WO2017107765A1 - 双向变换电路和双向变换器 - Google Patents

双向变换电路和双向变换器 Download PDF

Info

Publication number
WO2017107765A1
WO2017107765A1 PCT/CN2016/108605 CN2016108605W WO2017107765A1 WO 2017107765 A1 WO2017107765 A1 WO 2017107765A1 CN 2016108605 W CN2016108605 W CN 2016108605W WO 2017107765 A1 WO2017107765 A1 WO 2017107765A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
diode
conversion circuit
bidirectional conversion
bidirectional
Prior art date
Application number
PCT/CN2016/108605
Other languages
English (en)
French (fr)
Inventor
周岿
黄一平
单浩仁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020187020995A priority Critical patent/KR102130362B1/ko
Priority to JP2018532658A priority patent/JP6571286B2/ja
Priority to EP16877576.5A priority patent/EP3396842A4/en
Publication of WO2017107765A1 publication Critical patent/WO2017107765A1/zh
Priority to US16/014,862 priority patent/US10666164B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/5388Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with asymmetrical configuration of switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of power conversion, and more particularly to a bidirectional conversion circuit and a bidirectional converter in a power conversion technique.
  • the conventional totem pole circuit includes two switching tubes connected in series, and a parasitic body diode and a parasitic capacitor are respectively arranged inside the switching tube.
  • the switching transistor should select a device with a withstand voltage of 400V or higher.
  • the reverse recovery current of the parasitic body diode of this device is bigger.
  • Embodiments of the present invention provide a bidirectional conversion circuit and a bidirectional converter to solve the problem that a conventional totem pole circuit generates a reverse recovery current in a synchronous rectification scenario.
  • an embodiment of the present invention provides a bidirectional conversion circuit, where the bidirectional conversion circuit includes:
  • first dual-conductor network a second dual-conducting network, a first switching transistor, a second switching transistor, a first diode, and a second diode;
  • the first double-conducting network is connected in series with the first switching tube to form a first branch, and the first end of the first branch is connected to the cathode of the first diode to form a first end point;
  • the second double-conducting network and the second switching tube are connected in series to form a second branch, and the second end of the second branch is connected to the anode of the second diode to form a third end point;
  • the first switch tube is turned on between the first time and the second time, and is turned off in the second time to the fifth time;
  • the second switch tube is turned off in the first time to the third time, turned on in the third time to the fourth time, and turned off in the fourth time to the fifth time;
  • the first time is the start time of the positive half cycle of the current flowing into or out of the second end point
  • the third time is the end time of the positive half cycle
  • the second time is the time of the first time to the third time time interval.
  • the fifth time is the end time of the negative half cycle of the current
  • the fourth time is any time within the time zone of the third time to the fifth time.
  • the first dual-conducting network is a Metal Oxide Semiconductor Field Effect Transistor ("MOSFET”), or an Insulated Gate Bipolar Transistor (Insulated Gate Bipolar Transistor, Referred to as "IGBT”), or two diodes of opposite polarity and in parallel, wherein the MOSFET can be a MOSFET or at least two MOSFETs connected in series, and the IGBT can be an IGBT or at least two IGBTs connected in series.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the second bi-directional network is a MOSFET or an IGBT, or two diodes of opposite polarity and parallel, wherein the MOSFET can be a MOSFET or at least two MOSFETs connected in series, and the IGBT can be a IGBT or at least two IGBTs connected in series.
  • the conduction voltage drop of the first dual-conducting network is smaller than the conduction voltage drop of the first diode, and the conduction voltage drop of the first bi-directional network and the body diode of the first switching transistor
  • the sum of the turn-on voltage drops is greater than the turn-on voltage drop of the first diode
  • the turn-on voltage drop of the second bi-directional network is less than the turn-on voltage drop of the second diode
  • the second diode-guided network The sum of the voltage drop and the conduction voltage drop of the body diode of the second switching transistor is greater than the conduction voltage drop of the second diode.
  • the first switching transistor is a metal oxide semiconductor field effect transistor MOSFET or an insulated gate bipolar transistor IGBT; and the second switching transistor is a MOSFET or an IGBT.
  • the first diode is a fast recovery diode or silicon carbide SiC II The pole tube; the second diode is a fast recovery diode or a SiC diode.
  • the bidirectional conversion circuit is used for a synchronous rectification circuit or an inverter circuit.
  • the bidirectional converter further includes a controller for controlling the first switch to be turned on or off; or
  • the first switch tube and the second switch tube are controlled to be turned on or off.
  • a bidirectional conversion circuit can be applied to a synchronous rectification scenario, solves the problem of high voltage synchronous rectification reverse recovery current, and can improve rectification efficiency, and can also be applied to an inversion scenario, in an inverter scenario.
  • the parasitic capacitance of the switch can be discharged.
  • a bidirectional converter comprising:
  • a first bidirectional conversion circuit according to the first aspect or any one of the first aspects; the second bidirectional conversion circuit of the first aspect or any one of the first aspects; the first aspect or the first aspect a third bidirectional conversion circuit of any of the implementations;
  • the transformer comprising a primary winding and a secondary winding, one end of the secondary winding of the transformer is connected to the second end of the first bidirectional conversion circuit, and the other end of the secondary winding of the transformer is connected to the second end of the second bidirectional conversion circuit ;
  • the resonant cavity includes a first port, a second port, a third port, and a fourth port, the first port is connected to the second end of the third bidirectional conversion circuit, and the second port is connected to the third end of the third bidirectional conversion circuit
  • the end point, the third port and the fourth port are respectively connected to the primary winding of the transformer;
  • the bridgeless PFC circuit includes two AC ports and two DC ports, and the two DC ports are respectively connected to the first end point and the third end point of the third bidirectional conversion circuit.
  • the bidirectional converter further includes: a capacitor, wherein the first end of the first bidirectional conversion circuit is connected to the first end of the second bidirectional conversion circuit and is connected to the positive end of the capacitor, first A third end of the bidirectional conversion circuit is coupled to the third terminal of the second bidirectional conversion circuit and to the negative terminal of the capacitor.
  • Figure 1 shows a schematic diagram of a conventional totem pole circuit structure.
  • FIG. 2A and 2B are schematic diagrams showing the circuit structure of FIG. 1 applied to a synchronous rectification scenario.
  • FIG. 3A is a schematic diagram showing a circuit structure of a bidirectional conversion circuit according to an embodiment of the present invention.
  • FIG. 3B is a schematic diagram showing another circuit structure of a bidirectional conversion circuit according to an embodiment of the present invention.
  • 4A to 4D are schematic diagrams showing the circuit structure shown in FIG. 3B applied to a synchronous rectification scene.
  • FIG. 5 is a schematic structural diagram of a circuit of a dual-conductor network according to an embodiment of the present invention.
  • FIG. 6A and FIG. 6B are schematic diagrams showing another circuit structure of a dual-conductor network according to an embodiment of the present invention.
  • FIGS. 7A to 7D are schematic diagrams showing the circuit structure shown in Fig. 3B applied to an inversion scene.
  • FIG. 8 is a schematic diagram showing a circuit structure of a bidirectional converter according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing another circuit structure of a bidirectional converter according to an embodiment of the present invention.
  • Figure 1 shows a schematic block diagram of a conventional totem pole circuit.
  • the conventional totem pole circuit includes two switching tubes S1 and S2 connected in series.
  • the switching tube S1 has a parasitic body diode BD1 and a parasitic capacitor C1 inside, and a parasitic body diode BD2 and a parasitic capacitor C2 inside the switching tube S2.
