリア走行層110がGaNで形成される場合、第1導電型領域320、420は、ソース電極300およびドレイン電極400の底部にTiなどの金属を用い、金属とGaNとを反応させることで形成されてもよい。Tiなどの金属は、GaNなどの窒化物から窒素(N)を引き抜くため、ソース電極300およびドレイン電極400の底部と接するキャリア走行層110は、窒素が欠損して第1導電型となる。このような方法を用いた場合でも、第1導電型領域320、420を形成することができる。
 本実施形態に係るトランジスタ4では、凹部の底面に側面に第1導電型領域320、420を形成することにより、ソース電極300およびドレイン電極400と、キャリア走行層110とのショットキー障壁を低下させることができる。したがって、本実施形態に係るトランジスタ4では、ソース電極300およびドレイン電極400と、キャリア走行層110との間で良好なオーミック接合を形成することができるため、接触抵抗をさらに低下させることができる。
 <<5.第5の実施形態>>
 続いて、図15および図16を参照して、本開示の第5の実施形態に係るトランジスタ5について説明する。図15は、本実施形態に係るトランジスタ5の平面構造を示す平面図であり、図16は、図15の(A)の切断線にて本実施形態に係るトランジスタ5を切断した断面図である。なお、図2と同一符号を付した構成の内容は、図2で説明した内容と実質的に同様であるため、ここでの説明は省略する。
 図15に示すように、本実施形態に係るトランジスタ5は、トランジスタ領域600の(B)で示した切断線上に設けられる。なお、(B)の切断線によって切断したトランジスタ5の断面図は、第1~第4の実施形態のいずれであってもよい。また、トランジスタ領域600の外周には、トランジスタ5と他の素子と分離するために、絶縁性が高い素子分離領域が形成される。
 素子分離領域は、例えば、該当する領域のキャリア供給層120を除去した後、キャリア供給層120を除去した領域をSiOなどの絶縁体で埋め込むことで形成される。なお、上記の絶縁体を埋め込む工程は、第1層間膜510等を形成する工程と同時に行われてもよい。また、素子分離領域は、例えば、キャリア供給層120に第2導電型の不純物(ホウ素など)をイオン注入することで、キャリア供給層120とキャリア走行層110とのヘテロ界面を破壊し、高抵抗化することで形成されてもよい。
 ここで、図15の(A)にて本実施形態に係るトランジスタ5を切断した断面図を図16に示す。図16に示すように、本実施形態に係るトランジスタ5は、ゲート電極200と接続する取出電極230と、取出電極230と接続する配線層240とをさらに備える。
 取出電極230は、キャリア走行層110を貫通することで、キャリア走行層110のソース電極300およびドレイン電極400が設けられた面に突出する。また、配線層240は、キャリア走行層110のソース電極300およびドレイン電極400が設けられた面と同一面に設けられる。
 本実施形態に係るトランジスタ5では、取出電極230および配線層240により、ゲート電極200への電圧印加をソース電極300およびドレイン電極400が設けられた面と同一面から行うことが可能である。これによれば、本実施形態に係るトランジスタ5は、他の素子との間での配線の引き回しをより容易に行うことが可能である。
 <<6.まとめ>>
 以上にて説明したように、本開示の各実施形態に係るトランジスタでは、ソース電極300およびドレイン電極400は、キャリア供給層120が設けられた一面と対向するキャリア走行層110の他面に設けられる。これにより、本開示の各実施形態に係るトランジスタは、ソース電極300およびドレイン電極400と二次元電子ガス層との接触抵抗を低下させることができる。
 また、本開示の各実施形態に係るトランジスタは、ゲート電極200と、ソース電極300およびドレイン電極400とが互いに対向する異なる面上に設けられるため、各電極が同一面に設けられる場合に対して、寄生容量を減少させることができる。よって、本開示の各実施形態に係るトランジスタは、より高速の動作を行うことが可能である。
 さらに、本開示の各実施形態に係るトランジスタでは、ゲート電極200と、ソース電極300およびドレイン電極400とは互いに対向する異なる面上に設けられるため、ソース電極300およびドレイン電極400と、ゲート電極200との間のデザインルール(最小加工寸法)に囚われず、トランジスタ1の平面面積を小さくすることができる。
