WO2017109964A1 - 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム - Google Patents

3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム Download PDF

Info

Publication number
WO2017109964A1
WO2017109964A1 PCT/JP2015/086304 JP2015086304W WO2017109964A1 WO 2017109964 A1 WO2017109964 A1 WO 2017109964A1 JP 2015086304 W JP2015086304 W JP 2015086304W WO 2017109964 A1 WO2017109964 A1 WO 2017109964A1
Authority
WO
WIPO (PCT)
Prior art keywords
sphere
vibrating
manufacturing apparatus
vibration
additive manufacturing
Prior art date
Application number
PCT/JP2015/086304
Other languages
English (en)
French (fr)
Inventor
本田 和広
Original Assignee
技術研究組合次世代3D積層造形技術総合開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 技術研究組合次世代3D積層造形技術総合開発機構 filed Critical 技術研究組合次世代3D積層造形技術総合開発機構
Priority to JP2016510877A priority Critical patent/JP6096379B1/ja
Priority to PCT/JP2015/086304 priority patent/WO2017109964A1/ja
Priority to EP15899113.3A priority patent/EP3210755A4/en
Publication of WO2017109964A1 publication Critical patent/WO2017109964A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/088Outlets, e.g. orifice rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K29/00Arrangements for movement of valve members other than for opening and closing the valve, e.g. for grinding-in, for preventing sticking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a control method for a three-dimensional additive manufacturing apparatus, a control method for the three-dimensional additive manufacturing apparatus, and a control program for the three-dimensional additive manufacturing apparatus.
  • Patent Document 1 discloses a technique for forming a powder layer by supplying powder to a modeling table by dropping powder by its own weight from a supply port of a powder supply unit (paragraph of the same document). [0021] etc.).
  • An object of the present invention is to provide a technique for solving the above-described problems.
  • a three-dimensional additive manufacturing apparatus In order to achieve the above object, a three-dimensional additive manufacturing apparatus according to the present invention A material spraying means for spraying the material of the three-dimensional layered object on the spraying surface and having at least one taper portion whose diameter decreases from upstream to downstream; At least one vibrating sphere disposed in the tapered portion and vibrating; Vibration control means for controlling the vibration of the vibrating sphere; Is provided.
  • a method for controlling a three-dimensional additive manufacturing apparatus includes: A material spraying means for spraying the material of the three-dimensional layered object on the spraying surface and having at least one taper portion whose diameter decreases from upstream to downstream; At least one vibrating sphere disposed in the tapered portion and vibrating; A method for controlling a three-dimensional additive manufacturing apparatus comprising: A vibration control step for controlling the vibration of the vibrating sphere.
  • the program of the three-dimensional additive manufacturing apparatus is: A material spraying means for spraying the material of the three-dimensional layered object on the spraying surface and having at least one taper portion whose diameter decreases from upstream to downstream; At least one vibrating sphere disposed in the tapered portion and vibrating;
  • a control program for a three-dimensional additive manufacturing apparatus comprising: A computer executes a vibration control step for controlling the vibration of the vibrating sphere.
  • the material can be sprayed quantitatively without clogging the supply port.
  • a three-dimensional additive manufacturing apparatus 100 as a first embodiment of the present invention will be described with reference to FIG.
  • the three-dimensional additive manufacturing apparatus 100 laminates materials by spraying the material of the three-dimensional additive manufacturing object on the distribution surface and irradiating the dispersed material with an electron beam or a laser to melt and solidify the material. This is a device for modeling a three-dimensional layered object.
  • the three-dimensional additive manufacturing apparatus 100 includes a material dispersion unit 101, a vibration ball 102, and a vibration control unit 103.
  • the material spreading part 101 has at least one tapered part 111 that spreads the material 120 of the three-dimensional layered object on the spreading surface 130 and whose diameter decreases from upstream to downstream.
  • the vibrating sphere 102 is disposed on the tapered portion 111.
  • the vibration control unit 103 controls the vibration of the vibrating sphere.
  • the vibration sphere since the vibration sphere is vibrated, the material is not clogged in the supply port, and the material can be dispersed quantitatively.
  • FIG. 2 is a diagram for explaining the overall configuration of the three-dimensional additive manufacturing apparatus 200 according to the present embodiment.
  • members unnecessary for the description are omitted as appropriate in order to avoid complication of the drawing.
  • FIG. 4A to FIG. 4C are schematic cross-sectional views illustrating the configuration of the material spraying unit included in the three-dimensional additive manufacturing apparatus according to the prerequisite technology of the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • the material spreading part 401 is a cylindrical member (outer cylinder 411), and a nozzle part 415 is provided on the tip side, that is, on the side close to the spreading surface 430.
  • the upper part side of the nozzle part 415 is a material storage part which stores materials 420, such as powder.
  • the nozzle part 415 and the material storage part are integrated.
  • the material 420 is stored in the material storage unit, and the shortage is replenished by a mechanism (not shown).
  • the nozzle part 415 has a small nozzle diameter on the side close to the spreading surface 430 in order to control the material flow rate. That is, the nozzle portion 415 has a tapered shape in which the nozzle diameter decreases from upstream to downstream. And the material 420 is spread
  • the material spraying unit 401 or the spraying surface 430 relatively two-dimensionally moves by a two-dimensional drive unit (not shown), so that the material 420 is sprayed two-dimensionally on the spraying surface 430. Is done.
  • FIG. 4B and 4C are schematic enlarged side views of the nozzle portion 415.
  • FIG. FIG. 4B shows a state where a material 420 such as powder forms a pool in the nozzle portion 415 and is clogged.
  • This clogged state is a state that occurs when, for example, powder passes through a nozzle portion 415 having a small diameter, a thin tube, or the like.
  • the relationship between the nozzle diameter R n and the powder size, such clogging state implicated as the nozzle diameter ⁇ powder diameter ⁇ 6 it is said and phenomenologically what occurs.
  • This clogging state is called a powder dome because the powder forms a convex arch upward.
  • FIG. 4C shows a state in which the powder flows without forming a pool at the nozzle portion 415.
  • the conditions under which the material 420 such as powder forms a pool are complicatedly related to parameters such as powder type, powder diameter, nozzle diameter, and nozzle taper angle ⁇ .
  • the powder dome is broken (disintegrated) by applying vibration to the nozzle portion 415 to flow the powder.
  • the above-mentioned parameters are complicatedly entangled, and such a method cannot be used for general purposes.
  • the above-mentioned powder dome clogged state, clogging
  • the material 420 such as powder cannot be quantitatively dispersed by a method that simply gives vibration to the nozzle. Therefore, there has been a demand for an apparatus that can quantitatively disperse a material 420 such as powder regardless of parameters such as powder type, powder diameter, nozzle diameter, and nozzle taper angle.
  • FIG. 2 is a diagram showing an outline of the overall configuration of the three-dimensional additive manufacturing apparatus 200 according to the present embodiment.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the material dispersion unit of the three-dimensional additive manufacturing apparatus 200 according to the present embodiment.
  • the three-dimensional additive manufacturing apparatus 200 includes a material spreading unit 201, a vibrating sphere 202, and a material flow rate control unit 203.
  • the material spraying unit 201 includes an outer cylinder 211, an inner cylinder 212, a material supply port 213, a spring 214, a nozzle 215, and an inner cylinder fixture 216.
  • the material flow rate control unit 203 is connected to the vibrator 231.
  • the three-dimensional additive manufacturing apparatus 200 further includes an XY stage 260, an XY stage control unit 261, and a material distribution control unit 280.
  • the material dispersion unit 201 includes an outer cylinder 211 and an inner cylinder 212.
  • the inner cylinder 212 is also a material storage unit that stores the material 220 of the three-dimensional layered object.
  • the inner cylinder 212 is attached to the inner surface of the outer cylinder 211 by being screwed into a thread cut in the upper inner surface of the outer cylinder 211. Further, the inner cylinder 212 is supported by a spring 214 provided at the lower part of the outer cylinder 211. The arrangement position of the inner cylinder 212 can be freely adjusted by the amount of screwing and the support force by the spring 214.
  • the position of the inner cylinder 212 is fixed to the position by using the inner cylinder fixture 216.
  • the material 220 is stored in the inner cylinder 212. Further, if the position of the inner cylinder 212 is adjusted so that the tip of the inner cylinder 212 is in contact with the vibrating ball 202, the material 220 stored in the inner cylinder 212 can be sealed. If an inert gas is filled in, contamination of the material 220 can be prevented.
  • the tip of the material spraying part 201 that is, the tip of the outer cylinder 211 has a tapered shape (tapered shape) and forms a nozzle part 215. Also, the diameter of the inner cylinder 212 gradually decreases near the tip of the inner cylinder 212 to form a taper and a tapered shape.
  • the vibrating sphere 202 is disposed on a material flow path, which is a flow path through which the material 220 passes from the inner cylinder 212 through the nozzle portion 215 and is supplied to the spreading surface 230, that is, a taper at the tip or lower portion of the nozzle portion 215. It is arranged on the tapered portion 217 which is a shape portion. When the vibration ball 202 is stationary at the taper portion 217, the opening of the nozzle portion 215 is closed with the vibration ball 202.
  • the material flow rate control unit 203 controls the supply amount of the material 220 sprayed from the material spraying unit 201 to the spraying surface 230. More specifically, the material flow rate control unit 203 vibrates the vibrator 231 connected to the material flow rate control unit 203 to give vibration to the outer cylinder 211 (or the material spraying unit 201). When vibration is applied to the outer cylinder 211, vibration is also applied to the vibration sphere 202, the vibration sphere 202 is lifted from the tapered portion 217, and a gap is generated between the vibration sphere 202 and the tapered portion 217, and the material 220 is generated from this gap. Flows out and the material 220 is spread on the spreading surface 230.
  • the material flow rate control unit 203 generates a signal for vibrating the vibrator 231. This signal is a rectangular wave, and the signal intensity is controlled by the amplitude value and the frequency value from the material dispersion control unit 280.
  • the signal generated by the material flow rate control unit 203 may be a sine wave.
  • the vibrator 231 may be a vibration source such as a piezo element.
  • the direction of vibration applied from the vibrator 231 to the outer cylinder 211 is the horizontal direction, but is not limited thereto. Since the density of the vibrating sphere 202 is larger than the density of the material 220 such as powder existing around the vibrating sphere 202, the so-called Brazil nut effect (Musley effect) causes the vibrating sphere 202 to move downward due to lateral vibration. I try to stay.
  • the material spreading unit 201 is detachably housed in the cartridge holder 270, and the material spreading unit 201 and the cartridge holder 270 constitute a cartridge unit 240. As described above, after the material spraying portion 201 is set in the cartridge holder 270, the inner cylinder 212 can be removed from the outer cylinder 211 and replaced.
  • the material when so-called monochromatic printing is performed using one kind of material 220, when replenishing the material 220, the material may be supplied from the material supply port 213 or the inner cylinder 212 may be replaced. Further, when so-called multicolor printing is performed using a plurality of materials 220, the inner cylinder 212 may be replaced.
  • the material spraying part 201 is a cartridge system, multicolor printing can be easily performed.
  • the material spreading unit 201 is the cartridge unit 240 that can be removed from the cartridge holder 270, the apparatus is not soiled and management is facilitated.
  • the XY stage 260 drives the cartridge unit 240 two-dimensionally, and the XY stage control unit 261 controls the XY stage 260.
  • the material distribution control unit 280 instructs and controls a control target value to the material flow rate control unit 203 and the XY stage control unit 261 based on the distribution amount of the material 220 and the structure of the three-dimensional layered object.
  • the cartridge fixing spring 271 is provided in the lower part of the cartridge holder 270 and is disposed at a position facing the vibrator 231.
  • the cartridge fixing spring 271 holds the material spreading unit 201 from the lateral direction and fixes the material spreading unit 201 so as not to move.
  • the inner cylinder 212 is supported by a spring 214 provided on the inner surface of the outer cylinder 211. Then, when the position of the inner cylinder 212 is adjusted so that the tip of the inner cylinder 212 and the vibration ball 202 are separated, a part of the material 220 stored in the inner cylinder 212 is lowered from the opening at the tip of the inner cylinder 212. Flows down (downstream). Since the vibrating sphere 202 is in contact with the tapered portion 217 of the nozzle portion 215 at the tip of the outer cylinder 211, the material 220 that has flowed down from the inner cylinder 212 is stored above the vibrating sphere 202.
  • the inner cylinder 212 is pushed in until the tip of the inner cylinder 212 contacts the vibration ball 202, and the position of the inner cylinder 212 is fixed by the inner cylinder fixture 216.
  • the material 220 stored in the inner cylinder 212 stops flowing out.
  • the vibrating sphere 202 When the vibrator 231 is vibrated, the vibrating sphere 202 is separated from the tapered portion 217 of the nozzle portion 215, and a gap is formed between the vibrating sphere 202 and the tapered portion 217, and the material 220 flows out from this gap. The material 220 is spread on the spreading surface 230.
  • the material since the material is sprayed by a mechanism that applies vibration to the vibrating sphere, the material can be quantitatively sprayed without clogging the supply port.
  • the material spraying portion is a cartridge system, material replacement and replenishment, single color printing, multicolor printing, and the like can be easily performed.
  • FIG. 5 is a diagram for explaining the overall configuration of the three-dimensional additive manufacturing apparatus 500 according to the present embodiment.
  • the three-dimensional additive manufacturing apparatus 500 according to the present embodiment is different from the second embodiment in that it includes two vibrating spheres. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted. In the description of the present embodiment, members unnecessary for the description are omitted as appropriate in order to avoid complication of the drawing.
  • the three-dimensional additive manufacturing apparatus 500 further includes a second vibration sphere 502 (second vibration sphere) and an attachment 590.
  • the vibration sphere 502 is downstream of the vibration sphere 202 (first vibration sphere) on the material flow path, which is a flow path through which the material 220 passes from the inner cylinder 212 through the nozzle portion 215 and is supplied to the spreading surface 230. Is arranged.
  • the diameter of the vibrating sphere 502 is smaller than the diameter of the vibrating sphere 202.
  • the vibrating sphere 202 and the vibrating sphere 502 may be arranged such that the centers of the vibrating sphere 202 and the vibrating sphere 502 are arranged on the same axis or shifted from each other.
  • the nozzle portion 515 is formed by the attachment 590.
  • the vibrating sphere 502 is disposed on the tapered portion 516 of the attachment 590 and contacts the tapered portion 516 to close the opening of the attachment 590. Since the attachment 590 is removable, the diameter, length, material, and the like of the nozzle portion 515 can be changed variously by replacing the attachment 590 according to the type and particle size of the material 220 powder. You can also.
  • FIG. 6A is a diagram illustrating the configuration of the material spreading unit 201 of the three-dimensional additive manufacturing apparatus 500 according to the present embodiment, and is a schematic cross-sectional view of the material spreading unit 201.
  • the inner cylinder 212 is filled with a material 220.
  • the vibration sphere 202 is disposed on the upstream side, and the vibration sphere 502 is disposed on the downstream side.
  • the diameter of the vibrating sphere 502 is smaller than the diameter of the vibrating sphere 202.
  • FIG. 6B is a schematic cross-sectional view illustrating the configuration of the cartridge unit of the three-dimensional additive manufacturing apparatus 500 according to the present embodiment, and is a diagram illustrating a state where the material dispersion unit 201 is removed.
  • the cartridge holder 270 is provided with a cartridge fixing spring 271 and a vibrator 231.
  • the cartridge holder 270 has a hollow structure.
  • FIG. 6C is a schematic cross-sectional view illustrating the configuration of the cartridge unit of the three-dimensional additive manufacturing apparatus 500 according to the present embodiment, and is a diagram illustrating a state in which the material spreading unit 201 is set in the cartridge holder 270. In the hollow portion of the cartridge holder 270, the material spreading unit 201 is set and stored.
