WO2019122662A1 - Procédé de limitation de la concentration d'oxygène contenu dans un courant de biométhane - Google Patents

Procédé de limitation de la concentration d'oxygène contenu dans un courant de biométhane Download PDF

Info

Publication number
WO2019122662A1
WO2019122662A1 PCT/FR2018/053340 FR2018053340W WO2019122662A1 WO 2019122662 A1 WO2019122662 A1 WO 2019122662A1 FR 2018053340 W FR2018053340 W FR 2018053340W WO 2019122662 A1 WO2019122662 A1 WO 2019122662A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
nitrogen
gas
depleted
pressure
Prior art date
Application number
PCT/FR2018/053340
Other languages
English (en)
Inventor
Paul Terrien
Nicolas CHANTANT
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to EP18839834.1A priority Critical patent/EP3727650A1/fr
Priority to KR1020207017907A priority patent/KR20200097734A/ko
Priority to CA3085239A priority patent/CA3085239A1/fr
Priority to CN201880079255.8A priority patent/CN111432912B/zh
Priority to US16/954,790 priority patent/US20210087123A1/en
Publication of WO2019122662A1 publication Critical patent/WO2019122662A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/005Processes comprising at least two steps in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • B01D53/226Multiple stage diffusion in serial connexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/11Purification; Separation; Use of additives by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/144Purification; Separation; Use of additives using membranes, e.g. selective permeation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/416Further details for adsorption processes and devices involving cryogenic temperature treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/66Landfill or fermentation off-gas, e.g. "Bio-gas"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/90Details about safety operation of the installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention relates to a process for producing bio methane by biogas purification, for example biogas from non-hazardous waste storage facilities (ISDND). It also relates to an installation for implementing the method.
  • ISDND non-hazardous waste storage facilities
  • the present invention relates to a method of treatment by coupling a membrane permeation and a cryogenic distillation of a gaseous stream containing at least methane, carbon dioxide, air gases (nitrogen and oxygen) and pollutants (H 2 S and volatile organic compounds (VOCs)).
  • the objective is to produce a gaseous stream rich in methane whose methane content is in line with the needs of its use and to limit as much as possible the impact of CH 4 discharges into the atmosphere (high greenhouse gas) ).
  • the invention relates in particular to the purification of biogas from non-hazardous waste storage facilities, hereinafter ISDND (Non-Hazardous Waste Storage Facility), with the aim of producing biomethane in accordance with the injection into a natural gas system or in local use as a vehicle fuel.
  • ISDND Non-Hazardous Waste Storage Facility
  • ISDNDs The anaerobic digestion of organic wastes in ISDNDs produces a significant amount of biogas throughout ISDND's lifetime and even several years after shutdown and closure of ISDND.
  • methane and carbon dioxide - biogas is a powerful greenhouse gas; At the same time, it constitutes a significant source of renewable energy in the context of the scarcity of fossil fuels.
  • Biogas contains several polluting compounds and must be purified to allow commercial development. There are several processes for recovering and purifying biogas.
  • Biogas mainly contains methane (CH 4 ) and carbon dioxide (CO 2 ) in varying proportions depending on the method of production.
  • the gas also contains a proportion of air gases (nitrogen and oxygen) and, to a lesser extent, water, hydrogen sulphide, and volatile organic compounds (VOCs).
  • air gases nitrogen and oxygen
  • VOCs volatile organic compounds
  • the proportions of the biogas components differ.
  • the biogas comprises, on dry gas, 30 to 60% of methane, 15 to 50% of CO2, 0 to 30% of nitrogen, 0 to 6% of oxygen, 0 to 1% of hosts and a few tens to thousands of milligrams per normal cubic meters of VOCs and a number of other trace impurities.
  • Biogas is valued in different ways. It may, after partial treatment, be recovered near the production site to provide heat, electricity or both (cogeneration). The high content of carbon dioxide and nitrogen reduces its calorific value, increases the compression and transport costs and limits the economic interest of its valuation to this use of proximity.
  • Biomethane thus completes the natural gas resources with a renewable part produced in the heart of the territories. It is usable for exactly the same uses as natural gas of fossil origin. It can feed a natural gas network, a filling station for vehicles.
  • the modes of valorization of the biomethane are determined according to the local contexts: local energy needs, possibilities of valorization as biomethane fuel, existence close to networks of distribution or transport of natural gas in particular. Creating synergies between the different actors working on a territory (farmers, industrialists, public authorities), the production of biomethane helps the territories to acquire a greater energy autonomy.
  • the document US Pat. No. 8,221,524 B2 describes a process for enriching a gas with CH 4 by up to 88% by different recycling steps.
  • the process consists of compressing the gas stream and then passing it over an adsorbent to remove VOCs.
  • the gas stream is then subjected to a membrane separation step and then to a pressure swing adsorption step (PSA).
  • PSA pressure swing adsorption step
  • the adsorbent used in the PSA is of the CMS (carbon molecular sieve) type and makes it possible to eliminate the nitrogen and a small part of the oxygen.
  • EP1979446 discloses a biogas purification process of removing hhS, compressing the gas, filtering it to remove particles. The gas is then subjected to a membrane separation step to remove CO2 and GO2, from drying by passing through a PSA then in different filters and finally again in a PSA to eliminate nitrogen. The gas is finally liquefied.
  • US2004 / 0103782 discloses a biogas purification process of eliminating gas compression, filtering it to remove particles, subjecting it to a pressure swing adsorption (PSA) step to remove VOCs, and then membrane separation to remove most of the CO2 as well as a fraction of the oxygen.
  • PSA pressure swing adsorption
  • US5964923 and US5669958 disclose a method of treating a gaseous effluent comprising dehydrating the gas, condensing it through an exchanger, subjecting the gas to membrane separation, and then cryogenic separation.
  • US2010 / 077796 discloses a purification process of subjecting the gaseous stream to a membrane separation, treating the permeate in a distillation column, and then mixing the methane gas from the column, after vaporization, with the retentate obtained at room temperature. the outcome of membrane separation.
  • EP0772665 describes the use of a cryogenic distillation column for the separation of mine gas composed mainly of CFI 4 , CO2 and nitrogen.
  • One of the problems that the invention proposes to solve is that of providing a biogas purification process complying with the above constraints, that is to say a process that is safe, with optimal yield, producing a biomethane high quality substitutable for natural gas and which meets environmental standards including the destruction of polluting compounds such as VOCs and compounds with strong greenhouse effect such as CFI 4 .
  • the gas thus produced can be recovered in gaseous form either by injection into a gas network or for mobility applications.
  • the CO2 is mainly removed on the membrane step. This imperfect separation leaves in the purified gas a CO2 content frequently between 0.5 mol% and 1.5 mol%. It is possible to reduce the content of CO2 in the purified gas by sizing the unit of separation (involving consumption more important of the compressor). In all cases the CO2 content in the purified gas can never be much lower (same order of magnitude of concentration).
  • This purified gas containing, among others, the remainder of CO2, methane, a little oxygen and nitrogen (between 1% and 20% mol) is then treated in a cryogenic unit.
  • the temperatures reached in this unit are of the order of -100 ° C. or even lower, which at low pressure (between Patm and about thirty bar) leads to solidification of the CO2 contained in the gas to be treated.
  • a frequently used solution is to use a purification step based on adsorption technology (TSA, Temperature Swing Adsorption).
  • TSA Temperature Swing Adsorption
  • This technology makes it possible to reach very low levels of CO2 (for example 50ppmv in the case of a liquefied natural gas). At these levels, the CO2 does not solidify at the temperatures considered even at low pressure because it is still soluble in methane.
  • this purification unit is relatively expensive and requires the use of a so-called regeneration gas to be able to evacuate the stopped CO2.
  • the gas frequently used is either the nitrogen that has been separated in the cryogenic stage or the methane product at the outlet of NRU. If nitrogen is used, it may be necessary to degrade the efficiency of the unit or add nitrogen to achieve the required flow rate. If production methane is used, CO2 concentration peaks associated with desorption may appear to make the gas out of specification.
  • the gas from a landfill or a biogas production unit contains oxygen (typical value between 0% and 1% mol of oxygen, but potentially more).
  • This oxygen is partially removed in the pretreatment steps including that of the membranes which consists in removing the CO2. During this stage, the amount of oxygen in absolute value decreases but its concentration increases or remains constant.
  • the oxygen entering the cryogenic part may concentrate in certain places such as the distillation column. Indeed, the volatility of oxygen is between that of nitrogen and that of methane. It is therefore quite possible to create zones of concentration of oxygen in the distillation column. This concentration, if not controlled, can reach values that are likely to to cause an inflammation, to see an explosion of the gas mixture. This is a security risk of major importance that the inventors of the present invention sought to minimize.
  • the inventors of the present invention have then developed a solution to solve the problems raised above.
  • the subject of the present invention is a method for producing biomethane by purifying a biogas feed stream, comprising the following steps:
  • the columns to be distilled have a cylindrical shape, their height is always very large compared to their diameter. Most used are equipped with trays.
  • the plates of a column aim to put in contact the liquid, which falls down by gravity, with the rising vapor. They include an active area pierced with holes, possibly equipped with valves or bells, a dam to retain on the plateau a certain thickness of liquid, a weir for bringing the liquid of the plateau considered to the lower plate .
  • the solution that is the object of the present invention is therefore not to further reduce the CO2 content at the outlet of the membrane step while ensuring a sufficient solubility of the CO2 in the gas to be treated (mainly methane) in order to avoid a crystallization and that at any point of the process.
  • the TSA stage for slaughtering the majority of CO2 is therefore removed.
  • the gas that supplies the cryogenic section therefore contains between 0.3 mol% and 2 mol% of CO2.
  • the solution that is the subject of the present invention makes it possible to limit the risk related to the presence of oxygen during the distillation.
  • the subject of the invention is also:
  • distillation column comprises n real trays, n being an integer between 8 and 100 and characterized in that said stream or gaseous mixture from step a) depleted in CO2 implemented in step b) is introduced into the distillation column at a plateau between the plate n-4 and the plate n, the plate n being the highest plateau in said column.
  • step a) further comprises a step of purifying the compressed gaseous gas stream at pressure P1.
  • step b) A process as defined above, characterized in that said gaseous stream from step a) depleted of CO2 implemented in step b) comprises between 0.3 mol% and 2 mol% of CO2.
  • step a) the separation of CO2 and oxygen from the feed gas stream is performed by a unit comprising at least two stages of separating membranes.
  • step c) A method as defined above, characterized in that the pressure P2 of step c) is greater than 40 bar abs.
  • step b the gaseous stream depleted in CO2 from step a) undergoes expansion to a pressure P3 between 15 bar abs and 40 bar abs before entering said distillation column.
  • P3 is greater than 25 bar abs.
  • step b A process as defined above, characterized in that the gaseous stream depleted of CO2 from step a) is at least partially condensed in a countercurrent heat exchanger of the CH 4 enriched stream from step c) and at least a portion of the nitrogen stream separated in step b).
  • the subject of the invention is also:
  • a pretreatment unit for removing all or part of the VOCs, water, sulfur compounds from the gas stream to be treated
  • a compressor capable of compressing said gaseous flow at a pressure of between 25 and 100 bar;
  • distillation column comprises n trays and the level of introduction of the stream to be treated in said column depends on the oxygen concentration of said stream to be treated, n being an integer between 8 and 100.
  • the heat exchanger may be any heat exchanger, unit or other arrangement adapted to allow the passage of a number of flows, and thus allow a direct or indirect heat exchange between one or more lines of refrigerant, and a or multiple feed streams.
  • the gas to be treated is thus cooled partially or totally liquefied in the exchange line. It is then expanded to the distillation pressure.
  • the partially or totally liquefied gas is expanded and then injected into the distillation column. This injection is carried out either directly at the head of one of the 4 trays head of the column.
  • the reference refers to a liquid flow and the pipe that carries it, the pressures considered are absolute pressures and the percentages considered are molar percentages.
  • the plant comprises a source of biogas to be treated (1), a pretreatment unit (5) comprising a compression unit (2) and a CO2 and Ü2 purification unit (23), a VOC purification unit and water (3), a cryodistillation unit (4), and finally a unit for recovering methane gas (6). All devices are interconnected by pipes.
  • the CO2 purification unit (23) combines, for example, two membrane separation stages.
  • the membranes are chosen to allow the separation of at least 90% of the CO2 and about 50% of GO2.
  • the retentate from the first separation is then directed to the second membrane separation.
  • the permeate from the second membrane separation is recycled through a pipe connected to the main circuit upstream of the compressor. This step makes it possible to produce a gas (7) with less than 3% CO2 and with a CH 4 yield greater than 90%.
  • the temperature of this stream is typically ambient, if necessary air or water cooling steps can be incorporated.
  • the compression unit (2) is for example in the form of a piston compressor.
  • the purification unit (TSA) of VOC and water (3) comprises two bottles (9, 10). They are loaded with adsorbents chosen specifically to allow the adsorption of water and VOCs, and their subsequent desorption during regeneration. The bottles work alternately in production mode and regeneration mode.
  • the bottles (9, 10) are supplied with gaseous flow at their lower part.
  • the pipe in which the gas flow (8) flows is split into two pipes (1 1, 12), each equipped with a valve (13, 14) and feeding the lower part respectively of the first bottle (9) and the second bottle (10).
  • the valves (13, 14) will be alternately closed depending on the saturation level of the bottles.
  • the valve (13) is closed and the valve (14) is opened to begin charging the second bottle (10).
  • From the upper part of each of the bottles opens a pipe respectively (15 and 16).
  • Each of them splits into two pipes respectively (17, 18) and (19, 20).
  • the purified flow of water and VOC from the first bottle flows through the pipe (18) while the purified flow of water and VOC from the second PSA flows through the pipe (20).
  • the two pipes are joined to form a single pipe (21) supplying the cryogenic unit (4).
  • the cryodistillation unit (4) is fed by the pipe (21) in which circulates the gas stream (22) to be purified. It contains three elements respectively a heat exchanger (24), a reboiler (25), a distillation column (26).
  • the exchanger (24) is preferably a brazed plate heat exchanger made of aluminum or stainless steel. It cools the gas stream (22) flowing in the pipe (21) by heat exchange with the flow of liquid methane (27) withdrawn from the distillation column (26). The gas stream (22) is cooled (28) to a temperature of about -100 ° C. The two-phase flow (28) resulting therefrom may alternatively ensure the reboiling of the bottom reboiler (25) of the column (26) and the heat generated (29) is transferred to the bottom of the column (26).
  • the cooled fluid (28) is expanded by means of a valve (30) at a pressure for example between 20 bar absolute and 45 bar absolute bar absolute.
  • the fluid then in the diphasic state or in the liquid state (31) is introduced into the column (26) at a stage E1 located in the upper part of said column (26) at a temperature, for example between -1 10 ° C and -100 ° C.
  • the CO2-depleted gaseous stream (22) introduced into the column (26) at a stage E1 has an oxygen concentration equal to C1.
  • the resulting gas stream (22) is introduced into the distillation column at a level E1 between the plate n-4 and the plate n, the plate n being the plate located on higher in said column.
  • the gaseous stream (22) is introduced into the distillation column at a level E 1 of the plate n, the plate n being the most high in said column.
  • the liquid (31) then separates in the column (26) to form a gas (32) through the condenser (33).
  • the cooling of the condenser (33) may, for example be provided by a refrigerating cycle using nitrogen and or methane.
  • a portion (36) of the liquid (37) exiting the distillation column vessel (26) at a temperature between -120 ° C and -90 ° C is sent to the reboiler (25) where it partially vaporizes. .
  • the formed gas (29) is returned to the column vessel (26).
  • the other portion (38) of the remaining liquid (37) is pumped by means of a pump (39) to form the liquid methane stream (27) which vaporizes in the exchanger (24) to form a methane product pure gas (40).
  • This pumping step is carried out at a high pressure, typically above the critical pressure and above 40 bar absolute, preferably above 50 bar absolute. This level of pressure makes it possible to avoid the accumulation of CO2 in the last drop of vaporization of the exchange line.
  • the dew point of the gas below the critical pressure is very low (typically below -90 ° C.).
  • the injection of nitrogen into the gas to be treated so as to limit the oxygen concentration in the distillation column therefore solves the problem identified by the inventors of the present invention. Indeed, if the gas at equal oxygen concentration contains more nitrogen, the risk of concentration at the top of the column becomes lower because the oxygen is more diluted in nitrogen. A control system is therefore put in place.
  • nitrogen concentration is less than t1, nitrogen is injected into the feed gas in order to obtain a mixture with a composition approaching or even exceeding t1 (typically the injection flow rate is controlled according to content in the mixture).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Procédé de production de biométhane (40) par épuration d'un courant d'alimentation (1) de biogaz comprenant les étapes suivantes : Etape a): introduction du courant gazeux d'alimentation (1) dans une unité de prétraitement (5) dans laquelle ledit courant gazeux est séparé partiellement du CO2 et de l'oxygène qu'il contient et est comprimé à une pression P1 supérieure à 50 bar abs; Etape b): on introduit le courant gazeux (22) issu de l'étape b) appauvri en CO2, à une séparation cryogénique dans une colonne de distillation (26) pour séparer l'azote dudit courant gazeux (22), ladite colonne de distillation (26) comprenant n plateaux, n étant un nombre entier compris entre 8 et 100; Etape c) : on récupère un courant (27) enrichi en CH4 issu de la séparation cryogénique par pompage du produit de cuve (37) de ladite colonne (26) à une pression P2 supérieure à la pression critique dudit produit, caractérisé en ce que lorsque la concentration molaire en azote dudit courant gazeux (22) issu de l'étape a) appauvri en CO2 mis en œuvre à l'étape b) est inférieure à un seul prédéterminé, de l'azote est injecté préalablement à l'étape b), afin que le courant introduit dans ladite colonne (26) ait une concentration molaire en azote au moins égale audit seuil prédéterminé.

Description

Procédé de limitation de la concentration d’oxygène contenu dans un courant de biométhane
L'invention a pour objet un procédé de production de bio méthane par épuration de biogaz, par exemple de biogaz issu d'installations de stockage de déchets non-dangereux (ISDND). Elle concerne également une installation pour la mise en œuvre du procédé.
Plus précisément, la présente invention est relative à un procédé de traitement par couplage d'une perméation membranaire et d'une distillation cryogénique d'un courant gazeux contenant au moins du méthane, du dioxyde de carbone, des gaz de l'air (azote et oxygène) et des polluants (H2S et composés organiques volatils (COV)). L'objectif est de produire un courant gazeux riche en méthane dont la teneur en méthane est conforme aux besoins de son utilisation et de limiter au maximum l'impact des rejets de CH4 dans l'atmosphère (gaz à fort pouvoir à effet de serre).
L'invention concerne en particulier l'épuration de biogaz issu des installations de stockage de déchets non-dangereux, ci-après ISDND (Installation de Stockage des Déchets Non Dangereux), dans le but de produire du biométhane conforme à l'injection dans un réseau de gaz naturel ou en utilisation locale comme carburant véhicule.
La digestion anaérobique des déchets organiques présents dans les ISDND produit une quantité importante de biogaz pendant toute la durée d'exploitation de l'ISDND et même plusieurs années après l'arrêt de l'exploitation et la fermeture de l'ISDND. De par ses constituants principaux -méthane et dioxyde de carbone- le biogaz est un puissant gaz à effet de serre ; il constitue aussi, parallèlement, une source d'énergie renouvelable appréciable dans un contexte de raréfaction des énergies fossiles.
Le biogaz contient plusieurs composés polluants et doit être épuré pour permettre une valorisation commerciale. Il existe plusieurs procédés permettant d'effectuer la récupération et la purification du biogaz.
Le biogaz contient majoritairement du méthane (CH4) et du dioxyde de carbone (CO2) dans des proportions variables en fonction du mode d'obtention.
Dans le cas du biogaz d'ISDND, le gaz contient en outre une proportion de gaz de l'air (azote et oxygène) ainsi que dans une moindre proportion, de l'eau, de l'hydrogène sulfuré, et des composés organiques volatiles (COV). Selon les matières organiques dégradées, les techniques utilisées et les conditions particulières (climats, typologies...) de chaque ISDND, les proportions des composants du biogaz diffèrent. Néanmoins, en moyenne, le biogaz comporte, sur gaz sec, de 30 à 60% de méthane, de 15 à 50% de CO2, de 0 à 30% d'azote, de 0 à 6% d'oxygène, de 0 à 1 % d'hteS et de quelques dizaines à quelques milliers de milligrammes par normaux mètres cubes de COV et un certain nombre d'autres impuretés à l'état de trace.
Le biogaz est valorisé de différentes manières. Il peut, après un traitement partiel, être valorisé à proximité du site de production pour fournir de la chaleur, de l'électricité ou les deux cumulées (la cogénération). La teneur importante en dioxyde de carbone et en azote réduit son pouvoir calorifique, augmente les coûts de compression et de transport et limite l'intérêt économique de sa valorisation à cette utilisation de proximité.
Une purification plus poussée du biogaz permet sa plus large utilisation. En particulier, une purification poussée du biogaz permet d'obtenir un biogaz épuré aux spécifications du gaz naturel et qui pourra lui être substitué. Le biogaz ainsi purifié est appelé « biométhane ». Le biométhane complète ainsi les ressources de gaz naturel avec une partie renouvelable produite au cœur des territoires. Il est utilisable pour exactement les mêmes usages que le gaz naturel d'origine fossile. Il peut alimenter un réseau de gaz naturel, une station de remplissage pour véhicules.
Les modes de valorisation du biométhane sont déterminés en fonction des contextes locaux : besoins énergétiques locaux, possibilités de valorisation en tant que biométhane carburant, existence à proximité de réseaux de distribution ou de transport de gaz naturel notamment. Créant des synergies entre les différents acteurs œuvrant sur un territoire (agriculteurs, industriels, pouvoirs publics), la production de biométhane aide les territoires à acquérir une plus grande autonomie énergétique.
Il est à noter que, en fonction des pays, les réglementations environnementales imposent souvent des contraintes concernant les rejets à l'atmosphère.
Il est en effet nécessaire de mettre en place des technologies permettant de limiter les impacts des gaz à effet de serre (CH4) et des polluants (H2S et COV) contenu dans le biogaz. Il est donc important d'avoir un rendement CH4 élevé (égal, en masse, à la quantité de CH4 valorisée rapportée à la quantité de CH4 contenue dans le biogaz) et de prévoir des systèmes de traitement pour l'hhS et les COV qui évitent les rejets atmosphériques.
Par ailleurs, une problématique supplémentaire reste la présence d'02, qui, lors de la séparation du mélange, peut générer une atmosphère explosive pendant les différentes étapes d'enrichissement. Ce risque de création d'un mélange explosif rend le biogaz de décharge particulièrement difficile à épurer de manière sûre et économique.
Le document US 8 221 524 B2 décrit un procédé d'enrichissement en CH4 d'un gaz, à hauteur de 88% par différente étapes de recyclage. Le procédé consiste à compresser le flux gazeux, puis à le faire passer sur un adsorbant pour éliminer les COV. Le flux gazeux est ensuite soumis à une étape de séparation membranaire puis à une étape d'adsorption modulée en pression (PSA). L'adsorbant mis en œuvre dans le PSA est du type CMS (carbon molecular sieve) et permet d'éliminer l'azote et une petite partie de l'oxygène.
Le document EP1979446 décrit un procédé d'épuration de biogaz consistant à éliminer l'hhS, à compresser le gaz, à le filtrer pour éliminer les particules Le gaz est ensuite soumis à une étape de séparation membranaire pour éliminer le CO2 et GO2, de séchage par passage dans un PSA puis dans différents filtres puis enfin de nouveau dans un PSA pour éliminer l’azote. Le gaz est finalement liquéfié.
Le document US2004/0103782 décrit un procédé d'épuration de biogaz consistant à éliminer à compresser le gaz, le filtrer pour éliminer les particules, à le soumettre à une étape d'adsorption modulée en pression (PSA) pour éliminer les COV, puis à une séparation membranaire pour éliminer la majeure partie du CO2 ainsi qu'une fraction de l'oxygène.
Le document US 5486227 décrit un procédé de purification et de liquéfaction d'un mélange gazeux consistant à soumettre le flux à une adsorption modulée en température (TSA) pour éliminer l'hhS notamment, puis à une adsorption modulée en pression (PSA) pour éliminer le CO2 notamment, puis enfin à une séparation cryogénique pour éliminer l'azote et ne retenir que le méthane.
Les documents US5964923 et US5669958 décrivent un procédé de traitement d'un effluent gazeux consistant à déshydrater le gaz, à le condenser en le passant dans un échangeur, à soumettre le gaz à une séparation membranaire, puis à une séparation cryogénique. Le document US2010/077796 décrit un procédé de purification consistant à soumettre le flux gazeux à une séparation membranaire, à traiter le perméat dans une colonne à distiller, puis à mélanger le méthane gaz provenant de la colonne, après vaporisation, avec le rétentat obtenu à l'issue de la séparation membranaire.
Les documents US3989478 et FR2917489 décrivent des systèmes cryogéniques pour l'épuration d'un flux riche en méthane. Ces deux systèmes utilisent un système d’adsorption pour abattre le CO2 avant l'étape de liquéfaction. Dans le document US3989478, la régénération des systèmes d’adsorption est effectuée par le biais du distillât riche en azote récupéré en tête de colonne de distillation. Dans le document FR2917489, la régénération du système d’adsorption est effectuée par le méthane liquide soutiré en bas de colonne de distillation.
Le document EP0772665 décrit l'utilisation d'une colonne de distillation cryogénique pour la séparation du gaz de mine composé principalement de CFI4, CO2 et azote.
Aucun des documents cités ne permet de résoudre le problème de fournir du biométhane sans risque lié à GO2, à une concentration en méthane supérieure à 95%, une concentration en CO2 inférieure à 2,5% et avec un rendement méthane supérieur à 85%.
Un des problèmes que se propose donc de résoudre l'invention est celui de fournir un procédé de purification de biogaz respectant les contraintes ci-dessus, c'est-à-dire un procédé qui soit sûr, avec un rendement optimal, produisant un biométhane de haute qualité substituable au gaz naturel et qui respecte les normes environnementales s'agissant notamment de la destruction des composées polluants comme les COV et des composés à fort pouvoir à effet de serre comme le CFI4. Le gaz ainsi produit pourra être valorisé sous forme gazeuse soit en injection dans un réseau de gaz ou alors pour des applications de mobilité.
Par ailleurs, dans l’art antérieur, il est connu de traiter du biogaz dans une unité de purification de gaz pouvant utiliser les étapes suivantes : un PSA (Pressure Swing Adsorption), un tamis d’adsorbant (pour enlever les COV) et un étage membranaire.
Le CO2 est majoritairement enlevé sur l’étape membranaire. Cette séparation imparfaite laisse dans le gaz dit épuré une teneur en CO2 fréquemment comprise entre 0,5% mol et 1 ,5% mol. Il est possible de réduire la teneur en CÜ2dans le gaz purifié en sur dimensionnant l’unité de séparation (impliquant une consommation plus importante du compresseur). Dans tous les cas la teneur en CO2 dans le gaz purifié ne pourra jamais être fortement inférieure (même ordre de grandeur de concentration).
Ce gaz purifié contenant, entre autre, le restant de CO2, du méthane, un peu d’oxygène et de l’azote (entre 1 % et 20%mol) est ensuite traité dans une unité cryogénique.
Les températures atteintes dans cette unité sont de l’ordre de -100°C voire inférieures, ce qui à basse pression (entre Patm et une trentaine de bar) entraîne une solidification du CO2 contenu dans le gaz à traiter.
Une solution fréquemment employée est d’utiliser une étape de purification basée sur la technologie d’adsorption (TSA, Température Swing Adsorption). Cette technologie permet d’atteindre des teneurs en CO2 très faibles (par exemple 50ppmv dans le cas d’un gaz naturel liquéfié). A ces teneurs le CO2 ne se solidifie pas aux températures considérées même à basse pression car il est encore soluble dans le méthane. Cependant cette unité de purification est relativement onéreuse et nécessite l’utilisation d’un gaz dit de régénération pour pouvoir évacuer le CO2 arrêté. Le gaz fréquemment utilisé est soit l’azote qui aura été séparé dans l’étape cryogénique, soit le produit méthane en sortie de NRU. Si on utilise l’azote, il est possible qu’il faille dégrader le rendement de l’unité ou ajouter de l’azote pour arriver à obtenir le débit requis. Si on utilise le méthane de la production, des pics de concentration de CO2 lié à la désorption peuvent apparaître rendant le gaz hors des spécifications.
Par ailleurs, le gaz issu d’une décharge ou d’une unité de production de biogaz, contient de l’oxygène (valeur typique entre 0% et 1 % mol d’oxygène, mais potentiellement plus).
Cet oxygène est partiellement éliminé dans les étapes de prétraitement notamment celle des membranes qui consiste à enlever le CO2. Durant cette étape, la quantité d’oxygène en valeur absolue diminue mais sa concentration elle augmente ou reste constante.
L’oxygène entrant dans la partie cryogénique risque de se concentrer à certains endroits tel que la colonne de distillation. En effet la volatilité de l’oxygène est comprise entre celle de l’azote et celle du méthane. Il est donc tout à fait possible de créer des zones de concentration de l’oxygène dans la colonne à distiller. Cette concentration si elle n’est pas maîtrisée peut atteindre des valeurs susceptibles d’entrainer une inflammation, voir une explosion du mélange de gaz. Il s’agit d’un risque sécurité d’une importance majeure que les inventeurs de la présente invention ont cherché à limiter au maximum.
Il existe donc un besoin d’améliorer les procédés tels que décrits ci-dessus tout en réduisant les coûts d’opération.
Les inventeurs de la présente invention ont alors mis au point une solution permettant de résoudre les problèmes soulevés ci-dessus.
La présente invention a pour objet un procédé de production de biométhane par épuration d’un courant d’alimentation de biogaz comprenant les étapes suivantes :
Etape a) : introduction du courant gazeux d’alimentation dans une unité de prétraitement dans laquelle ledit courant gazeux est séparé partiellement du CO2 et de l’oxygène qu’il contient et est comprimé à une pression P1 supérieure à 25 bars abs mais de préférence supérieure à 50 bars abs ;
Etape b) : on introduit le courant gazeux issu de l’étape b) appauvri en CO2, à une séparation cryogénique dans une colonne de distillation pour séparer l'azote dudit courant gazeux, ladite colonne de distillation comprenant n plateaux, n étant un nombre entier compris entre 8 et 100 ;
Etape c) : on récupère un courant enrichi en CH4 issu de la séparation cryogénique par pompage du produit de cuve de ladite colonne à une pression P2 supérieure à 25 bars abs mais de préférence supérieure à la pression critique dudit produit, caractérisé en ce que lorsque la concentration molaire en azote dudit courant gazeux issu de l’étape a) appauvri en CO2 mis en œuvre à l’étape b) est inférieure à un seul prédéterminé, de l’azote est injecté préalablement à l’étape b), afin que le courant introduit dans ladite colonne ait une concentration molaire en azote au moins égale audit seuil prédéterminé.
Les colonnes à distiller ont une forme cylindrique, leur hauteur est toujours très grande comparée à leur diamètre. Les plus utilisées sont équipées de plateaux.
Les plateaux d'une colonne ont pour objectif de mettre en contact le liquide, qui redescend par gravité, avec la vapeur qui monte. Ils comportent une aire active percée de trous, éventuellement équipés de clapets ou de cloches, d'un barrage permettant de retenir sur le plateau une certaine épaisseur de liquide, d'un déversoir permettant d'amener le liquide du plateau considéré vers le plateau inférieur. La solution objet de la présente invention est donc de ne pas réduire d’avantage la teneur en CO2 en sortie de l’étape membranaire tout en assurant une solubilité suffisante du CO2 dans le gaz à traiter (principalement du méthane) afin d’éviter une cristallisation et cela en tout point du procédé.
L’étape de TSA pour abattre majoritairement le CO2 est donc retirée. Le gaz qui alimente la section cryogénique contient donc entre 0,3%mol et 2% mol de CO2.
Par ailleurs, la solution objet de la présente invention, permet de limiter le risque lié à la présence d’oxygène lors de la distillation.
Selon d’autres modes de réalisation, l’invention a aussi pour objet :
- Un procédé tel que défini précédemment, caractérisé en ce que ladite colonne de distillation comprend n plateaux réels, n étant un nombre entier compris entre 8 et 100 et caractérisé en ce que ledit courant ou mélange gazeux issu de l’étape a) appauvri en CO2 mis en œuvre à l’étape b) est introduit dans la colonne de distillation au niveau d’un plateau compris entre le plateau n-4 et le plateau n, le plateau n étant le plateau situé le plus haut dans ladite colonne.
- Un procédé tel que défini précédemment, caractérisé en ce que ledit seuil prédéterminé est égal à 5% molaire.
- Un procédé tel que défini précédemment, caractérisé en ce que l’étape a) comprend en outre une étape d’épuration en eau du courant gazeux comprimé à la pression P1 .
- Un procédé tel que défini précédemment, caractérisé en ce que ledit courant gazeux issu de l’étape a) appauvri en CO2 mis en œuvre à l’étape b) comprend entre 0,3% molaire et 2% molaire de CO2.
- Un procédé tel que défini précédemment, caractérisé en ce que, lors de l’étape a), la séparation du CO2 et de l’oxygène du courant gazeux d’alimentation est effectuée par une unité comprenant au moins deux étages de membranes séparatrices.
- Un procédé tel que défini précédemment, caractérisé en ce que la pression P2 de l’étape c) est supérieure à 40 bar abs.
- Un procédé tel que défini précédemment, caractérisé en ce que lors de l’étape b), le courant gazeux appauvri en CO2 issu de l’étape a) subit une détente jusqu’à une pression P3 comprise entre 15 bar abs et 40 bar abs préalablement à son entrée dans ladite colonne de distillation. De préférence, P3 est supérieure à 25 bars abs. - Un procédé tel que défini précédemment, caractérisé en ce que préalablement à la détente, le courant gazeux appauvri en CO2 issu de l’étape a) est au moins partiellement condensé dans un échangeur de chaleur.
- Un procédé tel que défini précédemment, caractérisé en ce que le courant gazeux appauvri en CO2 issu de l’étape a) est au moins partiellement condensé dans un échangeur de chaleur à contre-courant du courant enrichi en CH4 issu de l’étape c) et d’au moins une partie du courant azote séparé lors de l’étape b).
L’invention a également pour objet :
- Une installation pour la production de bio méthane par épuration de biogaz issus d'installations de stockage de déchets non-dangereux (ISDND) mettant en œuvre le procédé tel que défini précédemment.
- Une installation telle que définie ci-dessus, pour la production de bio méthane par épuration de biogaz issus d'installations de stockage de déchets non- dangereux (ISDND), comprenant successivement :
- une source de biogaz ;
- une source d’azote ;
- une unité de prétraitement pour enlever tout ou partie des COV, l’eau, les composés soufrés du flux gazeux à traiter ;
- au moins deux étages de membranes séparatrices aptes à séparer partiellement le CO2 et GO2 dudit flux gazeux ;
- un compresseur apte à compresser ledit flux gazeux à une pression comprise entre de 25 et 100 bars ;
- un échangeur de chaleur apte à refroidir le flux gazeux appauvri en CO2,
- une colonne de distillation ;
caractérisée en ce que la colonne de distillation comprend n plateaux et que le niveau d’introduction du courant à traiter dans ladite colonne dépend de la concentration en oxygène dudit courant à traiter, n étant un nombre entier compris entre 8 et 100.
L'échangeur de chaleur peut être tout échangeur thermique, toute unité ou autre agencement adapté pour permettre le passage d'un certain nombre de flux, et ainsi permettre un échange de chaleur direct ou indirect entre une ou plusieurs lignes de fluide réfrigérant, et un ou plusieurs flux d'alimentation.
La limitation du nombre de plateaux réels au-dessus de l’injection dans la colonne à distiller du gaz à traiter (maximum de 4 plateaux réels) lorsque la concentration en oxygène, notée C1 est supérieure à 0,1 % molaire permet de limiter la création d’un ventre oxygène dans la colonne.
Le gaz à traiter est donc refroidi partiellement ou totalement liquéfié dans la ligne d’échange. Il est ensuite détendu à la pression de distillation. Le gaz partiellement ou totalement liquéfié est détendu et ensuite injecté dans la colonne à distiller. Cette injection est réalisée soit directement en tête au niveau d’un des 4 plateaux de tête de la colonne.
L’invention sera décrite de manière plus détaillée en se référant à la figure qui illustre un mode de réalisation particulier d’un procédé selon l’invention mise en œuvre par une installation telle que schématisée sur la figure.
On désigne par une même référence un flux liquide et la conduite qui le véhicule, les pressions considérées sont des pressions absolues et les pourcentages considérés sont des pourcentages molaires.
Sur la figure, L'installation comprend une source de biogaz à traiter (1 ), une unité de prétraitement (5) comprenant une unité de compression (2) et une unité d’épuration de CO2 et d’Ü2 (23), une unité d'épuration de COV et d’eau (3), une unité de cryodistillation (4), et enfin une unité de récupération du méthane gazeux (6). Tous les appareils sont reliés entre eux par des tuyaux.
En amont de l’unité de compression (2) se situe l’unité d’épuration de CO2 (23) et des éventuelles unités de prétraitement préalables.
L’unité d'épuration de CO2 (23) combine, par exemple, deux étages de séparation membranaire. Les membranes sont choisies pour permettre la séparation d'au moins 90% du CO2 et d'environ 50% de GO2. Le retentât issu de la première séparation est ensuite dirigé vers la seconde séparation membranaire.
Le perméat issu de la seconde séparation membranaire est recyclé par le biais d'un tuyau connecté au circuit principal en amont du compresseur. Cette étape permet de produire un gaz (7) avec moins de 3% de CO2 et avec un rendement CH4 supérieur à 90%. La température de ce courant est typiquement ambiante, si nécessaire des étapes de refroidissement à l’air ou à l’eau peuvent être incorporées.
L'unité de compression (2) se présente par exemple sous la forme d'un compresseur à piston.
Ce compresseur comprime le flux gazeux (7) à une pression comprise par exemple entre 50 et 80 bars. Le flux sortant est désigné sur la figure par la référence (8). L'unité d'épuration (TSA) de COV et d’eau (3) comprend deux bouteilles (9, 10). Elles sont chargées en adsorbants choisis spécifiquement pour autoriser l'adsorption de l’eau et des COV’s, et leur désorption ultérieure lors de la régénération. Les bouteilles fonctionnent alternativement en mode production et en mode régénération.
En mode production, les bouteilles (9, 10) sont alimentées en flux gazeux au niveau de leur partie inférieure. Le tuyau dans laquelle circule le flux gazeux (8) se dédouble en deux tuyaux (1 1 , 12), chacun équipé d'une vanne (13, 14) et alimentant la partie inférieure respectivement de la première bouteille (9) et de la deuxième bouteille (10). Les vannes (13, 14) seront alternativement fermées en fonction du niveau de saturation des bouteilles. En pratique, lorsque la première bouteille est saturée en eau, on ferme la vanne (13) et on ouvre la vanne (14) pour commencer à charger la seconde bouteille (10). De la partie supérieure de chacune des bouteilles débouche un tuyau respectivement (15 et 16). Chacun d'entre eux se dédouble en deux tuyaux respectivement (17, 18) et (19, 20). Le flux épuré en eau et en COV provenant de la première bouteille circule dans le tuyau (18) tandis que le flux épuré en eau et en COV provenant du second PSA circule dans le tuyau (20). Les deux tuyaux sont joints pour ne former qu'une seule conduite (21 ) alimentant l'unité cryogénique (4).
En mode régénération, le gaz régénératif circule dans les tuyaux (17, 19). Il ressort au niveau de la partie inférieure des bouteilles.
L’unité de cryodistillation (4) est alimentée par le tuyau (21 ) dans lequel circule le flux gazeux (22) à épurer. Elle contient trois éléments respectivement un échangeur de chaleur (24), un rebouilleur (25), une colonne de distillation (26).
L'échangeur (24) est de préférence un échangeur à plaques brasées en aluminium ou en acier inoxydable. Il refroidit le flux gazeux (22) circulant dans la conduite (21 ) par échange thermique avec le flux de méthane liquide (27) soutiré de la colonne de distillation (26). Le flux gazeux (22) est refroidi (28) à une température d’environ -100°C. Le flux diphasique (28) en résultant peut alternativement, assurer le rebouillage du rebouilleur de cuve (25) de la colonne (26) et la chaleur produite (29) est transférée à la cuve de la colonne (26).
Le fluide refroidi (28) est détendu au moyen d'une vanne (30) à une pression par exemple comprise entre 20 bars absolus et 45 bars absolus bars absolu. Le fluide alors à l’état diphasique ou à l'état liquide (31 ) est introduit dans la colonne (26) à un étage E1 situé dans la partie supérieure de ladite colonne (26) à une température, par exemple comprise entre -1 10°C et-100°C.
Le courant gazeux (22) appauvri en CO2 introduit dans la colonne (26) à un étage E1 , a une concentration en oxygène égale à C1 .
Lorsque C1 est strictement supérieure à 1 % molaire, le procédé est arrêté.
Lorsque C1 est strictement supérieure à 0,1 % molaire, le courant gazeux (22) issu est introduit dans la colonne de distillation à un niveau E1 compris entre le plateau n-4 et le plateau n, le plateau n étant le plateau situé le plus haut dans ladite colonne. Lorsque C1 est strictement supérieure à 0,5% molaire et inférieure ou égale à 1 % molaire, le courant gazeux (22) est introduit dans la colonne de distillation à un niveau E1 du plateau n, le plateau n étant le plateau situé le plus haut dans ladite colonne.
Le liquide (31 ) se sépare ensuite dans la colonne (26) pour former un gaz (32) par le biais du condenseur (33). Le refroidissement du condenseur (33) peut, par exemple être assuré par un cycle frigorifique utilisant de l’azote et ou du méthane. Une partie (36) du liquide (37) sortant de la cuve de la colonne de distillation (26), à une température comprise entre -120°C et -90°C, est envoyée au rebouilleur (25) où elle se vaporise partiellement. Le gaz formé (29) est renvoyé à la cuve de la colonne (26).
L’autre partie (38) du liquide (37) restant est pompée au moyen d’une pompe (39) pour former le flux de méthane liquide (27) qui se vaporise dans l'échangeur (24) pour former un produit de méthane gazeux pur (40). Cette étape de pompage se déroule à une pression élevée, typiquement au-delà de la pression critique et supérieure à 40 bars absolus, préférentiellement supérieure à 50 bars absolus. Ce niveau de pression permet d’éviter l’accumulation de CO2 dans la dernière goutte à vaporiser de la ligne d’échange. Le gaz étant très pauvre en hydrocarbures lourds, le point de rosée du gaz en dessous de la pression critique est très bas (typiquement inférieur à - 90°C).
L’injection d’azote dans le gaz à traiter de façon à limiter la concentration en oxygène dans la colonne à distiller permet donc de résoudre le problème identifié par les inventeurs de la présente invention. En effet si le gaz, à concentration d’oxygène égale contient plus d’azote, le risque de concentration en tête de colonne devient plus faible car l’oxygène est plus dilué dans l’azote. Un système de contrôle est donc mis en place. Lorsque la concentration en azote est supérieur à une teneur t1 (par exemple t1 = 5% mol), on n’injecte pas d’azote dans le gaz d’alimentation. Et lorsque la concentration en azote est inférieure à t1 , on injecte de l’azote dans le gaz d’alimentation afin d’obtenir un mélange avec une composition se rapprochant, voir supérieure à t1 (typiquement on contrôle le débit d’injection en fonction de la teneur dans le mélange).
La mesure d’azote dans un gaz étant difficile en direct, il est possible d’utiliser la mesure en méthane du gaz à laquelle ou soustrait la teneur en oxygène et en C02.

Claims

REVENDICATIONS
1. Procédé de production de biométhane (40) par épuration d’un courant d’alimentation (1 ) de biogaz comprenant les étapes suivantes :
Etape a) : introduction du courant gazeux d’alimentation (1 ) dans une unité de prétraitement (5) dans laquelle ledit courant gazeux est séparé partiellement du CO2 et de l’oxygène qu’il contient et est comprimé à une pression P1 supérieure à 25 bars abs ;
Etape b) : on introduit le courant gazeux (22) issu de l’étape b) appauvri en
CO2, à une séparation cryogénique dans une colonne de distillation (26) pour séparer l'azote dudit courant gazeux (22), ladite colonne de distillation (26) comprenant n plateaux, n étant un nombre entier compris entre 8 et 100 ;
Etape c) : on récupère un courant (27) enrichi en CH4 issu de la séparation cryogénique par pompage du produit de cuve (37) de ladite colonne (26) à une pression P2 supérieure à 25 bars absolus et de préférence supérieure à la pression critique dudit produit,
caractérisé en ce que lorsque la concentration molaire en azote dudit courant gazeux (22) issu de l’étape a) appauvri en CO2 mis en œuvre à l’étape b) est inférieure à un seul prédéterminé, de l’azote est injecté préalablement à l’étape b), afin que le courant introduit dans ladite colonne (26) ait une concentration molaire en azote au moins égale audit seuil prédéterminé.
2. Procédé selon la revendication précédente, caractérisé en ce que ladite colonne de distillation (26) comprend n plateaux réels, n étant un nombre entier compris entre 8 et 100 et caractérisé en ce que ledit courant ou mélange gazeux (22) issu de l’étape a) appauvri en CO2 mis en œuvre à l’étape b) est introduit dans la colonne de distillation au niveau d’un plateau compris entre le plateau n-4 et le plateau n, le plateau n étant le plateau situé le plus haut dans ladite colonne (26).
3. Procédé selon l’une des revendications précédentes, caractérisé en ce que ledit seuil prédéterminé est égal à 5% molaire.
4. Procédé selon l’une des revendications précédentes, caractérisé en ce que P1 est supérieure à 50 bars absolus.
5. Procédé selon l’une des revendications précédentes, caractérisé en ce que ledit courant gazeux issu de l’étape a) appauvri en CO2 mis en œuvre à l’étape b) comprend entre 0,3% molaire et 2% molaire de CO2.
6. Procédé selon l’une des revendications précédentes, caractérisé en ce que l’étape a) comprend en outre une étape d’épuration en eau du courant gazeux (8) comprimé à la pression P1 .
7. Procédé selon l’une des revendications précédentes, caractérisé en ce que, lors de l’étape a), la séparation du CO2 et de l’oxygène du courant gazeux d’alimentation est effectuée par une unité comprenant au moins deux étages de membranes séparatrices.
8. Procédé selon l’une des revendications précédentes, caractérisé en ce que la pression P2 de l’étape c) est supérieure à 40 bar abs.
9. Procédé selon l’une des revendications précédentes, caractérisé en ce que lors de l’étape b), le courant gazeux (22) appauvri en CO2 issu de l’étape a) subit une détente (30) jusqu’à une pression P3 comprise entre 15 bar abs et 40 bar abs préalablement à son entrée dans ladite colonne de distillation (26).
10. Procédé selon la revendication précédente, caractérisé en ce que préalablement à la détente (30), le courant gazeux (22) appauvri en CO2 issu de l’étape a) est au moins partiellement condensé dans un échangeur de chaleur (24).
1 1 . Procédé selon la revendication précédente, caractérisé en ce que le courant gazeux (22) appauvri en CO2 issu de l’étape a) est au moins partiellement condensé dans un échangeur de chaleur (24) à contre-courant du courant (27) enrichi en CH4 issu de l’étape c) et d’au moins une partie du courant azote séparé lors de l’étape b).
PCT/FR2018/053340 2017-12-21 2018-12-17 Procédé de limitation de la concentration d'oxygène contenu dans un courant de biométhane WO2019122662A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18839834.1A EP3727650A1 (fr) 2017-12-21 2018-12-17 Procédé de limitation de la concentration d'oxygène contenu dans un courant de biométhane
KR1020207017907A KR20200097734A (ko) 2017-12-21 2018-12-17 바이오메탄 스트림 내에 포함된 산소의 농도를 제한하기 위한 방법
CA3085239A CA3085239A1 (fr) 2017-12-21 2018-12-17 Procede de limitation de la concentration d'oxygene contenu dans un courant de biomethane
CN201880079255.8A CN111432912B (zh) 2017-12-21 2018-12-17 用于限制生物甲烷流中含有的氧气浓度的方法
US16/954,790 US20210087123A1 (en) 2017-12-21 2018-12-17 Method for limiting the concentration of oxygen contained in a biomethane stream

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1762869 2017-12-21
FR1762869A FR3075658B1 (fr) 2017-12-21 2017-12-21 Procede de limitation de la concentration d'oxygene contenu dans un courant de biomethane

Publications (1)

Publication Number Publication Date
WO2019122662A1 true WO2019122662A1 (fr) 2019-06-27

Family

ID=62683245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/053340 WO2019122662A1 (fr) 2017-12-21 2018-12-17 Procédé de limitation de la concentration d'oxygène contenu dans un courant de biométhane

Country Status (7)

Country Link
US (1) US20210087123A1 (fr)
EP (1) EP3727650A1 (fr)
KR (1) KR20200097734A (fr)
CN (1) CN111432912B (fr)
CA (1) CA3085239A1 (fr)
FR (1) FR3075658B1 (fr)
WO (1) WO2019122662A1 (fr)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989478A (en) 1973-09-27 1976-11-02 Petrocarbon Developments Limited Producing gaseous fuels of high calorific value
US5486227A (en) 1993-10-06 1996-01-23 Air Products And Chemicals, Inc. Integrated process for purifying and liquefying a feed gas mixture with respect to its less strongly adsorbed component of lower volatility
EP0772665A1 (fr) 1994-07-20 1997-05-14 Umsicht Institut für Umwelt- und Sicherheitstechnik e.V. Procede d'augmentation de la teneur en methane d'un gaz de mine
US5669958A (en) 1996-02-29 1997-09-23 Membrane Technology And Research, Inc. Methane/nitrogen separation process
US5964923A (en) 1996-02-29 1999-10-12 Membrane Technology And Research, Inc. Natural gas treatment train
US20040103782A1 (en) 2002-12-02 2004-06-03 L'air Liquide Socie Methane recovery process
EP1979446A2 (fr) 2006-01-13 2008-10-15 Gasrec Ltd Récupération du méthane
FR2917489A1 (fr) 2007-06-14 2008-12-19 Air Liquide Procede et appareil de separation cryogenique d'un debit riche en methane
US20100077796A1 (en) 2008-09-30 2010-04-01 Sarang Gadre Hybrid Membrane/Distillation Method and System for Removing Nitrogen from Methane
CA2698007A1 (fr) * 2010-03-29 2011-09-29 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procede S Georges Claude Systeme hybride de distillation sur membrane pour eliminer l'azote du gaz naturel
US8221524B2 (en) 2009-10-23 2012-07-17 Guild Associates, Inc. Oxygen removal from contaminated gases
FR2971332A1 (fr) * 2011-02-09 2012-08-10 Air Liquide Procede et appareil de separation cryogenique d'un debit riche en methane
WO2017109305A1 (fr) * 2015-12-24 2017-06-29 Waga Energy Procede de production de biomethane par epuration de biogaz issu d'installations de stockage de dechets non-dangereux (isdnd) et installation pour la mise en œuvre du procede
WO2017203112A1 (fr) * 2016-05-27 2017-11-30 Waga Energy Procede de separation cryogenique d'un debit d'alimentation contenant du methane et des gaz de l'air, installation pour la production de bio methane par epuration de biogaz issus d'installations de stockage de dechets non-dangereux (isdnd) mettant en œuvre le procede

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2718977B1 (fr) * 1994-04-22 1996-06-07 Air Liquide Procédé et installation de séparation d'un mélange gazeux par distillation cryogénique.
US20080314079A1 (en) * 2007-06-19 2008-12-25 Air Products And Chemicals, Inc. Nitrogen Rejection Column Reboiler Configuration
US8191386B2 (en) * 2008-02-14 2012-06-05 Praxair Technology, Inc. Distillation method and apparatus
US20120085232A1 (en) * 2010-05-06 2012-04-12 Sethna Rustam H Methods for removing contaminants from natural gas
CA2790182C (fr) * 2012-09-17 2014-04-29 Gas Liquids Engineering Ltd. Procede d'optimisation d'extraction de composants condensables d'un fluide

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989478A (en) 1973-09-27 1976-11-02 Petrocarbon Developments Limited Producing gaseous fuels of high calorific value
US5486227A (en) 1993-10-06 1996-01-23 Air Products And Chemicals, Inc. Integrated process for purifying and liquefying a feed gas mixture with respect to its less strongly adsorbed component of lower volatility
EP0772665A1 (fr) 1994-07-20 1997-05-14 Umsicht Institut für Umwelt- und Sicherheitstechnik e.V. Procede d'augmentation de la teneur en methane d'un gaz de mine
US5669958A (en) 1996-02-29 1997-09-23 Membrane Technology And Research, Inc. Methane/nitrogen separation process
US5964923A (en) 1996-02-29 1999-10-12 Membrane Technology And Research, Inc. Natural gas treatment train
US20040103782A1 (en) 2002-12-02 2004-06-03 L'air Liquide Socie Methane recovery process
EP1979446A2 (fr) 2006-01-13 2008-10-15 Gasrec Ltd Récupération du méthane
FR2917489A1 (fr) 2007-06-14 2008-12-19 Air Liquide Procede et appareil de separation cryogenique d'un debit riche en methane
US20100077796A1 (en) 2008-09-30 2010-04-01 Sarang Gadre Hybrid Membrane/Distillation Method and System for Removing Nitrogen from Methane
US8221524B2 (en) 2009-10-23 2012-07-17 Guild Associates, Inc. Oxygen removal from contaminated gases
CA2698007A1 (fr) * 2010-03-29 2011-09-29 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procede S Georges Claude Systeme hybride de distillation sur membrane pour eliminer l'azote du gaz naturel
FR2971332A1 (fr) * 2011-02-09 2012-08-10 Air Liquide Procede et appareil de separation cryogenique d'un debit riche en methane
WO2017109305A1 (fr) * 2015-12-24 2017-06-29 Waga Energy Procede de production de biomethane par epuration de biogaz issu d'installations de stockage de dechets non-dangereux (isdnd) et installation pour la mise en œuvre du procede
WO2017203112A1 (fr) * 2016-05-27 2017-11-30 Waga Energy Procede de separation cryogenique d'un debit d'alimentation contenant du methane et des gaz de l'air, installation pour la production de bio methane par epuration de biogaz issus d'installations de stockage de dechets non-dangereux (isdnd) mettant en œuvre le procede

Also Published As

Publication number Publication date
EP3727650A1 (fr) 2020-10-28
CA3085239A1 (fr) 2019-06-27
FR3075658A1 (fr) 2019-06-28
KR20200097734A (ko) 2020-08-19
US20210087123A1 (en) 2021-03-25
CN111432912A (zh) 2020-07-17
CN111432912B (zh) 2022-11-01
FR3075658B1 (fr) 2022-01-28

Similar Documents

Publication Publication Date Title
FR3075659B1 (fr) Procede de production d'un courant de gaz naturel a partir d'un courant de biogaz.
EP3393621B1 (fr) Procédé de production de biométhane par épuration de biogaz issu d'installations de stockage de déchets non-dangereux et installation pour la mise en oeuvre du procédé
CA3024382C (fr) Procede de separation cryogenique d'un debit d'alimentation contenant du methane et des gaz de l'air, installation pour la production de bio methane par epuration de biogaz issus d'installations de stockage de dechets non-dangereux (isdnd) mettant en oeuvre le procede
EP3727648B1 (fr) Procédé de distillation d'un courant gazeux contenant de l'oxygène
FR2760653A1 (fr) Procede de desacidification avec production de gaz acides en phase liquide
WO2012029021A1 (fr) Procede de traitement d'un gaz naturel contenant du dioxyde de carbone
WO2019122662A1 (fr) Procédé de limitation de la concentration d'oxygène contenu dans un courant de biométhane
WO2022064159A1 (fr) Procédé de traitement de biogaz – installation associée
FR2859483A1 (fr) Procede de fabrication de fonte avec utilisation des gaz du haut-fourneau pour la recuperation assistee du petrole
CA3159990A1 (fr) Procede et un dispositif de purification de gaz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3085239

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018839834

Country of ref document: EP

Effective date: 20200721