 本開示の各実施形態に係るトランジスタは、例えば、無線通信機器等に用いられる高周波(Radio Frequency:RF)モジュール、またはパワーコンディショナ等に用いられる電力変換モジュールなどに好適に用いることが可能である。また、本開示の各実施形態に係るトランジスタを含む高周波モジュールを有する携帯電話、およびスマートフォンについても、本開示の技術的範囲に属する。さらに、本開示の各実施形態に係るトランジスタを含む電力変換モジュールを有するAC(Alternating Current)アダプタ、パワーコンディショナ等のAC-DC(Alternating Current-Direct Current)またはDC-DC(Direct Current-Direct Current)変換器についても、本開示の技術的範囲に属することは言うまでもない。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 化合物半導体からなるキャリア走行層と、
 前記キャリア走行層の上に接して設けられ、前記キャリア走行層とは異種の化合物半導体からなるキャリア供給層と、
 前記キャリア供給層の上に設けられたゲート電極と、
 前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面に設けられたソース電極およびドレイン電極と、
を備える、トランジスタ。
(2)
 前記キャリア走行層のバンドギャップは、前記キャリア供給層のバンドギャップよりも小さい、前記(1)に記載のトランジスタ。
(3)
 前記ソース電極および前記ドレイン電極は、前記キャリア走行層の前記他面に設けられた凹部を埋め込んで設けられる、前記(1)または(2)に記載のトランジスタ。
(4)
 前記凹部の側壁には、絶縁膜が設けられる、前記(3)に記載のトランジスタ。
(5)
 前記凹部の底部には、前記キャリア走行層の第1導電型不純物の濃度よりも高濃度の第1導電型領域が設けられる、前記(3)または(4)に記載のトランジスタ。
(6)
 前記ゲート電極は、前記キャリア供給層の上に絶縁層を介して設けられる、前記(1)~(5)のいずれか一項に記載のトランジスタ。
(7)
 前記ゲート電極は、前記キャリア供給層の上に第2導電型の半導体膜を介して設けられる、前記(1)~(5)のいずれか一項に記載のトランジスタ。
(8)
 前記キャリア供給層には、第2導電型の第2導電型領域が設けられ、前記ゲート電極は、前記第2導電型領域の上に設けられる、前記(1)~(5)のいずれか一項に記載のトランジスタ。
(9)
 前記キャリア供給層には、開口部が設けられ、
 前記ゲート電極は、前記開口部を通って前記キャリア供給層を貫通し、絶縁層を介して前記キャリア走行層と接して設けられる、前記(1)~(5)のいずれか一項に記載のトランジスタ。
(10)
 前記ゲート電極と電気的に接続し、前記キャリア走行層を貫通して前記ソース電極および前記ドレイン電極が設けられた面に突出する取出電極をさらに備える、前記(1)~(9)のいずれか一項に記載のトランジスタ。
(11)
 化合物半導体からなるキャリア走行層と、
 前記キャリア走行層の上に接して設けられ、前記キャリア走行層とは異種の化合物半導体からなるキャリア供給層と、
 前記キャリア供給層の上に設けられたゲート電極と、
 前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面に設けられたソース電極およびドレイン電極と、
を備えるトランジスタを含む、半導体装置。
(12)
 化合物半導体からなるキャリア走行層と、
 前記キャリア走行層の上に接して設けられ、前記キャリア走行層とは異種の化合物半導体からなるキャリア供給層と、
 前記キャリア供給層の上に設けられたゲート電極と、
 前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面に設けられたソース電極およびドレイン電極と、
を備えるトランジスタを含む、電子機器。
(13)
 基板の上に異種の化合物半導体からなるキャリア走行層およびキャリア供給層を順に積層することと、
 前記キャリア供給層の上にゲート電極を形成することと、
 前記基板を除去することと、
 前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面にソース電極およびドレイン電極を形成することと、
を含むトランジスタの製造方法。
(14)
 前記基板の材質は、前記キャリア走行層および前記キャリア供給層とは異なる材質である、前記(13)に記載のトランジスタの製造方法。
(15)
 前記基板の材質は、炭化シリコン、サファイア、シリコン、ダイヤモンド、またはヒ化ガリウムのいずれかである、前記(14)に記載のトランジスタの製造方法。
 1    トランジスタ
 110  キャリア走行層
 120  キャリア供給層
 130  バッファ層
 200  ゲート電極
 300  ソース電極
 400  ドレイン電極
 500  基板
 510  第1層間膜
 520  第2層間膜
 530  第3層間膜
 540  第4層間膜
 550  支持基板