  • the vibrating sphere 202 becomes difficult to vibrate. Therefore, the material 220 is stored in the inner cylinder 212, and an opening smaller than the diameter of the vibrating sphere 202 is provided at the lower part of the inner cylinder 212 so that the material 220 flows out from this opening. Thereby, even if the weight and pressure of the material 220 increase, the force applied to the vibrating sphere 202 decreases because the area of the opening of the inner cylinder 212 is small.
  • the amount of the material 220 stored in the upper part of the vibration sphere 202 is kept constant. Even if the amount changes, the pressure fluctuation applied to the vibrating sphere 202 can be ignored. Accordingly, a certain amount of the material 220 can be released even if the material 220 is consumed.
  • FIG. 7A is a diagram showing an outline of material supply by the three-dimensional additive manufacturing apparatus 500 according to this embodiment, and shows a case where the vibrator 231 is OFF.
  • FIG. 7B is a diagram showing an outline of material supply by the three-dimensional additive manufacturing apparatus 500 according to the present embodiment, and shows a case where the vibrator 231 is ON.
  • the outer cylinder 211 is fixed to the cartridge holder 270 by a cartridge fixing spring 271.
  • the vibrator 231 is in contact with the outer cylinder 211.
  • the vibrating ball 202 and the tapered portion 217 of the outer cylinder 211 are in contact with each other, so that the material 220 flowing out from the inner cylinder 212 is stored above the vibrating ball 202.
  • the vibrating sphere 502 is in contact with the tapered portion 517 of the attachment 590, even if the material 220 is stored above the vibrating sphere 502, the material 220 does not flow downward (downstream).
  • the material 220 is not spread on the spreading surface 230.
  • the vibrating sphere 502 vibrates, the vibrating sphere 502 moves away from the tapered portion 517, and a gap is formed between the vibrating sphere 502 and the tapered portion 517, and the material stored above the vibrating sphere 502 from this gap. 220 flows downward (downstream). Thereby, the material 220 is spread on the spreading surface 230.
  • the outflow amount of the material 220 flowing out from the portion where the vibration sphere 202 is disposed and the material 220 flowing out from the portion where the vibration sphere 502 is disposed is different from the amount of spillage.
  • the outflow amount of the material 220 flowing out from the portion where the vibration ball 202 is disposed is larger than the outflow amount of the material 220 flowing out from the portion where the vibration ball 502 is disposed. Therefore, after a certain period of time, the material 220 stored between the vibrating sphere 202 and the vibrating sphere 502 becomes full.
  • the vibrating sphere 202 and the vibrating sphere 502 vibrate synchronously, so the material 220 flows out below the vibrating sphere 502.
  • the material 220 is sprayed on the spraying surface 230 immediately below the material spraying unit 201.
  • the storage amount of the material 220 between the vibration sphere 202 and the vibration sphere 502 decreases due to the difference in the outflow amount of the material 220 flowing out below the vibration sphere 202 and the vibration sphere 502, the material 220 Automatically refilled.
  • the vibrator 231 when the vibrator 231 is turned off, the material 220 is filled between the vibrating sphere 202 and the vibrating sphere 502. In this state, pressure is applied to the vibrating sphere 502 from above, and the vibrating sphere 502 contacts and is fixed to the tapered portion 517, so that the material 220 does not flow downward.
  • FIG. 8 is a diagram illustrating the relationship between the vibrating sphere and the nozzle opening of the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • FIG. 9 is a diagram illustrating the relationship between the vibration sphere diameter and the number of materials of the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • FIG. 10 is a diagram illustrating the relationship between the amplitude given to the vibrating sphere of the three-dimensional additive manufacturing apparatus according to the present embodiment and the amount of the supplied material.
  • the nozzle angle of the nozzle portion 515 is ⁇ r
  • the radius of the vibrating sphere 502 is R
  • the diameter of the nozzle opening 801 is Rn
  • the material diameter of the material 220 is Rc.
  • the number of powders flowing out from the nozzle opening 801 and the band 802 by one vibration of the vibrating sphere 502 can be seen as Nb and Ns, respectively.
  • the amount of powder passing through the band 802 is larger than the amount of powder flowing through the nozzle opening 801, the powder stays in the gap between the vibrating sphere 502 and the nozzle opening 801, and the nozzle opening This is because a powder dome is easily formed on the portion 801. If the expression (3) is established, the amount of the powder that has passed through the band 802 becomes the amount of the powder that passes through the nozzle opening 801 as it is, and the powder flows out stably.
  • the relationship between stability and instability shown by the expression (3) is shown in a region, and it is understood that the vibration sphere diameter of the vibration sphere 502 must be smaller than 1.25 mm for stable operation. .
  • FIG. 11 is a powder flow rate table showing a combination of a powder flow rate, a powder, and a vibrating sphere included in the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • the powder flow rate table 1100 stores the powder 1102 and the vibrating sphere 1103 in association with the powder flow rate 1101.
  • the powder 1102 stores the type and particle size of the powder.
  • the vibration sphere 1103 stores the sphere diameter of the vibration spheres 202 and 502, the number of vibrations given to each, and the like.
  • the powder dispersion control unit 280 may control the flow rate of the powder as the material 220 by adjusting the frequency with reference to the powder flow rate table 1100, for example.
  • the material 220 may be powder such as metal, liquid, glass or plastic particles, and is not limited thereto.
  • the material can be sprayed quantitatively without clogging the supply port.
  • the material spraying portion is a cartridge system, material replacement and replenishment, single color printing, multicolor printing, and the like can be easily performed.
  • the material spraying portion is a cartridge system, material replacement and replenishment, single color printing, multicolor printing, and the like can be easily performed.
  • the material spraying portion is a cartridge system, material replacement and replenishment, single color printing, multicolor printing, and the like can be easily performed.
  • the material spraying portion is a cartridge system, material replacement and replenishment, single color printing, multicolor printing, and the like can be easily performed.
  • the material spraying portion is a cartridge system, material replacement and replenishment, single color printing, multicolor printing, and the like can be easily performed.
  • the material spraying portion is a cartridge system, material replacement and replenishment, single color printing, multicolor printing, and the like can be easily performed.
  • the vibration of the vibrating sphere can be turned on or off, the flow rate of the material can be pulsed
  • FIG. 12 is a diagram for explaining the overall configuration of the three-dimensional additive manufacturing apparatus 1200 according to the present embodiment.
  • the three-dimensional additive manufacturing apparatus 1200 according to the present embodiment is different from the third embodiment in that it includes three vibrating spheres. Since other configurations and operations are the same as those of the third embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted. In the description of the present embodiment, members unnecessary for the description are omitted as appropriate in order to avoid complication of the drawing.
  • the three-dimensional additive manufacturing apparatus 1200 includes a third vibration sphere 1202 (third vibration sphere).
  • the vibration sphere 1202 is disposed on the upstream side of the vibration sphere 202 and is in contact with the tapered portion 1217.
  • the diameter of the vibration sphere 1202 is larger than the diameter of the vibration sphere 202.
  • the arrangement of the vibration spheres may be such that the sphere diameter decreases from upstream to downstream, but the arrangement of the vibration spheres is not limited to this, and depends on the type of material to be sprayed, the particle size, etc.
  • vibration balls having various sphere diameters may be appropriately arranged.
  • the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where an information processing program that implements the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention on a computer, a program installed on the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. . In particular, at least a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.