  • V in can be the input and V out can be the output.
  • the conventional totem pole circuit can be applied to the synchronous rectification scene.
  • the switch S1 in the positive half cycle of the AC input voltage, the switch S1 is turned on, the switch S2 is turned off, and the current passes through the middle of the switch S1 and the switch S2.
  • the node flows out from the switch tube S1; as shown in FIG. 2B, in the negative half cycle of the AC input voltage, the switch tube S1 is turned off, the switch tube S2 is turned on, the current passes through the switch tube S2, and the slave switch tube S1 and the switch tube S2
  • the intermediate node flows out, and the circuit can realize the synchronous rectification effect through the alternate conduction of the switch tube S1 and the switch tube S2.
  • the current is shown by the solid line in FIG. 2A, and the current is passed through the turned-on switching transistor S1 during the negative half cycle of the AC input voltage.
  • the parasitic diode BD1 of the switch S1 generates a reverse recovery current as indicated by a broken line in FIG. 2B, which adversely affects the newly turned-on switch S2.
  • a bidirectional conversion circuit and a bidirectional converter add a first diode, a second diode, a first two-way network, and a second two-way network to a conventional totem pole circuit. And controlling the first switch tube and the second switch tube to be turned on or off at different times can improve the efficiency of the bidirectional conversion circuit and avoid reverse recovery current in the circuit, thereby improving the performance of the bidirectional conversion circuit.
  • FIG. 3A is a schematic diagram showing a circuit structure of a bidirectional conversion circuit according to an embodiment of the present invention.
  • the bidirectional conversion circuit 100 includes: a first bidirectional network D1d, a first bidirectional network D2d, a first switch S1, a second switch S2, a first diode D1a, a second diode D2a;
  • the first dual-conducting network D1d is connected in series with the first switching transistor S1 to form a first branch, and the first end of the first branch is connected to the cathode of the first diode D1a to form a first end point;
  • the second double-conducting network D2d and the second switching tube S2 are connected in series to form a second branch, and the second end of the second branch is connected to the anode of the second diode D2a to form a third end point;
  • the second end of the first branch, the anode of the first diode D1a, the first end of the second branch, and the cathode of the second diode D2a are connected to form a second end point;
  • the first switch S1 is turned on during the first time t1 to the second time t2, and is turned off during the second time t2 to the fifth time t5; the second switch S2 is at the first time t1 to the third time It is turned off at time t3, turned on in the third time t3 to the fourth time t4, and turned off in the fourth time t4 to the fifth time t5.
  • the first branch and the first diode D1a may be alternately turned on during the first time t1 to the third time t3, in the negative half cycle of the input AC voltage.
  • the second branch and the second diode D2a may be alternately turned on during the third time t3 to the fifth time t5.
  • the bidirectional conversion circuit of the embodiment of the present invention adds a first diode D1a, a second diode D2a, a first dual-conduction network D1d, and a first two-way network based on the conventional totem pole circuit.
  • D2d at the same time, by controlling the first switch tube S1 or the second switch tube S2 to be turned on or off at the first time t1 to the fifth time t5, the first branch, the first diode D1a, and the second branch can be made.
  • the second diode D2a is alternately turned on, so that no reverse recovery current is generated in the circuit, and the circuit It can realize bidirectional transformation of AC/DC.
  • the bidirectional conversion circuit when the first end point and the third end point input end are the output end, the bidirectional conversion circuit is an inverter circuit. In contrast, when the second terminal is an input, and the first terminal and the third terminal are outputs, the bidirectional conversion circuit is a rectifier circuit.
  • the first time t1 may be the start time of the positive half cycle of the current flowing into or out of the second end point
  • the third time t3 may be the end time of the current positive half cycle
  • the second time t2 may be the first t0 time.
  • the fifth time t5 may be the end time of the current negative half cycle
  • the fourth time t4 may be any one of the time intervals from the third time t3 to the fifth time t5.
  • the bidirectional conversion circuit 100 of the embodiment of the present invention may include a controller, and the controller may be configured to control the first switch tube S1 and the second switch tube S2 to be turned on or off.
  • the controller may control the first switch S1 to be turned on during the first time t1 to the second time t2, and turn off during the second time t2 to the fifth time t5; the second switch tube S2 may be controlled at the first time.
  • the time is turned off from the time t1 to the third time t3, turned on in the third time t3 to the fourth time t4, and turned off in the fourth time t4 to the fifth time t5.
  • FIG. 3B is a schematic diagram of another circuit structure of a bidirectional conversion circuit according to an embodiment of the present invention.
  • the switch tube may include a parasitic capacitance and a parasitic diode.
  • the first switch S1 may include a parasitic capacitance C1 and a parasitic diode BD1
  • the second switch S2 may include a parasitic capacitance C2 and a parasitic diode BD2.
  • the parasitic capacitance C1 and the parasitic capacitance C2 can be discharged in an inverter scene, thereby enabling soft switching of the switching tube.
  • the bidirectional conversion circuit of the embodiment of the present invention does not limit the positions of the first switch tube S1 and the first dual-conduit network D1d on the first branch, for example, the first switch tube S1 is close to the second.
  • the endpoint may also be the first dual-directional network D1d close to the second endpoint.
  • the location of the second switch S2 and the second dual-directional network D2d on the second branch is not limited, for example, The second switch tube S2 is close to the second end point, and the second double-conduit network D2d may be close to the second end point.
  • a bidirectional conversion circuit and a bidirectional converter add a first diode D1a, a second diode D2a, a first dual-conduction network D1d, and a conventional totem pole circuit.
  • the second double-conducting network D2d, and controlling the first switch tube S1 and the second switch tube S2 to be turned on or off at different times, can improve the efficiency of the bidirectional conversion circuit and avoid the circuit The reverse recovery current is generated, thereby improving the performance of the bidirectional conversion circuit.
  • FIG. 4A to 4D are schematic diagrams showing the circuit structure shown in FIG. 3B applied to a synchronous rectification scene.
  • the current through the first branch, the first diode D1a, and the second branch and the second diode D2a are alternately turned on, so that the input alternating current can be converted into a direct current output, specifically
  • the working process is shown in Figure 4A to Figure 4D:
  • V in can be an input terminal
  • V out can be an output terminal.
  • the second switch transistor S2 is turned off: as shown in FIG. 4A, between the first time t1 and the second time t2, The first switch S1 is turned on, and the current can flow into the second end point and flow out from the first end point through the first branch; as shown in FIG. 4B, between the second time t2 and the third time t3, the first switch The tube S1 is turned off, and the current can flow into the second end point and flow out from the first end point through the first diode D1a;
  • the first switch S1 is turned off: as shown in FIG. 4C, between the third time t3 and the fourth time t4, the second switch S2 is turned on, and the current can flow into the third end point. And outputting from the second end point through the second branch; as shown in FIG. 4D, between the fourth time t4 and the fifth time t5, the second switch S2 is turned off, and the current can flow into the third end point and pass the second Diode D2a flows out of the second terminal.
  • the current may be selected by a branch whose conduction voltage is reduced.
  • the first switching transistor S1 is turned on, and the second switching transistor S2 is turned off.
  • the conduction voltage drop of the first double-conducting network D1d on the first branch is smaller than the conduction voltage drop of the first diode D1a, and the current can flow from the second end to the first branch, and flows out from the first end.
  • the first switching transistor S1 is turned off, the second switching transistor S2 is turned on, and the conduction voltage drop of the second dual-conducting network D2d is less than The turn-on voltage drop of the second diode D2a, current can flow from the third end point through the second branch and out from the second end.
  • the current can be passed through the first diode.
  • the sum of the turn-on voltage drop of the first binary-conducting network D1d and the turn-on voltage drop of the parasitic diode BD1 of the first switch S1 may be greater than that of the first diode D1a Turning on the voltage drop; between the fourth time t4 and the fifth time t5 in the negative half cycle of the input AC voltage, in order to avoid the reverse recovery current when the second switch S2 is turned off, the current can be passed through the second The pole tube D2a does not pass through the second switch tube S2. Therefore, the sum of the conduction voltage drop of the second diode-directed network D2d and the conduction voltage drop of the parasitic diode BD2 of the second switch tube S2 may be greater than The conduction voltage drop of the diode Di2.
  • the first diode-connected network D1d has a turn-on voltage drop of 1V
  • the parasitic diode BD1 of the first switch S1 has a turn-on voltage drop of 1V
  • the first diode D1a has a turn-on voltage drop of 1.5V.
  • the sum of the turn-on voltage drop of the double-conducting network D1d and the turn-on voltage drop of the parasitic diode BD1 of the first switch S1 is 2V, which is greater than the turn-on voltage drop of the first diode D1a, and therefore, at the second time t2
  • the current is selected to flow through the first diode D1a without passing through the parasitic diode BD1 of the first switching transistor S1, so that the first switching transistor S1 can be prevented from being turned off at the third time t3 to generate reverse recovery. Current.
  • the current can flow through the first branch and the second branch for most of the time, and the first diode D1a and the second diode D2a flow in a small amount of time.
  • the second time t2 and the fourth time t4 may be times when the input AC voltage is faster than 0.
  • the time interval from the first time t1 to the second time t2 is much larger than the time from the second time t2 to the third time t3.
  • the time zone from the third time t3 to the fourth time t4 is much larger than the time zone from the fourth time t4 to the fifth time t5.
  • the conduction voltage drop of the first branch is smaller than the conduction voltage drop of the first diode D1a
  • the conduction voltage drop of the second branch is less than The second diode D2a conducts a voltage drop. Therefore, the current in the circuit flows through the first branch and the second branch most of the time, thereby avoiding the generation of the reverse recovery current while improving the rectification efficiency of the circuit.
  • the first diode D1a and the second diode D2a may be a fast recovery diode or a silicon carbide SiC diode.
  • the first bi-directional network D1d or the second bi-directional network D2d may be two diodes D1 and D2 of opposite polarity and connected in parallel.
  • the first bi-directional network D1d or the second bi-directional network D2d may be a metal oxide semiconductor field effect transistor or may be at least two metal oxide semiconductor field effect transistors connected in series.
  • first bi-directional network D1d or the second bi-directional network D2d may also be an insulated gate bipolar transistor or may be at least two insulated gate bipolar transistors connected in series.
  • the first two-way network D1d or the second two-way network D2d may be a metal oxide semiconductor field effect transistor Dc1 or an insulated gate bipolar transistor Dc1, or as shown in FIG. 6B, the first binary conduction network D1d or the second binary conduction network D2d may be two metal in series The oxide semiconductor field effect transistor Dc2 or two series insulated gate bipolar transistors Dc2.
  • FIG. 7A to 7D are schematic diagrams showing the circuit structure shown in Fig. 3B applied to an inversion scene. As shown in FIG. 7A to FIG. 7D, the current through the first branch, the first diode D1a, and the second branch and the second diode D1a are alternately turned on, so that the input direct current can be converted into alternating current, and the specific work is performed.
  • the process can be as shown in Figures 7A through 7D:
  • V in can be an input terminal
  • V out can be an output terminal
  • the second switch transistor S2 is turned off, as shown in FIG. 7A, between the first time t1 and the second time t2,
  • the first switch S1 is turned on, and the current can flow into the first end point and flow out from the second end point through the first branch; as shown in FIG. 7B, between the second time t2 and the third time t3, the first switch
  • the tube S1 is turned off, and the current can flow into the third end point and flow out from the second end point through the second branch;
  • the first switch S1 is turned off.
  • the second switch S2 is turned on, and the current can flow into the second end point. And flowing out from the third end point through the second branch; as shown in FIG. 7D, between the fourth time t4 and the fifth time t5, the second switch S2 is turned off, and the current can flow into the second end point and pass the first a branch road that flows from the first end point;
  • the first switch tube S1 and the second switch tube S2 are turned off, and the parasitic capacitance C2 can be discharged through the second binary conduction network D2d; likewise, in the fourth Between the time t4 and the fifth time t5, the parasitic capacitance C1 can be discharged through the first binary conduction network D1d, and the first switching transistor S1 and the second switching transistor S2 can realize soft switching, and the overall performance of the circuit can be improved.
  • the first switch tube S1 or the second switch tube S2 may be a MOSFET or an IGBT.
  • bidirectional conversion circuit 100 of the embodiment of the present invention may also apply other scenarios, such as a bridgeless power factor correction scenario.
  • a bidirectional converter according to an embodiment of the present invention will be described in detail below with reference to FIGS. 8 through 9.
  • FIG. 8 is a schematic diagram showing a circuit structure of a bidirectional converter according to an embodiment of the present invention. As shown in FIG. 8, the bidirectional converter 200 includes:
  • first bidirectional conversion circuit 101 as described above; a second bidirectional conversion circuit 102 as described above; a third bidirectional conversion circuit 103 as described above;
  • the transformer 201 includes a primary winding and a secondary winding, one end of the secondary winding of the transformer is connected to the second end of the first bidirectional conversion circuit 101, and the other end of the secondary winding of the transformer is connected to the second bidirectional conversion circuit 102. Two endpoints;
  • the resonant cavity 300 includes a first port, a second port, a third port, and a fourth port.
  • the first port is connected to the second end of the third bidirectional conversion circuit 103, and the second port is connected to the third bidirectional conversion circuit 103.
  • the three terminals, the third port and the fourth port are respectively connected to the primary winding of the transformer 201;
  • the bridgeless PFC circuit 400 includes two AC ports and two DC ports, and the two DC ports are respectively connected to the first end point and the third end point of the third bidirectional conversion circuit 103.
  • one side of the bidirectional converter 200 can be connected to an alternating current power source, and the other side can be connected to a direct current power source.
  • the AC power output AC power can be converted into DC power by the bidirectional converter 200 and input into the DC power source; the DC power source outputs DC power, which can be converted into AC power through the bidirectional converter 200, and input into the AC power source, thereby enabling bidirectional conversion of the AC/DC power.
  • FIG. 9 is a schematic diagram of another circuit structure of the bidirectional converter provided by the embodiment of the present invention.
  • the bidirectional converter 200 can further include a capacitor 500, wherein the first end of the first bidirectional conversion circuit 101 is connected to the first end of the second bidirectional conversion circuit 102 and is connected to the positive terminal of the capacitor, the first bidirectional transformation
  • the third terminal of circuit 101 is coupled to the third terminal of second bidirectional conversion circuit 102 and to the negative terminal of capacitor 500.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • Another point that is shown or discussed between each other The coupling or direct coupling or communication connection may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

一种双向变换电路(100),包括第一双向导通网络(D1d)、第二双向导通网络(D2d)、第一开关管(S1)、第二开关管(S2)、第一二极管(D1a)、第二二极管(D2a);第一双向导通网络(D1d)与第一开关管(S1)串联组成第一支路,第一支路的第一端与第一二极管的阴极相连,组成第一端点;第二双向导通网络(D2d)与第二开关管(S2)串联组成第二支路,第二支路的第二端与第二二极管的阳极相连,组成第三端点。该双向变换电路(100)和双向变换器(200),通过在传统图腾柱电路上增加第一二极管(D1a)、第二二极管(D2a)、第一双向导通网络(D1d)和第二双向导通网络(D2d),并且控制第一开关管(S1)和第二开关管(S2)在不同时刻导通或关断,能够提高双向变换电路(100)的效率,避免电路中产生反向恢复电流。

Description

双向变换电路和双向变换器
本申请要求于2015年12月22日提交中国专利局、申请号为201510976555.4、发明名称为“双向变换电路和双向变换器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及功率变换领域,尤其涉及功率变换技术中的双向变换电路和双向变换器。
背景技术
传统的图腾柱电路包括串联的两个开关管,开关管内部分别有寄生体二极管和寄生电容。
传统的图腾柱如果在同步整流场景下工作,并且电流连续、输出电压为400V以上的高压时,开关管就要选择耐压在400V以上的器件,这类器件寄生体二极管的反向恢复电流都比较大。
当一个开关管关断时,其寄生二极管产生的反向恢复电流会对刚开通的另一开关管造成不利影响,严重时还会影响整个电路的工作状态。
发明内容
本发明实施例提供了一种双向变换电路和双向变换器,以解决传统的图腾柱电路在同步整流场景下产生反向恢复电流的问题。
第一方面,本发明实施例提供了一种双向变换电路,该双向变换电路包括:
第一双向导通网络、第二双向导通网络、第一开关管、第二开关管、第一二极管、第二二极管;
第一双向导通网络与第一开关管串联组成第一支路,第一支路的第一端与第一二极管的阴极相连,组成第一端点;
第二双向导通网络与第二开关管串联组成第二支路,第二支路的第二端与第二二极管的阳极相连,组成第三端点;
第一支路的第二端、第一二极管的阳极、第二支路的第一端、第二二极 管的阴极相连,组成第二端点;
第一开关管在第一时刻到第二时刻之间导通,在第二时刻到第五时刻内关断;
第二开关管在第一时刻到第三时刻内关断,在第三时刻到第四时刻内导通,在第四时刻到第五时刻内关断;
其中,第一时刻为流入或流出第二端点的电流为正半周的起始时刻,第三时刻为电流为正半周的结束时刻,第二时刻为第一时刻到第三时刻时间区间内的任一时刻,第五时刻为电流为负半周的结束时刻、第四时刻为第三时刻到第五时刻时间区间内的任一时刻。
因此,通过在传统图腾柱电路上增加第一二极管、第二二极管、第一双向导通网络和第二双向导通网络,并且控制第一开关管和第二开关管在不同时刻开启或关断,能够避免电路中产生反向恢复电流,从而提高了双向变换电路的性能。
结合第一方面,可以理解,第一双向导通网络为金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,简称“MOSFET”),或者,绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,简称“IGBT”),或者,两个极性相反且并联的二极管,其中,MOSFET可以是一个MOSFET或者至少两个串联的MOSFET,IGBT可以是一个IGBT或者至少两个串联的IGBT。
结合第一方面,可以理解,第二双向导通网络为MOSFET或者IGBT,或者,两个极性相反且并联的二极管,其中,MOSFET可以是一个MOSFET或者至少两个串联的MOSFET,IGBT可以是一个IGBT或者至少两个串联的IGBT。
结合第一方面,可以理解,第一双向导通网络的导通压降小于第一二极管的导通压降,第一双向导通网络的导通压降与第一开关管的体二极管的导通压降之和大于第一二极管的导通压降;第二双向导通网络的导通压降小于第二二极管的导通压降,第二双向导通网络的导通压降与第二开关管的体二极管的导通压降之和大于第二二极管的导通压降。
结合第一方面,可选地,第一开关管为金属氧化物半导体场效应晶体管MOSFET或绝缘栅双极型晶体管IGBT;第二开关管为MOSFET或IGBT。
结合第一方面,可选地,第一二极管为快恢复二极管或者碳化硅SiC二 极管;第二二极管为快恢复二极管或者SiC二极管。
结合第一方面,可以理解,双向变换电路用于同步整流电路或逆变电路。
结合第一方面,可以理解,该双向变换器还包括控制器,所述控制器,用于控制所述第一开关管导通或关断;或
控制所述第二开关管导通或关断;或
控制所述第一开关管和所述第二开关管导通或关断。
因此,本发明实施例的一种双向变换电路能够应用于同步整流场景,解决了高压同步整流反向恢复电流的问题,同时能够提高整流效率,还能够应用于逆变场景,在逆变场景下,开关管寄生电容能够放电。
第二方面,提供了一种双向变换器,双向变换器包括:
如第一方面或第一方面的任意一种实现方式的第一双向变换电路;如第一方面或第一方面的任意一种实现方式的第二双向变换电路;如第一方面或第一方面的任意一种实现方式的第三双向变换电路;
变压器,变压器包括原边绕组和副边绕组,变压器的副边绕组的一端连接到第一双向变换电路的第二端点,变压器的副边绕组的另一端连接到第二双向变换电路的第二端点;
谐振腔,谐振腔包括第一端口、第二端口、第三端口、第四端口,第一端口连接到第三双向变换电路的第二端点,第二端口连接到第三双向变换电路的第三端点,第三端口和第四端口分别连接到变压器的原边绕组;
无桥PFC电路,无桥PFC电路包括两个交流端口、两个直流端口,两个直流端口分别连接到第三双向变换电路的第一端点和第三端点。
结合第二方面,可以理解,双向变换器还包括:电容,其中,第一双向变换电路的第一端点与第二双向变换电路的第一端点相连并且连接到电容的正端,第一双向变换电路的第三端点与第二双向变换电路的第三端点相连并且连接到电容的负端。
基于上述技术方案,通过在传统图腾柱电路上增加第一二极管、第二二极管、第一双向导通网络和第二双向导通网络,并且控制第一开关管和第二开关管在不同时刻开启或关断,能够提高双向变换电路的效率,避免电路中产生反向恢复电流,从而提高了双向变换电路的性能。
附图说明
图1所示为一种传统图腾柱电路结构的示意图。
图2A和图2B是图1所示电路结构应用于同步整流场景的示意图。
图3A所示为本发明实施例所提供的双向变换电路的一种电路结构示意图。
图3B所示为本发明实施例所提供的双向变换电路的另一种电路结构示意图。
图4A至图4D是图3B所示电路结构应用于同步整流场景的示意图。
图5所示为本发明实施例所提供的双向导通网络的一种电路结构示意图。
图6A和图6B所示为本发明实施例所提供的双向导通网络的另一种电路结构示意图。
图7A至图7D是图3B所示电路结构应用于逆变场景的示意图。
图8所示为本发明实施例所提供的双向变换器的一种电路结构示意图。
图9所示为本发明实施例所提供的双向变换器的另一种电路结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
图1所示为传统图腾柱电路的示意性框图。如图1所示,传统的图腾柱电路包括串联的两个开关管S1和S2,开关管S1内部有寄生体二极管BD1和寄生电容C1、开关管S2内部有寄生体二极管BD2和寄生电容C2,Vin可以为输入端,Vout可以为输出端。
传统图腾柱电路可以应用于同步整流场景,如图2A所示,在交流输入电压的正半周期内,开关管S1导通,开关管S2关断,电流经过开关管S1和开关管S2的中间节点,从开关管S1流出;如图2B所示,在交流输入电压的负半周期内,开关管S1关断,开关管S2导通,电流经过开关管S2,从开关管S1和开关管S2的中间节点流出,通过开关管S1和开关管S2的交替导通,电路可以实现同步整流效果。
应理解,由于两个开关管的寄生二极管的反向恢复电流较大,关断一个开关管产生的反向恢复电流会对刚开通的另一开关管造成不利影响,严重时 会影响整个电路的工作状态。
例如,如图2A和图2B所示,在交流输入电压的正半周期内,电流如图2A中实线所示,电流通过导通的开关管S1,在交流输入电压的负半周期内,关断开关管S1,开关管S1的寄生二极管BD1产生如图2B中虚线所示的反向恢复电流,对刚导通的开关管S2造成不利影响。
因此,本发明实施例的一种双向变换电路和双向变换器,通过在传统图腾柱电路上增加第一二极管、第二二极管、第一双向导通网络和第二双向导通网络,并且控制第一开关管和第二开关管在不同时刻导通或关断,能够提高双向变换电路的效率,避免电路中产生反向恢复电流,从而提高了双向变换电路的性能。
图3A所示为本发明实施例提供的一种双向变换电路的一种电路结构示意图。双向变换电路100包括:第一双向导通网络D1d、第一双向导通网络D2d、第一开关管S1、第二开关管S2、第一二极管D1a、第二二极管D2a;
第一双向导通网络D1d与第一开关管S1串联组成第一支路,第一支路的第一端与第一二极管D1a的阴极相连,组成第一端点;
第二双向导通网络D2d与第二开关管S2串联组成第二支路,第二支路的第二端与第二二极管D2a的阳极相连,组成第三端点;
第一支路的第二端、第一二极管D1a的阳极、第二支路的第一端、第二二极管D2a的阴极相连,组成第二端点;
该第一开关管S1在第一时刻t1到第二时刻t2内导通,在该第二时刻t2到第五时刻t5内关断;该第二开关管S2在该第一时刻t1到第三时刻t3内关断,在该第三时刻t3到第四时刻t4内导通,在该第四时刻t4到该第五时刻t5内关断。
可选地,在输入交流电压的正半周期内,可以是第一时刻t1至第三时刻t3内,第一支路和第一二极管D1a交替导通,在输入交流电压的负半周期内,可以是第三时刻t3至第五时刻t5内,第二支路和第二二极管D2a交替导通。
具体地,本发明实施例的双向变换电路在传统的图腾柱电路基础上,增加了第一二极管D1a、第二二极管D2a、第一双向导通网络D1d和第一双向导通网络D2d,同时通过控制第一开关管S1或第二开关管S2在第一时刻t1至第五时刻t5导通或关断,能够使第一支路、第一二极管D1a、第二支路、第二二极管D2a交替导通,从而使电路中不会产生反向恢复电流,并且电路 能够实现交流电/直流电的双向变换。
例如,当第一端点和第三端点输入端,第二端点为输出端时,该双向变换电路为逆变电路。相反,当第二端点为输入端,第一端点和第三端点为输出端时,该双向变换电路为整流电路。
可选地,第一时刻t1可以为流入或流出第二端点的电流正半周的起始时刻,第三时刻t3可以为该电流正半周的结束时刻,第二时刻t2可以为第一t0时刻到第三时刻t3时间区间内的任一时刻,第五时刻t5可以为该电流负半周的结束时刻、第四时刻t4可以为该第三时刻t3到第五时刻t5时间区间内的任一时刻。
可选地,本发明实施例的双向变换电路100可以包括控制器,该控制器可以用于控制第一开关管S1和第二开关管S2导通或关断。
具体地,控制器可以控制第一开关管S1在第一时刻t1到第二时刻t2内导通,在第二时刻t2到第五时刻t5内关断;可以控制第二开关管S2在第一时刻t1到第三时刻t3内关断,在第三时刻t3到第四时刻t4内导通,在第四时刻t4到第五时刻t5内关断。
如图3B所示为本发明实施例提供的一种双向变换电路的另一种电路结构示意图,开关管可以包括寄生电容和寄生二极管。具体地,第一开关管S1可以包括寄生电容C1和寄生二极管BD1,第二开关管S2可以包括寄生电容C2和寄生二极管BD2。
应理解,该寄生电容C1和寄生电容C2在逆变场景下可以放电,进而可以实现开关管的软开关。
还应理解,本发明实施例的双向变换电路对第一支路上的第一开关管S1和第一双向导通网络D1d的位置不做任何限定,例如,可以是第一开关管S1靠近第二端点,也可以是第一双向导通网络D1d靠近第二端点,同样地,对第二支路上的第二开关管S2和第二双向导通网络D2d的位置也不做任何限定,例如,可以是第二开关管S2靠近第二端点,也可以是第二双向导通网络D2d靠近第二端点。
基于上述技术方案,本发明实施例的一种双向变换电路和双向变换器,通过在传统图腾柱电路上增加第一二极管D1a、第二二极管D2a、第一双向导通网络D1d和第二双向导通网络D2d,并且控制第一开关管S1和第二开关管S2在不同时刻导通或关断,能够提高双向变换电路的效率,避免电路 中产生反向恢复电流,从而提高了双向变换电路的性能。
图4A至图4D是图3B所示电路结构应用于同步整流场景的示意图。如图4A至图4D所示,电流通过第一支路、第一二极管D1a以及第二支路、第二二极管D2a的交替导通,能够使输入的交流电转变为直流电输出,具体工作过程如图4A至图4D所示:
Vin可以为输入端,Vout可以为输出端,在输入交流电压的正半周内,第二开关管S2关断:如图4A所示,在第一时刻t1到第二时刻t2之间,第一开关管S1导通,电流可以流入第二端点并且通过第一支路,从第一端点流出;如图4B所示,在第二时刻t2到第三时刻t3之间,第一开关管S1关断,电流可以流入第二端点并且通过第一二极管D1a,从第一端点流出;
在输入交流电压的负半周内,第一开关管S1关断:如图4C所示,在第三时刻t3到第四时刻t4之间,第二开关管S2导通,电流可以流入第三端点并且通过第二支路,从第二端点输出;如图4D所示,在第四时刻t4到第五时刻t5之间,第二开关管S2关断,电流可以流入第三端点并且通过第二二极管D2a,从第二端点流出。
具体地,电流可以选择通过导通压降低的支路,在输入交流电压正半周的第一时刻t1到第二时刻t2之间,第一开关管S1导通,第二开关管S2关断,第一支路上第一双向导通网络D1d的导通压降小于第一二极管D1a的导通压降,电流可以从第二端点流入通过第一支路,从第一端点流出,同理,在输入交流电压负半周的第三时刻t3到第四时刻t4之间,第一开关管S1关断,第二开关管S2导通,第二双向导通网络D2d的导通压降小于第二二极管D2a的导通压降,电流可以从第三端点流入通过第二支路,从第二端点流出。
应理解,在输入交流电压的正半周内的第三时刻t3到第四时刻t4之间,为避免第一开关管S1断开的瞬间产生反向恢复电流,可以使电流通过第一二极管D1a而不通过第一开关管S1,因此,第一双向导通网络D1d的导通压降与第一开关管S1的寄生二极管BD1的导通压降之和可以大于第一二极管D1a的导通压降;在输入交流电压的负半周内的第四时刻t4到第五时刻t5之间,为避免第二开关管S2断开的瞬间产生反向恢复电流,可以使电流通过第二二极管D2a而不通过第二开关管S2,因此,第二双向导通网络D2d的导通压降与第二开关管S2的寄生二极管BD2的导通压降之和可以大于第 二二极管Da2的导通压降。
例如,第一双向导通网络D1d的导通压降为1V,第一开关管S1的寄生二极管BD1导通压降为1V,第一二极管D1a的导通压降为1.5V,由于第一双向导通网络D1d的导通压降与第一开关管S1的寄生二极管BD1导通压降之和为2V,大于第一二极管D1a的导通压降,因此,在第二时刻t2到第三时刻t3之间,电流选择流过第一二极管D1a而不通过第一开关管S1的寄生二极管BD1,能够避免在第三时刻t3关断第一开关管S1而产生反向恢复电流。
应理解,在本发明实施例用于同步整流的电路中,通过使电流在第二时刻t2到第三时刻t3之间通过第一二极管D1a,而不通过第一支路并且在在第四时刻t4到第五时刻t5之间通过第二二极管D2a,而不通过第二支路,能够避免同步整流场景下开关管产生反向恢复电流,从而提高电路的性能。
还应理解,在电路中为提高整流效率可以控制电流在大部分时间流过第一支路和第二支路,很少的时间流过第一二极管D1a和第二二极管D2a,例如,第二时刻t2和第四时刻t4可以是输入交流电压快过0的时刻,此时,第一时刻t1到第二时刻t2的时间区间远大于第二时刻t2到第三时刻t3的时间区间,第三时刻t3到第四时刻t4的时区远大于第四时刻t4到第五时刻t5的时区。同时,第一开关管S1导通时,第一支路导通压降小于第一二极管D1a导通压降,第二开关管S2导通时,第二支路的导通压降小于第二二极管D2a导通压降,因此,电路中电流在大部分时间,流过第一支路和第二支路,能够避免产生反向恢复电流的同时提高电路的整流效率。
可选地,在本发明实施例中,该第一二极管D1a和该第二二极管D2a可以是快恢复二极管或者碳化硅SiC二极管。
可选地,如图5所示,第一双向导通网络D1d或第二双向导通网络D2d可以是两个极性相反且并联的二极管D1和D2。
可选地,第一双向导通网络D1d或第二双向导通网络D2d可以是一个金属氧化物半导体场效应晶体管或者可以是至少两个串联的金属氧化物半导体场效应晶体管。
可选地,第一双向导通网络D1d或第二双向导通网络D2d还可以是一个绝缘栅双极型晶体管或者可以是至少两个串联的绝缘栅双极型晶体管。
例如,如图6A所示,第一双向导通网络D1d或第二双向导通网络D2d 可以是一个金属氧化物半导体场效应晶体管Dc1或一个绝缘栅双极型晶体管Dc1,或者如图6B所示,第一双向导通网络D1d或第二双向导通网络D2d可以是两个串联的金属氧化物半导体场效应晶体管Dc2或两个串联的绝缘栅双极型晶体管Dc2。
图7A至图7D是图3B所示电路结构应用于逆变场景的示意图。如图7A至图7D所示,电流通过第一支路、第一二极管D1a以及第二支路、第二二极管D1a的交替导通,能够使输入的直流电转变为交流电,具体工作过程可以如图7A至图7D所示:
Vin可以为输入端,Vout可以为输出端,在输出交流电压的正半周内,第二开关管S2关断,如图7A所示,在第一时刻t1到第二时刻t2之间,第一开关管S1导通,电流可以流入第一端点并且通过第一支路,从第二端点流出;如图7B所示,在第二时刻t2到第三时刻t3之间,第一开关管S1关断,电流可以流入第三端点并且通过第二支路,从第二端点流出;
在输出交流电压的负半周内,第一开关管S1关断,如图7C所示,在第三时刻t3到第四时刻t4之间,第二开关管S2导通,电流可以流入第二端点并且通过第二支路,从第三端点流出;如图7D所示,在第四时刻t4到第五时刻t5之间,第二开关管S2关断,电流可以流入第二端点并且通过第一支路,从第一端点流出;
具体地,在第二时刻t2到第三时刻t3之间,第一开关管S1和第二开关管S2关断,寄生电容C2可以通过第二双向导通网络D2d放电;同样地,在第四时刻t4到第五时刻t5之间,寄生电容C1可以通过第一双向导通网络D1d放电,进而第一开关管S1、第二开关管S2能够实现软开关,电路的整体性能能够提高。
可选地,第一开关管S1或第二开关管S2可以是MOSFET或IGBT。
应理解,本发明实施例的双向变换电路100还可以应用其他场景,例如,无桥功率因素矫正场景。
下面将结合图8至图9,详细描述根据本发明实施例的双向变换器。
图8所示为本发明实施例提供的双向变换器的一种电路结构示意图。如图8所示,该双向变换器200包括:
如前述的第一双向变换电路101;如前述的第二双向变换电路102;如前述的第三双向变换电路103;
变压器201,包括原边绕组和副边绕组,变压器的副边绕组的一端连接到第一双向变换电路101的第二端点,变压器的副边绕组的另一端连接到第二双向变换电路102的第二端点;
谐振腔300,包括第一端口、第二端口、第三端口、第四端口,第一端口连接到第三双向变换电路103的第二端点,第二端口连接到第三双向变换电路103的第三端点,第三端口和第四端口分别连接到变压器201的原边绕组;
无桥PFC电路400,包括两个交流端口、两个直流端口,两个直流端口分别连接到第三双向变换电路103的第一端点和第三端点。
具体地,该双向变换器200的一侧可以连接交流电源,另一侧可以连接直流电源。交流电源输出交流电,可以通过双向变换器200转变为直流电,输入直流电源中;直流电源输出直流电,可以通过双向变换器200转变为交流电,输入交流电源中,从而能够实现交流电/直流电的双向变换。
可选地,如图9所示为本发明实施例所提供的双向变换器的另一种电路结构示意图。该双向变换器200还可以包括:电容500,其中,第一双向变换电路101的第一端点与第二双向变换电路102的第一端点相连并且连接到电容的正端,第一双向变换电路101的第三端点与第二双向变换电路102的第三端点相连并且连接到电容500的负端。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种双向变换电路,其特征在于,包括:
    第一双向导通网络、第二双向导通网络、第一开关管、第二开关管、第一二极管、第二二极管;
    所述第一双向导通网络与所述第一开关管串联组成第一支路,所述第一支路的第一端与所述第一二极管的阴极相连,组成第一端点;
    所述第二双向导通网络与所述第二开关管串联组成第二支路,所述第二支路的第二端与所述第二二极管的阳极相连,组成第三端点;
    所述第一支路的第二端、所述第一二极管的阳极、所述第二支路的第一端、所述第二二极管的阴极相连,组成第二端点;
    所述第一开关管在第一时刻到第二时刻之间导通,在所述第二时刻到第五时刻内关断;
    所述第二开关管在所述第一时刻到第三时刻内关断,在所述第三时刻到第四时刻内导通,在所述第四时刻到所述第五时刻内关断;
    其中,所述第一时刻为流入或流出所述第二端点的电流为正半周的起始时刻,所述第三时刻为所述电流为正半周的结束时刻,所述第二时刻为所述第一时刻到所述第三时刻时间区间内的任一时刻,所述第五时刻为所述电流为负半周的结束时刻、所述第四时刻为所述第三时刻到所述第五时刻时间区间内的任一时刻。
  2. 根据权利要求1所述的双向变换电路,其特征在于,所述第一双向导通网络为金属氧化物半导体场效应晶体管MOSFET或绝缘栅双极型晶体管IGBT或两个极性相反且并联的二极管。
  3. 根据权利要求1或2所述的双向变换电路,其特征在于,所述第二双向导通网络为MOSFET或IGBT或两个极性相反且并联的二极管。
  4. 根据权利要求1-3任一项所述的双向变换电路,其特征在于,
    所述第一双向导通网络的导通压降小于所述第一二极管的导通压降,所述第一双向导通网络的导通压降与所述第一开关管的寄生二极管的导通压降之和大于所述第一二极管的导通压降;
    所述第二双向导通网络的导通压降小于所述第二二极管的导通压降,所述第二双向导通网络的导通压降与所述第二开关管的寄生二极管的导通压降之和大于所述第二二极管的导通压降。
  5. 根据权利要求1-4任一项所述的双向变换电路,其特征在于,
    所述第一开关管为金属氧化物半导体场效应晶体管MOSFET或绝缘栅双极型晶体管IGBT;
    所述第二开关管为MOSFET或IGBT。
  6. 根据权利要求1-5任一项所述的双向变换电路,其特征在于,所述第一二极管为快恢复二极管或者碳化硅SiC二极管;
    所述第二二极管为快恢复二极管或者SiC二极管。
  7. 根据权利要求1-6任一项所述的双向变换电路,其特征在于,所述双向变换电路用于同步整流电路或逆变电路。
  8. 根据权利要求1-7任一项所述的双向变换电路,其特征在于,所述双向变换电路还包括控制器;
    所述控制器,用于控制所述第一开关管导通或关断;或
    控制所述第二开关管导通或关断;或
    控制所述第一开关管和所述第二开关管导通或关断。
  9. 一种双向变换器,其特征在于,包括:
    根据权利要求1至8任一项所述的第一双向变换电路;
    根据权利要求1至8任一项所述的第二双向变换电路;
    根据权利要求1至8任一项所述的第三双向变换电路;
    变压器,所述变压器包括原边绕组和副边绕组,所述变压器的副边绕组的一端连接到所述第一双向变换电路的第二端点,所述变压器的副边绕组的另一端连接到所述第二双向变换电路的第二端点;
    谐振腔,所述谐振腔包括第一端口、第二端口、第三端口、第四端口,所述第一端口连接到所述第三双向变换电路的第二端点,所述第二端口连接到所述第三双向变换电路的第三端点,所述第三端口和所述第四端口分别连接到所述变压器的原边绕组;
    无桥PFC电路,所述无桥PFC电路包括两个交流端口、两个直流端口,所述两个直流端口分别连接到所述第三双向变换电路的第一端点和所述第三端点。
  10. 根据权利要求9所述的双向变换器,其特征在于,所述双向变换器还包括:
    电容,其中,所述第一双向变换电路的第一端点与所述第二双向变换电 路的第一端点相连并且连接到所述电容的正端,所述第一双向变换电路的第三端点与所述第二双向变换电路的第三端点相连并且连接到所述电容的负端。
PCT/CN2016/108605 2015-12-22 2016-12-05 双向变换电路和双向变换器 WO2017107765A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187020995A KR102130362B1 (ko) 2015-12-22 2016-12-05 양방향 변환 회로 및 양방향 컨버터
JP2018532658A JP6571286B2 (ja) 2015-12-22 2016-12-05 双方向変換回路および双方向コンバータ
EP16877576.5A EP3396842A4 (en) 2015-12-22 2016-12-05 BIDIRECTIONAL TRANSFORMER AND BIDIRECTIONAL TRANSDUCER
US16/014,862 US10666164B2 (en) 2015-12-22 2018-06-21 Bidirectional power conversion circuit and bidirectional power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510976555.4A CN106911262B (zh) 2015-12-22 2015-12-22 双向变换电路和双向变换器
CN201510976555.4 2015-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/014,862 Continuation US10666164B2 (en) 2015-12-22 2018-06-21 Bidirectional power conversion circuit and bidirectional power converter

Publications (1)

Publication Number Publication Date
WO2017107765A1 true WO2017107765A1 (zh) 2017-06-29

Family

ID=59089068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108605 WO2017107765A1 (zh) 2015-12-22 2016-12-05 双向变换电路和双向变换器

Country Status (6)

Country Link
US (1) US10666164B2 (zh)
EP (1) EP3396842A4 (zh)
JP (1) JP6571286B2 (zh)
KR (1) KR102130362B1 (zh)
CN (1) CN106911262B (zh)
WO (1) WO2017107765A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670702B (zh) * 2018-07-24 2019-09-01 友達光電股份有限公司 雙閘極電晶體電路、畫素電路及其閘極驅動電路
CN113039712B (zh) * 2019-06-26 2023-03-10 华为数字能源技术有限公司 双向功率转换系统及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385058B1 (en) * 2001-05-17 2002-05-07 Northrop Grumman Active bleed voltage balancing circuit
CN101707441A (zh) * 2009-11-26 2010-05-12 华为技术有限公司 图腾柱无桥电路系统及电流采样装置
CN101951147A (zh) * 2010-08-18 2011-01-19 杭州奥能电源设备有限公司 一种有源交错并联零电压软开关电路
CN102130581A (zh) * 2011-03-30 2011-07-20 浙江工业大学 基于非线性平均电流控制的boost pfc电路
CN102130580A (zh) * 2011-03-30 2011-07-20 艾默生网络能源系统北美公司 一种图腾柱无桥功率因素校正电路
CN104518656A (zh) * 2013-10-08 2015-04-15 中兴通讯股份有限公司 图腾柱无桥功率因数校正软开关控制装置和方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10204882A1 (de) * 2002-02-06 2003-08-14 Compact Dynamics Gmbh Halbbrückenschaltung
US7456582B2 (en) * 2003-01-23 2008-11-25 Koninklijke Philips Electronics N.V. Circuit and method for driving a load, in particular a high-intensity discharge lamp, and a control unit for said circuit
CN1870408B (zh) * 2006-06-19 2010-10-20 艾默生网络能源有限公司 多路输出直流-直流变换器
JP5317413B2 (ja) * 2007-02-06 2013-10-16 株式会社東芝 半導体スイッチおよび当該半導体スイッチを適用した電力変換装置
KR101031217B1 (ko) * 2009-10-21 2011-04-27 주식회사 오리엔트전자 고정 시비율로 동작하는 llc 공진 컨버터를 사용한 2단 방식 절연형 양방향 dc/dc 전력변환기
CN201682429U (zh) * 2009-12-23 2010-12-22 艾默生网络能源有限公司 一种无桥pfc升压整流器
CN102647099A (zh) * 2011-02-22 2012-08-22 艾默生网络能源系统北美公司 一种组合开关以及同步整流电路
GB2489467A (en) 2011-03-29 2012-10-03 Sony Corp Grid tied inverter having DC-DC current fed push-pull converter
GB2489468A (en) * 2011-03-29 2012-10-03 Sony Corp Grid tied inverter having DC-DC current fed push-pull converter
US9065343B2 (en) * 2012-01-13 2015-06-23 Pai Capital Llc Resonant converter with auxiliary resonant components and holdup time control circuitry
JP2014017917A (ja) * 2012-07-06 2014-01-30 Toyota Industries Corp 車載用電源装置および該装置における突入電流抑制方法
JP5925150B2 (ja) * 2013-03-14 2016-05-25 三菱電機株式会社 直流電源装置
CN104300810B (zh) * 2013-07-17 2017-05-17 台达电子企业管理(上海)有限公司 功率因数校正转换器与控制方法
CN103414338B (zh) * 2013-07-22 2015-09-30 华为技术有限公司 双向dcdc变换电路和变换装置
US20160285386A1 (en) * 2013-11-29 2016-09-29 Sharp Kabusshiki Kaisha Rectifier
CN204597773U (zh) * 2015-03-27 2015-08-26 比亚迪股份有限公司 功率因数校正pfc电路
CN107294413B (zh) * 2016-04-08 2021-01-05 松下知识产权经营株式会社 电力变换装置
IT201600088211A1 (it) * 2016-08-30 2018-03-02 St Microelectronics Srl Dispositivo elettronico a giunzione con ridotto tempo di recupero per applicazioni soggette al fenomeno del ricircolo della corrente e relativo metodo di fabbricazione

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385058B1 (en) * 2001-05-17 2002-05-07 Northrop Grumman Active bleed voltage balancing circuit
CN101707441A (zh) * 2009-11-26 2010-05-12 华为技术有限公司 图腾柱无桥电路系统及电流采样装置
CN101951147A (zh) * 2010-08-18 2011-01-19 杭州奥能电源设备有限公司 一种有源交错并联零电压软开关电路
CN102130581A (zh) * 2011-03-30 2011-07-20 浙江工业大学 基于非线性平均电流控制的boost pfc电路
CN102130580A (zh) * 2011-03-30 2011-07-20 艾默生网络能源系统北美公司 一种图腾柱无桥功率因素校正电路
CN104518656A (zh) * 2013-10-08 2015-04-15 中兴通讯股份有限公司 图腾柱无桥功率因数校正软开关控制装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3396842A4 *

Also Published As

Publication number Publication date
US10666164B2 (en) 2020-05-26
JP6571286B2 (ja) 2019-09-04
CN106911262A (zh) 2017-06-30
KR102130362B1 (ko) 2020-07-06
CN106911262B (zh) 2019-05-21
EP3396842A4 (en) 2019-01-09
KR20180097687A (ko) 2018-08-31
US20180302007A1 (en) 2018-10-18
JP2018538780A (ja) 2018-12-27
EP3396842A1 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
US9570973B2 (en) Bridgeless power factor correction circuit and control method utilizing control module to control current flow in power module
JP6008185B2 (ja) 3レベル電力変換装置及びその制御方法
WO2017049900A1 (zh) Igbt短路检测保护电路及基于igbt的可控整流电路
TW201223105A (en) DC-DC converter
WO2018036315A1 (zh) 谐振变换器及电流处理方法
WO2014067271A1 (zh) 三电平逆变器和供电设备
WO2017107931A1 (zh) 一种等效晶体管和三电平逆变器
JP5687373B1 (ja) Dc/dcコンバータ
JP2006020405A (ja) 半導体スイッチ回路
JP2015208109A (ja) 直流電源装置およびそれを用いた空気調和機
JP2002238257A (ja) 共振型dc−dcコンバータの制御方法
EP2662966B1 (en) Three-level inverter
WO2017107765A1 (zh) 双向变换电路和双向变换器
ITUB20154710A1 (it) Circuito raddrizzatore a ponte, apparecchiatura e procedimento corrispondenti
JP2007060890A (ja) スイッチング電源装置
TWI565205B (zh) 功率變換器裝置
WO2013174152A1 (zh) 同步整流装置及同步整流电源
JP6458235B2 (ja) スイッチング電源装置
JPWO2017090118A1 (ja) 電力変換装置および鉄道車両
JP2016208693A (ja) 電力変換装置
WO2017206684A1 (zh) 图腾无桥电路的驱动控制方法、驱动控制电路及系统
JP6179652B2 (ja) 電力変換装置及び電力変換方法
JP5578234B2 (ja) スイッチング電源装置およびこれを用いた電源システム、電子装置
JP2017103872A (ja) プッシュプル型dc/dcコンバータ
JP6485366B2 (ja) 位相シフト方式フルブリッジ型電源回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187020995

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020995

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016877576

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016877576

Country of ref document: EP

Effective date: 20180723