Claims (15)

  1.  化合物半導体からなるキャリア走行層と、
     前記キャリア走行層の上に接して設けられ、前記キャリア走行層とは異種の化合物半導体からなるキャリア供給層と、
     前記キャリア供給層の上に設けられたゲート電極と、
     前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面に設けられたソース電極およびドレイン電極と、
    を備える、トランジスタ。
  2.  前記キャリア走行層のバンドギャップは、前記キャリア供給層のバンドギャップよりも小さい、請求項1に記載のトランジスタ。
  3.  前記ソース電極および前記ドレイン電極は、前記キャリア走行層の前記他面に設けられた凹部を埋め込んで設けられる、請求項1に記載のトランジスタ。
  4.  前記凹部の側壁には、絶縁膜が設けられる、請求項3に記載のトランジスタ。
  5.  前記凹部の底部には、前記キャリア走行層の第1導電型不純物の濃度よりも高濃度の第1導電型領域が設けられる、請求項3に記載のトランジスタ。
  6.  前記ゲート電極は、前記キャリア供給層の上に絶縁層を介して設けられる、請求項1に記載のトランジスタ。
  7.  前記ゲート電極は、前記キャリア供給層の上に第2導電型の半導体膜を介して設けられる、請求項1に記載のトランジスタ。
  8.  前記キャリア供給層には、第2導電型の第2導電型領域が設けられ、前記ゲート電極は、前記第2導電型領域の上に設けられる、請求項1に記載のトランジスタ。
  9.  前記キャリア供給層には、開口部が設けられ、
     前記ゲート電極は、前記開口部を通って前記キャリア供給層を貫通し、絶縁層を介して前記キャリア走行層と接して設けられる、請求項1に記載のトランジスタ。
  10.  前記ゲート電極と電気的に接続し、前記キャリア走行層を貫通して前記ソース電極および前記ドレイン電極が設けられた面に突出する取出電極をさらに備える、請求項1に記載のトランジスタ。
  11.  化合物半導体からなるキャリア走行層と、
     前記キャリア走行層の上に接して設けられ、前記キャリア走行層とは異種の化合物半導体からなるキャリア供給層と、
     前記キャリア供給層の上に設けられたゲート電極と、
     前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面に設けられたソース電極およびドレイン電極と、
    を備えるトランジスタを含む、半導体装置。
  12.  化合物半導体からなるキャリア走行層と、
     前記キャリア走行層の上に接して設けられ、前記キャリア走行層とは異種の化合物半導体からなるキャリア供給層と、
     前記キャリア供給層の上に設けられたゲート電極と、
     前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面に設けられたソース電極およびドレイン電極と、
    を備えるトランジスタを含む、電子機器。
  13.  基板の上に異種の化合物半導体からなるキャリア走行層およびキャリア供給層を順に積層することと、
     前記キャリア供給層の上にゲート電極を形成することと、
     前記基板を除去することと、
     前記キャリア走行層の前記キャリア供給層が設けられた一面と対向する他面にソース電極およびドレイン電極を形成することと、
    を含むトランジスタの製造方法。
  14.  前記基板の材質は、前記キャリア走行層および前記キャリア供給層とは異なる材質である、請求項13に記載のトランジスタの製造方法。
  15.  前記基板の材質は、炭化シリコン、サファイア、シリコン、ダイヤモンド、またはヒ化ガリウムのいずれかである、請求項14に記載のトランジスタの製造方法。
PCT/JP2016/082867 2015-12-24 2016-11-04 トランジスタ、半導体装置、電子機器、およびトランジスタの製造方法 WO2017110267A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/781,301 US11127743B2 (en) 2015-12-24 2016-11-04 Transistor, semiconductor device, electronic apparatus, and method for producing transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015251131 2015-12-24
JP2015-251131 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110267A1 true WO2017110267A1 (ja) 2017-06-29

Family

ID=59089252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082867 WO2017110267A1 (ja) 2015-12-24 2016-11-04 トランジスタ、半導体装置、電子機器、およびトランジスタの製造方法

Country Status (2)