Abstract

3次元積層造形装置において、材料が供給口に詰まることがなく、材料を定量的に散布すること。3次元積層造形装置であって、3次元積層造形物の材料を散布面上に散布し、上流から下流に向けて径が縮小するテーパ部を少なくとも1つ有する材料散布手段を備える。3次元積層造形装置であって、前記材料散布手段の前記テーパ部に配置され、振動する少なくとも1つの振動球と、前記振動球の振動を制御する振動制御手段をさらに備える。

Description

3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
 本発明は、3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラムに関する。
 上記技術分野において、特許文献1には、粉末供給部の供給口から粉末を自重により落下させることにより、粉末を造形台に供給して粉末層を形成する技術が開示されている(同文献段落[0021]等)。
特開2010-132960号公報
 しかしながら、上記文献に記載の技術では、材料が供給口に詰まり、材料を定量的に散布することができなかった。
 本発明の目的は、上述の課題を解決する技術を提供することにある。
 上記目的を達成するため、本発明に係る3次元積層造形装置は、
 3次元積層造形物の材料を散布面上に散布し、上流から下流に向けて径が縮小するテーパ部を少なくとも1つ有する材料散布手段と、
 前記テーパ部に配置され、振動する少なくとも1つの振動球と、
 前記振動球の振動を制御する振動制御手段と、
 を備える。
 上記目的を達成するため、本発明に係る3次元積層造形装置の制御方法は、
 3次元積層造形物の材料を散布面上に散布し、上流から下流に向けて径が縮小するテーパ部を少なくとも1つ有する材料散布手段と、
 前記テーパ部に配置され、振動する少なくとも1つの振動球と、
 を備える3次元積層造形装置の制御方法であって、
 前記振動球の振動を制御する振動制御ステップを含む。
 上記目的を達成するため、本発明に係る3次元積層造形装置のプログラムは、
 3次元積層造形物の材料を散布面上に散布し、上流から下流に向けて径が縮小するテーパ部を少なくとも1つ有する材料散布手段と、
 前記テーパ部に配置され、振動する少なくとも1つの振動球と、
 を備える3次元積層造形装置の制御プログラムであって、
 前記振動球の振動を制御する振動制御ステップをコンピュータに実行させる。
 本発明によれば、材料が供給口に詰まることがなく、材料を定量的に散布することができる。
本発明の第1実施形態に係る3次元積層造形装置の構成を示す図である。 本発明の第2実施形態に係る3次元積層造形装置の全体構成の概略を示す図である。 本発明の第2実施形態に係る3次元積層造形装置の材料散布部の構成を示す概略断面図である。 本発明の第2実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置の備える材料散布部の構成を示す概略側面図である。 本発明の第2実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置の備える材料散布部のノズル部の構成を示す概略拡大側面図である。 本発明の第2実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置の備える材料散布部のノズル部の構成を示す概略拡大側面図である。 本発明の第3実施形態に係る3次元積層造形装置の構成を示す図である。 本発明の第3実施形態に係る3次元積層造形装置の材料散布部の構成を示す概略断面図である。 本発明の第3実施形態に係る3次元積層造形装置のカートリッジユニットの構成を示す概略断面図である。 本発明の第3実施形態に係る3次元積層造形装置のカートリッジユニットの構成を示す概略断面図である。 本発明の第3実施形態に係る3次元積層造形装置による材料供給の概略を示す図である。 本発明の第3実施形態に係る3次元積層造形装置による材料供給の概略を示す図である。 本発明の第3実施形態に係る3次元積層造形装置の振動球とノズル開口部との関係を示す図である。 本発明の第3実施形態に係る3次元積層造形装置の振動球径と材料個数との関係を示す図である。 本発明の第3実施形態に係る3次元積層造形装置の振動球に与える振幅と供給粉体量との関係を示す図である。 本発明の第3実施形態に係る3次元積層造形装置が備える粉体流量と粉体および振動球との組み合わせ示す粉体流量テーブルである。 本発明の第4実施形態に係る3次元積層造形装置の構成を示す図である。
 以下に、本発明を実施するための形態について、図面を参照して、例示的に詳しく説明記載する。ただし、以下の実施の形態に記載されている、構成、数値、処理の流れ、機能要素などは一例に過ぎず、その変形や変更は自由であって、本発明の技術範囲を以下の記載に限定する趣旨のものではない。
 [第1実施形態]
 本発明の第1実施形態としての3次元積層造形装置100について、図1を用いて説明する。3次元積層造形装置100は、散布面上に3次元積層造形物の材料を散布し、散布した材料を電子ビームやレーザなどで照射して、材料を溶融および凝固させることにより、材料を積層して3次元積層造形物を造形する装置である。
 図1に示すように、3次元積層造形装置100は、材料散布部101と、振動球102と、振動制御部103とを含む。材料散布部101は、3次元積層造形物の材料120を散布面130上に散布し、上流から下流に向けて径が縮小するテーパ部111を少なくとも1つ有する。振動球102は、テーパ部111に配置される。振動制御部103は、前記振動球の振動を制御する。
 本実施形態によれば、振動球に振動を与えるので、材料が供給口に詰まることがなく、材料を定量的に散布することができる。
 [第2実施形態]
 次に本発明の第2実施形態に係る3次元積層造形装置200について、図2乃至図4Cを用いて説明する。図2は、本実施形態に係る3次元積層造形装置200の全体構成を説明するための図である。なお、本実施形態の説明においては、図が煩雑になるのを避けるため、説明に不要な部材などは適宜省略している。
 <前提技術>
 まず、図4A乃至図4Cを用いて、本実施形態に係る3次元積層造形装置200の前提技術について説明する。図4A乃至図4Cは、本実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置の備える材料散布部の構成を示す概略断面図である。
 図4Aに示したように、材料散布部401は、筒状の部材(外筒411)となっており、先端側、つまり、散布面430に近い側にノズル部415が設けられている。また、ノズル部415の上部側は、粉体などの材料420を貯蔵する材料貯蔵部となっている。材料散布部401は、ノズル部415と材料貯蔵部とが一体となっている。材料420は、材料貯蔵部に貯蔵されており、不足分などは図示しない機構によって補充される。
 ノズル部415は、材料流量を制御するため、散布面430に近い側のノズル径が小さくなっている。すなわち、ノズル部415は、上流から下流に向けてノズルの径が減少し、先細りする形状となっている。そして、材料420は、材料貯蔵部からノズル部415を経由して、散布面430に散布される。また、図示しない2次元駆動部によって、材料散布部401または散布面430(造形面)が相対的に2次元的に移動することによて、材料420が散布面430上に2次元的に散布される。
 図4Bおよび図4Cは、ノズル部415の概略拡大側面図である。図4Bは、ノズル部415に粉体などの材料420がだまりを形成して、詰まっている状態を示している。この詰まり状態は、例えば、粉体が、微小な径のノズル部415や細管などを通過する場合に生じる状態である。ノズル径Rnと粉体径との関係に、ノズル径≒粉体径×6という関係があるとこのような詰まり状態が発生するものと現象論的に言われている。この詰まり状態は、粉体が上に凸のアーチを形成することからパウダードーム(Powder dome)と呼ばれている。
 図4Cは、粉体がノズル部415でだまりを形成せずに流れている様子を示している。粉体などの材料420が、だまり(詰まり状態、Powder dome)を形成する条件は、粉体の種類や粉体径、ノズル径、ノズルのテーパ角度θなどのパラメータが複雑に関係している。また、仮にパウダードーム(詰まり状態、だまり)が形成されても、ノズル部415に振動を与えることによってパウダードームを破壊して(崩壊させて)、粉体を流すという方法もある。
 しかしながら、このような方法を取る場合も、上述のパラメータが複雑に絡み合い、このような方法を汎用的に使用することができなかった。例えば、粉体の種類が異なれば、その他の条件やパラメータが同じであっても、上述のパウダードーム(詰まり状態、だまり)が形成さたり、形成されなかったりする場合がある。したがって、単にノズルに振動を与えるような方法では、粉体などの材料420を定量的に散布することができなかった。よって、粉体の種類や粉体径、ノズル径、ノズルのテーパ角度などのパラメータによらずに、粉体などの材料420を定量的に散布することができる機器が望まれていた。
 <本実施形態の技術>
 図2は、本実施形態に係る3次元積層造形装置200の全体構成の概略を示す図である。図3は、本実施形態に係る3次元積層造形装置200の材料散布部の構成を示す概略断面図である。3次元積層造形装置200は、材料散布部201と、振動球202と、材料流量制御部203とを備える。
 材料散布部201は、外筒211と、内筒212と、材料供給口213と、バネ214と、ノズル215と、内筒固定具216とを有する。材料流量制御部203は、振動器231に接続されている。3次元積層造形装置200は、さらに、XYステージ260と、XYステージ制御部261と、材料散布制御部280とを備える。
 材料散布部201は、外筒211と内筒212とを含んで構成されている。そして、内筒212は、3次元積層造形物の材料220を貯蔵する材料貯蔵部ともなっている。内筒212は、外筒211の上部の内面に切られたネジ山にねじ込むことにより、外筒211の内面に取り付けられる。さらに、内筒212は、外筒211の下部に設けられたバネ214により支持される。内筒212の配置位置は、ねじ込みの量と、バネ214による支持力とにより自在に調整することができる。
 そして、内筒212が所定の位置までねじ込まれたら、内筒固定具216を用いて、内筒212の位置をその位置に固定する。材料220は、内筒212に貯蔵される。また、内筒212の先端が振動球202と接触する位置となるように内筒212の位置を調整すれば、内筒212に貯蔵された材料220を密封することができ、内筒212の内部に不活性ガスを充填すれば、材料220にコンタミ(contamination)が付着することを防ぐことができる。
 材料散布部201の先端、つまり、外筒211の先端は、テーパ形状(先細り形状)となっており、ノズル部215を形成している。また、内筒212の先端付近も内筒212の径が徐々に減少して、テーパを形成し、先細り形状となっている。
 振動球202は、材料220が内筒212からノズル部215を通過して散布面230に対して供給される流路である材料流路上に配置、すなわち、ノズル部215の先端あるいは下部にあるテーパ形状部であるテーパ部217に配置されている。そして、振動球202がテーパ部217で静止している状態では、ノズル部215の開口部が振動球202で塞がれている状態となる。
 材料流量制御部203は、材料散布部201から散布面230に散布される材料220の供給量を制御する。より具体的には、材料流量制御部203は、材料流量制御部203に接続された振動器231を振動させて、外筒211(または材料散布部201)に振動を与える。外筒211に振動が与えられると、振動球202にも振動が加えられ、振動球202がテーパ部217から浮き上がり、振動球202とテーパ部217との間に隙間が生じ、この隙間から材料220が流れ出て、散布面230に材料220が散布される。
 材料流量制御部203は、振動器231を振動させる信号を発生させる。この信号は、矩形波であり、信号強度は、材料散布制御部280からの振幅値および周波数値で制御される。なお、材料流量制御部203で発生させる信号は、サイン波であってもよい。
 振動器231は、ピエゾ素子等の振動源であればよい。振動器231から外筒211に対して与えられる振動の方向は横方向となるが、これには限定されない。そして、振動球202の密度は、振動球202の周囲に存在する粉体などの材料220の密度より大きいので、いわゆるブラジルナッツ効果(ミューズリー効果)によって、振動球202は横方向の振動によって下方にいようとする。
 材料散布部201は、カートリッジホルダ270に取り外し可能に収納され、材料散布部201とカートリッジホルダ270とでカートリッジユニット240を構成する。このように、材料散布部201をカートリッジホルダ270にセットした後は、内筒212を外筒211から取り外して交換することができる。
 例えば、1種類の材料220を用いて、いわゆる単色刷りをする場合に、材料220を補充するときには、材料供給口213から材料を供給したり、内筒212を取り替えてもよい。また、複数の材料220を用いて、いわゆる多色刷りをする場合には、内筒212を取り替えればよい。このように、材料散布部201をカートリッジ方式としたので容易に多色刷りなどを実施できる。また、材料散布部201をカートリッジホルダ270から取り外すことができるカートリッジユニット240としたので、装置が汚れず、管理が容易になる。
 XYステージ260は、カートリッジユニット240を2次元的に駆動し、XYステージ制御部261は、XYステージ260を制御する。材料散布制御部280は、材料220の散布量や3次元積層造形物の構造などに基づいて、材料流量制御部203およびXYステージ制御部261に対して制御目標値を指示して、制御する。
 カートリッジ固定バネ271は、カートリッジホルダ270の下部に設けられ、振動器231と対向する位置に配置されている。カートリッジ固定バネ271は、材料散布部201を横方向から押さえて、材料散布部201が動かないように固定する。
 材料220を貯蔵している材料散布部201は、内筒212が外筒211の内面に設けられたバネ214により支持されている。そして、内筒212の先端と振動球202とが離れるように内筒212の位置を調整すると、内筒212の先端の開口部から、内筒212に貯蔵されている材料220の一部が下方(下流)に向かって流れ落ちる。そして、振動球202は、外筒211の先端のノズル部215のテーパ部217と接触しているので、内筒212から流れ落ちた材料220は、振動球202の上方に貯留される。
 これに対して、材料220の流出を止めたい場合には、内筒212の先端が振動球202に接触するまで内筒212を押し込み、内筒固定具216で内筒212の位置を固定すれば、内筒212に貯蔵された材料220の流出が止まる。
 そして、振動器231を振動させれば、振動球202がノズル部215のテーパ部217から離れ、振動球202とテーパ部217との間に隙間が形成され、この隙間から材料220が流出して、散布面230に対して材料220が散布される。
 本実施形態によれば、振動球に振動を与える機構で材料を散布するので、材料が供給口に詰まることがなく、材料を定量的に散布することができる。また、材料散布部をカートリッジ方式としたので、材料の入れ替えや補充、単色刷り、多色刷りなどを容易に実施できる。
 [第3実施形態]
 次に本発明の第3実施形態に係る3次元積層造形装置500について、図5乃至図11を用いて説明する。図5は、本実施形態に係る3次元積層造形装置500の全体構成を説明するための図である。本実施形態に係る3次元積層造形装置500は、上記第2実施形態と比べると、振動球を2つを有する点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。なお、本実施形態の説明においては、図が煩雑になるのを避けるため、説明に不要な部材などは適宜省略している。
 3次元積層造形装置500は、2番目の振動球502(第2振動球)と、アタッチメント590とをさらに備える。振動球502は、材料220が内筒212からノズル部215を通過して散布面230に対して供給される流路である材料流路上において、振動球202(第1振動球)よりも下流側に配置されている。振動球502の直径は、振動球202の直径よりも小さくなっている。また、振動球202と振動球502とは、振動球202および振動球502の中心が、同一軸上に配置されていてもよいし、ずれて配置されていてもよい。
 そして、アタッチメント590を外筒211の先端部分に装着すると、アタッチメント590によりノズル部515が形成される。振動球502は、アタッチメント590のテーパ部516に配置され、テーパ部516に接触して、アタッチメント590の開口部を塞ぐ。アタッチメント590は、取り外し可能となっているので、材料220である粉体の種類や粒径などに応じて、アタッチメント590を取り替えればノズル部515の直径や長さ、材質などを様々に変えることもできる。
 図6Aは、本実施形態に係る3次元積層造形装置500の材料散布部201の構成を説明する図であり、材料散布部201の概略断面図である。内筒212には材料220が充填されている。材料流路上において、振動球202が上流側、振動球502が下流側に配置されている。また、振動球502の直径は、振動球202の直径よりも小さい。
 図6Bは、本実施形態に係る3次元積層造形装置500のカートリッジユニットの構成を説明する概略断面図であり、材料散布部201を取り外した状態を示す図である。カートリッジホルダ270には、カートリッジ固定バネ271と振動器231が設けられている。カートリッジホルダ270は、中空構造となっている。
 図6Cは、本実施形態に係る3次元積層造形装置500のカートリッジユニットの構成を説明する概略断面図であり、カートリッジホルダ270に材料散布部201をセットした状態を示す図である。カートリッジホルダ270の中空部分に材料散布部201がセットされ、収納される。
 貯蔵される材料220の材質や量によっては、材料220の重量が非常に大きくなり振動球202が直接その重量を受けると、振動球202が振動し難くなる。したがって、材料220は、内筒212に貯蔵し、内筒212の下部に振動球202の直径よりも小さい開口部を設けて、この開口部から材料220が流出するようにしている。これにより、材料220の重量や圧力などが大きくなっても、内筒212の開口部の面積が小さいので、振動球202にかかる力は小さくなる。また、振動球202の配置される位置から材料220が流出しても、振動球202の上部に貯留される材料220の量は一定に保たれるので、内筒212に貯蔵される材料220の量が変化しても、振動球202にかかる圧力変動は無視できる。よって、材料220を消費しても一定量の材料220を放出することができる。
 図7Aは、本実施形態に係る3次元積層造形装置500による材料供給の概略を示す図であり、振動器231がOFFの場合を示している。図7Bは、本実施形態に係る3次元積層造形装置500による材料供給の概略を示す図であり、振動器231がONの場合を示している。
 図7Aに示したように、外筒211はカートリッジ固定バネ271によりカートリッジホルダ270に固定されている。また、外筒211には、振動器231が接触している。振動器231がOFFの場合、振動球202と外筒211のテーパ部217とが接触しているので、内筒212から流れ出た材料220は、振動球202の上方に貯留される。また、同様に、振動球502は、アタッチメント590のテーパ部517に接触しているので、材料220が振動球502の上方に貯留されていても、材料220は下方(下流側)に流出せず、材料220は散布面230に散布されない。
 これに対して、図7Bに示したように、振動器231をONにして外筒211に振動を与えると、振動球202と振動球502とが同期して振動する。振動球202が振動すると、振動球202がテーパ部217から離れ、振動球202とテーパ部217との間に隙間が形成され、この隙間から振動球202の上方に貯留している材料220が下方(下流)に流出する。同様に、振動球502が振動すると、振動球502がテーパ部517から離れ、振動球502とテーパ部517との間に隙間が形成され、この隙間から振動球502の上方に貯留している材料220が下方(下流)に流出する。これにより、材料220が散布面230に散布される。
 振動球202の直径は、振動球502の直径よりも大きいので、振動球202が配置されている部分から流出する材料220の流出量と、振動球502が配置されている部分から流出する材料220の流出量とは異なる。振動球202が配置されている部分から流出する材料220の流出量の方が、振動球502が配置されている部分から流出する材料220の流出量よりも多い。よって、一定時間経過すると、振動球202と振動球502との間に貯留する材料220は満杯となる。
 振動球202と振動球502との間に貯留する材料220は満杯となっても、振動球202と振動球502とは同期して振動するので、材料220は、振動球502の下方に流出し、材料散布部201の直下にある散布面230に材料220が散布される。上述したように、振動球202および振動球502の下方に流出する材料220の流出量の違いによって、振動球202と振動球502との間にある材料220の貯留量が少なくなると、材料220が自動的に補充される。
 したがって、振動器231をOFFにすると、振動球202と振動球502との間は材料220が満杯状態となる。この状態では、振動球502には上方から圧力がかけられた状態となり、振動球502がテーパ部517に接触して固定されるので、材料220が下方に流出しない。
 次に、図8乃至図10を用いて、振動球502の大きさと振動との関係を説明する。図8は、本実施形態に係る3次元積層造形装置の振動球とノズル開口部との関係を示す図である。図9は、本実施形態に係る3次元積層造形装置の振動球径と材料個数との関係を示す図である。図10は、本実施形態に係る3次元積層造形装置の振動球に与える振幅と供給材料量との関係を示す図である。
 ノズル部515のノズル角をθr、振動球502の半径をR、ノズル開口801の径をRn、材料220の材料径をRcとする。振動球502に振動が加えられていない場合には、振動球502はテーパ部517に接している。この場合に接している線長は、Rsinθrである。この接線をバンド802とする。ここで、1回の振動で振動球502が上方に動き、振動球502とテーパ部517との間に材料220である粉体1個分の隙間ができたとする。この場合、バンド802にある材料220である粉体の個数Nbは式(1)となる。
Nb=2πRsinθr/Rc  (1)
 また、ノズル開口面にある粉体の個数Nsは式(2)となる。
Ns=πRn/πRc=(Rn/Rc)  (2)
 振動球502の1回の振動でノズル開口部801およびバンド802から流れ出る粉体の個数は、それぞれ、Nb,Nsと見ることができる。
 ここで、材料220である粉体が安定して流れ出る条件は、式(3)となる。
Ns>Nb  (3)
 つまり、ノズル開口部801を流れる粉体の量よりも、バンド802を通過する粉体の量が多いと、振動球502とノズル開口部801との間の隙間に粉体が滞留し、ノズル開口部801にパウダードームが形成され易くなるためである。式(3)が成立していれば、バンド802を通過した粉体の量がそのままノズル開口部801を通過する粉体の量となり、粉体は安定して流れ出ることになる。
 この関係を例えば、θr=45度,Rn=0.25mm,Rc=40μmとして、振動球502の径の関数としてグラフで表したのが図9である。この場合の式(3)で示す安定、不安定の関係を領域で示してあり、安定動作のためには、振動球502の振動球径は、1.25mmよりも小さくなければならないことが分かる。
 振動数に応じて、NbおよびNsは線形的に増加するので、式(3)は、振動数に対して保存され、放出される粉体の量は式(4)で表される。
放出粉体量[個/秒]=Nb・ν  (4)
 また、振動球502の移動量は、振動振幅Hにも線形的に応答するので、任意係数αを考慮すれば、式(4)は、式(5)のようになり、この関係は図10に示したグラフのようになる。
放出粉体量[個/秒]=α・Nb・ν・H  (5)
 図11は、本実施形態に係る3次元積層造形装置が備える粉体流量と粉体および振動球との組み合わせ示す粉体流量テーブルである。粉体流量テーブル1100は、粉体流量1101に関連付けて粉体1102と振動球1103とを記憶する。粉体1102は、粉体の種類および粒径を格納する。振動球1103は、振動球202、502の球径や、それぞれに与える振動数などを格納する。
 粉体散布制御部280は、例えば、粉体流量テーブル1100を参照して、振動数を調整して、材料220としての粉体の流量を制御してもよい。なお、材料220としては、金属などの粉体であっても、液体であっても、ガラスやプラスチックの粒などでもよく、これらには限定されない。
 本実施形態によれば、材料が供給口に詰まることがなく、材料を定量的に散布することができる。また、材料散布部をカートリッジ方式としたので、材料の入れ替えや補充、単色刷り、多色刷りなどを容易に実施できる。さらに、振動球を複数としたので、安てして材料を散布でき、材料を変えても振幅および周波数により流量を制御でき、汎用的に使用できる。また、振動球の振動をONまたはOFFできるので、材料の流量をパルス化することもでき、振動球の球径を小さくすれば、数μmオーダの材料であっても自在に制御でき、振動球の球径を変えれば装置特性も変わり、装置を汎用的に使用できる。
 [第4実施形態]
 次に本発明の第4実施形態に係る3次元積層造形装置1200について、図12を用いて説明する。図12は、本実施形態に係る3次元積層造形装置1200の全体構成を説明するための図である。本実施形態に係る3次元積層造形装置1200は、上記第3実施形態と比べると、振動球を3つを有する点で異なる。その他の構成および動作は、第3実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。なお、本実施形態の説明においては、図が煩雑になるのを避けるため、説明に不要な部材などは適宜省略している。
 3次元積層造形装置1200は、3番目の振動球1202(第3振動球)を有する。振動球1202は、振動球202よりも上流側に配置され、テーパ部1217と接触している。振動球1202の直径は、振動球202の直径よりも大きい。なお、本実施形態では、振動球が3つの場合を例に説明をしたが、振動球の数はこれには限定されず、4つ以上であってもよい。この場合、振動球の配置は、上流から下流に向かうにつれて球径が小さくなるよう配置すればよいが、振動球の配置はこれには限定されず、散布する材料の種類や粒径などに応じて様々な球径の振動球を適宜配置してもよい。
 [他の実施形態]
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
 また、本発明は、複数の機器から構成されるシステムに適用されてもよいし、単体の装置に適用されてもよい。さらに、本発明は、実施形態の機能を実現する情報処理プログラムが、システムあるいは装置に直接あるいは遠隔から供給される場合にも適用可能である。したがって、本発明の機能をコンピュータで実現するために、コンピュータにインストールされるプログラム、あるいはそのプログラムを格納した媒体、そのプログラムをダウンロードさせるWWW(World Wide Web)サーバも、本発明の範疇に含まれる。特に、少なくとも、上述した実施形態に含まれる処理ステップをコンピュータに実行させるプログラムを格納した非一時的コンピュータ可読媒体(non-transitory computer readable medium)は本発明の範疇に含まれる。

Claims (8)

  1.  3次元積層造形物の材料を散布面上に散布し、上流から下流に向けて径が縮小するテーパ部を少なくとも1つ有する材料散布手段と、
     前記テーパ部に配置され、振動する少なくとも1つの振動球と、
     前記振動球の振動を制御する振動制御手段と、
     を備える3次元積層造形装置。
  2.  前記材料散布部は、第1テーパ部と、前記第1テーパ部よりも下流側にある第2テーパ部とを有し、
     第1振動球が前記第1テーパ部に配置され、第2振動球が前記第2テーパ部に配置されている請求項1に記載の3次元積層造形装置。
  3.  前記材料散布手段は、
      外筒と、
      前記外筒の内側に取り外し可能に取り付けられ、前記材料が貯留される内筒と、
     を有する請求項1または2に記載の3次元積層造形装置。
  4.  前記材料散布手段を取り外し可能に収納する収納手段をさらに備える請求項1乃至3のいずれか1項に記載の3次元積層造形装置。
  5.  前記第1振動球の直径が、前記第2振動球の直径よりも大きい請求項1乃至4のいずれか1項に記載の3次元積層造形装置。
  6.  前記材料散布手段の先端部には、取り外し可能なアタッチメントが設けられている請求項1乃至5のいずれか1項に記載の3次元積層造形装置。
  7.  3次元積層造形物の材料を散布面上に散布し、上流から下流に向けて径が縮小するテーパ部を少なくとも1つ有する材料散布手段と、
     前記テーパ部に配置され、振動する少なくとも1つの振動球と、
     を備える3次元積層造形装置の制御方法であって、
     前記振動球の振動を制御する振動制御ステップを含む3次元積層造形装置の制御方法。  
  8.  3次元積層造形物の材料を散布面上に散布し、上流から下流に向けて径が縮小するテーパ部を少なくとも1つ有する材料散布手段と、
     前記テーパ部に配置され、振動する少なくとも1つの振動球と、
     を備える3次元積層造形装置の制御プログラムであって、
     前記振動球の振動を制御する振動制御ステップをコンピュータに実行させる3次元積層造形装置の制御プログラム。
PCT/JP2015/086304 2015-12-25 2015-12-25 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム WO2017109964A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016510877A JP6096379B1 (ja) 2015-12-25 2015-12-25 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
PCT/JP2015/086304 WO2017109964A1 (ja) 2015-12-25 2015-12-25 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
EP15899113.3A EP3210755A4 (en) 2015-12-25 2015-12-25 Three-dimensional laminate molding device, control method of three-dimensional laminate molding device, and control program of three-dimensional laminate molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086304 WO2017109964A1 (ja) 2015-12-25 2015-12-25 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム

Publications (1)

Publication Number Publication Date
WO2017109964A1 true WO2017109964A1 (ja) 2017-06-29

Family

ID=58281137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086304 WO2017109964A1 (ja) 2015-12-25 2015-12-25 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム

Country Status (3)

Country Link
EP (1) EP3210755A4 (ja)
JP (1) JP6096379B1 (ja)
WO (1) WO2017109964A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109049684A (zh) * 2018-11-05 2018-12-21 苏炜 一种增材制造用多角度堆叠打印设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101966919B1 (ko) * 2017-06-15 2019-04-10 주식회사 인스텍 자동개폐 기능을 가진 저장장치
KR101961683B1 (ko) * 2017-06-28 2019-03-26 참엔지니어링(주) 3d 프린터용 분말공급기
CN110394927B (zh) * 2019-07-29 2022-05-31 富岭科技股份有限公司 一种塑料餐具生产用定量上料装置
DE102021001180A1 (de) * 2021-03-05 2022-09-08 Volkmann Gesellschaft mit beschränkter Haftung Ventil, Behälter und Dosierverfahren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128875U (ja) * 1988-02-27 1989-09-01
JPH0836184A (ja) * 1994-07-22 1996-02-06 Alps Electric Co Ltd 微粒子分散装置
JP2010132960A (ja) 2008-12-03 2010-06-17 Panasonic Electric Works Co Ltd 三次元形状造形物を造形する積層造形装置及び積層造形方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038812A (ja) * 1999-08-03 2001-02-13 Toyota Motor Corp 粉粒体積層造形法における粉粒体循環装置
US20100044903A1 (en) * 2007-02-23 2010-02-25 The Exone Company Automated infiltrant transfer apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128875U (ja) * 1988-02-27 1989-09-01
JPH0836184A (ja) * 1994-07-22 1996-02-06 Alps Electric Co Ltd 微粒子分散装置
JP2010132960A (ja) 2008-12-03 2010-06-17 Panasonic Electric Works Co Ltd 三次元形状造形物を造形する積層造形装置及び積層造形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3210755A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109049684A (zh) * 2018-11-05 2018-12-21 苏炜 一种增材制造用多角度堆叠打印设备

Also Published As

Publication number Publication date
EP3210755A1 (en) 2017-08-30
JPWO2017109964A1 (ja) 2017-12-21
JP6096379B1 (ja) 2017-03-15
EP3210755A4 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6096379B1 (ja) 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
US20180015666A1 (en) Three-dimensional laminating and shaping apparatus, control method of three-dimensional laminating and shaping apparatus, and control program of three-dimensional laminating and shaping apparatus
JP6820933B2 (ja) バイオプリンタースプレーヘッドアセンブリ及びバイオプリンター
JP6077718B2 (ja) 粉末リコータ
Fang et al. Building three‐dimensional objects by deposition of molten metal droplets
WO2016151783A1 (ja) 粉末供給装置、粉末供給装置の制御方法、粉末供給装置の制御プログラムおよび3次元造形装置
KR20010021826A (ko) 균일한 크기의 성형 구상입자의 제조장치 및 제조방법
US20230302727A1 (en) Multimaterial powder bed patterning for additive manufacturing method
RU2765190C1 (ru) Устройство и способ получения сверхмелкого низкоплавкого сферического металлического порошка с применением капельного распыления
JP2008296112A (ja) 物品の製造方法
WO2015178239A1 (ja) 微量液体流出方法および微量液体ディスペンサ
EP3398776B1 (en) Biological printer nozzle component and biological printer
JP6571378B2 (ja) 物質を表面上に散布するためのシステム及び方法
US20170216918A1 (en) Methods and systems for fabrication using multi-material and precision alloy droplet jetting
JP3107972B2 (ja) 微粒子分散装置
US20200361146A1 (en) High Resolution Electrohydrodynamic Three-Dimensional Printing of High Viscosity Materials
JP2014113589A (ja) ノズルプリンタ
Acero et al. Enhancement of the stability of the flow focusing technique for low-viscosity liquids
KR20230062477A (ko) 조절 가능한 구속 매체 내에서 적층 제조 방법
Wood et al. The precise and accurate production of millimetric water droplets using a superhydrophobic generating apparatus
US11826771B2 (en) Set of nozzles for a spray gun, spray gun system, method for embodying a nozzle module, method for selecting a nozzle module from a set of nozzles for a paint job, selection system and computer program product
EP2620286A1 (en) Continuous jet printing of a fluid material
JP2017018948A (ja) 粉体の散布方法および散布装置
JP4750170B2 (ja) 微小粒の製造装置及び製造方法
JP4656167B2 (ja) 流体機器装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016510877

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015899113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015899113

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE