WO2017109305A1 - Procede de production de biomethane par epuration de biogaz issu d'installations de stockage de dechets non-dangereux (isdnd) et installation pour la mise en œuvre du procede - Google Patents

Procede de production de biomethane par epuration de biogaz issu d'installations de stockage de dechets non-dangereux (isdnd) et installation pour la mise en œuvre du procede Download PDF

Info

Publication number
WO2017109305A1
WO2017109305A1 PCT/FR2016/052937 FR2016052937W WO2017109305A1 WO 2017109305 A1 WO2017109305 A1 WO 2017109305A1 FR 2016052937 W FR2016052937 W FR 2016052937W WO 2017109305 A1 WO2017109305 A1 WO 2017109305A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorber
adsorbents
reversibly
gas
gas stream
Prior art date
Application number
PCT/FR2016/052937
Other languages
English (en)
Inventor
Guénaël PRINCE
Mathieu LEFEBVRE
Pierre Briend
Nicolas PAGET
Original Assignee
Waga Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES16809983T priority Critical patent/ES2903144T3/es
Priority to EP16809983.6A priority patent/EP3393621B1/fr
Application filed by Waga Energy filed Critical Waga Energy
Priority to US16/065,644 priority patent/US10905995B2/en
Priority to MX2018007771A priority patent/MX2018007771A/es
Priority to CA3009566A priority patent/CA3009566C/fr
Priority to RU2018122940A priority patent/RU2721698C2/ru
Priority to PL16809983T priority patent/PL3393621T3/pl
Priority to CN201680079846.6A priority patent/CN108602007A/zh
Priority to SI201631443T priority patent/SI3393621T1/sl
Priority to RS20220023A priority patent/RS62802B1/sr
Priority to DK16809983.6T priority patent/DK3393621T3/da
Priority to BR112018012788-4A priority patent/BR112018012788B1/pt
Priority to HRP20220113TT priority patent/HRP20220113T1/hr
Priority to AU2016378831A priority patent/AU2016378831B2/en
Publication of WO2017109305A1 publication Critical patent/WO2017109305A1/fr
Priority to HK18115950.6A priority patent/HK1256981A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/541Absorption of impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/543Distillation, fractionation or rectification for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/105Removal of contaminants of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/70Heating the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/66Landfill or fermentation off-gas, e.g. "Bio-gas"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/02Integration in an installation for exchanging heat, e.g. for waste heat recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the subject of the invention is a process for producing bio-methane by purifying biogas from non-hazardous waste storage facilities (ISDND). It also relates to an installation for implementing the method.
  • the present invention relates to a method of treatment by coupling a membrane permeation and a cryogenic distillation of a gaseous stream containing at least methane, carbon dioxide, air gases (nitrogen and oxygen) and pollutants (H 2 S and volatile organic compounds (VOCs)).
  • the objective is to produce a gaseous stream rich in methane whose methane content is in line with the needs of its use and to limit as much as possible the impact of CH 4 discharges into the atmosphere (high greenhouse gas) ).
  • the invention relates in particular to the purification of biogas from non-hazardous waste storage facilities, hereinafter ISDND (Non-Hazardous Waste Storage Facility), with the aim of producing biomethane in accordance with the injection into a natural gas system or in local use as a vehicle fuel.
  • ISDND Non-Hazardous Waste Storage Facility
  • ISDNDs The anaerobic digestion of organic wastes in ISDNDs produces a significant amount of biogas throughout ISDND's lifetime and even several years after shutdown and closure of ISDND.
  • methane and carbon dioxide - biogas is a powerful greenhouse gas; At the same time, it constitutes a significant source of renewable energy in the context of the scarcity of fossil fuels.
  • Biogas contains several polluting compounds and must be purified to allow commercial development. There are several processes for recovering and purifying biogas.
  • the biogas mainly contains methane (CH 4 ) and carbon dioxide (C0 2 ) in varying proportions depending on the method of production.
  • the gas also contains a proportion of air gases (nitrogen and oxygen) and, to a lesser extent, water, hydrogen sulphide, and volatile organic compounds. (VOC).
  • air gases nitrogen and oxygen
  • VOC volatile organic compounds.
  • the biogas comprises, on dry gas, from 30 to 60% of methane, from 15 to 50% of C0 2 , from 0 to 30% of nitrogen, from 0 to 6% of oxygen, from 0 to at 1% H 2 S and from a few tens to a few thousand milligrams per normal cubic meters of VOCs and a number of other trace impurities.
  • Biogas is valued in different ways. It may, after partial treatment, be recovered near the production site to provide heat, electricity or both (cogeneration).
  • the high content of carbon dioxide reduces its calorific value, increases the compression and transport costs and limits the economic interest of its valuation to this use of proximity.
  • Biomethane thus completes the natural gas resources with a renewable part produced in the heart of the territories. It is usable for exactly the same uses as natural gas of fossil origin. It can feed a natural gas network, a filling station for vehicles. It can also be liquefied to be stored and transported as liquefied natural gas (LNG).
  • LNG liquefied natural gas
  • the modes of valorization of the biomethane are determined according to the local contexts: local energy needs, possibilities of valorization as biomethane fuel, existence close to networks of distribution or transport of natural gas in particular. Creating synergies between the different actors working on a territory (farmers, industrialists, public authorities), the production of biomethane helps the territories to acquire a greater energy autonomy. It should be noted that, depending on the country, environmental regulations often impose restrictions on releases to the atmosphere. It is indeed necessary to develop technologies to reduce the impact of greenhouse gases (CH 4) and pollutants (H2S and VOC) content in the biogas.
  • CH 4 greenhouse gases
  • H2S and VOC pollutants
  • the document US Pat. No. 8,221,524 B2 describes a process for enriching a gas with CH 4 by up to 88% by different recycling steps.
  • the process consists of compressing the gas stream and then passing it over an adsorbent to remove VOCs.
  • the gas stream is then subjected to a membrane separation step and then to a pressure swing adsorption step (PSA).
  • PSA pressure swing adsorption step
  • the adsorbent used in the PSA is of the CMS (carbon molecular sieve) type and makes it possible to eliminate N 2 and a small portion of ⁇ 0 2 .
  • EPI 979446 discloses a biogas purification process of removing H 2 S, compressing the gas, filtering it to remove particles. The gas is then subjected to a membrane separation step to remove CO 2 and ⁇ 0 2 , drying by passage in a PSA then in different filters and finally again in a PSA to eliminate the N 2 . The gas is finally liquefied.
  • US2004 / 0103782 discloses a biogas purification process of removing H 2 S, compressing the gas, filtering it to remove the particles, subjecting it to a pressure swing adsorption (PSA) step for remove VOCs, then membrane separation to remove most of the C0 2 and a fraction of the 0 2 .
  • Document US Pat. No. 5,486,227 describes a process for purifying and liquefying a gaseous mixture consisting in subjecting the stream to a temperature-modulated adsorption (TSA) to eliminate H 2 S in particular and then to a pressure-swing adsorption (PSA). to eliminate the CO 2 in particular, then finally to a cryogenic separation to eliminate the nitrogen and to retain only the methane.
  • TSA temperature-modulated adsorption
  • PSA pressure-swing adsorption
  • US5964923 and US5669958 disclose a method of treating a gaseous effluent comprising dehydrating the gas, condensing it through an exchanger, subjecting the gas to membrane separation, and then cryogenic separation.
  • US2010 / 077796 discloses a purification process of subjecting the gaseous stream to a membrane separation, treating the permeate in a distillation column, and then mixing the methane gas from the column, after vaporization, with the retentate obtained at room temperature. the outcome of membrane separation.
  • Documents US3989478 and FR2917489 describe cryogenic systems for purifying a methane-rich stream. Both systems use a PSA to knock down CO 2 before the liquefaction stage.
  • the document EP0772665 describes the use of a cryogenic distillation column for the separation of the mine gas composed mainly of CH 4 , CO 2 and N 2 .
  • the document WO 2013/052325 A1 describes a process for producing methane combining a step of purifying VOCs by means of a PSA, then of separating C02 by means of an TSA and finally a cryogenic distillation allowing to suppress ⁇ 02 and ⁇ 2.
  • the membrane separation referred to is a membrane separation for suppressing CO2 and thus substituting for TSA. It does not remove ⁇ 02 and therefore does not solve the problem of explosiveness in the distillation column.
  • WO 2011/097162 Al discloses a biogas production process containing at least three steps are the removal of VOC using a PSA, the removal of C0 2 by means of a membrane and removing the residual C0 2 by means of an ASD.
  • the TSA is further followed by a liquefaction unit. No purification in 0 2 is provided and especially the purified gas is treated directly in a liquefaction unit.
  • the problem that the invention proposes to solve is that of providing a biogas purification process that complies with the above constraints, that is to say a process that is safe, with optimum yield, producing a biomethane of high quality that is substitutable for natural gas and meets environmental standards, in particular the destruction of polluting compounds such as VOCs and compounds with high potency like CH 4 .
  • the gas thus produced may be recovered in liquid or gaseous form either by injection into a gas network or else for mobility applications.
  • the Applicant has coupled 4 technologies with VAC purification via PSA, a first purification of C0 2 and O 2 by means of membrane separation, and a second C0 2 purification by means of a membrane separation.
  • PTSA bias and finally a purification of N 2 and P0 2 by means of a cryogenic separation.
  • the subject of the invention is a process for producing bio methane by biogas purification from non-hazardous waste storage facilities (ISDND) according to which:
  • the stream of gas to be purified is introduced into at least one adsorber advantageously pressure modulated (PSA) loaded with adsorbents capable of reversibly adsorbing the VOCs,
  • PSA pressure modulated
  • the depleted VOC gas stream leaving the PSA is subjected to at least one membrane separation to partially separate the CO 2 and O 2 from the gas stream,
  • the retentate resulting from the membrane separation is introduced into at least one adsorber advantageously modulated in temperature and pressure (PTSA) loaded with adsorbents capable of reversibly adsorbing most of the remaining C0 2 , the depleted gaseous stream is subjected to C0 2 leaving the PTSA at a cryogenic separation in a distillation column to separate the O 2 and N 2 from the gas stream,
  • PTSA temperature and pressure
  • the PTSA can be replaced by an adsorber regenerated by vacuum drawdown or depressurization.
  • the PSA is regenerated by means of the permeate resulting from a first membrane separation.
  • PTSA is regenerated by means of the rich stream CH 4 or N 2 rich distillate from the cryogenic separation.
  • the permeate obtained from a second membrane separation is oxidized after mixing with the nitrogen-rich distillate from the cryogenic separation.
  • the gas to be purified is dried and then subjected to a desulfurization step.
  • the drying step consists in supercharging the gas, from 20 to a few hundred millibars (maximum 500 mbar maximum), also making it possible to avoid air inlets in the pipes.
  • the overpressure allows preliminary drying by cooling the biogas between 0.1 and 10 ° C, to condense the water vapor.
  • the outgoing gas flow therefore has a pressure of between 20 and 500 mbar and a dew point of between 0.1 ° C. and 10 ° C. at the outlet pressure.
  • the desulfurization step ensures the capture of the H 2 S to meet the quality requirements of the network and to avoid too rapid degradation of materials in the following process.
  • This treatment is preferably carried out with active carbon or iron hydroxides in tanks with volumes adapted to the amount of H 2 S to be treated. H 2 S is thus transformed into solid sulfur.
  • the outgoing gas flow in practice contains less than 5 mg / Nm 3 H 2 S.
  • the gas stream to be treated is then compressed.
  • the compression is carried out at a pressure of between 8 and 24 bars. This pressure is necessary to enable the operation of the following steps and to reduce the size of the equipment.
  • the compression is advantageously carried out with a lubricated screw compressor.
  • the implementation of this type of compressor gives the possibility of possibly recovering the heat on the cooling circuit of the oil. In a preferred embodiment and as will be seen later, the heat is recovered to heat the gas that will be used to regenerate the PTSA.
  • the next step is to purify the VOC gas stream.
  • the stream of gas to be purified is passed through at least one adsorber modulated in pressure (PSA) loaded with adsorbents capable of reversibly adsorbing the VOCs.
  • PSA adsorber modulated in pressure
  • This step makes it possible to purify the biogas of VOCs (light hydrocarbons, mercaptans, siloxanes, etc.) that are incompatible with the quality requirements of the network and that may pollute the subsequent purification steps (especially the membranes).
  • 2 PSAs are used so as to be able to implement the process continuously. Indeed, when the first PSA is saturated with VOC, it is substituted by the second PSA which itself has been previously regenerated.
  • the PSA (s) are regenerated by the permeate resulting from the membrane separation. This permeate is composed mainly of C0 2 and a very low content of CH 4 .
  • the gas flow at the regeneration outlet is oxidized. In an advantageous embodiment, it is premixed with the N 2 -rich distillate derived from the cryogenic separation, the mixture then being oxidized.
  • the PSA regeneration gas flow and the N 2 -rich distillate from the cryogenic separation are oxidized separately.
  • the C0 2 is purified from the gas stream.
  • the depleted VOC gas stream leaving the PSA is subjected to at least one membrane separation to partially separate the CO 2 and O 2 from the gas stream. More precisely, the selective separation of the membranes makes it possible to carry out a first efficient purification of the biogas by separating a large part of the C0 2 (more than 90%) as well as a part of the O 2 (approximately 50% and in a general way at least 30%, advantageously between 30 and 70%).
  • the separation performance of the membrane vis-à-vis the CO 2 and the 0 2 will depend on the permeability of the membrane vis-à-vis these gases.
  • Membrane scrubbing can be composed of 1, 2, 3 or 4 stages of membranes depending on the characteristics of the biogas. This step makes it possible to produce a gas with less than 3% C0 2 and with a CH 4 yield greater than 90%.
  • two successive membrane separations are carried out. More precisely :
  • the depleted VOC gas stream leaving the PSA is subjected to a first membrane separation
  • the PSA is regenerated by means of the permeate issuing from said first membrane separation
  • the retentate resulting from the first separation is subjected to a second membrane separation
  • the permeate resulting from the second membrane separation is reintroduced upstream of the compression.
  • the reintroduction of the permeate is carried out between the desulfurization tank and the compressor.
  • the next step of the process of the invention consists in carrying out an additional purification of the C0 2 still present in the gas stream. Indeed, the only membrane separation is not sufficient to reach a C0 2 content in the purified gas of 50 ppm before the cryogenic separation step.
  • the value of 50 ppm is the limit value beyond which there is a risk of formation of C0 2 crystals that can clog the cryogenic exchangers.
  • This step is performed by a PTSA. Choosing a PTSA reduces the size of the tank and reduces cycle times.
  • the adsorbent will in particular be selected from the group comprising zeolites.
  • 2 PTSAs are used so as to be able to implement the process continuously. Indeed, when the first PTSA is saturated in C0 2 , it is substituted by the second PTSA which itself has been previously regenerated.
  • the way to regenerate PTSA depends on the liquid or gaseous nature of the end product rich in methane, recovered.
  • the PTSA can be regenerated by means of a nitrogen flow rate resulting from the vaporization of an external source of liquid nitrogen.
  • the steam is in this case produced by cooling the gas stream depleted in C0 2 , leaving the PTSA.
  • This embodiment although it can be implemented, is not optimal because it requires an additional source of liquid nitrogen.
  • the PTSA (s) are regenerated by means of the vaporized gas stream rich in CH 4 .
  • the PTSA are sized to avoid that the biomethane produced contains more than 2.5% of C0 2 to ensure a quality compatible with the needs for marketing.
  • the next step of the process of the invention consists in separating the nitrogen and P0 2 and then recovering the rich CH 4 stream resulting from this separation.
  • the CO 2 depleted gas stream leaving the PTSA is subjected to cryogenic separation in a distillation column.
  • the final product that is to say the stream rich in methane, is recovered in the liquid state.
  • the liquid rich in methane is withdrawn from the distillation column.
  • the cooling of the flow is carried out within a heat exchanger in contact with an external source of liquid nitrogen, for example.
  • the final product that is to say the stream rich in methane, is recovered in the gaseous state.
  • the cooling gas stream depleted in CO 2 is cooled by heat exchange with the liquid CH 4 withdrawn from the distillation column;
  • the invention also relates to an installation for the production of bio methane by biogas purification from non-hazardous waste storage facilities (ISDND) implementing the method described above.
  • the installation comprises:
  • a compressor capable of compressing the biogas at a pressure of 8 and 24 bar
  • Figure 1 is a schematic representation of an installation of the invention according to a particular embodiment.
  • the method of the invention aims to produce gaseous biomethane optimizing the energy expenditure.
  • the plant comprises a biogas source to be treated (1), a drying unit (2), a desulfurization unit (3), a compression unit (4), a VOC purification unit (5), a first purification unit of C0 2 (6), a second unit for purifying C0 2 (7), a cryo distillation unit (8), a liquid nitrogen storage unit (9), a unit oxidation (10) and finally a unit for recovering gaseous methane (11). All devices are interconnected by pipes.
  • the drying unit (2) comprises a suppressor (12) and a heat exchanger (13) and a separator pot (14). As already said, this step allows to boost from 20 to a few hundred millibars (500 mbar maximum relative) gas. The cooling of the gas between 0.1 and 10 ° C allows drying.
  • the outgoing gas stream (15) therefore has a pressure of between 20 and 500 mbar and a dew point of between 0.1 ° C. and 10 ° C. at the outlet pressure.
  • the desulfurization unit (3) is in the form of a tank (16) loaded with activated carbons or with iron hydroxides. This unit ensures the capture of H 2 S and transform it into solid sulfur.
  • the outgoing gas flow (17) in practice contains less than 5 mg / Nm3 of H 2 S.
  • the compression unit (4) is in the form of a lubricated screw compressor (18). This compressor compresses the gas stream (17) at a pressure of between 8 and 24 bar.
  • the unit further comprises a module (19) for recovering heat generated by the oil cooling circuit.
  • the outflow is designated in Figure 1 by the reference (20).
  • the VOC purification unit (5) comprises 2 PSAs (21, 22). They are loaded with adsorbents chosen specifically to allow the adsorption of VOCs, and their subsequent desorption during regeneration.
  • the PSAs function alternately in production mode and in regeneration mode.
  • the PSAs (21, 22) are supplied with gaseous flow at their lower part.
  • the pipe in which the gas flow (20) flows is split into two pipes (23, 24), each equipped with a valve (25, 26) and feeding the lower part respectively of the first PSA (21) and the second PSA ( 22).
  • the valves (25, 26) will be alternately closed depending on the saturation level of the PSAs.
  • the valve (25) is closed and the valve (26) is opened to begin charging the second PSA (22).
  • From the upper part of each of the PSA opens a pipe respectively (27 and 28).
  • Each of them splits into 2 pipes respectively (29, 30) and (30, 31).
  • the purified VOC stream from the first PSA flows through the pipe (29) while the purified VOC stream from the second PSA flows through the pipe (31).
  • the two pipes are joined to form a single pipe (51) supplying the C02 purification unit (6).
  • the regenerative gas flows in the pipes (30, 32). It appears at the bottom of the PSA.
  • a pipe (33) equipped with a valve (35) opens the first PSA (21).
  • a pipe (34) equipped with a valve (36) opens out of the second PSA (22).
  • the pipes (33, 34) are joined upstream of the valves (35, 36) to form a common pipe (37).
  • This pipe is connected to the oxidation unit (10).
  • the first C0 2 purification unit (6) combines two membrane separation stages (38, 39). The membranes are chosen to allow the separation of about 90% of the CO 2 and about 50% of the O 2 .
  • the permeate charged with CO 2 , O 2 and a very small proportion of CH 4 from the first membrane separation is used to regenerate PS A (21, 22). It circulates in the pipe (40) and then alternately in the pipes (30, 32) depending on the operating mode of the PSA.
  • the retentate from the first separation is then directed to the second membrane separation (39).
  • the permeate from the second membrane separation is recycled through a pipe connected to the main circuit upstream of the compressor (18). This step makes it possible to produce a gas (42) with less than 3% of C0 2 and with a CH 4 yield> 90%.
  • the second C0 2 purification unit (7) combines 2 PTSAs (43, 44). They are loaded with adsorbents of zeolite type. They are each connected to pipes in a model identical to that of PSA previously described. They also work in a production mode or a regeneration mode. In production mode, the gas stream (42) alternately feeds the PTSAs (43, 44) through the pipes (45, 46) each equipped with a valve (47, 48). The C02 purified gas stream from the PTSA (43) then flows into the pipe (49). The CO2 purified gas stream from the PTSA (44) then flows through the pipe (50). The two pipes (49, 50) are connected in a single pipe (52) connected to the next unit.
  • a pipe (55) equipped with a valve (56) opens the first PTSA (43).
  • a pipe (57) equipped with a valve (58) opens out of the second PTSA (44).
  • the pipes (55, 57) are joined upstream of the valves (56, 58) to form a common pipe (59). This pipe is connected to the gaseous methane recovery unit (11).
  • the cryodistillation unit (8) is fed by the pipe (52) in which circulates the gas stream to be purified. It contains 3 elements respectively a heat exchanger (60), a reboiler (61), a distillation column (62).
  • the exchanger (60) is a brazed plate heat exchanger made of aluminum or stainless steel. It cools the gas stream (52) by heat exchange with the liquid methane stream (69) withdrawn from the distillation column (62).
  • the gas stream (52) is partially liquefied (63).
  • the two-phase flow (63) ensures the reboiling of the bottom reboiler (61) of the column (62) and the generated heat (64) is transferred to the column vessel (62).
  • the stream (63) cools in the reboiler (61) and partially condenses (65).
  • the partially condensed fluid (65) is expanded by means of a valve (66) at a pressure of between 1.1 and 5 bar absolute.
  • the fluid then in the liquid state (67) is sent into the head of the column (62).
  • the temperature must be higher than 90.7K to avoid solidifying the methane
  • the liquid (67) then separates into the column (62) to form a gas (68) through the condenser (71).
  • the condenser (71) is cooled by liquid nitrogen bubbling from an external source (9).
  • the liquid nitrogen is converted into vaporized nitrogen (72).
  • the gas (68) transfers its frigories into the exchanger (60) in contact with the gas stream (52) from PTSAs (43, 44).
  • the gas stream obtained (70) loaded with C0 2 and O 2 is sent to the oxidation unit (10).
  • the gas stream (70) is oxidized in a common oxidation unit (10) with the flow (37) resulting from regeneration of the PSA, loaded C0 2, 0 2 and VOCs.
  • the oxidation is carried out in separate units.
  • the liquid (69) of the distillation column vessel (62) is fed to the reboiler (61) where it partially vaporizes.
  • the formed gas (64) is returned to the column vessel (62).
  • the remaining liquid (69) vaporizes in the exchanger (60) to form a pure methane gas product (73).
  • the gas stream (73) serves to regenerate the PTSAs (43, 44).
  • the flow (73) is further preheated by the heat generated by the compressor oil cooling circuit (18), which passes from the module (19) through a line (74).
  • methane is recovered in the gaseous state after regeneration of PTSA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Procédé de production de biométhane par épuration de biogaz issus d'installations de stockage de déchets non-dangereux (ISDND)selon lequel: -on comprime le flux gazeux initial, -on introduit le flux de gaz à épurer dans au moins un adsorbeur chargé en adsorbants aptes à adsorber réversiblement les COV, -on soumet le flux gazeux appauvri en COV sortant de l'adsorbeur chargé en adsorbants aptes à adsorber réversiblement les COVà au moins une séparation membranaire pour séparer partiellement le CO2 et l'O2 du flux gazeux, -on introduit le rétentat issu de la séparation membranaire dans au moins un adsorbeur chargé en adsorbants aptes à adsorber réversiblement la majeure partie du CO2 restant, -on soumet le flux gazeux appauvri en CO2,sortant de l'adsorbeur chargé en adsorbants aptes à adsorber réversiblement la majeure partie du CO2 restant à une séparation cryogénique dans une colonne de distillation pour séparer l'O2 et l'N2 du flux gazeux, -on récupère le flux riche en CH4 issu de la séparation cryogénique. Installation pour la mise en œuvre du procédé

Description

PROCEDE DE PRODUCTION DE BIOMETHANE PAR EPURATION DE BIOGAZ ISSU D'INSTALLATIONS DE STOCKAGE DE DECHETS NON-DANGEREUX (ISDND) ET INSTALLATION POUR LA MISE EN ŒUVRE DU PROCEDE L'invention a pour objet un procédé de production de bio méthane par épuration de biogaz issu d'installations de stockage de déchets non-dangereux (ISDND). Elle concerne également une installation pour la mise en œuvre du procédé.
Plus précisément, la présente invention est relative à un procédé de traitement par couplage d'une perméation membranaire et d'une distillation cryogénique d'un courant gazeux contenant au moins du méthane, du dioxyde de carbone, des gaz de l'air (azote et oxygène) et des polluants (H2S et composés organiques volatils (COV)). L'objectif est de produire un courant gazeux riche en méthane dont la teneur en méthane est conforme aux besoins de son utilisation et de limiter au maximum l'impact des rejets de CH4 dans l'atmosphère (gaz à fort pouvoir à effet de serre).
L'invention concerne en particulier l'épuration de biogaz issu des installations de stockage de déchets non-dangereux, ci-après ISDND (Installation de Stockage des Déchets Non Dangereux), dans le but de produire du biométhane conforme à l'injection dans un réseau de gaz naturel ou en utilisation locale comme carburant véhicule.
La digestion anaérobique des déchets organiques présents dans les ISDND produit une quantité importante de biogaz pendant toute la durée d'exploitation de l'ISDND et même plusieurs années après l'arrêt de l'exploitation et la fermeture de l'ISDND. De par ses constituants principaux -méthane et dioxyde de carbone- le biogaz est un puissant gaz à effet de serre ; il constitue aussi, parallèlement, une source d'énergie renouvelable appréciable dans un contexte de raréfaction des énergies fossiles.
Le biogaz contient plusieurs composés polluants et doit être épuré pour permettre une valorisation commerciale. Il existe plusieurs procédés permettant d'effectuer la récupération et la purification du biogaz.
Le biogaz contient majoritairement du méthane (CH4) et du dioxyde de carbone (C02) dans des proportions variables en fonction du mode d'obtention. Dans le cas du biogaz d'ISDND, le gaz contient en outre une proportion de gaz de l'air (azote et oxygène) ainsi que dans une moindre proportion, de l'eau, de l'hydrogène sulfuré, et des composés organiques volatiles (COV). Selon les matières organiques dégradées, les techniques utilisées et les conditions particulières (climats, typologies..) de chaque ISDND, les proportions des composants du biogaz diffèrent. Néanmoins, en moyenne, le biogaz comporte, sur gaz sec, de 30 à 60% de méthane, de 15 à 50% de C02, de 0 à 30% d'azote, de 0 à 6% d'oxygène, de 0 à 1% d'H2S et de quelques dizaine à quelque milliers de milligrammes par normaux mètres cubes de COV et un certain nombre d'autres impuretés à l'état de trace.
Le biogaz est valorisé de différentes manières. Il peut, après un traitement partiel, être valorisé à proximité du site de production pour fournir de la chaleur, de l'électricité ou les deux cumulées (la cogénération). La teneur importante en dioxyde de carbone réduit son pouvoir calorifique, augmente les coûts de compression et de transport et limite l'intérêt économique de sa valorisation à cette utilisation de proximité.
Une purification plus poussée du biogaz permet sa plus large utilisation. En particulier, une purification poussée du biogaz permet d'obtenir un biogaz épuré aux spécifications du gaz naturel et qui pourra lui être substitué. Le biogaz ainsi purifié est appelé « biométhane ». Le biométhane complète ainsi les ressources de gaz naturel avec une partie renouvelable produite au cœur des territoires. Il est utilisable pour exactement les mêmes usages que le gaz naturel d'origine fossile. Il peut alimenter un réseau de gaz naturel, une station de remplissage pour véhicules. Il peut aussi être liquéfié pour être stocké et transporté sous forme de gaz naturel liquéfié (GNL).
Les modes de valorisation du biométhane sont déterminés en fonction des contextes locaux : besoins énergétiques locaux, possibilités de valorisation en tant que biométhane carburant, existence à proximité de réseaux de distribution ou de transport de gaz naturel notamment. Créant des synergies entre les différents acteurs œuvrant sur un territoire (agriculteurs, industriels, pouvoirs publics), la production de biométhane aide les territoires à acquérir une plus grande autonomie énergétique. II est à noter que, en fonction des pays, les réglementations environnementales imposent souvent des contraintes concernant les rejets à l'atmosphère. Il est en effet nécessaire de mettre en place des technologies permettant de limiter les impacts des gaz à effet de serre (CH4) et des polluants (H2S et COV) contenu dans le biogaz. Il est donc important d'avoir un rendement CH4 élevé (égal, en masse, à la quantité de CH4 valorisée rapportée à la quantité de CH4 contenue dans le biogaz) et de prévoir des systèmes de traitement pour l'H2S et les COV qui évitent les rejets atmosphériques. Par ailleurs, une problématique supplémentaire reste la présence d'02, qui, lors de la séparation du mélange, peut générer une atmosphère explosive pendant les différentes étapes d'enrichissement. Ce risque de création d'un mélange explosif rend le biogaz de décharge particulièrement difficile à épurer de manière sûre et économique.
Le document US 8 221 524 B2 décrit un procédé d'enrichissement en CH4 d'un gaz, à hauteur de 88% par différente étapes de recyclage. Le procédé consiste à compresser le flux gazeux, puis à le faire passer sur un adsorbant pour éliminer les COV. Le flux gazeux est ensuite soumis à une étape de séparation membranaire puis à une étape d'adsorption modulée en pression (PSA). L'adsorbant mis en œuvre dans le PSA est du type CMS (carbon molecular sieve) et permet d'éliminer l'N2 et une petite partie de Γ02.
Le document EPI 979446 décrit un procédé d'épuration de biogaz consistant à éliminer l'H2S, à compresser le gaz, à le filtrer pour éliminer les particules Le gaz est ensuite soumis à une étape de séparation membranaire pour éliminer le C02 et Γ02, de séchage par passage dans un PSA puis dans différents filtres puis enfin de nouveau dans un PSA pour éliminer le N2. Le gaz est finalement liquéfié.
Le document US2004/0103782 décrit un procédé d'épuration de biogaz consistant à éliminer l'H2S, à compresser le gaz, le filtrer pour éliminer les particules, à le soumettre à une étape d'adsorption modulée en pression (PSA) pour éliminer les COV, puis à une séparation membranaire pour éliminer la majeure partie du C02 ainsi qu'une fraction de l'02. Le document US 5486227 décrit un procédé de purification et de liquéfaction d'un mélange gazeux consistant à soumettre le flux à une adsorption modulée en température (TSA) pour éliminer l'H2S notamment, puis à une adsorption modulée en pression (PSA) pour éliminer le C02 notamment, puis enfin à une séparation cryogénique pour éliminer l'azote et ne retenir que le méthane.
Les documents US5964923 et US5669958 décrivent un procédé de traitement d'un effluent gazeux consistant à déshydrater le gaz, à le condenser en le passant dans un échangeur, à soumettre le gaz à une séparation membranaire, puis à une séparation cryogénique. Le document US2010/077796 décrit un procédé de purification consistant à soumettre le flux gazeux à une séparation membranaire, à traiter le perméat dans une colonne à distiller, puis à mélanger le méthane gaz provenant de la colonne, après vaporisation, avec le rétentat obtenu à l'issue de la séparation membranaire. Les documents US3989478 et FR2917489 décrivent des systèmes cryogéniques pour l'épuration d'un flux riche en méthane. Ces deux systèmes utilisent un PSA pour abattre le C02 avant l'étape de liquéfaction. Dans le document US3989478, la régénération des PSA est effectuée par le biais du distillât riche en azote récupéré en tête de colonne de distillation. Dans le document FR2917489, la régénération du PSA est effectuée par le méthane liquide soutiré en bas de colonne de distillation.
Le document EP0772665 décrit l'utilisation d'une colonne de distillation cryogénique pour la séparation du gaz de mine composé principalement de CH4, C02 et N2.
Le document WO 2013/052325 Al décrit un procédé de production de méthane combinant une étape d'épuration des COV par le biais d'un PSA, puis de séparation du C02 par le biais d'un TSA et enfin une distillation cryogénique permettant de supprimer Γ02 et ΓΝ2. La séparation membranaire auquel il est fait référence est une séparation membranaire permettant de supprimer le C02 et ainsi se substituer au TSA. Elle ne permet pas de supprimer Γ02 et ne résout donc pas le problème de l'explosivité dans la colonne de distillation.
Le document WO 2011/097162 Al décrit un procédé de production de biométhane contenant au moins trois étapes que sont la suppression des COV au moyen d'un PSA, la suppression du C02 au moyen d'une membrane et la suppression du C02 résiduel au moyen d'un TSA. Le TSA est en outre suivi d'une unité de liquéfaction. Aucune purification en 02 n'est prévue et ce d'autant que le gaz épuré est traité directement dans une unité de liquéfaction.
Le document FR 2 971 331 Al décrit la possibilité de mettre en œuvre une distillation cryogénique pour séparer les gaz de l'air du méthane et ainsi diminuer les risques liés à la présence d'oxygène. Aucun des documents cités ne permet de résoudre le problème de fournir du biométhane sans risque lié à ΓΟ2, à une concentration en méthane supérieure à 95%, une concentration en CO2 inférieure à 2,5% et avec un rendement méthane supérieur à 85%.
Le problème que se propose donc de résoudre l'invention est celui de fournir un procédé de purification de biogaz respectant les contraintes ci-dessus, c'est-à-dire un procédé qui soit sûr, avec un rendement optimal, produisant un biométhane de haute qualité substituable au gaz naturel et qui respecte les normes environnementales s 'agissant notamment de la destruction des composées polluants comme les COV et des composés à fort pouvoir à effet de serre comme le CH4. Le gaz ainsi produit pourra être valorisé sous forme liquide ou gazeuse soit en injection dans un réseau de gaz ou alors pour des applications de mobilité. Pour résoudre ce problème, le Demandeur a couplé 4 technologies respectivement une épuration des COV par le biais de PSA, une première épuration du C02 et d'02 par le biais d'une séparation membranaire, une seconde épuration de C02 par le biais de PTSA et enfin une épuration de l'N2 et de P02 par le biais d'une séparation cryogénique.
Plus précisément, l'invention a pour objet un procédé de production de bio méthane par épuration de biogaz issu d'installations de stockage de déchets non-dangereux (ISDND) selon lequel :
- on comprime le flux gazeux initial,
- on introduit le flux de gaz à épurer dans au moins un adsorbeur avantageusement modulé en pression (PSA) chargé en adsorbants aptes à adsorber réversiblement les COV,
- on soumet le flux gazeux appauvri en COV sortant du PSA à au moins une séparation membranaire pour séparer partiellement le C02 et l'02 du flux gazeux,
- on introduit le rétentat issu de la séparation membranaire dans au moins un adsorbeur avantageusement modulé en température et en pression (PTSA) chargé en adsorbants aptes à adsorber réversiblement la majeure partie du C02 restant, - on soumet le flux gazeux appauvri en C02, sortant du PTSA à une séparation cryogénique dans une colonne de distillation pour séparer l'02 et l'N2 du flux gazeux,
- on récupère le flux riche en CH4 issu de la séparation cryogénique. Selon une alternative de l'invention et dans la suite de la description, on peut substituer le PTSA par un adsorbeur régénéré par soutirage au vide ou dépressurisation.
Dans un mode de réalisation privilégié, on régénère le PSA au moyen du perméat issu d'une première séparation membranaire. De même, on régénère le PTSA au moyen du flux riche en CH4 ou du distillât riche en N2 issus de la séparation cryogénique. On oxyde le perméat issu d'une seconde séparation membranaire après l'avoir mélangé ou non avec le distillât riche en azote issu de la séparation cryogénique.
Avantageusement, avant la compression, on sèche le gaz à épurer puis on le soumet à une étape de désulfuration. L'étape de séchage consiste à surpresser de 20 à quelques centaines de millibars (500 mbar relatif maximum) le gaz, permettant en outre d'éviter les entrées d'air dans les tuyauteries. La surpression permet d'effectuer un séchage préliminaire en refroidissant le biogaz entre 0,1 et 10 °C, pour condenser la vapeur d'eau. Le flux de gaz sortant a donc une pression comprise entre 20 et 500 mbar et un point de rosée compris entre 0.1 °C et 10 °C à la pression de sortie.
L'étape de désulfuration permet d'assurer le captage de l'H2S afin de répondre aux exigences de qualité du réseau et d'éviter la dégradation trop rapide des matériaux dans la suite du procédé. De plus, il est important d'avoir une étape de captage qui fixe l'H2S sous une forme stable (telle que le soufre solide) pour éviter toute émission nuisible pour la santé et pour l'environnement (nuisance olfactive, formation de SOx). Ce traitement est effectué de préférence avec des charbons actifs ou des hydroxydes de fer dans des cuves aux volumes adaptés à la quantité d'H2S à traiter. L'H2S est ainsi transformé en soufre solide. Le flux de gaz sortant contient en pratique moins de 5 mg/Nm3 d'H2S.
Selon le procédé, on comprime ensuite le flux gazeux à traiter. La compression est effectuée à une pression comprise entre 8 et 24 bars. Cette pression est nécessaire pour permettre le fonctionnement des étapes suivantes et diminuer la taille des équipements. La compression s'effectue avantageusement avec un compresseur à vis lubrifiée. La mise en œuvre de ce type de compresseur donne la possibilité de récupérer éventuellement la chaleur sur le circuit de refroidissement de l'huile. Dans un mode de réalisation préféré et comme il sera vu par la suite, la chaleur est récupérée pour réchauffer le gaz qui servira à regénérer le PTSA.
L'étape suivante consiste à épurer le flux gazeux des COV. Pour ce faire, on fait passer le flux de gaz à épurer dans au moins un adsorbeur modulé en pression (PSA) chargé en adsorbants aptes à adsorber réversiblement les COV. Cette étape permet d'épurer le biogaz des COV (hydrocarbures légers, mercaptans, siloxanes...) qui sont incompatibles avec les exigences de qualité du réseau et qui risquent de polluer les étapes suivantes d'épuration (notamment les membranes).
Avantageusement, on utilise 2 PSA de manière à pouvoir mettre en œuvre le procédé en continu. En effet, lorsque le premier PSA est saturé en COV, on le substitue par le second PSA qui lui-même a été préalablement régénéré. De préférence, on régénère le(s) PSA par le perméat issu de la séparation membranaire. Ce perméat est composé principalement de C02 et d'une très faible teneur en CH4. En pratique, le flux de gaz en sortie de régénération est oxydé. Dans un mode de réalisation avantageux, il est préalablement mélangé avec le distillât riche en N2 issu de la séparation cryogénique, le mélange étant ensuite oxydé. De manière alternative, le flux de gaz en sortie de régénération de PSA et le distillât riche en N2 issu de la séparation cryogénique sont oxydés séparément.
Dans l'étape suivante du procédé de l'invention, on épure le C02 du flux gazeux. Pour ce faire, on soumet le flux gazeux appauvri en COV sortant du PSA à au moins une séparation membranaire pour séparer partiellement le C02 et l'02 du flux gazeux. Plus précisément, la séparation sélective des membranes permet d'effectuer une première épuration efficace du biogaz en séparant une grande partie du C02 (plus de 90%) ainsi qu'une partie de l'02 (50% environ et de manière générale au moins 30% avantageusement entre 30 et 70%). Les performances de séparation de la membrane vis-à-vis du C02 et de l'02 seront fonction de la perméabilité de la membrane vis-à-vis de ces gaz. L'homme du métier sera à même de choisir la membrane remplissant les objectifs ci-dessus. En particulier, on choisira avantageusement des membranes en polyimide. L'épuration membranaire peut être composée d' 1, 2, 3 ou 4 étages de membranes suivant les caractéristiques du biogaz. Cette étape permet de produire un gaz avec moins de 3% de C02 et avec un rendement CH4 supérieur à 90 %.
Dans un mode de réalisation particulier, on effectue deux séparations membranaires successives. Plus précisément :
- on soumet le flux gazeux appauvri en COV sortant du PSA à une première séparation membranaire,
- on régénère le PSA au moyen du perméat issu de ladite première séparation membranaire,
- on soumet le rétentat issu de la première séparation à une seconde séparation membranaire,
- on reintroduit le perméat issu de la seconde séparation membranaire en amont de la compression.
La recirculation du perméat issu de la seconde séparation membranaire qui contient encore du C02 et du CH4 permet ainsi d'améliorer le rendement en CH4. En pratique, la réintroduction du perméat est effectuée en entre la cuve de désulfuration et le compresseur. L'étape suivante du procédé de l'invention consiste à effectuer une épuration additionnel du C02 encore présent dans le flux gazeux. En effet, la seule séparation membranaire n'est pas suffisante pour atteindre une teneur en C02 dans le gaz épuré de 50 ppm avant l'étape de séparation cryogénique. La valeur de 50 ppm constitue la valeur limite au-delà de laquelle il existe un risque de formation de cristaux de C02 pouvant boucher les échangeurs cryogéniques.
Cette étape est réalisée par un PTSA. Le choix d'un PTSA permet de réduire la taille de la cuve et de réduire les temps de cycle.
L'adsorbant sera notamment choisi dans le groupe comprenant les zéolites.
Avantageusement, on utilise 2 PTSA de manière à pourvoir mettre en œuvre le procédé en continu. En effet, lorsque le premier PTSA est saturé en C02, on le substitue par le second PTSA qui lui-même a été préalablement régénéré. La manière de régénérer les PTSA dépend de la nature liquide ou gazeuse du produit final riche en méthane, valorisé.
Lorsque le procédé vise à valoriser du méthane sous forme liquide, on peut régénérer le(s) PTSA au moyen d'un débit d'azote résultant de la vaporisation d'une source extérieure d'azote liquide. La vapeur est dans ce cas produite par refroidissement du flux gazeux appauvri en C02, sortant du PTSA. Ce mode de réalisation bien que pouvant être mis en œuvre, n'est pas optimal car il nécessite une source d'azote liquide supplémentaire.
Le procédé trouve un intérêt supplémentaire lorsqu'il vise à produire du méthane sous forme gazeuse. Dans ces conditions :
- on vaporise le flux gazeux riche en CH4 issu de la séparation cryogénique,
- on régénère le(s) PTSA au moyen du flux gazeux vaporisé riche en CH4.
Que ce soit dans le cadre de la production de méthane liquide ou de méthane gazeux, une autre alternative consiste à régénérer le(s) PTSA par le distillât riche en N2 issu de la séparation cryogénique, ce distillât pouvant être mélangé avec de l'azote vaporisé servant au refroidissement de la tête de colonne par vaporisation d'azote liquide provenant d'une source extérieure. Avantageusement, on récupère la chaleur générée par la compression du flux gazeux initial pour préchauffer le flux gazeux servant à la régénération du PTSA. Le préchauffage permet ainsi de monter la température du flux gazeux d'une valeur de 30 à 40°C à une valeur de 80 à 90°C. Le flux de régénération du PTSA peut donc être le flux gazeux vaporisé riche en CH4 ou le distillât riche en N2 issu de la séparation cryogénique, ce dernier étant éventuellement mélangé dans la colonne avec l'azote vaporisé servant au refroidissement de la tête de colonne.
Les PTSA sont dimensionnés pour permettre d'éviter que le biométhane produit ne contienne plus de 2.5% de C02 afin de garantir une qualité compatible avec les besoins pour la commercialisation.
L'étape suivante du procédé de l'invention consiste à séparer l'azote et P02 puis à récupérer le flux riche en CH4 résultant de cette séparation. Pour ce faire, on soumet le flux gazeux appauvri en C02 sortant du PTSA à une séparation cryogénique dans une colonne de distillation.
Dans un premier mode de réalisation, on récupère le produit final, c'est-à-dire le flux riche en méthane, à l'état liquide.
Dans ces conditions :
- on refroidit le flux gazeux appauvri en C02,
- on envoie le flux refroidi dans la colonne de distillation,
- on soutire le liquide riche en méthane de la colonne de distillation.
Le refroidissement du flux est effectué au sein d'un échangeur de chaleur au contact d'une source extérieure d'azote liquide par exemple.
Dans un second mode de réalisation, on récupère le produit final, c'est-à-dire le flux riche en méthane, à l'état gazeux.
Dans ces conditions :
- on refroidit le flux gazeux appauvri en C02 par échange de chaleur avec le CH4 liquide soutiré de la colonne de distillation,
- on envoie le flux gazeux ainsi refroidi dans la colonne de distillation,
- on soutire le liquide riche en méthane de la colonne de distillation,
- on vaporise le liquide riche en méthane par échange de chaleur avec le flux gazeux appauvri en C02 provenant du PTSA. L'invention a également pour objet une installation pour la production de bio méthane par épuration de biogaz issu d'installations de stockage de déchets non-dangereux (ISDND) mettant en œuvre le procédé ci avant décrit. Dans un mode de réalisation particulier, l'installation comprend :
- une source de biogaz,
- un compresseur apte à compresser le biogaz à une pression de 8 et 24 bars,
- 2 adsorbeurs, avantageusement PSA chargés en adsorbants aptes à adsorber réversiblement les COV,
- 2 étages de membranes séparatrices aptes séparer partiellement le C02 et l'02 du flux gazeux,
- 2 adsorbeurs, avantageusement PTSA chargés en adsorbants aptes à adsorber réversiblement la majeure partie du C02 restant dans le flux gazeux,
- un échangeur de chaleur apte à refroidir le flux gazeux appauvri en C02,
- une colonne de distillation.
Les éléments constitutifs de l'installation sont en communication fluidique par le biais de tuyauteries adaptées. L'invention et les avantages qui en découlent ressortiront bien de l'exemple de réalisation ci-après, à l'appui de la figure 1 annexée.
La figure 1 est une représentation schématique d'une installation de l'invention selon un mode de réalisation particulier.
Selon ce mode de réalisation particulier, le procédé de l'invention vise à produire du biométhane gazeux en optimisant au maximum la dépense énergétique.
L'installation comprend une source de biogaz à traiter (1), une unité de séchage (2), une unité de désulfuration (3), une unité de compression (4), une unité d'épuration de COV (5), une première unité d'épuration de C02 (6), une seconde unité d'épuration de C02 (7), une unité de cryo distillation (8), une unité de stockage d'azote liquide (9), une unité d'oxydation (10) et enfin une unité de récupération du méthane gazeux (11). Tous les appareils sont reliés entre eux par des tuyaux.
L'unité de séchage (2) comprend un suppresseur (12) et un échangeur de chaleur (13) et un pot séparateur (14). Comme déjà dit, cette étape permet de surpresser de 20 à quelques centaines de millibars (500 mbar relatif maximum) le gaz. Le refroidissement du gaz entre 0,1 et 10 °C permet son séchage. Le flux de gaz sortant (15) a donc une pression comprise entre 20 et 500 mbar et un point de rosée compris entre 0.1 °C et 10 °C à la pression de sortie. L'unité de désulfuration (3) se présente sous la forme d'une cuve (16) chargée en charbons actifs ou en hydroxydes de fer. Cette unité permet d'assurer le captage de l'H2S et de le transformer en soufre solide. Le flux de gaz sortant (17) contient en pratique moins de 5 mg/Nm3 d'H2S. L'unité de compression (4) se présente sous la forme d'un compresseur à vis lubrifiées (18). Ce compresseur comprime le flux gazeux (17) à une pression comprise entre 8 et 24 bars. L'unité comprend en outre un module (19) de récupération de la chaleur générée par le circuit de refroidissement de l'huile. Le flux sortant est désigné sur la figure 1 par la référence (20).
L'unité d'épuration de COV (5) comprend 2 PSA (21, 22). Ils sont chargés en adsorbants choisis spécifiquement pour autoriser l'adsorption des COV, et leur désorption ultérieure lors de la régénératioa Les PSA fonctionnent alternativement en mode production et en mode régénération.
En mode production, les PSA (21, 22) sont alimentés en flux gazeux au niveau de leur partie inférieure. Le tuyau dans laquelle circule le flux gazeux (20) se dédouble en deux tuyaux (23, 24), chacun équipé d'une vanne (25, 26) et alimentant la partie inférieure respectivement du premier PSA (21) et du second PSA (22). Les vannes (25, 26) seront alternativement fermées en fonction du niveau de saturation des PSA. En pratique, lorsque le premier PSA est saturé en COV, on ferme la vanne (25) et on ouvre la vanne (26) pour commencer à charger le second PSA (22). De la partie supérieure de chacun des PSA débouche un tuyau respectivement (27 et 28). Chacun d'entre eux se dédouble en 2 tuyaux respectivement (29, 30) et (30, 31). Le flux épuré en COV provenant du premier PSA circule dans le tuyau (29) tandis que le flux épuré en COV provenant du second PSA circule dans le tuyau (31). Les deux tuyaux sont joints pour ne former qu'une seule conduite (51) alimentant l'unité d'épuration de C02 (6).
En mode régénération, le gaz régénératif circule dans les tuyaux (30, 32). Il ressort au niveau de la partie inférieure des PSA. Ainsi, un tuyau (33) équipé d'une vanne (35) débouche du premier PSA (21). Un tuyau (34) équipé d'une vanne (36) débouche du second PSA (22). Les tuyaux (33, 34) sont joints en amont des vannes (35, 36) pour former un tuyau commun (37). Ce tuyau est connecté à l'unité d'oxydation (10). La première unité d'épuration de C02 (6) combine deux étages de séparation membranaire (38, 39). Les membranes sont choisies pour permettre la séparation d'environ 90% du C02 et d'environ 50% de l'02. Le perméat chargé en C02, en 02 et d'une très faible proportion de CH4 provenant de la première séparation membranaire est utilisé pour régénérer les PS A (21, 22). Il circule dans le tuyau (40) puis alternativement dans les tuyaux (30, 32) en fonction du mode de fonctionnement des PSA. Le rétentat issu de la première séparation est ensuite dirigé vers la seconde séparation membranaire (39). Le perméat issu de la seconde séparation membranaire est recyclé par le biais d'un tuyau connecté au circuit principal en amont du compresseur (18). Cette étape permet de produire un gaz (42) avec moins de 3% de C02 et avec un rendement CH4 > 90 %.
La seconde unité d'épuration de C02 (7) combine 2 PTSA (43, 44). Ils sont chargés en adsorbants de type zéolite. Ils sont connectés chacun à des tuyauteries selon un modèle identique à celui des PSA précédemment décrits. Ils fonctionnent également selon un mode production ou un mode régénération. En mode production, le flux gazeux (42) alimente alternativement les PTSA (43, 44) par le biais des tuyaux (45, 46) équipés chacun d'une vanne (47, 48). Le flux gazeux épuré en C02 issu du PTSA (43) circule ensuite dans le tuyau (49). Le flux gazeux épuré en C02 issu du PTSA (44) circule ensuite dans le tuyau (50). Les deux tuyaux (49, 50) sont raccordés en un seul tuyau (52) connecté à l'unité suivante.
En mode régénération, le gaz régénératif circule dans les tuyaux (53, 54). Il ressort au niveau de la partie inférieure des PTSA. Ainsi, un tuyau (55) équipé d'une vanne (56) débouche du premier PTSA (43). Un tuyau (57) équipé d'une vanne (58) débouche du second PTSA (44). Les tuyaux (55, 57) sont joints en amont des vannes (56, 58) pour former un tuyau commun (59). Ce tuyau est connecté à l'unité de récupération du méthane gazeux (11).
L'unité de cryodistillation (8) est alimentée par le tuyau (52) dans lequel circule le flux gazeux à épurer. Elle contient 3 éléments respectivement un échangeur de chaleur (60), un rebouilleur (61), une colonne de distillation (62). L'échangeur (60) est un échangeur à plaques brasées en aluminium ou en acier inoxydable. Il refroidit le flux gazeux (52) par échange thermique avec le flux de méthane liquide (69) soutiré de la colonne de distillation (62). Le flux gazeux (52) est partiellement liquéfié (63). Le flux diphasique (63) assure le rebouillage du rebouilleur de cuve (61) de la colonne (62) et la chaleur produite (64) est transférée à la cuve de la colonne (62). Le flux (63) refroidit dans le rebouilleur (61) et se condense partiellement (65). Le fluide partiellement condensé (65) est détendu au moyen d'une vanne (66) à une pression comprise entre 1.1 et 5 bars absolu. Le fluide alors à l'état liquide (67) est envoyé dans la tête de la colonne (62). La température doit être supérieure à 90.7K pour éviter de solidifier le méthane
Le liquide (67) se sépare ensuite dans la colonne (62) pour former un gaz (68) par le biais du condenseur (71). Le refroidissement du condenseur (71) est assuré par biberonnage d'azote liquide provenant d'une source extérieure (9). L'azote liquide se transforme en azote vaporisé (72). Le gaz (68) cède ses frigories dans l'échangeur (60) au contact du flux gazeux (52) provenant de des PTSA (43, 44). Le flux gazeux obtenu (70) chargé en C02 et 02 est envoyé dans l'unité d'oxydation (10). Dans le mode de réalisation illustré, le flux gazeux (70) est oxydé dans une unité commune d'oxydation (10) avec le flux (37) résultant de la régénération des PSA, chargé en C02, 02 et COV. De manière alternative, on effectue l'oxydation dans des unités distinctes.
Dans un autre mode de réalisation non représenté, on mélange le distillât (68) riche en N2 issu de la séparation cryogénique avec l'azote vaporisé (72) servant au refroidissement de la tête de colonne (62) pour régénérer les PTSA.
Le liquide (69) de la cuve de la colonne de distillation (62) est envoyé au rebouilleur (61) où il se vaporise partiellement Le gaz formé (64) est renvoyé à la cuve de la colonne (62). Le liquide (69) restant se vaporise dans l'échangeur (60) pour former un produit de méthane gazeux pur (73).
Dans le mode de réalisation représenté, le flux gazeux (73) sert à régénérer les PTSA (43, 44). Le flux (73) est en outre préchauffé grâce à la chaleur générée par le circuit de refroidissement de l'huile du compresseur (18), qui transite depuis le module (19) par le biais d'une conduite (74).
Selon le procédé illustré, on récupère le méthane à l'état gazeux après régénération des PTSA.
D'autres alternatives du procédé peuvent être envisagées, notamment celle visant à récupérer du méthane liquide directement depuis la colonne de distillation.

Claims

REVENDICATIONS
1/ Procédé de production de biométhane par épuration de biogaz issus d'installations de stockage de déchets non-dangereux (ISDND) selon lequel :
- on comprime le flux gazeux initial,
- on introduit le flux de gaz à épurer dans au moins un adsorbeur chargé en adsorbants aptes à adsorber réversiblement les COV,
- on soumet le flux gazeux appauvri en COV sortant de Γ adsorbeur chargé en adsorbants aptes à adsorber réversiblement les COV à au moins une séparation membranaire pour séparer partiellement le C02 et Γ02 du flux gazeux,
- on introduit le rétentat issu de la séparation membranaire dans au moins un adsorbeur chargé en adsorbants aptes à adsorber réversiblement la majeure partie du C02 restant,
- on soumet le flux gazeux appauvri en C02, sortant de l'adsorbeur chargé en adsorbants aptes à adsorber réversiblement la majeure partie du C02 restant à une séparation cryogénique dans une colonne de distillation pour séparer Γ02 et l'N2 du flux gazeux,
- on récupère le flux riche en CH4 issu de la séparation cryogénique.
21 Procédé selon la revendication 1 , caractérisé en ce qu'on régénère le PSA au moyen du perméat issu de la séparation membranaire.
3/ Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la séparation membranaire est apte à séparer plus de 90% du C02 et au moins 30% d'02 du flux de gaz.
4/ Procédé selon l'une des revendications précédentes, caractérisé en ce que :
- on soumet le flux gazeux appauvri en COV sortant de l'adsorbeur chargé en adsorbants aptes à adsorber réversiblement les COV à une première séparation membranaire,
- on régénère l'adsorbeur chargé en adsorbants aptes à adsorber réversiblement les COV au moyen du perméat issu de ladite première séparation membranaire,
- on soumet le rétentat issu de la première séparation à une seconde séparation membranaire,
- on réintroduit le perméat issu de la seconde séparation membranaire en amont de la compression. 5/ Procédé selon l'une des revendications précédentes, caractérisé en ce que :
- on vaporise le flux gazeux riche en CH4 issu de la séparation cryogénique,
- on régénère le(s) l'adsorbeur chargé en adsorbants aptes à adsorber réversiblement la majeure partie du C02 restant au moyen du flux gazeux vaporisé riche en CH4.
6/ Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on régénère l'adsorbeur chargé en adsorbants aptes à adsorber réversiblement la majeure partie du C02 restant avec le distillât riche en N2 issu de la séparation cryogénique.
7/ Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on maintient en froid la tête de colonne de distillation par vaporisation d'azote liquide provenant d'une source extérieure. 8/ Procédé selon les revendications 6 et 7, caractérisé en ce qu'on mélange dans la colonne le distillât riche en N2 issu de la séparation cryogénique avec l'azote vaporisé servant au refroidissement de la tête de colonne puis on régénère l'adsorbeur chargé en adsorbants aptes à adsorber réversiblement la majeure partie du C02 restant avec ledit mélange. 91 Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'on oxyde le flux gazeux issu de la régénération de l'adsorbeur chargé en adsorbants aptes à adsorber réversiblement les COV.
10/ Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'on oxyde le distillât riche en N2 issu de la séparation cryogénique.
1 1/ Procédé selon les revendications 9 et 10, caractérisé en ce qu'on mélange les 2 flux gazeux avant oxydation. 12/ Procédé selon l'une des revendications 1 à 1 1 , caractérisé en ce qu'on récupère la chaleur générée par la compression du flux gazeux initial pour préchauffer le flux gazeux servant à la régénération de l'adsorbeur chargé en adsorbants aptes à adsorber réversiblement la majeure partie du C02 restant. 13/ Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape de compression est précédé d'une étape de désulfuration. 14/ Procédé selon la revendication 13, caractérisé en ce que préalablement à l'étape de désulfuration, on sèche le flux gazeux.
15/ Installation pour la production de bio méthane par épuration de biogaz issus d'installations de stockage de déchets non-dangereux (ISDND) mettant en œuvre le procédé selon l'une des revendications précédentes.
16/ Installation pour la production de bio méthane par épuration de biogaz issus d'installations de stockage de déchets non-dangereux (ISDND) comprenant successivement :
- une source de biogaz (1)
- un compresseur (18) apte à compresser le biogaz à une pression de 8 et 24 bars,
- 2 adsorbeurs (21, 22) chargés en adsorbants aptes à adsorber réversiblement les COV,
- 2 étages de membranes séparatrices (38, 39) aptes séparer partiellement le C02 et l'02 du flux gazeux,
- 2 adsorbeurs (43, 44) chargés en adsorbants aptes à adsorber réversiblement la majeure partie du C02 restant dans le flux gazeux,
- un échangeur de chaleur (60) apte à refroidir le flux gazeux appauvri en C02, - une colonne de distillation (62).
17/ Procédé ou installation selon l'une des revendications précédentes, caractérisé en ce que l'adsorbeur chargé en adsorbants aptes à adsorber réversiblement les COV est un adsorbeur modulé en pression (PSA) et en ce que l'adsorbeur chargé en adsorbants aptes à adsorber réversiblement la majeure partie du C02 restant est un adsorbeur modulé en pression et température (PTSA).
PCT/FR2016/052937 2015-12-24 2016-11-10 Procede de production de biomethane par epuration de biogaz issu d'installations de stockage de dechets non-dangereux (isdnd) et installation pour la mise en œuvre du procede WO2017109305A1 (fr)

Priority Applications (15)

Application Number Priority Date Filing Date Title
SI201631443T SI3393621T1 (sl) 2015-12-24 2016-11-10 Postopek za pridobivanje biometana s čiščenjem bioplina iz odlagališč nenevarnih odpadkov in postrojenje za izvajanje postopka
CN201680079846.6A CN108602007A (zh) 2015-12-24 2016-11-10 通过净化来自非危险废物储存设施的生物气生产生物甲烷的方法和实施这种方法的设施
US16/065,644 US10905995B2 (en) 2015-12-24 2016-11-10 Method for producing biomethane by purifying biogas from non-hazardous waste storage facilities and facility for implementing the method
EP16809983.6A EP3393621B1 (fr) 2015-12-24 2016-11-10 Procédé de production de biométhane par épuration de biogaz issu d'installations de stockage de déchets non-dangereux et installation pour la mise en oeuvre du procédé
CA3009566A CA3009566C (fr) 2015-12-24 2016-11-10 Procede de production de biomethane par epuration de biogaz issu d'installations de stockage de dechets non-dangereux (isdnd) et installation pour la mise en oeuvre du procede
RU2018122940A RU2721698C2 (ru) 2015-12-24 2016-11-10 Способ получения биометана путем очистки биогаза из хранилищ неопасных отходов и установка для осуществления способа
RS20220023A RS62802B1 (sr) 2015-12-24 2016-11-10 Postupak proizvodnje biometana prečišćavanjem biogasa nastalog iz postrojenja za skladištenje bezopasnog otpada (isdnd) i postrojenje za izvođenje postupka
ES16809983T ES2903144T3 (es) 2015-12-24 2016-11-10 Procedimiento de producción de biometano mediante la purificación de biogás de instalaciones de almacenamiento de desechos no peligrosos e instalación para la implementación del procedimiento
MX2018007771A MX2018007771A (es) 2015-12-24 2016-11-10 Metodo para producir biometano al purificar biogas de instalaciones de almacenamiento de desechos no peligrosos e instalacion para implementar el metodo.
PL16809983T PL3393621T3 (pl) 2015-12-24 2016-11-10 Sposób wytwarzania biometanu poprzez oczyszczanie biogazu pochodzącego z instalacji składowania odpadów innych niż niebezpieczne (isdnd) oraz instalacja do realizacji tego sposobu
DK16809983.6T DK3393621T3 (da) 2015-12-24 2016-11-10 Fremgangsmåde til fremstilling af biomethan ved rensning af biogas fra anlæg til opbevaring af ufarligt affald samt anlæg til udøvelse af fremgangsmåden
BR112018012788-4A BR112018012788B1 (pt) 2015-12-24 2016-11-10 Método e instalação para produzir biometano por purificação de biogás a partir de instalações de armazenamento de resíduos não perigosos
HRP20220113TT HRP20220113T1 (hr) 2015-12-24 2016-11-10 Postupak proizvodnje biometana pročišćavanjem bioplina nastalog iz postrojenja za skladištenje bezopasnog otpada i postrojenje za izvođenje postupka
AU2016378831A AU2016378831B2 (en) 2015-12-24 2016-11-10 Method for producing biomethane by purifying biogas from non-hazardous waste storage facilities and facility for implementing the method
HK18115950.6A HK1256981A1 (zh) 2015-12-24 2018-12-12 通過淨化來自非危險廢物儲存設施的生物氣生產生物甲烷的方法和實施這種方法的設施

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1563357 2015-12-24
FR1563357A FR3046086B1 (fr) 2015-12-24 2015-12-24 Procede de production de biomethane par epuration de biogaz issu d'installations de stockage de dechets non-dangereux (isdnd) et installation pour la mise en œuvre du procede

Publications (1)

Publication Number Publication Date
WO2017109305A1 true WO2017109305A1 (fr) 2017-06-29

Family

ID=55752458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052937 WO2017109305A1 (fr) 2015-12-24 2016-11-10 Procede de production de biomethane par epuration de biogaz issu d'installations de stockage de dechets non-dangereux (isdnd) et installation pour la mise en œuvre du procede

Country Status (19)

Country Link
US (1) US10905995B2 (fr)
EP (1) EP3393621B1 (fr)
CN (1) CN108602007A (fr)
AU (1) AU2016378831B2 (fr)
BR (1) BR112018012788B1 (fr)
CA (1) CA3009566C (fr)
DK (1) DK3393621T3 (fr)
ES (1) ES2903144T3 (fr)
FR (1) FR3046086B1 (fr)
HK (1) HK1256981A1 (fr)
HR (1) HRP20220113T1 (fr)
HU (1) HUE056933T2 (fr)
MX (1) MX2018007771A (fr)
PL (1) PL3393621T3 (fr)
PT (1) PT3393621T (fr)
RS (1) RS62802B1 (fr)
RU (1) RU2721698C2 (fr)
SI (1) SI3393621T1 (fr)
WO (1) WO2017109305A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019122661A1 (fr) * 2017-12-21 2019-06-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de distillation d'un courant gazeux contenant de l'oxygène
WO2019122660A1 (fr) * 2017-12-21 2019-06-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé cryogénique de déazotation d'un gaz de décharge
WO2019122662A1 (fr) * 2017-12-21 2019-06-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de limitation de la concentration d'oxygène contenu dans un courant de biométhane
EP3632525A1 (fr) * 2018-10-02 2020-04-08 Evonik Fibres GmbH Dispositif et procédé permettant de séparer le méthane d'un mélange gazeux contenant du méthane, du dioxyde de carbone et du sulfure d'hydrogène
FR3097450A1 (fr) * 2019-06-20 2020-12-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Traitement d’un flux de méthane comprenant des COV et du dioxyde de carbone par combinaison d’une unité d’adsorption et d’une unité de séparation par membrane
US20210060486A1 (en) * 2020-11-11 2021-03-04 Waga Energy Facility For Producing Gaseous Biomethane By Purifying Biogas From Landfill Combining Membranes, Cryodistillation And Deoxo
RU2790130C2 (ru) * 2018-10-02 2023-02-14 Эвоник Фибрес Гмбх Устройство и способ выделения метана из газовой смеси, содержащей метан, диоксид углерода и сероводород
US20230174879A1 (en) * 2021-12-02 2023-06-08 Stearns, Conrad And Schmidt, Consulting Engineers, Inc. Method for producing renewable natural gas from biogases containing volatile organic compounds
FR3129849A1 (fr) * 2021-12-08 2023-06-09 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation de production biométhane et de CO2 liquide avec un moyen d’éviter l’accumulation d’hydrogène et d’oxygène

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051892B1 (fr) * 2016-05-27 2018-05-25 Waga Energy Procede de separation cryogenique d'un debit d'alimentation contenant du methane et des gaz de l'air, installation pour la production de bio methane par epuration de biogaz issus d'installations de stockage de dechets non-dangereux (isdnd) mettant en œuvre le procede
PT3585500T (pt) * 2017-02-03 2023-10-17 Air Liquide Advanced Tech Us Llc Método e sistema integrados de ptsa/membranas para remoção de h2s e co2 do biogás
US10760024B2 (en) * 2018-07-10 2020-09-01 Iogen Corporation Method and system for upgrading biogas
WO2020010430A1 (fr) 2018-07-10 2020-01-16 Iogen Corporation Procédé et système de production de combustible à partir du biogaz
CA3145848A1 (fr) 2019-07-09 2021-01-14 Iogen Corporation Procede et systeme de production d'un combustible a partir de biogaz
EP4103302A1 (fr) * 2020-02-10 2022-12-21 AB Impianti Srl Installation et procédé de réduction de constituants polluants indésirables contenus dans un biogaz à traiter
JP2021194641A (ja) 2020-06-17 2021-12-27 エボニック ファイバース ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Fibres GmbH 架橋中空糸膜およびその新たな製造方法
FR3114516B1 (fr) * 2020-09-28 2022-10-21 Maxime Brissaud Procédé de traitement de biogaz – installation associée
US20210055046A1 (en) 2020-11-11 2021-02-25 Waga Energy Facility For Producing Gaseous Methane By Purifying Biogas From Landfill, Combining Membranes And Cryogenic Distillation For Landfill Biogas Upgrading
US20240109053A1 (en) * 2020-12-17 2024-04-04 Granitefuel Engineering Inc. Method for regenerating adsorption media using carbon dioxide
EP4035759A1 (fr) * 2021-01-29 2022-08-03 Hitachi Zosen Inova AG Procédé d'élimination du co2 d'un gaz contenant du méthane
FR3119552A1 (fr) * 2021-02-05 2022-08-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Purification de flux gazeux par adsorption avec pré-régénération en boucle fermée
FR3120802A1 (fr) * 2021-03-22 2022-09-23 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et procédé permettant d’obtenir du biométhane conforme aux spécificités d’un réseau de transport
FR3123969B1 (fr) * 2021-06-09 2023-04-28 Air Liquide Procédé de séparation et de liquéfaction du méthane et du dioxyde de carbone avec pré-séparation en amont de la colonne de distillation
FR3123966B1 (fr) * 2021-06-09 2023-04-28 Air Liquide Installation combinée de séparation cryogénique et de liquéfaction du méthane et du dioxyde de carbone compris dans un flux de biogaz
FR3123973B1 (fr) 2021-06-09 2023-04-28 Air Liquide Purification cryogénique de biogaz avec pré-séparation et solidification externe de dioxyde de carbone
FR3123972B1 (fr) * 2021-06-09 2023-04-28 Air Liquide Méthode de séparation et de liquéfactions de méthane et de dioxyde de carbone avec élimination des impuretés de l’air présente dans le méthane.
FR3123968B1 (fr) * 2021-06-09 2023-04-28 Air Liquide Procédé de séparation et de liquéfaction du méthane et du CO2 comprenant le soutirage de vapeur d’un étage intermédiaire de la colonne de distillation
EP4289498A1 (fr) 2022-06-08 2023-12-13 Hitachi Zosen Inova AG Procédé et dispositif de traitement du gaz contenant du méthane
EP4321234A1 (fr) * 2022-08-12 2024-02-14 Linde GmbH Procédé et installation d'élimination du dioxyde de carbone d'un mélange gazeux contenant du dioxyde de carbone

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097162A1 (fr) * 2010-02-02 2011-08-11 Linde Aktiengesellschaft Procédés de purification de gaz
FR2971331A1 (fr) * 2011-02-09 2012-08-10 Air Liquide Procede et appareil de separation cryogenique d'un debit riche en methane
WO2013052325A1 (fr) * 2011-10-06 2013-04-11 Linde Aktiengesellschaft Intégration d'un liquéfacteur de gaz naturel liquéfié avec la production de gaz naturel liquéfié

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1482196A (en) 1973-09-27 1977-08-10 Petrocarbon Dev Ltd Upgrading air-contaminated methane gas compositions
CA2133302A1 (fr) 1993-10-06 1995-04-07 Ravi Kumar Procede integre pour purifier et liquefier une alimentation de melange gazeux, tenant compte de son constituant le moins fortement adsorbe et de volatilite minimale
DE4425712C2 (de) 1994-07-20 1999-03-11 Umsicht Inst Umwelt Sicherheit Verfahren zur Anreicherung des Methangehaltes eines Grubengases
US5964923A (en) 1996-02-29 1999-10-12 Membrane Technology And Research, Inc. Natural gas treatment train
US5669958A (en) 1996-02-29 1997-09-23 Membrane Technology And Research, Inc. Methane/nitrogen separation process
US7025803B2 (en) 2002-12-02 2006-04-11 L'Air Liquide Societe Anonyme A Directoire et Counsel de Surveillance Pour L'Etude et L'Exploration des Procedes Georges Claude Methane recovery process
EP1811011A1 (fr) 2006-01-13 2007-07-25 Gasrec Ltd Récupération de méthane d'un gaz de décharge
FR2917489A1 (fr) 2007-06-14 2008-12-19 Air Liquide Procede et appareil de separation cryogenique d'un debit riche en methane
CN101428190A (zh) * 2007-11-06 2009-05-13 兰州理工大学 一种沼气净化方法及其系统
US20100077796A1 (en) 2008-09-30 2010-04-01 Sarang Gadre Hybrid Membrane/Distillation Method and System for Removing Nitrogen from Methane
CN101544920B (zh) * 2009-05-07 2012-09-19 北京溯希至清科技有限公司 垃圾填埋气脱臭提纯制备压缩天然气工艺
US8221524B2 (en) 2009-10-23 2012-07-17 Guild Associates, Inc. Oxygen removal from contaminated gases
WO2012118738A1 (fr) * 2011-03-01 2012-09-07 Exxonmobil Research And Engineering Company Contacteurs à adsorption modulée en température rapide pour séparation de gaz
RU2460575C1 (ru) * 2011-03-18 2012-09-10 Общество с ограниченной ответственностью Научно-производственное предприятие "Экология мегаполиса" Способ разделения биогаза и очистки его составляющих

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097162A1 (fr) * 2010-02-02 2011-08-11 Linde Aktiengesellschaft Procédés de purification de gaz
FR2971331A1 (fr) * 2011-02-09 2012-08-10 Air Liquide Procede et appareil de separation cryogenique d'un debit riche en methane
WO2013052325A1 (fr) * 2011-10-06 2013-04-11 Linde Aktiengesellschaft Intégration d'un liquéfacteur de gaz naturel liquéfié avec la production de gaz naturel liquéfié

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11291946B2 (en) 2017-12-21 2022-04-05 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for distilling a gas stream containing oxygen
WO2019122662A1 (fr) * 2017-12-21 2019-06-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de limitation de la concentration d'oxygène contenu dans un courant de biométhane
CN111447985B (zh) * 2017-12-21 2022-05-24 乔治洛德方法研究和开发液化空气有限公司 蒸馏含氧气的气体流的方法
FR3075658A1 (fr) * 2017-12-21 2019-06-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de limitation de la concentration d'oxygene contenu dans un courant de biomethane
FR3075659A1 (fr) * 2017-12-21 2019-06-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de production d'un courant de gaz naturel a partir d'un courant de biogaz.
FR3075660A1 (fr) * 2017-12-21 2019-06-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de distillation d'un courant gazeux contenant de l'oxygene
WO2019122660A1 (fr) * 2017-12-21 2019-06-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé cryogénique de déazotation d'un gaz de décharge
WO2019122661A1 (fr) * 2017-12-21 2019-06-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de distillation d'un courant gazeux contenant de l'oxygène
CN111447985A (zh) * 2017-12-21 2020-07-24 乔治洛德方法研究和开发液化空气有限公司 蒸馏含氧气的气体流的方法
CN111565821A (zh) * 2017-12-21 2020-08-21 乔治洛德方法研究和开发液化空气有限公司 从排出气体中除去氮气的低温方法
EP3632525A1 (fr) * 2018-10-02 2020-04-08 Evonik Fibres GmbH Dispositif et procédé permettant de séparer le méthane d'un mélange gazeux contenant du méthane, du dioxyde de carbone et du sulfure d'hydrogène
JP7492950B2 (ja) 2018-10-02 2024-05-30 エボニック オペレーションズ ゲーエムベーハー メタン、二酸化炭素および硫化水素を含有するガス混合物からメタンを分離するための装置および方法
CN112805079A (zh) * 2018-10-02 2021-05-14 赢创纤维有限公司 用于从含有甲烷、二氧化碳和硫化氢的气体混合物分离甲烷的装置和方法
JP2022502241A (ja) * 2018-10-02 2022-01-11 エボニック ファイバース ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Fibres GmbH メタン、二酸化炭素および硫化水素を含有するガス混合物からメタンを分離するための装置および方法
WO2020069868A1 (fr) * 2018-10-02 2020-04-09 Evonik Fibres Gmbh Dispositif et procédé de séparation de méthane d'un mélange gazeux contenant du méthane, du dioxyde de carbone et du sulfure d'hydrogène
RU2790130C2 (ru) * 2018-10-02 2023-02-14 Эвоник Фибрес Гмбх Устройство и способ выделения метана из газовой смеси, содержащей метан, диоксид углерода и сероводород
FR3097450A1 (fr) * 2019-06-20 2020-12-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Traitement d’un flux de méthane comprenant des COV et du dioxyde de carbone par combinaison d’une unité d’adsorption et d’une unité de séparation par membrane
US11351499B2 (en) 2019-06-20 2022-06-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Treatment of a methane stream comprising VOCs and carbon dioxide by a combination of an adsorption unit and a membrane separation unit
EP3756749A1 (fr) * 2019-06-20 2020-12-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Traitement d'un flux de méthane comprenant des cov et du dioxyde de carbone par combinaison d'une unité d'adsorption et d'une unité de séparation par membrane
US20210060486A1 (en) * 2020-11-11 2021-03-04 Waga Energy Facility For Producing Gaseous Biomethane By Purifying Biogas From Landfill Combining Membranes, Cryodistillation And Deoxo
US20230174879A1 (en) * 2021-12-02 2023-06-08 Stearns, Conrad And Schmidt, Consulting Engineers, Inc. Method for producing renewable natural gas from biogases containing volatile organic compounds
FR3129849A1 (fr) * 2021-12-08 2023-06-09 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation de production biométhane et de CO2 liquide avec un moyen d’éviter l’accumulation d’hydrogène et d’oxygène
WO2023104815A1 (fr) * 2021-12-08 2023-06-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation de production biométhane et de co2 liquide avec un moyen d'éviter l'accumulation d'hydrogène et d'oxygène

Also Published As

Publication number Publication date
BR112018012788B1 (pt) 2022-12-13
HUE056933T2 (hu) 2022-03-28
US20190001263A1 (en) 2019-01-03
EP3393621B1 (fr) 2022-01-05
DK3393621T3 (da) 2022-01-17
RU2018122940A3 (fr) 2020-01-24
ES2903144T3 (es) 2022-03-31
CA3009566C (fr) 2023-08-29
FR3046086A1 (fr) 2017-06-30
AU2016378831A1 (en) 2018-07-12
RU2721698C2 (ru) 2020-05-21
RU2018122940A (ru) 2020-01-24
US10905995B2 (en) 2021-02-02
PL3393621T3 (pl) 2022-02-21
FR3046086B1 (fr) 2018-01-05
CA3009566A1 (fr) 2017-06-29
BR112018012788A2 (pt) 2018-12-04
CN108602007A (zh) 2018-09-28
MX2018007771A (es) 2019-01-10
HK1256981A1 (zh) 2019-10-11
HRP20220113T1 (hr) 2022-04-15
SI3393621T1 (sl) 2022-02-28
EP3393621A1 (fr) 2018-10-31
AU2016378831B2 (en) 2021-12-09
RS62802B1 (sr) 2022-02-28
PT3393621T (pt) 2022-01-12

Similar Documents

Publication Publication Date Title
EP3393621B1 (fr) Procédé de production de biométhane par épuration de biogaz issu d'installations de stockage de déchets non-dangereux et installation pour la mise en oeuvre du procédé
FR3075659B1 (fr) Procede de production d'un courant de gaz naturel a partir d'un courant de biogaz.
US7731779B2 (en) Method for processing landfill and other stranded gas containing commercial quantities of methane and contaminated by carbon dioxide, nitrogen and oxygen into a pipeline or vehicle quality natural gas product
CA3024382C (fr) Procede de separation cryogenique d'un debit d'alimentation contenant du methane et des gaz de l'air, installation pour la production de bio methane par epuration de biogaz issus d'installations de stockage de dechets non-dangereux (isdnd) mettant en oeuvre le procede
WO2017072891A1 (fr) Procédé de récupération d'hydrogène
FR3097450A1 (fr) Traitement d’un flux de méthane comprenant des COV et du dioxyde de carbone par combinaison d’une unité d’adsorption et d’une unité de séparation par membrane
EP3727648B1 (fr) Procédé de distillation d'un courant gazeux contenant de l'oxygène
WO2019122662A1 (fr) Procédé de limitation de la concentration d'oxygène contenu dans un courant de biométhane
FR2859483A1 (fr) Procede de fabrication de fonte avec utilisation des gaz du haut-fourneau pour la recuperation assistee du petrole
CA3159990A1 (fr) Procede et un dispositif de purification de gaz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16809983

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 3009566

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/007771

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018012788

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016378831

Country of ref document: AU

Date of ref document: 20161110

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016809983

Country of ref document: EP

Ref document number: 2018122940

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2016809983

Country of ref document: EP

Effective date: 20180724

ENP Entry into the national phase

Ref document number: 112018012788

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180621