Country Link
US (1) US11127743B2 (ja)
WO (1) WO2017110267A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037067A (zh) * 2018-08-06 2018-12-18 苏州汉骅半导体有限公司 半导体器件及其制造方法
WO2022249391A1 (ja) * 2021-05-27 2022-12-01 日本電信電話株式会社 半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115566053B (zh) * 2022-09-30 2023-10-20 苏州汉骅半导体有限公司 半导体器件及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184957A (ja) * 1988-01-20 1989-07-24 Fujitsu Ltd Mosトランジスタの製造方法
JPH04206766A (ja) * 1990-11-30 1992-07-28 Hitachi Ltd 半導体装置の製造方法
JP2000323498A (ja) * 1999-05-07 2000-11-24 Nec Corp 半導体装置及びその製造方法
JP2004273486A (ja) * 2003-03-05 2004-09-30 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2010192633A (ja) * 2009-02-18 2010-09-02 Furukawa Electric Co Ltd:The GaN系電界効果トランジスタの製造方法
JP2012044113A (ja) * 2010-08-23 2012-03-01 Fujitsu Ltd 半導体装置及びその製造方法
JP2015228459A (ja) * 2014-06-02 2015-12-17 富士通株式会社 化合物半導体装置及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663156B2 (ja) 2001-05-31 2011-03-30 富士通株式会社 化合物半導体装置
KR101632314B1 (ko) * 2009-09-11 2016-06-22 삼성전자주식회사 전계 효과형 반도체 소자 및 그 제조 방법
JP5742159B2 (ja) * 2010-10-05 2015-07-01 サンケン電気株式会社 半導体装置
JP6194516B2 (ja) * 2014-08-29 2017-09-13 豊田合成株式会社 Mis型半導体装置
US9601610B1 (en) * 2015-06-18 2017-03-21 Hrl Laboratories, Llc Vertical super junction III/nitride HEMT with vertically formed two dimensional electron gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184957A (ja) * 1988-01-20 1989-07-24 Fujitsu Ltd Mosトランジスタの製造方法
JPH04206766A (ja) * 1990-11-30 1992-07-28 Hitachi Ltd 半導体装置の製造方法
JP2000323498A (ja) * 1999-05-07 2000-11-24 Nec Corp 半導体装置及びその製造方法
JP2004273486A (ja) * 2003-03-05 2004-09-30 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2010192633A (ja) * 2009-02-18 2010-09-02 Furukawa Electric Co Ltd:The GaN系電界効果トランジスタの製造方法
JP2012044113A (ja) * 2010-08-23 2012-03-01 Fujitsu Ltd 半導体装置及びその製造方法
JP2015228459A (ja) * 2014-06-02 2015-12-17 富士通株式会社 化合物半導体装置及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037067A (zh) * 2018-08-06 2018-12-18 苏州汉骅半导体有限公司 半导体器件及其制造方法
WO2022249391A1 (ja) * 2021-05-27 2022-12-01 日本電信電話株式会社 半導体装置

Also Published As

Publication number Publication date
US11127743B2 (en) 2021-09-21
US20180358359A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
KR101562879B1 (ko) 반도체 장치
US7498618B2 (en) Nitride semiconductor device
TWI610438B (zh) 積體電路裝置及製造其之方法
JP5707786B2 (ja) 化合物半導体装置及びその製造方法
EP2533292A2 (en) Enhancement mode group III-V high electron mobility transistor (HEMT) and method for fabrication
US20130240951A1 (en) Gallium nitride superjunction devices
KR20150092708A (ko) 반도체 장치
JP2009038392A (ja) 半導体装置
JP2004342810A (ja) 化合物半導体装置
JP6244557B2 (ja) 窒化物半導体デバイス
US20120280281A1 (en) Gallium nitride or other group iii/v-based schottky diodes with improved operating characteristics
JP2010267936A (ja) 窒化物半導体装置および窒化物半導体装置製造方法
JP2013033918A (ja) 高電子移動度トランジスタ及びその製造方法
WO2017110267A1 (ja) トランジスタ、半導体装置、電子機器、およびトランジスタの製造方法
JP2009124002A (ja) GaN系半導体装置及びその製造方法
JP5415668B2 (ja) 半導体素子
EP3539159B1 (en) Semiconductor devices with multiple channels and three-dimensional electrodes
JP2011142358A (ja) 窒化物半導体装置
KR20110067512A (ko) 인헨스먼트 노멀리 오프 질화물 반도체 소자 및 그 제조방법
JP2010165896A (ja) 半導体装置及びその製造方法
CN108352408B (zh) 半导体装置、电子部件、电子设备以及半导体装置的制造方法
JP6166508B2 (ja) 半導体装置及び半導体装置の製造方法
US20100117186A1 (en) Semiconductor device and method of producing the same
JP2015119028A (ja) 半導体装置、電界効果トランジスタ、およびダイオード
WO2024016216A1 (en) Nitride-based semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP