WO2017106984A1 - Pelicula de empaque degradable para frutas y hortalizas - Google Patents

Pelicula de empaque degradable para frutas y hortalizas Download PDF

Info

Publication number
WO2017106984A1
WO2017106984A1 PCT/CL2016/050075 CL2016050075W WO2017106984A1 WO 2017106984 A1 WO2017106984 A1 WO 2017106984A1 CL 2016050075 W CL2016050075 W CL 2016050075W WO 2017106984 A1 WO2017106984 A1 WO 2017106984A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
film
essential oil
agent
essential
Prior art date
Application number
PCT/CL2016/050075
Other languages
English (en)
French (fr)
Inventor
Paula Andrea ZAPATA RAMIREZ
Mauricio Edinson YAÑEZ SANCHEZ
Original Assignee
Universidad De Santiago De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Santiago De Chile filed Critical Universidad De Santiago De Chile
Priority to CN201680079428.7A priority Critical patent/CN108471740A/zh
Priority to EP16877058.4A priority patent/EP3395170A4/en
Priority to MX2018007779A priority patent/MX2018007779A/es
Priority to US16/065,428 priority patent/US20190008146A1/en
Publication of WO2017106984A1 publication Critical patent/WO2017106984A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N27/00Biocides, pest repellants or attractants, or plant growth regulators containing hydrocarbons
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/04Oxygen or sulfur attached to an aliphatic side-chain of a carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • A01N31/16Oxygen or sulfur directly attached to an aromatic ring system with two or more oxygen or sulfur atoms directly attached to the same aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/22Lamiaceae or Labiatae [Mint family], e.g. thyme, rosemary, skullcap, selfheal, lavender, perilla, pennyroyal, peppermint or spearmint
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/24Lauraceae [Laurel family], e.g. laurel, avocado, sassafras, cinnamon or camphor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/28Myrtaceae [Myrtle family], e.g. teatree or clove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B25/00Packaging other articles presenting special problems
    • B65B25/02Packaging agricultural or horticultural products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B25/00Packaging other articles presenting special problems
    • B65B25/02Packaging agricultural or horticultural products
    • B65B25/04Packaging fruit or vegetables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/28Applications of food preservatives, fungicides, pesticides or animal repellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/34Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for fruit, e.g. apples, oranges or tomatoes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/16Cyclodextrin; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a degradable film for fruit and vegetable packaging, comprising a polyolefin-based polymer matrix incorporating an antimicrobial active agent (biocide or fungicide) of essential oil selected from the group consisting of carvacrol, cinemaidehyde, cineole, sabineno, thujapliscsn or a mixture thereof, or incorporates said essential oil selected from the group consisting of: cinnamon oil, oregano oil, eucalyptus oil, nutmeg oil, honokithiol oil, or a mixture thereof, and further it comprises a degrading agent; microencapsulation process said essential antifungal or antibacterial active agents of essential oil or said essential oil; and film preparation procedure.
  • an antimicrobial active agent biocide or fungicide
  • the present film is an intelligent film for fruit and vegetable packaging, based on a polyolefin selected from polyethylene (PE), polypropylene (PE), polystyrene (PS) and ethyl vinyl acetate (EVA) and essential oil antimicrobial agents or said essential agent, which may be microencapsulated in an encapsulating agent selected from the group consisting of: cyclodextrin ( ⁇ - or ⁇ ⁇ ), clay or silica; and also incorporates a degrading agent, selected from the group consisting of: calcium nanocarbonate, calcium carbonate, starch, cellulose or a mixture thereof.
  • This film has antimicrobial properties (biocides or fungicides), and once its life cycle has been completed, it is degraded to the environment.
  • sulfur dioxide SQ 2
  • Ei SQ ⁇ is an antioxidant and preservative of products such as vegetables, fruits and wines.
  • SC1 ⁇ 2 acts as a food preservative preventing microbial growth.
  • S0 2 can cause various health problems such as chronic headache and memory disorders.
  • a tolerance level of 10 ppm was introduced for S0 2 .
  • Multilayer plastics containing on the outer surface, calcium sulfyl, and in a release layer, sulfur dioxide, S0 2 .
  • a film for lettuce preservation was prepared with polypropylene and nanoparticles of TIO2.
  • the packaging inhibited the growth of E. coli in lettuce [Chawengkijwanich C, Hayata Y., int.J. FoodMicrobiol. 123 (2008) 288].
  • the materials used as antimicrobial agents in polymers are zinc oxide nanoparticles [Li X., Xing Y., Jiang.Y., Ding Y., Li W, IntJ. FoodSci Tech 44 (2009) 2161] and chitosan [Xing K , Chen XG, Kong M., Liu CS, Cha DS, Park HJ, Carbohydr.Polym. 76 (2009) 173.
  • prodegradants are from photostable metal oxides such as TI0 2 and ZNO [Ammala A, Hill AJ, Meakin P, Pas SJ, Turney TW. J Nanopart Res 2002: 4: 167-74]. It has been reported that only 2% by weight of prodegrandante is required with respect to polyolefin, and this makes the process friendly by extrusion or by injection. In the literature the study of calcium carbonate, starch and cellulose is reported. for degradation of chickens such as polyethylene and polypropylene [F ' orsberg G., oessner EK., Ghaprnan GM., Packages.
  • US2014242138 discloses microencapsulated essential oil formulations suitable for agricultural applications, where at least one essential oil is found in a solid core encapsulated by an unfriendly outer shell consisting essentially of a mutant salt form of at least one alkanoic acid. It also teaches a preparation process for the formulation and its application as a preservative, disinfectant and insect repellent product to store agricultural products or food.
  • US2014154426 discloses a process for obtaining a film composed of the incorporation of antimicrobial agents of natural origin in a polymeric structure to develop packages to increase the shelf life of refrigerated meat, preferably fresh saimon, wherein said process comprises the following steps: a) obtaining microcapsules of an antimicrobial agent of natural origin in an enveloping medium, comprising the steps of: a1) the production of an aqueous phase dissolving Arabic gum (Quimatic) and Tween 20 in distilled water; a2) the production of an oil phase through a solution of the antimicrobial agent of natural origin with a thymus mixture!
  • CN103788494 discloses a film of fresh fruits and vegetables and a method for its preparation, where the film comprises polyethylene (PE), polypropylene (PP) and a high barrier ethylene / aicohoi copolymer material Vinyl (EVGH), which serve basic raw materials, and semi-essence of rosemary and grape oil as active ingredients.
  • the film is prepared by uniformly mixing the basic raw materials and the active ingredients to prepare a modified resin through a double screw extruder, and then its extrusion and blow through the modified resin.
  • the film thus prepared allows to inhibit microbial growth, evaporation of water and respiration rate of fruits and vegetables, obtaining an effect of oxidation resistance, enzymatic browning of fruits and vegetables.
  • CN103159970 refers to a method of preparing an edible film with antibacterial and antioxidant functions, and belongs to the technical field of edible packaging materials.
  • the preparation method described by the invention comprises the following steps: 1) dissolve and gelatinize corn starch; 2) dissolve the gelatin; 3) chitosan solution; 4) add glycerin and plant essential oil or essential oil components; 5) mix, homogenize and refine; 6) degassing; 7) tape casting; and 8) drying and extraction of the film.
  • the preparation method shows the beneficial effects that chitosan, corn starch and gelatin show as the base materials of the edible film.
  • the edible film thus prepared has advantageous mechanical properties, high barrier performance and great transparency.
  • CN101965863 describes a microencapsutee to maintain fruit and vegetable freshness that is prepared from chitosan, propolis and beta-ciciodextrin, which are used as wall materials, and cassia oil, rosemary oil and lemon oil, which are used as core materials.
  • He Microencapsuiado is prepared by the following steps of: adding the beta-cyclodextrin and water in a three-port bottle with electric stirring and heating to 60-7Q Q C to dissolve the beta-cyclodextrin in water stirring continuously and cooling to 4G-45 S G.
  • US2008220036 teaches an antimicrobial packaging material for food products containing from 0.05% to 1.5% by weight of a natural essential oil.
  • the oil can be selected mainly from linalool and / or metüchavicol, but also from one or more citra !, geraniol, methyl cinnamate, methyl eugenol, 1,8-cineole, trans-oc-bergamotena, carvacrol and thymol mixed with one or more polymers selected from the ethylene alcohol copolymer of viniium, polyacrylates, including copolymers of ethyl methacrylate, methyl acrylate lonomers, nylons and other hydrophilic polymers or polymers having functional groups capable of partial anchoring.
  • a tai bonding agent such as polyethylene glycol is added to the mixture to improve retention of volatile oil in the polymer during processing. This material has no regulatory limitations and, at the concentrations referred to, does not form detectable bad flavors.
  • MX2007008879 teaches formulations containing microencapsulated essential oils and a non-volatile vehicle, which are useful as a repellent, insecticide, pesticide, ovicide or iarvicide.
  • the film of the present invention is an intelligent film for fruit and vegetable packaging with double function: biocide and fungicide, and at the same time, it has environmentally degrading properties.
  • This film is that the fruit or vegetable, retain its intrinsic characteristics during transport to the markets and can be delivered, in good condition. In addition, once the film meets the shelf life, it has degrading properties to the environment, in a period of 3-4 years. Which is obtained by preparing a film with the addition of a degrading or proxidant agent that mitigates pollution and reduces waste generated to the environment.
  • the present invention relates to a film for packaging fruit and vegetables comprising a polyolefin matrix based on polyolefin that incorporates an antimicrobial active agent (biocide or fungicide) of essential oil selected from the group consisting of carvacroL cynemaldehyde, cineoi, sabinene, thujaplicin or a mixture thereof or incorporates said essential oil selected from the group consisting of: cinnamon oil, oregano oil, eucalyptus oil, nutmeg oil, honokithioi oil or a mixture thereof, which may also be microencapsulated, and additionally it comprises a degrading agent; microencapsulation process said biological antifungal or antibacterial active agents of essential oil or said essential oil; and film preparation procedure.
  • an antimicrobial active agent biocide or fungicide
  • essential oil selected from the group consisting of carvacroL cynemaldehyde, cineoi, sabinene, thujaplicin or
  • the present film is an Intelligent film for fruit and vegetable packaging, comprising a polymer matrix based on polyolefin that incorporates said essential oil antimicrobial agent or said essential oil, which may optionally be microencapsulated, and also incorporates a degrading agent; and microencapsuation process of said essential oil antimicrobial agent or said essential oil, and film preparation process.
  • the present film is an intelligent fruit and vegetable packaging film comprising a polymer matrix based on a polyolefin selected from polyphene (PE), polypropylene (PE), polystyrene (PS) and ethyl vinyl acetate (EVA), which incorporates said antimicrobial agent of essential oil or said essential oil, which may be optionally microencapsulated and wherein said encapsulating agent is selected from the group consisting of cyclodextrin ( ⁇ - or ⁇ -), clay or silica; and also incorporates a degrading agent selected from the group consisting of calcium nanocarbonate, calcium carbonate, starch, cellulose or a mixture thereof, and where in addition the calcium nanocarbonate fulfills the function of a reinforcing agent.
  • This film has antimicrobial properties (biocides or fungicides), and once its life cycle is complete, it is degradable to the environment.
  • active antimicrobial agents are the active ingredients of essential oils including carvacrol, cinnamaldehyde, cineole, sabinene, thujaplicin or a mixture thereof. These essential oils come from oregano, cinnamon, eucalyptus, nutmeg, honokitiol, among other plants.
  • the active ingredients have the advantage of having greater thermal stability than essential oil extracts.
  • the active substances can microencapsulate in order to avoid volatilization and / or decomposition of antimicrobial agents due to the conditions of the extrusion process.
  • Microencapsulation agents of the active ingredients include: cyclodextrin ( ⁇ - or ⁇ ), clay or silica.
  • the microencapsulation agent is ⁇ -cyclodextrin which is a natural oligosaccharide that is obtained from the enzymatic degradation of starch.
  • encapsulation variables were established (material ratio ⁇ -cyclodextrin / essential oil antimicrobial agent (or active ingredient), encapsulation process, agitation speed, among others).
  • the oils (oregano and cinnamon) and their active ingredients were incorporated directly into the polyethylene by melt mixing to form the film or film.
  • calcium nanocarbonate was incorporated into polyethylene in order to study its degradability over time simulating environmental conditions.
  • Figure 1 shows the pure ⁇ -cyclodextrin, carvacrol and cinnamaldehyde IR spectra, and the ⁇ -cyclodextrin / carvacrol microcapsules
  • Figure 2 shows DSC ⁇ -cyclodextrin (b-CD) thermograms and ⁇ -cyclodextrin / carvacrol (b-CD-Car) and ⁇ -cyclodextrin / cinnamaldehyde microcapsules
  • Figure 3 shows TGA thermogram of b-CD and of the b-CD / cinnamaldehyde (b-CD-Cin) inclusion complexes obtained by the co-precipitation method.
  • Figure 4 shows SEM micrographs made of (A) b-CD, (B) b-CD-cinnamaldehyde and (C) b-CD-carvacrol, using a co-precipitation method.
  • Figure 5 shows IR spectra polyethylene, cinnamaldehyde, b-CD, polyethylene / b-CD-Cin and polyethylene / Cin.
  • Figure 6 shows IR spectra polyethylene, carvacrol, b-CD, polyethylene / b-CD-
  • FIG. 7 shows DSC thermograms for films, PE only, PE +
  • Cinnamaldehyde 5%, PE + b-CD-Cinnamaldehyde 5% and PE + b-CD-Cinnamaldehyde 5% active ingredient
  • FIG 8 shows DSC thermograms for films, PE only, PE +
  • FIG. 9 shows thermograms TGA polyethylene (PE), polyethylene-cinnamaldehyde microcapsules (PE + b-CD-Cin) and carvacrol (PE + b-CD-
  • Figure 10 shows the carbonyl index of PE and PE / CaC0 3 at different irradiation times
  • the present invention relates to a film for packaging fruit and vegetables, comprising a polymer matrix based on polyolefin that incorporates an antimicrobial active agent (biocide or fungicide) of essential oil selected from the group consisting of carvacrol, cinemaidehyde, cineole, sabinene , thujaplicin or a mixture thereof, or incorporates said essential oil selected from the group consisting of: cinnamon oil, oregano oil, eucalyptus oil, nutmeg oil, honokitiol oil or a mixture thereof, which may be microencapsulated, and also comprises a degrading agent and; microencapsulation process of said antimicrobial active agent of essential oil or said essential oil; and film preparation procedure.
  • an antimicrobial active agent biocide or fungicide
  • essential oil selected from the group consisting of carvacrol, cinemaidehyde, cineole, sabinene , thujaplicin or a mixture thereof
  • said essential oil selected from
  • the present film is an intelligent film for fruit and vegetable packaging, comprising a polymer matrix based on polyolefin, which incorporates said animicrobial agent of essential oil or said oil essential that can optionally be microencapsulated, and also incorporates a degrading agent; and microencapsuation process of said essential oil antimicrobial agent or said essential oil; and method of film preparation.
  • the present film is an intelligent film for fruit and vegetable packaging, based on a selected polyolein of polyethylene (PE), polypropylene (PE), polystyrene (PS) and ethyl vinyl acetate (EVA) and said microencapsulated essential oil antimicrobial or said oil essential that may optionally be microencapsulated, where the encapsulating agent is selected from the group consisting of: cyclodextrin ( ⁇ - or ⁇ -), clay or silica; and also comprises a degrading agent selected from calcium nanocarbonate, calcium carbonate, starch, cellulose or a mixture thereof.
  • This film has antimicrobial properties (biocides or fungicides), and once its life cycle is complete, it is degradable to the environment.
  • antimicrobial active agents or fungicidal active ingredients were used: cinemaidehyde, carvacrol, and essential oils including oregano oil and cinnamon oil, which were previously characterized by infrared spectroscopy analysis (FT- GO). To avoid volatilization or decomposition of essential oils under the conditions of the extrusion process, these were first microencapsulated, in order to preserve the active principle. In this sense, variables of encapsulation of oils in cyclic oiigosaccharides such as beta-cyclodextrin were established.
  • these encapsulated oils were characterized by different spectroscopic and instrumental techniques such as: FT-IR infrared spectroscopy, UV-Vis, differential scanning analysis (DSC), iremogravimetric analysis (TGA) and scanning electron microscopy (SE).
  • FT-IR infrared spectroscopy UV-Vis
  • DSC differential scanning analysis
  • TGA iremogravimetric analysis
  • SE scanning electron microscopy
  • Beta-ciciodextrin allowed satisfactory encapsulation of essential oils.
  • the active ingredients including carvacrol and cinemaldehyde
  • the active ingredients are thermally stable, do not need to be microencapsulated and have a high percentage of fungicidal power when incorporated directly into the polyurethane matrix.
  • essential oils especially oregano oil
  • they need to be microencapsulated because they are more volatile compounds and in processing there may be loss of these, evidencing their lower fungicidal properties, being microencapsulated equivalent to 1% of its compound, 40% fungicidal activities are observed, microencapsuation stabilizes the essential oil protects it from decomposition at high processing temperatures.
  • the co-precipitation method was used for the preparation of the ⁇ -cyclodextrin / essential oil or ⁇ -cyclodextrin / active ingredient microcapsules or antimicrobial essential oil agent.
  • An amount of ⁇ -cyclodextrin was weighed and solubilized in a 2: 1 water / ethanol solution in a reactor, under constant stirring at a temperature of 55 ⁇ , in solution a solution of the active agent in 10% ethanol is prepared. v / v.
  • the active agent is added slowly to the solution, mixing at 55 ⁇ for 30 minutes. Then, the temperature is reduced by 25 ° and left under stirring for 4 hours. The final solution is left under refrigeration at 7 ⁇ by a Within 12 hours, finally the precipitate was cold, recovered by vacuum filtration and dried in an oven for 24 hours.
  • microcapsules obtained were characterized by spectroscopic techniques such as infrared (FT-IR), UV-visible spectrophotometry and differential scanning calorimetry (DSC), TGA thermogravimetric analysis and scanning electron microscopy (SEM), see Figures 1 -4 and 6-10.
  • FT-IR infrared
  • DSC differential scanning calorimetry
  • SEM thermogravimetric analysis and scanning electron microscopy
  • PE polyethylene
  • an essential oil antimicrobial agent selected from the group consisting of: cinnamon oil (A. cinnamon), oregano oil (A. oregano), carvacrol (Carv), cinemaldehyde (Cin), beta-cyclodextrin-cavacrol ( b-CD-Car), beta-cyclodextrin cinemaldehyde (b-CD-Cin) and mix for 2 minutes at 120 rpm until it is well homogeneous.
  • the mixtures were studied, varying the amount of said antimicrobial agent, thus mixtures 99/1, 97/3 and 95/5% w / w were prepared.
  • the mixtures formed were PE / A. Cinnamon, PE / A. Oregano, PE / Carv, PE / Cin, PE / b-CD-Car and PE / b-CD-Cin, polyethylene only (100%).
  • the active agent cinemaldehyde or carvacrol
  • calcium nanocarbonate 5% by weight with respect to the weight of the polymer was incorporated, which allows the degradation of the polymer.
  • Table No. 1 Ratio Polyethylene (PE) / Antimicrobial active substance used in mixtures
  • B-CD mass ⁇ -Cyclodextrin mass
  • A.A mass Active agent mass
  • the films were obtained by pressing at 170 e C and 344 KPa (50 psi) pressure, in a Scientific, LabTech Engineering team. Once the polymer / antimicrobial agent mixtures were obtained, they were placed in a 12 cm x12 cm and 1 mm thick mold, then pressed for 3 minutes, then the plates were cooled and removed.
  • the films obtained were characterized by infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), Thermogravimetric Analysis (TGA), and the mechanical properties were studied by tensile strain tests and their antimicrobial properties against the growth of cinematic botrytis.
  • FT-IR infrared spectroscopy
  • DSC differential scanning calorimetry
  • TGA Thermogravimetric Analysis
  • FT-IR Infrared spectroscopy
  • DSC Differential scanning calorimetry
  • TGA Temogravimetric analysis
  • Tensile-Deformation Test The mechanical properties of the materials were determined by tensile-strain tests, on an HP Instron D-500 dynamometer, at a deformation rate of 50 mm / min at room temperature.
  • the samples were prepared by cutting test specimens from a 1 mm thick plate, using a steel mold according to the ASTM D638 standard. A minimum of 4 determinations per material were made, reporting the simple average value.
  • Colony count method This method allows quantifying the fungicidal activity of the films studied. Samples and controls were cut into 2.5 x 2.5 cm squares and sterilized. Subsequently, sterile physiological serum (SF) is inoculated between 1 x 10 4 and 5x10 6 spores of the fungus B. cinérea, taken 500 ⁇ and deposited on the surface of the films for 8 hours at room temperature. Subsequently, the films are deposited in 10 mL of SF using 50 mL falcon tubes, 500 ⁇ of the recovered suspension is taken and diluted in 4.5 mL of SF.
  • SF sterile physiological serum
  • CFU colony forming units
  • Figure 2 shows the spectrum for the active ingredients encapsulated in ⁇ -cyclodextrin. Obtained from the microcapsules: ⁇ -cyclodextrin Carvacrol (b-CD-Car) and ⁇ -cyclodextrin / Cinemaldehyde (b-CD-Cin).
  • ⁇ -cyclodextrin Carvacrol b-CD-Car
  • b-CD-Cin ⁇ -cyclodextrin / Cinemaldehyde
  • Figure 3 presents the TGA thermogram for the b-CD and for (b-CD-Cin).
  • this presents a peak close to 330 e C corresponding to its thermal degradation.
  • the TGA thermogram for pure cinnamaldehyde shows the beginning of the degradation close to the and the maximum degradation point can be seen close to 205 ⁇ .
  • microcapsules have an irregular shape, there are regions where the microcapsules are agglomerated, but there are some with a good dispersion that have an average size of 4 ⁇ .
  • PEBD low density polyethylene
  • Polyethylene in general is characterized by being a semi-crystalline polymer, with good chemical resistance and processability, good electrical insulator, presents a certain degree of flexibility.
  • the PEBD for its part, has a high degree of ramifications, which makes the ordering of polymer chains difficult. It is an amorphous polymer with low density (0.92 to 0.94 g / cm 2 ), soft and flexible. It is used in different applications, from plastic bags to electrical insulation.
  • Figure 6 shows the IR spectra obtained for polyethylene (PE), Cinnamaldehyde (Cin), ⁇ -cyclodextrin (b-CD), Polyethylene / b-CD-Cin and Polyethylene / Cin.
  • the characteristic signals of polyethylene are also observed the characteristic bands of cinnamaldehyde and b-CD.
  • FIGS 8 and 9 show the DSC thermograms for polyethylene films alone and Cinnamaldehyde films, Carvacrol, containing 5% of antimicrobial active ingredients in the filler and with microcapsules b- CD- Cinnamaldehyde, b-CD-Carvacrol (containing 1% of the agent in the filler).
  • a crystalline fusion signal close to 1 10 ⁇ is observed in the case of polyethylene alone, for all the films studied with either the antimicrobial active ingredient without encapsulation and with the incorporation of microcapsules, it can be seen that there are no major differences with the virgin polyethylene in terms of the thermal behavior that they present, The crystalline fusion signal for all remains in a range between 1 10 and 1 15 ⁇ . Then, the incorporation of the antimicrobial active ingredients, whether encapsulated or not encapsulated, does not affect the thermal properties of the material.
  • Figure 10 shows the TGA thermograms, both for PE, and for the 5% b-CD-Cin and b-CD-car microcapsules in a nitrogen environment.
  • the thermogram does not show differences with the polyethylene without incorporation of the active ingredient, so the presence of active agent inside the matrix does not generate significant changes in the degradation of the film obtained.
  • carvacrol there is a signal close to 305 a attributed to I to thermal decomposition of ⁇ -cyclodextrin confirming the presence of microcapsules inside the matrix.
  • DSC and TGA analyzes confirm that the incorporation of the microcapsules into the matrix does not affect the thermal properties of the films compared to virgin polyethylene.
  • Activity films obtained by the method of counting colonies show the results obtained, for polymer films only with carvacrol and cinnamaldehyde and their respective essential oils (oregano, cinnamon), in addition each of them encapsulated in ⁇ - cilcodextrin.
  • active agent cinemaldehyde and carvarcrol
  • the fungicidal effect is less reaching 31.4% for carvacrol when the load was 5% by weight. This is mainly because the amount of active ingredient that is incorporated into the inclusion complex is less, equivalent to 1%. On the other hand, it should be considered that the release of the active ingredient towards the surface of the film is slower and requires more time. Otherwise, for films without complexes, where the active agents are occluded in the polymer matrix and their diffusion to the surface is much faster and in greater quantity generating this difference in fungicidal activity.
  • Table 3 shows the mechanical properties for the PE / CaC0 3 nanocomposites. Significant changes can be seen in the parameters studied, on the one hand an increase of up to 25% in Young's module is seen, which means that a greater effort is needed to deform the nanocomposite with respect to the matrix without adding nanoparticles. This is because the nanoparticles generate new nucleation centers forming more spherulites and of a smaller size, this crystallinity or compact ordering of the chains are responsible for giving the rigidity to the polymer.
  • Figure 6 shows the carbonyl index of polyethylene and PE / CaCC> 3 at different irradiation times. You can see the increase in carbonyl index is much greater by incorporating CaCÜ 3 nanoparticles into polyethylene, these nanoparticles accelerate the degradability of polyethylene. The best results were those obtained for films with 5% active agent (cinemaldehyde or carvacrol) and with 5% calcium carbonate nanoparticles so these conditions are ideal for preparing an intelligent film or film that has fungicidal properties but that at the same time is degraded in environmental conditions.
  • active agent cinemaldehyde or carvacrol

Abstract

La presente invención se refiere a una película degradable para empaque de frutas y hortalizas que comprende una matriz polimérica en base a poliolefina que incorpora un agente activo antimicrobiano (biocida o fungicida) de aceite esencial seleccionado del grupo consistente de: carvacrol, cinemaldehido, cineol, sabineno, thujaplicin o una mezcla de los mismos; o incorpora dicho aceite esencial seleccionado del grupo consistente de: aceite de canela, aceite de orégano, aceite de eucalipto, aceite de nuez moscada, aceite de honokitiol o una mezcla de los mismos; y además dicha matriz polimérica, incorpora comprende agentes degradantes; y procedimiento de microencapsulación de dichos agentes activos antifúngicos o antibacterianos de aceite esencial o dicho aceite esencial, y procedimiento preparación de la película.

Description

PELICULA DE EMPAQUE DEGRADABLE PARA FRUTAS Y HORTALIZAS
La presente invención se refiere a una película degradabíe para empaque de frutas y hortalizas, que comprende una matriz polímérica en base a poliolefina que incorpora un agente activo antimicrobiana (biocida o fungicada) de aceite esencial seleccionado del grupo consistente de carvacrol, cinemaidehido, cineol, sabineno, thujapliscsn o una mezcla de ios mismos, o incorpora dicho aceite esencial seleccionado del grupo consistente de: aceite de canela, aceite de orégano, aceite de eucaíiptus, aceite de nuez moscada, aceite de honokitiol, o un mezcla de los mismos, y además comprende un agente degradante; procedimiento de microencapsulación dichos agentes activos anfifúngicos o antibacterianos de aceite esencial o dicho aceite esencial; y procedimiento de preparación de la película.
Preferentemente, la presente película es una película inteligente para empaque de frutas y hortalizas, en base a una poliolefina seleccionada de polietileno (PE), polipropileno (PE), poliestireno (PS) y etilvinilacetato (EVA) y agentes antimicrobiano de aceite esencial o dicho agente esencial, que puede estar microencapsulado en un agente encapsulante seleccionado del grupo consistente de: ciclodextrina (β- o γ~), arcilla o silica; y además incorpora un agente degradante, seleccionado del grupo consiste de: nanocarbonato de calcio, carbonato de calcio, almidón, celulosa o una mezcla de ios mismos. Dicha película cuenta con propiedades antimicrobianas (biocidas o fungicidas), y una vez cumplido su ciclo de vida, es degradabíe al medio ambiente.
ANTECEDENTES
Existe tres diferentes problemáticas que se encuentran pendiente en el área de las películas para alimentos. En primer lugar, la lenta degradación de los plásticos ya que las polioiefinas actualmente usadas en su manufactura, no pueden ser fácilmente degradadas en condiciones ambientales - su degradación dura aproximadamente 400 años - causando así, un incremento en ia contaminación e impacto ambientai como consecuencia de la acumulación de desechos plásticos. En segundo lugar, ia acumulación de residuos es también otro problema que en la actualidad genera grandes daños ambientales. En Chile, en el año 2009, ia generación de residuos sólidos municipales alcanzó los 6,5 millones de toneladas anuales en residuos plásticos. Por último, un gran número de alimentos, frutas, verduras o fármacos se deterioran por acción del ambiente, bacterias, hongos entre otros, debido a que no se cuenta con un envase adecuado que impida su deterioro y que aisle apropiadamente el producto.
Chile es un gran exportador en el área agronómica en especial en frutas, ocupando el primer lugar a nivel mundial en la exportación de uvas, y en segundo lugar en paltas
[http://www.prochile.cl/nexos/antecedentes_exportaciones_fruta_chilena.pdf (vista en Noviembre 2012)], además de otras frutas como kiwi, manzanas, peras, cerezas. Así, la industria de empaque de frutas juega un papel importante en el desarrollo económico del país. Por esto, es de gran importancia tener un buen mecanismo para evitar la maduración de la fruta durante su transporte, entre los factores más comunes que alteran las propiedades de las frutas se encuentran la humedad, luz, oxígeno y bacterias, hongos y plagas del ambiente. Análisis económicos indican que ios exportadores pierden hasta el 30% de los productos frescos debido a la maduración y descomposición durante el transporte [RHIM J.W., Ng P.K.W. Criticáis Reviews in Food Science and Nutritions, 47 (4), 41 1 -433]. Estos desafíos ilevan a ia búsqueda de alternativas, para mantener la calidad de las frutas. Actualmente, se ha reportado ia preparación de películas de plásticos con propiedades biocidas, los que contienen algunos metales como plata, cobre o titanio [Zapata P.A., Tamayo L, Páez M., Cerda E., Azocar L, Rabagliati F. ., E. Poiym. J. 47(201 1 ) 1541 , Paiza H„, Gutiérrez S., Saiazar O., Fuenzaíida V., AvilaJ., Quijada R., Macromol. Rapid. Cornmun. 31 (2010) 63]. Es conocida la ventaja de la plata y ei cobre debido a que son potentes en un amplio espectro contra bacterias, hongos, algas y virus [Duncan T.V, J. Colioid Interf. Scien., 363 (201 1 ) 1 -24]. La preparación de compositos en base a polímeros presenta ¡a propiedad que la liberación de ¡os iones del metal puede ser controlada por un determinado período de tiempo. En el caso de usar nano o partículas de plata y cobre como biocidas, queda duda de su toxicidad al ser humano.
A nivel industrial en el sector de empaques de alimentos, en Chile, se utiliza dióxido de azufre (SQ2) como un agente antimicrobiano. Ei SQ es un antioxidante y preservativo de productos como vegetales, frutas y vinos. El SC½ actúa como preservante de alimentos previniendo ei crecimiento microbiano. Sin embargo, ei S02 puede causar diversos problemas de salud como cefalea crónica y trastornos de memoria. En 1989 se introdujo un nivel de tolerancia de 10 ppm para el S02. Diferentes esfuerzos han sido desarrollados para empaques en la liberación controlada del S02 de polioiefínas. Plásticos en multicapas conteniendo en la superficie externa, sulfilo de calcio, y en una capa de liberación, el dióxido de azufre, S02. Es conocido que el método empleado para la liberación de SOa es costoso además puede presentar problemas para la salud, si se comprende altas concentraciones de SG2. Por lo tanto, es importante buscar un producto natural que actúe como biocida y fungicida para ios alimentos, especialmente frutas. Por otro lado, con respecto a la degradabilidad de estas películas para el embalaje de alimentos, las empresas deben ir cumpliendo en la mayoría de los países, una serie de normativas que regulan el manejo de desechos de bolsas plásticas y películas en base a polímeros. Pocas empresas ya están certificando que sus películas tengan sustentabilidad y que sea amigable con el medio ambiente. Estas bolsas presentan entre otras características oxodegradabilidad pero la desventaja de ios aditivos usados en su preparación como prodegradaníes es que requieren la presencia de luz para que el polímero sea degradable al medio ambiente. Por lo tanto, en el área de ¡a degradabilidad de películas en base a polímeros se tiene grandes retos por resolver.
Por otra parte, la demanda de empaques para alimentos que mantengan la calidad del mismo, por un largo período, ha incrementado fuertemente en las últimas décadas, y se espera siga creciendo de la misma forma. Por ello, diferentes metodologías han sido desarrolladas para aumentar el tiempo de vida de ¡os alimentos. Una película para conservación de lechuga, fue preparado con polipropileno y nanopartículas de TÍO2. El empaque inhibió el crecimiento de E. Coli en la lechuga [Chawengkijwanich C, Hayata Y., int.J.FoodMicrobiol. 123 (2008) 288]. Los materiales usados como agentes antimicrobianos en polímeros son nanopartículas de óxido de zinc [Li X., Xing Y., Jiang.Y., Ding Y., Li W, IntJ.FoodSci Tech 44 (2009) 2161 ] y quitosano [Xing K, Chen X.G., Kong M., Liu C.S., Cha D.S., Park H.J., Carbohydr.Polym. 76 (2009) 173.
Otras compuestos de gran interés como agentes biocidas y fungicidas son ios aceites esenciales [Burt S., International Journal of Food icrobioiogy 94 (2004) 223- 253]. Los aceites se pueden extraer de ¡a canela (cina!maidehido), orégano (carvacrol), eucaliptus (cineol), tomillo (timoi), entre otros. La actividad microbicida de diferentes aceites esenciales en ¡a incorporación de polímeros ha sido estudiada [López P., Sánchez C, Batile R., Nenn C, J. Agrie. Food Chem., 55, 4348 (2007)]. Películas de poiietiieno con arcilla y carvacrol muestran propiedades biocidas contra diferentes bacterias [Pérsico P., et.aL, Poiymer Engineering Science, 49 (2009) 1447]. Por tanto, una alternativa de obtener una película biocida, será incorporando un aceite esencial en una matriz polimérica.
Debido al aumento preocupante de desechos plásticos a nivel mundial, se propone con este proyecto buscar una poliolefina degradable que retenga la función de ésta mientras cumple el ciclo de vida pero que ai degradarse sus productos finales, no sean tóxicos ai ambiente. En la literatura se encuentran algunas patentes usando metales de transición en forma de sales, Ejemplos de prodegradantes incluyen estereato y oieato de magnesio, sales de cobalto y acetato férrico [New!and GC, Greear GR, Tamblin JW. Polyoiefin compositions and degradable films. Pat US3454510, assigned to Eastman Kodak Co.; 1969, Peng C. A degradable polyoiefin resin and process for making same. Pat WO2008020752, assigned to Gain Mark Technology Ltd.; 2008]. Otros prodegradantes son provenientes de óxidos metálicos fotoestables como el TI02 y ZNO [Ammala A, Hill AJ, Meakin P, Pas SJ, Turney TW. J Nanopart Res 2002:4:167-74]. Se ha reportado que solo se requiere un 2% en peso de prodegrandante con respecto a la poliolefina, y esto hace, que el proceso sea amigable por extrusión o por inyección, En la literatura se informa del estudio de carbonato de calcio, almidón y celulosa para degradación de pollolefinas como polietileno y polipropileno [F'orsberg G., oessner EK., Ghaprnan GM., Packages. Pat WO2006009502, ADD-XBIOTECH;2006]. Esto fue realizado con fines de obtener un producto para un empaque de alimentos y para bolsas con características oxodegradables. El carbonato de calcio en forma nanopartículas ha sido usado además como refuerzo de polieteiino y propileno con el fin mejorar las propiedades mecánicas. Este mineral también permite promover y acelerar la degradación de las pollolefinas bajo condiciones ambientales, el cual es evidenciado en una disminución en sus pesos moleculares y un importante incremento en el índice de carbonilo que da una idea del rompimiento de las cadenas, ia formación de cetonas, aldehidos entre otros, y por tanto degradación de! polímero [Pablos J. L, Abrusci C, Marín i., López- Marín J. , Catalina F., Espí E.. Corrales T., Polymer Degradation and Stabiiity 95 (2010) 2057, Li J, Yang R., Yu J., Liu Y., Polym.Degrad. Stab. , 93 (2008) 84]. US2014242138 divulga formulaciones de aceites esenciales microencapsuiados adecuados para aplicaciones agrícolas, donde al menos un aceite esencial se encuentran en un núcleo sólido encapsulado por carcasa exterior antipática que consiste esencialmente de una forma de sal muitivaiente de al menos un ácido alcanoico. También, enseña un proceso de preparación para la formulación y su aplicación como preservante, desinfectante y producto repelente de insectos para almacenar productos o alimentos agrícolas.
US2014154426 divulga un proceso para la obtención de una película compuesta de ia incorporación de agentes antimicrobianos de origen natural en una estructura poiimérica para desarrollar paquetes para aumentar la vida útil de ia carne refrigerada, preferentemente saimón fresco, en donde dicho proceso comprende las siguientes etapas: a) obtener microcápsulas de un agente antimicrobiano de origen natural en un medio envolvente, que comprende las etapas de: a1 ) ia producción de una fase acuosa disolviendo goma árabe (Quimatic) y Tween 20 en agua destilada; a2) la producción de una fase oleosa a través de una solución del agente antimicrobiano de origen natural con una mezcla de timo! y carvacrol; a3) preparar una emulsión incorporando la fase acuosa sobre la fase oleosa; b) la incorporación de las microcápsulas en polímeros, el tratamiento anteriormente ellos a fin de reducir su tensión superficial (tratamiento corona), las microcápsulas de sedimentación sobre la película, y dejando secar en una estufa a temperatura controlada.
CN103788494 divulga una película de frutas y verduras frescas y un método para su preparación, donde la película comprende polietileno (PE), polipropileno (PP) y un material de alta barrera copolímero de etileno/aicohoi vinílico (EVGH), los que sirven materias primas básicas, y esencia de semiüa de aceite de romero y uva como ingredientes activos. La película se prepara mezclando uniformemente las materias primas básicas y los ingredientes activos para preparar una resina modificada a través de una extrusora de doble tornillo, y luego su extrusión y soplado a través de ¡a resina modificada. La película así preparada permite inhibir el crecimiento microbiano, ia evaporación del agua y la tasa de respiración de frutas y verduras, obteniéndose un efecto de resistencia a la oxidación, el pardeamiento enzimático de las frutas y verduras.
CN103159970 se refiere a un método de preparación de una película comestible con funciones antibacterianas y antioxidantes, y pertenece al campo técnico de ios materiales de envasado comestibles. El método de preparación descrito por la invención comprende las siguientes etapas: 1 ) disolver y gelatinizar el almidón de maíz; 2) disolver la gelatina; 3) disolución de quitosano; 4) añadir glicerina y aceite esencial de planta o componentes de aceites esenciales; 5) mezclar, homogeneizar y refinar; 6) desgasificación; 7) fundición en cinta; y 8) secado y extracción de la película.
El método de preparación muestra los efectos beneficiosos que quitosano, almidón de maíz y gelatina muestran como materiales base de la película comestible. La película comestible así preparada tiene propiedades mecánicas ventajosas, alto rendimiento de barrera y una gran transparencia.
Entre los aceites esenciales se enseñan aceite de orégano, carvacrol y cinamaldehído como agentes antibacterianos y un antioxidante para ser añadido en la película comestible.
CN101965863 describe un microencapsuiado para mantener frescor de frutas y hortalizas que se prepara a partir de quitosano, propóleos y beta-ciciodextrina, que se usan como materiales de la pared, y aceite de casia, aceite de romero y aceite de limón, que se utilizan como materiales de núcleo. El microencapsuiado se prepara mediante las siguientes etapas de: añadir la beta-ciclodextrina y agua en una botella de tres puertos con agitación eléctrica y calentamiento a 60-7QQC para disolver la beta-ciclodextrina en agua revolviendo continuamente y enfriamiento a 4G-45SG. La adición de ios materiales del núcleo: aceite de cassia, aceite de romero y aceite de limón, permiten asegurar que la mezcla de aceites esenciales se disperse uniformemente en una solución después enfriar lentamente a la temperatura ambiente para obtener una microcápsula de aceite esencial en beta- ciclodextrina, al añadir el material de la pared mixta de quitosano y propóieo, y la adición de giicerol y Tween-80, se agita continuamente durante 30 minutos para formar el microencapsuiado,
US2008220036 enseña un material de envasado antimicrobiano para productos alimenticios que contienen de 0,05% a 1 ,5% en peso de un aceite esencial natural. El aceite se puede seleccionar de principalmente linalool y/o metüchavicol, pero también de uno o más de citra!, geraniol, cinamato de metilo, metil eugenol, 1 ,8-cineol, trans-oc-bergamotena, carvacrol y timol mezclado con uno o más polímeros seleccionados del copolímero de etileno y alcohol de viniio, poliacriiatos, incluyendo copolímeros de metacrilato de etilo, acrilato de metilo lonomers, nylons y otros polímeros hidrófilos o polímeros que poseen grupos funcionales capaces de anclaje parcial. Un agente de unión tai como el polietilenglicol se añade a la mezcla para mejorar la retención del aceite volátil en el polímero durante el procesamiento. Este material no tiene limitaciones de regulación y, a las concentraciones que se hace referencia, no forma malos sabores detectables.
MX2007008879 enseña formulaciones que contienen aceites esenciales microencapsuíados y un vehículo no volátil, las que son útiles como repelente, insecticida, pesticida, ovicida o iarvicida. El película de la presente invención es una película inteligente para embalaje de frutas y hortalizas con doble función: biocida y fungicida, y a la vez, tiene propiedades degradantes al medio ambiente. La incorporación de un agente activo o aceite esencial que le brindará al polímero o película propiedades biocidas y fungicidas (antimicrobiana) con el fin de conservar, aumentar el tiempo de vida y calidad del producto que se va a comercializar, evitando la descomposición de las frutas.
El objetivo de la presente película es que la fruta u hortaliza, conserve sus características intrínsecas durante su transporte a los mercados y pueda ser entregado, en buen estado. Además, una vez que la película cumple el tiempo de vida útil, presenta propiedades degradantes al medio ambiente, en un período de 3-4 años. El cual se obtiene mediante la preparación de una película con adición de un agente degradante o proxidante que mitiga la contaminación y disminuye los desechos generados al medio ambiente.
BREVE DESCRIPCION DE LA INVENCION
La presente invención se refiere a una película para empaque de frutas y hortalizas que comprende una matriz poiimérica en base a poliolefina que incorpora agente activo antimicrobiano (biocida o fungicida) de aceite esencial seleccionado del grupo consistente de carvacroL cínemaldehido, cineoi, sabineno, thujaplicin o una mezcla de los mismos o incorpora dicho aceite esencial seleccionado del grupo consistente de: aceite de canela, aceite de orégano, aceite de eucalipto, aceite de nuez moscada, aceite de honokitioí o una mezcla de los mismos, que pueden además estar microencapsuiado, y adicionalmente comprende un agente degradante; procedimiento de microencapsulación dichos agentes activos antifúngicos o antibacterianos biológicos de aceite esencial o dicho aceite esencial; y procedimiento de preparación de la película. La presente película es una película Inteligente para empaque de frutas y hortalizas, que comprende una matriz polímérica en base a poliolefina que incorpora dicho agente antimicrobianos de aceite esencial o dicho aceite esencial, que opcionaimente puede estar microencapsuiado, y además incorpora un agente degradante; y procedimiento de microencapsuiación de dicho agente antimicrobiano de aceite esencial o dicho aceite esencial, y procedimiento de preparación de la película.
La presente película es una película inteligente para empaque de frutas y hortalizas que comprende matriz polímérica en base a una poliolefina seleccionada de poliefiíeno (PE), polipropileno (PE), poliestireno (PS) y etilvinilacetato (EVA), la que incorpora dicho agente antimicrobiano de aceite esencial o dicho aceite esencial, que puede estar opcionaimente microencapsuiado y donde dicho agente encapsuiante es seleccionado del grupo consistente de ciclodextrina (β- o γ-), arcilla o silica; y además incorpora un agente degradante seleccionado del grupo consistente de nanocarbonato de calcio, carbonato de calcio, almidón, celulosa o una mezcla de los mismos, y donde además el nanocarbonato de calcio cumple la función de un agente de refurzo. Dicha película cuenta con propiedades antimicrobianas (biocidas o fungicidas), y una vez cumplido su ciclo de vida, es degradable al medio ambiente.
Como agentes activos antimicrobianos se incluyen los principios activos de aceites esenciales incluyendo carvacrol, cinamaldehído, cineol, sabineno, thujaplicin o una mezcla de los mismos. Estos aceites esenciales provienen del orégano, canela, eucaliptus, nuez moscada, honokitiol, entre otras plantas. Los principios activos presentan la ventaja de tener mayor estabilidad térmica que los extractos de aceites esenciales. Los principios activos pueden microencapsulan con el fin de evitar la volatilización y/o descomposición de los agentes antimicrobianos debido a las condiciones del proceso de extrusión. Agentes de microencapsulacion de los principios activos incluyen: ciclodextrina (β- o γ ), arcilla o silica. Preferentemente, el agente de microencapsulacion es β-ciclodextrina que es un oligosacárido natural que se obtiene de la degradación enzimática del almidón. Para la microencapsulacion, se establecieron variables de encapsulamiento (relación material β- ciclodextrina/agente antimicrobiano de aceite esencial (o principio activo), proceso de encapsulamiento, velocidad de agitación, entre otros). Como a modo de comparación, los aceites (orégano y canela) y sus principios activos (carvacrol, cinemaldehido) fueron incorporados directamente al polietileno mediante mezclado en fundido para la formación del película o película. A la vez, se incorporó nanocarbonato de calcio al polietileno con el fin de estudiar la degradabilidad de éste en el tiempo simulando condiciones ambientales.
BREVE DESCfflPOON DE FIGURAS
La Figura 1 muestra los espectros IR β-ciclodextrina pura, carvacrol y cinamaldehido puros, y las microcapsulas β-ciclodextrina/carvacrol
(b-CD-Car) y β-ciclodextrina/Cinemaldehído (b-CD-Cin).
La Figura 2 muestra termogramas DSC β-ciclodextrina (b-CD) y microcapsulas β-ciclodextrina/carvacrol (b-CD-Car) y β-ciclodextrina/cinamaldehido
(b-CD-Cin).
La Fsgura 3 muestra termograma TGA de b-CD y de los complejos de inclusión b-CD/cinamaldehido (b-CD-Cin) obtenidas mediante el método de co-precipitación.
La Figura 4 muestra micrografia SEM realizadas a (A) b-CD, (B) b-CD- cinamaldehido y (C) b-CD-carvacrol, mediante unmétodo de co- precipitación.
La Figura 5 muestra espectros IR polietileno, cinamaldehido, b-CD, polietileno/b-CD-Cin y polietileno/Cin. La Figura 6 muestra espectros IR polietileno, carvacrol, b-CD, polietileno/b-CD-
Car y polietileno/Car.
La Figura 7 muestra termogramas DSC para películas, PE solo, PE +
Cinamaldehido 5%, PE + b-CD-Cinamaldehido 5% y PE + b-CD- Cinamaldehido 5% (principio activo).
La Figura 8 muestra termogramas DSC para películas, PE solo, PE +
Carvacrol 5%, PE + b-CD-Carvacrol 5% y PE + b-CD-Carvacrol (5% principio activo).
La Figura 9 muestra termogramas TGA polietileno (PE), polietileno- microcapsulas cinamaldehido (PE+b-CD-Cin) y carvacrol (PE+b-CD-
Car).
La Figura 10 muestra el índice de carbonilo de PE y PE/CaC03 a diferentes tiempos de irradiación
DESCRIPCION DETALLADA DE LA INVENCION
La presente invención se refiere a una película para empaque de frutas y hortalizas, que comprende una matriz polimérica en base a poliolefína que incorpora un agente activo antimicrobiano (biocida o fungicida) de aceite esencial seleccionado del grupo consistente de carvacrol, cinemaidehido, cineol, sabineno, thujaplicin o una mezcla de los mismos, o incorpora dicho aceite esencial seleccionado del grupo consistente de: aceite de canela, aceite de orégano, aceite de eucalipto, aceite de nuez moscada, aceite de honokitiol o una mezcla de los mismos, que pueden estar microencapsuiados, y además comprende un agente degradante y; procedimiento de microencapsulacion de dicho agente activo antimicrobiano de aceite esencial o dicho aceite esencial; y procedimiento de preparación de la película.
La presente película es una película inteligente para empaque de frutas y hortalizas, que comprende una matriz polimérica en base a poliolefína, la que incorpora dicho agente aníimicrobíano de aceite esencial o dicho aceite esencial que puede opcionalmente estar microencapsulado, y además incorpora un agente degradante; y procedimiento de microencapsuiación de dicho agente antimicrobiano de aceite esencial o dicho aceite esencial; y método de preparación de la película.
La presente película es una película inteligente para empaque de frutas y hortalizas, en base a una poiioleíina seleccionada de poiietileno (PE), polipropileno (PE), poliestireno (PS) y etilvinilacetato (EVA) y dicho antimicrobiano de aceite esencial microencapsulado o dicho aceite esencial que puede opcionalmente estar microencapsulado, donde el agente encapsuiante se selecciona del grupo consistente de: ciclodextrina (β- o γ-), arcilla o silica; y además comprende un agente degradante seleccionado de nanocarbonato de calcio, carbonato de calcio, almidón, celulosa o una mezcla de los mismos. Dicha película cuenta con propiedades antimicrobianas (biocidas o fungicidas), y una vez cumplido su ciclo de vida, es degradable al medio ambiente.
En una modo de realización de la presente invención, se usaron como agentes activos antimicrobianos o principios activos fungicidas: cinemaidehído, carvacrol, y aceites esenciales incluyendo aceite de orégano y aceite de canela, los que previamente fueron caracterizados mediante análisis de espectroscopia infrarroja (FT-IR). Para evitar la volatilización o descomposición de los aceites esenciales bajo las condiciones del proceso de extrusión, estos primero fueron microencapsulados, con el fin de preservar el principio activo. En este sentido, se establecieron variables de encapsulamiento de los aceites en oiigosacáridos cíclicos como beta-ciclodextrina. Posteriormente, estos aceites encapsuiados fueron caracterizados mediante diferentes técnicas espectroscópicas e instrumentales como: espectroscopia infrarroja FT-IR, UV- Vis, análisis diferencial de barrido (DSC), análisis íermogravimétrico (TGA) y microscopía electrónica de barrido (SE ). Mediante las técnicas mencionadas, se confirmó que el aceite esencial fue incorporado dentro de la beta- ciclodextrina.
La beta-ciciodextrina permitió el encapsulamiento satisfactorio de los aceites esenciales.
Como se puede observar en los resultados, los principios activos incluyendo carvacrol y cinemaldehído, son estables térmicamente, no necesitan ser microencapsulados y presentan alto porcentaje de poder fungicida al ser incorporados directamente en la matriz de poüetiieno. Por otro lado los aceites esenciales, especialmente el aceite de orégano, necesitan ser microencapsulados debido a que son compuestos más volátiles y en el procesamiento puede haber pérdida de éstos, evidenciándose en sus propiedades fungicidas mas bajas, al ser microencapsulados que equivalen a 1 % de su compuesto, se observa actividades fungicidas de un 40%, la microencapsuiación estabiliza ai aceite esencial lo protege de descomposición a altas temperaturas de procesamiento.
EJEMPLOS
1. Preparación v resultados de las microcápsulas de β- Ciclodextri na/principio activo
Para la preparación de las microcápsulas β-ciclodextrina/aceite esencial o β- ciclodextrina/principio activo o agente antimicrobiano de aceite esencial, se utilizó el método de co-precipitación. Se procedió a pesar una cantidad de β- ciclodextrina y se solubilizó en una solución agua/etanol 2:1 en un reactor, bajo agitación constante a una temperatura de 55Ό, en p aralelo se prepara una solución del agente activo en etanol al 10% v/v. Una vez que la β-ciclodextrina se solubiliza se agrega el agente activo lentamente a la solución, mezclando a 55Ό por 30 minutos. Luego, se disminuye la tempera tura 25Ό y se deja en agitación por 4 horas. La solución final se deja bajo refrigeración a 7Ό por un lapso de 12 horas, finalmente el precipitado frió, se recuperó por filtración al vacío y se secó en estufa por 24 horas. [19-21 ]
Determinación de rendimiento v eficiencia de encapsulación.
La eficiencia de encapsulación, se cuantificó mediante espectroscopia UV, en un espectrofotómetro UV-visible weisser SPECORD100. Para esto se realizó previamente una curva de calibración utilizando diferentes concentraciones. La Eficiencia de encapsulación (E.E), se obtuvieron a partir de las siguientes ecuaciones
masa de agente activo obtenida
E. E = — * 100
masa inicial del agente Las microcápsulas obtenidas se caracterizaron mediante técnicas espectroscópicas como infrarroja (FT-IR), espectrofotometría UV-visible y calorimetría diferencial de barrido (DSC), análisis termogravimetrico TGA y microscopía electrónica de barrido (SEM), ver Figuras 1 -4 y 6-10.
2. Preparación de películas base polietileno (PE) y principio activo antimiorobiano.
2.1. Preparación de mezcla polímero/principio activo antimicrobiano mediante mezclado en fundido:
Las mezclas se realizaron en un equipo Brabender de doble tornillo. El equipo se calentó previamente a 120eC a 12 rpm durante 5 minutos para que el polímero se funda. Luego, se agrega un agente antimicrobiano de aceite esencial seleccionado del grupo consistente de: aceite de canela (A. canela), aceite de orégano (A. orégano), carvacrol (Carv), cinemaldehido (Cin), beta- ciclodextrina-cavacrol (b-CD-Car), beta-ciclodextrina cinemaldehido (b-CD-Cin) y se mezclan por 2 minutos a 120 rpm hasta que quede bien homogénea. Se estudiaron las mezclas, variando la cantidad de dicho agente antimicrobiano, así se prepararon mezclas 99/1 , 97/3 y 95/5 %p/p. Las mezclas formadas fueron PE/A. Canela, PE/A. Orégano, PE/Carv, PE/Cin, PE/ b-CD-Car y PE/b-CD-Cin, polietileno solo (100%). Además junto con el agente activo (cinemaldehido o carvacrol), se incorporó nanocarbonato de calcio al 5% en peso respecto al peso del polímero, el que permite la degradación del polímero. Tabla N°1. Relación Polietileno (PE)/Principio activo antimicrobiano utilizado en las mezclas
% Principio
Masa b-
Película activo Masa A.A
CD
antimicrobiano
1 0 0,35
PE + A. Canela 3 0 1 .05
5 0 1 ,75
1 0,28 0,07
PE + b-CD/A.
3 0,85 0,20
Canela
5 1 ,40 0,35
1 0 0,35
PE+ A. Orégano 3 0 1 .05
5 0 1 ,75
1 0,28 0,07
PE+ b-CD-A.
3 0,85 0,20
Orégano
5 1 ,40 0,35
1 0 0,35
PE+
3 0 1 .05
Cinamaldehido
5 0 1 ,75
1 0,28 0,07
PE+ b- 3 0,85 0,20
CD/Cinamaldehido
5 1 ,40 0,35 PE+ Carvacrol
0,28 0,070
PE+ b-CD- 0,85 0,200
Carvacrol
1 ,40 0,350
Masa b-CD: Masa de la β-Ciclodextrina, masa A.A: Masa del agente activo
2. Preparación de las películas de PE mediante prensado en fundido:
Las películas se obtuvieron mediante prensado a 170eC y 344 KPa (50 psi) de presión, en un equipo Scientific, LabTech Engineering. Una vez obtenidas las mezclas polímero/agente antimicrobiano, estas se colocaron en un molde de 12 cm x12 cm y 1 mm de espesor, luego se realizó un prensado por 3 minutos, posteriormente las placas fueron enfriadas y retiradas.
3. Caracterización de las películas de las películas de polietileno con principio activo antimicrobiano
Las películas obtenidas fueron caracterizadas mediante espectroscopia infrarroja (FT-IR), calorimetría diferencial de barrido (DSC), Análisis termogravimétrico (TGA), además se estudiaron las propiedades mecánicas mediante ensayos de tracción deformación y sus propiedades antimicrobianas frente al crecimiento de botrytis cinérea.
3.1. Espectroscopia infrarroja (FT-IR): Los espectros IR fueron obtenidos utilizando un equipo Perkin Elmer BX-FTIR en un rango que va desde los 600 a los 4000 cm"1.
3.2. Calorimetría diferencial de barrido (DSC): Las medidas se realizaron en un equipo Metler DSC823, con una velocidad de calentamiento de 10eC min"
1 en atmósfera de N2, las muestras fueron calentadas desde 25 hasta los 3.3. Análisis temogravimetrico (TGA): Las medidas se realizaron en un equipo Netzsch-TG209 F1 Libra con una velocidad de calentamiento de 10eC min "1 en atmósfera inerte, las muestras fueron calentadas desde 25 hasta los 600eC.
3.4. Ensayo Tracción-Deformación: Las propiedades mecánicas de los materiales se determinaron mediante ensayos de tracción-deformación, en un dinamómetro HP Instron D-500, a una velocidad de deformación de 50 mm/min a temperatura ambiente.
Las muestras fueron preparadas cortando probetas de ensayo desde una placa de 1 mm de espesor, utilizando un molde de acero según la norma ASTM D638 Se realizaron como mínimo de 4 determinaciones por material, reportando el valor promedio simple.
4. Estudio propiedades fungicidas:
Método de recuento de colonias: Este método permite cuantificar la actividad fungicida de las películas estudiadas. Las muestras y los controles fueron cortados en cuadrados de 2,5 x 2,5 cm y esterilizados. Posteriormente, se inoculan en suero fisiológico estéril (SF) entre 1 x104 y 5x106 esporas del hongo B. cinérea, se toman 500 μΐ y se depositan en la superficie de las películas durante 8 horas a temperatura ambiente. Posteriormente, las películas se depositan en 10 mL de SF utilizando tubos falcon de 50 mL, se toman 500 μΐ de la suspensión recuperada y son diluidos en 4,5 mL de SF. Luego, se toman 200 L y se siembran en placas de agar sabouraud mediante la técnica de rastrillo por duplicado y se dejan incubando por 96 horas a temperatura ambiente. Finalmente, transcurrido el tiempo se cuantifican las unidades formadoras de colonias (UFC) y se obtiene el porcentaje de reducción mediante la siguiente ecuación
% Reducción = ((C-M)/C)*100
donde C= Recuento UFC/mL del control
M= Recuento UFC/mL de la muestra
5. Estudio degradación de las películas con la incorporación de CaC03
Se estudió el efecto de la incorporación de nanopartículas de carbonato de calcio en la degradación del polietileno en una cámara que simula el envejecimiento solar, durante un periodo de tres meses. Películas de 5 x 5 cm fueron puestas en la cámara de degradación (marca Suntest/Atlas XLS 2200 W), la irradiación fue realizada usando filtros solares (borosilicato) el cual provee una irradiación de 550 W m 2 (USO 4892/DIN 53387). A diferentes tiempos de envejecimiento se estudió el índice de carbonilo de las películas de polietileno virgen y de polietileno con nanopartículas de CaC03. La degradación se determinó midiendo el índice de carbonilo (Cl) como la relación entre la densidad óptica de la banda del grupo carbonilo a 1715 cm 1 con la vibraciones del CH2 a 1465 cm ^
3. Resultados
3.1 Microencapsulacion de los aceites esenciales o principios activos en la β-ciclodextrina
Espectroscopia IR
En la Figura 1 , se muestran los espectros FT-IR para los principios activos (Cinemaldehido, carvacrol), β-ciclodextrina y para las microcapsulas β- ciclodextrina principio activo. La denominación con la β-ciclodextrina y principios activos: carvacrol (b-CD-Car) y cinamaldehido (b-CD-Cin) respectivamente.
La Figura 2, presenta el espectro para los principios activos encapsulados en la β-ciclodextrina. Obtenidas de las microcapsulas: β-ciclodextrina Carvacrol (b- CD-Car) y β-ciclodextrina/Cinemaldehído (b-CD-Cin). Para el carvacrol (b-CD- Car) aparecen señales cercanas a los 1300-1400 cm"1 correspondientes principalmente a interacciones C-OH del anillo aromático, lo mismo se aprecia para el cinamaldehido (b-CD-Car) que tiene una señal cercana a los 1670 cm"1 correspondiente a los enlaces C=0 característicos de este compuesto.
La microencapsulación de los aceites esenciales de orégano y canela también fue verificada mediante infrarrojo IR.
Todas estas señales confirman que el proceso de encapsulación de los diferentes principios activos antimicrobianos estudiados en la cavidad de la β- ciclodextrina fue satisfactorio.
Mediante espectrofotometría UV-Visible se determinó la eficiencia de encapsulación (E.E) a diferentes velocidades de agitación para todos los agentes activos mediante la siguiente ecuación:
masa de agente obtenida
EE. = —— ¡ * 100 (Ecuación 1)
masa inicial del agente
De los resultados obtenidos, se puede apreciar que los valores de la E.E aumentan a medida que aumenta la agitación llegando a un 90% para 1000 rpm. Esto indica que la agitación juega un rol importante, pues puede facilitar el proceso de inclusión de los principios activos antimicrobianos hidrofóbicos dentro de la cavidad de la β-ciclodextrina. Por otro lado, no se aprecian diferencias entre los aceites esenciales y sus principios activos antimicrobianos mayoritarios, esto nos indica que aunque los aceites poseen una variedad amplia de compuestos estos se pueden incorporar en el agente encapsulante.
Análisis térmico
Los termogramas DSC obtenidos para la β-ciclodextrina y las microcápsulas con los principios activos carvacrol (b-CD-Car) y cinamaldehido (b-CD-Cin) (Figura 2). Se aprecia una señal endotérmica cercana a los 130eC característica de la β-ciclodextrina, en el caso de las microcápsulas se registra una señal menos intensa y con un pequeño desplazamiento para ambos principios activos antimicrobianos, atribuido a las interacciones de los principios activos con la b-CD. El cambio en la señal endotérmica y el desplazamiento de esta, indica que la inclusión del principio activo antimicrobiano modifica la estructura cristalina de la ciclodextrina.
La Figura 3 presenta el termograma de TGA para la b-CD y para (b-CD-Cin). Para el caso de la b-CD este presenta un pico cercano a los 330eC correspondiente a la degradación térmica de esta. Para las microcapsulas b- CD-Cin se aprecia una señal a 325eC correspondiente a la b-CD, y otra señal en torno a los 260eC atribuido a la degradación del cinamaldehido, el termograma TGA para el cinamaldehido puro muestra el comienzo de la degradación cercano a los y el punto máximo de degradación se aprecia cercano a los 205Ό. Con este análisis junto con co rroborar la incorporación del agente activo en la b-CD, también se aprecia el efecto protector que la encapsulación le otorga al principio activo en condiciones de altas temperaturas. Similar comportamiento fue encontrado para las películas conteniendo carvacrol y b-CD.
Mediante microscopía electrónica de barrido (SEM), ver Figura 6, se aprecia que las microcapsulas b-CD-Car y b-CD-Cin Carvacrol, presentan una morfología diferente a la b-CD pura, este cambio se atribuye a la modificación en la estructura cristalina de la b-CD producto de la incorporación de los agentes activos.
Las microcápsulas presentan una forma irregular, hay presencia de regiones donde las microcapsulas se encuentran aglomeradas, pero existen algunas con una buena dispersión que presentan un tamaño promedio de 4 μηι.
Mediante las técnicas antes mencionadas se confirmó que los principios activos antimicrobianos incorporados dentro de la β-ciclodextrina permite un encapsulamiento satisfactorio.
Como matriz polimérica se utilizó el polietileno de baja densidad (PEBD), El polietileno en general se caracteriza por ser un polímero semi-cristalino, con buena resistencia química y procesabilidad, buen aislante eléctrico, presenta cierto grado de flexibilidad. El PEBD por su parte posee un alto grado de ramificaciones, lo que dificulta el ordenamiento de las cadenas poliméricas. Es un polímero amorfo con baja densidad (0,92 a 0,94 g/cm2), suave y flexible. Es utilizado en distintas aplicaciones, desde bolsas plásticas hasta aislamiento eléctrico.
3.2 Caracterización de las películas del principio activo antimicrobiano Espectroscopia infrarrojo (IR)
La Figura 6 muestra los espectros IR obtenidos para el polietileno (PE), Cinamaldehido (Cin), β-ciclodextrina (b-CD), Polietileno/b-CD-Cin y Polietileno/Cin. Se observan las señales características del polietileno también las bandas características del cinamaldehido y la b-CD. Cabe destacar que en las películas que contienen el agente activo sin encapsulamiento, se aprecia la aparición de una señal entre 1500-1700 cm"1 , que si bien esta solapada corresponde a una señal característica del cinamaldehido, para las películas con microcapsulas b-CD-cinamaldehido aparece una señal en la región entre 1000-3000cm"1 característica de la b-CD, Para el caso del carvacrol (figura 7), se aprecia un efecto similar, para el caso de la película con un 5% del agente sin encapsular aparece una señal entre los 1550-1580 cm"1 , característica del carvacrol, para el caso de la película con microcapsula, se aprecia claramente la señales características de la b-CD a los 3500 cm"1 y entre los 1 100-1 150 cm" 1 , esto confirma que aún después de los procesos, tanto de mezclado en fundido, como de prensado el agente activo queda ocluido en la matriz.
Análisis v estabilidad térmica de las películas de PE con el agente activo Las Figuras 8 y 9 muestran los termogramas DSC para las películas de polietileno solo y las películas Cinamaldehido, Carvacrol, conteniendo 5% de principios activos antimicrobianos en la carga y con microcapsulas b-CD- Cinamaldehido, b-CD-Carvacrol (conteniendo 1 % del agente en la carga). Se observa una señal de fusión cristalina cercana a los 1 10Ό para el caso del polietileno solo, para todas las películas estudiadas ya sea con el principio activo antimicrobiano sin encapsular y con la incorporación de microcapsulas, se puede apreciar que no existen mayores diferencias con el polietileno virgen en cuanto al comportamiento térmico que presentan, La señal de fusión cristalina para todos se mantiene en un rango entre los 1 10 y 1 15Ό. Luego, la incorporación de los principios activos antimicrobianos ya sea encapsulados o sin encapsularse, no afecta las propiedades térmicas del material.
La Figura 10 muestra los termogramas TGA, tanto para el PE, como para las microcapsulas b-CD-Cin y b-CD-car al 5% en ambiente de nitrógeno. Para el caso del cinamaldehido, el termograma no presenta diferencias con el polietileno sin incorporación del principio activo, por lo que la presencia de agente activo al interior de la matriz no genera cambios significativos en la degradación de la película obtenida. Sin embargo para el caso del carvacrol, se aprecia una señal cercana a los 305Ό atribuida a I a descomposición térmica de la β-ciclodextrina confirmando la presencia de las microcapsulas al interior de la matriz. Mediante ambos análisis tanto DSC como TGA se confirma que la incorporación de las microcapsulas a la matriz, no afecta las propiedades térmicas de las películas en comparación al polietileno virgen.
Actividad películas obtenidas mediante el método de conteo de colonias: Las Tablas 2 muestran los resultados obtenidos, para las películas de polímero solo con carvacrol y cinamaldehido y sus respectivos aceites esenciales (orégano, canela), además cada uno de ellos encapsulados en la β- cilcodextrina. Con el incremento de agente activo (cinemaldehido y carvarcrol) se presentó un aumento en el porcentaje de reducción obteniéndose hasta un 99,9%, para ambos agentes activos cuando la carga fue de un 5%, ambos compuestos muestran una gran actividad fungicida. Caso contrario para los aceites esenciales por lo que puede deberse a que son menos estables a altas temperaturas, volatizándose en el procesamiento. Cuando se incorporan a la película los compuestos encapsulados, el efecto fungicida es menor llegando a un 31 ,4% para el carvacrol cuando la carga fue 5% en peso. Esto se debe principalmente a que la cantidad de principio activo que se incorpora al complejo de inclusión es menor, equivalente a 1 %. Por otra parte se debe considerar que la liberación del principio activo hacia la superficie de la película es más lenta y requiere mayor cantidad de tiempo. Caso contrario para las películas sin complejos, donde los agentes activos quedan ocluidos en la matriz polimérica y su difusión a la superficie es mucho más rápida y en mayor cantidad generando esta diferencia en la actividad fungicida.
Tabla 2. Porcentaje de reducción de unidades formadoras de colonia (UFC) de las películas mediante el método de conteo de colonia
Actividad
Relación
Película fungicida
P E/carga (%)
(%)
997Ϊ
PE + A. Canela 97/3 31 ,2
95/5 70,5
99/Ϊ 12,6
PE + A. Orégano 97/3 46,8
95/5 38,9
PE + 99/1 85.3 Cinamaldehido 97/3 93,7
95/5 99,9
99/Ϊ 25A
PE + Carvacrol 97/3 92,5
95/5 99,9
99/1 24,5
PE + b-CD-A.
97/3 31 ,2
Canela
95/5 39,3
99/1 15,7
PE + b-CD-A.
97/3 20,8
Orégano
95/5 41 ,4
99/1 n.d
PE + b-CD- 97/3 n.d
Cinamaldehido
95/5 20
99/1 27.9
PE + b-CD- 97/3 n.d
Carvacrol
95/5 31 ,4
Efecto de la incorporación del carbonato de calcio en el polietileno En la Tabla 3, se presentan las propiedades mecánicas para los nanocompositos de PE/CaC03. Se pueden apreciar cambios significativos en los parámetros estudiados, por una parte se ve un aumento de hasta un 25% en el módulo de Young, lo cual quiere decir que para deformar el nanocomposito se necesita un esfuerzo mayor con respecto a la matriz sin adición de nanoparticulas. Esto se debe a que las nanoparticulas generan nuevos centros de nucleación formando más esferulitas y de un tamaño menor, esta cristalinidad u ordenamiento compacto de las cadenas son las responsables de darle la rigidez al polímero.
La incorporación de nanoparticulas de carbonato de calcio generó nuevo centros de fractura con la incorporación de 5 y 8%, ya que la zona amorfa y las cadenas que poseen movilidad se ven afectadas por la adición de estas reduciendo su movilidad, esto puede ser debido a las aglomeraciones de las nanoparticulas en la matriz polimérica.
La incorporación óptima se realiza con la adición del 5% mejorando en un 20% su rigidez, los valores al 8% no presentan una gran variación, debido a la baja dispersión de las nanoparticulas en la matriz.
Tabla 3. Propiedades mecánicas para los nanocompositos de CaCÜ3 utilizando como matriz polietileno de baja densidad
Partículas Carga Módulo de Limite Elongación
CaC03 Young Elástico o en ruptura
(E)(Mpa) Punto de (%)
fluencia
(oy) (Mpa)
S/P S/N 202 ± 7 7,71 ± 0,03 60 ± 8 Nanoparticulas 3% 230 ± 7 8,38 ± 0,15 59 ± 10
Nanoparticulas 5% 250 ± 4 8,40 ± 0,09 42 ± 3
Nanoparticulas 8% 254 ± 10 8,08 ± 0,14 39 ± 1
Se estudió el efecto de la incorporación de nanoparticulas de carbonato de calcio en la degradación del polietileno en una cámara que simula el envejecimiento solar, durante un periodo de tres meses. Películas de 5cm x 5cm fueron puestas en la cámara de degradación marca Suntest/Atlas XLS 2200 W, la irradiación fue realizada usando filtros solares (borosilicato) el cual provee una irradiación de 550 W m 2 (USO 4892/DIN 53387). A diferentes tiempos de envejecimiento se estudió el índice de carbonilo de las películas de polietileno virgen y de polietileno con nanoparticulas de CaC03. La degradación se determinó midiendo el índice de carbonilo (Cl) como la relación entre la densidad óptica de la banda del grupo carbonilo a 1715 cm 1 con la vibraciones del CH2 a 1465 cm ^
El infrarrojo del polietileno sin irradiar y después de irradiar durante 28 días con la incorporación de nanoparticulas se observó una banda a 1700 cm"1 , debido a la degradación que ha sufrido el polietileno en el tiempo, por la incorporación de las nanopartículas. Se puede interferir que las nanopartículas están acelerando la degradación del polietileno.
En la Figura 6 se presenta el índice de carbonilo del polietileno y PE/CaCC>3 a diferentes tiempos de irradiación. Se puede observar el incremento de índice de carbonilo es mucho mayor al incorporar nanopartículas de CaCÜ3 al polietileno, estas nanopartículas aceleran la degradabilidad del polietileno. Los mejores resultados fueron los obtenidos para las películas con un 5% de agente activo (cinemaldehído o carvacrol) y con 5% de nanopartículas de carbonato de calcio por lo que éstas condiciones son las idóneas para preparar una película o película inteligente que tenga propiedades fungicidas pero que a la vez sea degradado en condiciones ambientales.

Claims

REIVINDICACIONES
1 . Película degradable para empaque de frutas y hortalizas con propiedades antimicrobianas, caracterizada porque comprende una matriz polimérica basada en poliolefina que incorpora un agente activo antimicrobiano de aceite esencial seleccionado del grupo consistente de carvacroi, cinemaldehido, cineoL sabineno, thujaplicin o una mezcla de los mismos o incorpora dicho aceite esencial seleccionado del grupo consistente de: aceite de canela, aceite de orégano, aceite de eucalipto, aceite de nuez moscada, aceite de honokitioí o una mezcla de los mismos, y donde dicha matriz polimérica basada en poliolefina se selecciona del grupo consistente de polietileno (PE), polipropileno (PE), poiiestireno (PS) y etiivinilacetato (EVA), y donde dicha matriz polimérica incorpora además un agente degradante seleccionado de nanocarbonato de calcio, carbonato de calcio, almidón, celulosa o una mezcla de los mismos, y donde el nanocarbonato de calcio además es un agente de refuerzo.
2. La película de la reivindicación 1 , caracterizada porque dicho agente activo microbiano de aceite esencial o dicho aceite esencial están microencapsuiados,
3. La película de la reivindicación 2, caracterizada porque dicho agente activo microbiano de aceite esencial o dicho aceite esencial están microencapsuiados en un agente microencapsuiante seleccionado del grupo consistente de: β-ciclodextrina, γ-ciclodextrina, arcilla o siiica.
4. La película de la reivindicación 1 , caracterizada porque dicha matriz polimérica es una matriz de polietileno,
5. La película de la reivindicación 4, caracterizada porque dicha matriz de poliolefina es una matriz de polietileno de alta densidad o polietileno de baja densidad.
6. La película de la reivindicación 5, caracterizada porque dicha matriz de poliolefina es una matriz de polietileno de baja densidad.
7. La película de la reivindicación 1 , caracterizada porque dicho agente activo antimicrobiano de aceite esencial se selecciona de cinamaldehido, carvacrol o una mezcla de los mismos.
8. La película de la reivindicación 7, caracterizada porque dicho agente activo antimicrobiano de aceite esencial es cinamaldehido.
9. La película de la reivindicación 7, caracterizada porque dicho agente activo antimicrobiano de aceite esencial es carvacrol.
10. La película de la reivindicación 1 , caracterizada porque dicho agente activo antimicrobiano de aceite esencial es aceite de orégano.
1 1 . La película de la reivindicación 1 , caracterizada porque el agente activo antimicrobiano de aceite esencial es aceite de canela.
12. La película de la reivindicación 1 , caracterizada porque dicho agente activo antimicrobiano de aceite esencial o dicho aceite esencial está presente en la matriz polimérica en una cantidad entre 1 -5%.
13. La película de la reivindicación 1 , caracterizada porque dicho agente degradante está presente en la matriz polimérica en una cantidad entre 3-5%.
14. La película de la reivindicación 1 , caracterizada porque dicho agente encapsuiante es β-cic!odextrina.
15. La película de la reivindicación 1 , caracterizada porque dicho agente degradante es nanocarbonato de calcio.
16. La película de la reivindicación 1 , caracterizada porque la proporción PE: agente microbiano de agente esencial o PE: aceite esencial está en el rango de 99/1 a 95/5 p/p.
17. La película de la reivindicación 16, caracterizada porque la proporción PE: agente microbiano de agente esencial o PE: aceite esencial es 99/1 % p/p.
18. La película de la reivindicación 18, caracterizada porque la proporción PE: agente microbiano de agente esencial o PE: aceite esencial es 97/3% p/p.
19. La película de la reivindicación 16, caracterizada porque la proporción PE: agente microbiano de agente esencial o PE: aceite esencial es
95/5% p/p.
20. Procedimiento para microencapsuiar un agente activo antimicrobiano de aceite esencial seleccionado del grupo consistente de: carvacrol, cinemaldehido, cineol, sabineno, thujaplicin o una mezcla de los mismos o incorpora dicho aceite esencial seleccionado del grupo consistente de: aceite de canela, aceite de orégano, aceite de eucalipto, aceite de nuez moscada, aceite de honokitiol o una mezcla de los mismos, en β-cic!odextrina, caracterizado porque comprende:
a) soiubilizar β-cic!odextrina en una solución agua/etanol 2:1 bajo agitación constante a una temperatura de 55Ό, y pr eparar en forma separada una solución del agente activo de aceite esencial o dicho aceite esencial en etanol al 10% v/v;
b) agregar lentamente, la solución de dicho agente activo de aceite esencial o dicho aceite esencial a la solución con β-ciclodextrina, mezclando a 55Ό para luego disminuir la temperatura a 25Ό y d ejar de agitar para así refrigerar a 7Ό, permitiendo una precipitación en frío, y luego filtrar al vacío para finalmente permitir el secado del precipitado.
21 . Procedimiento para preparar película de la reivindicación 1 , caracterizado porque comprende:
a) fundir una poliolefina seleccionada de polietileno (PE), polipropileno (PE), po!iestireno (PS) y etiivinilacetato (EVA), y agregar un un agente activo antimicrobiano de aceite esencial seleccionado del grupo consistente de: carvacrol, cinemaldehido, cineoi, sabineno, thujap!icin o una mezcla de los mismos o incorpora dicho aceite esencial seleccionado del grupo consistente de: aceite de canela, aceite de orégano, aceite de eucalipto, aceite de nuez moscada, aceite de honokitiol o una mezcla de los mismos, mezclando hasta alcanzar homogeneidad, donde la mezcla se preparan en proporciones de 99/1 a 95/5% p/p PE: agente activo antimicrobiano de aceite esencial o PE: aceite esencial,
b) agregar nanocarbonato de calcio junto con el principio activo antimicrobiano hasta alcanzar al 5% en peso respecto del polímero; y
c) preparar la película prensando a 170eC y 344 KPa de presión luego de colocar la mezcla en un molde, para posteriormente enfriar y retirar la película formada desde el molde.
22. El procedimiento de la reivindicación 21 , caracterizado porque además en la etapa a) microencapsular dicho agente activo antimicrobiano de aceite esencial o dicho aceite esencial en β-cic!odextrina.
PCT/CL2016/050075 2015-12-22 2016-12-22 Pelicula de empaque degradable para frutas y hortalizas WO2017106984A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680079428.7A CN108471740A (zh) 2015-12-22 2016-12-22 用于水果和蔬菜的可降解包装膜
EP16877058.4A EP3395170A4 (en) 2015-12-22 2016-12-22 DEGRADABLE PACKAGING FOIL FOR FRUIT AND VEGETABLES
MX2018007779A MX2018007779A (es) 2015-12-22 2016-12-22 Pelicula de empaque degradable para frutas y hortalizas.
US16/065,428 US20190008146A1 (en) 2015-12-22 2016-12-22 Degradable packaging film for fruit and vegetables

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2015003698A CL2015003698A1 (es) 2015-12-22 2015-12-22 Película degradable para empaque de frutas y hortalizas que comprende una matriz polimérica en base a poliolefina, la que incorpora un agente activo antimicrobiano (biocida o fungicida) de aceite esencial o dicho aceite esencial, y además incorpora agentes degradantes, y procedimiento de microencapsulación de dicho agente activo antimicrobiano de aceite esencial, y método de preparación de la película.
CL3698-2015 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017106984A1 true WO2017106984A1 (es) 2017-06-29

Family

ID=56610114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2016/050075 WO2017106984A1 (es) 2015-12-22 2016-12-22 Pelicula de empaque degradable para frutas y hortalizas

Country Status (6)

Country Link
US (1) US20190008146A1 (es)
EP (1) EP3395170A4 (es)
CN (1) CN108471740A (es)
CL (1) CL2015003698A1 (es)
MX (1) MX2018007779A (es)
WO (1) WO2017106984A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107858784A (zh) * 2017-06-30 2018-03-30 浙江工业大学 一种负载肉桂醛精油的抗菌活性包装膜的制备方法
EP3569644A1 (en) * 2018-05-16 2019-11-20 Soremartec S.A. Packaging material

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3545032T3 (pl) 2016-11-22 2023-12-18 Polymateria Limited Degradowalny polimer i sposób wytwarzania
CN109876546A (zh) * 2019-02-14 2019-06-14 安徽宏凤空调滤网有限公司 一种空调用清香型抗菌过滤网及其制备方法
CN111657345A (zh) * 2019-03-07 2020-09-15 华中农业大学 一种猕猴桃采后软腐病的防治方法
CN109757553B (zh) * 2019-03-13 2022-05-31 大连民族大学 一种缓释微胶囊鲜切果蔬保鲜剂及其制作方法和应用
CN109953113A (zh) * 2019-04-30 2019-07-02 广西壮族自治区农业科学院 可食性被膜保鲜剂及其制备方法、应用和果蔬保鲜方法
CN111410824A (zh) * 2019-12-11 2020-07-14 凯威塑胶工业有限公司 一种生物抗菌水果包装膜及其制备方法
CN111484660A (zh) * 2020-04-28 2020-08-04 海南华塑新型管业有限公司 一种纳米抗菌塑料及其制备方法
BR112022019376A2 (pt) 2020-05-08 2022-11-16 Omya Int Ag Elemento tipo folha, camada de revestimento, processo para a fabricação de um elemento tipo folha, dispositivo de suprimento de elemento tipo folha, acondicionamento de alimento, e, uso de um elemento tipo folha
CN111990458A (zh) * 2020-08-19 2020-11-27 阿克苏优能农业科技股份有限公司 糖心富士苹果绿色抑菌保脆型保鲜包装方法
DE102020122216A1 (de) 2020-08-25 2022-03-03 Schock Gmbh Wärmeaushärtbare Gießmasse, daraus hergestellter Formkörper, und Verfahren zur Herstellung des Formkörpers
WO2022101613A1 (en) * 2020-11-10 2022-05-19 UPL Corporation Limited Biodegradable fungicide composition
CN112592517A (zh) * 2020-12-15 2021-04-02 合肥工业大学 一种食品用耐高温溶菌酶复合保鲜膜的制备方法
CN112956530A (zh) * 2021-03-26 2021-06-15 四川农业大学 厚朴酚微胶囊喷雾保鲜剂及其制备方法
CN113207954A (zh) * 2021-03-31 2021-08-06 中国科学院华南植物园 一种百合保鲜方法
CN113201177B (zh) * 2021-04-09 2023-03-28 广西壮族自治区农业科学院 一种纳米保鲜袋材料及其制备方法和应用
CN114591542B (zh) * 2022-04-25 2022-11-18 江南大学 一种添加irmof-3/香芹酚的海藻酸钠基抗氧化抗菌生物活性复合膜及其制备方法
CN114805873A (zh) * 2022-05-09 2022-07-29 吉林大学 一种缓释型抑菌淀粉复合膜的制备方法和应用
CN114600884A (zh) * 2022-05-13 2022-06-10 广东洛斯特制药有限公司 一种苯扎氯铵复合灭菌消毒喷雾及其制备方法
ES2930557B2 (es) * 2022-07-15 2023-07-21 Univ Cartagena Politecnica Composición para el recubrimiento activo de láminas de material celulósico
CN115260652A (zh) * 2022-08-16 2022-11-01 江西同益高分子材料科技有限公司 一种高性能抗菌pp板材及其制备方法
CN115785563A (zh) * 2022-12-02 2023-03-14 会通新材料股份有限公司 一种抗菌避虫聚丙烯材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009502A1 (en) * 2004-07-19 2006-01-26 Add-X Biotech Ab Packages
US20080220036A1 (en) * 2004-06-29 2008-09-11 Victoria University Antimicrobial Packaging Material
US20100229462A1 (en) * 2010-05-26 2010-09-16 Cerowa, Lp Degradable and Compostable Plastic Films for Agriculture
US20140154426A1 (en) * 2010-12-03 2014-06-05 Universidad De Santiago De Chile Process for Obtaining a Film Comprised of the Incorporation of Naturally-Sourced Antimicrobial Agents in a Polymeric Structure to Develop Packages for Increasing the Shelf Life of Refrigerated Meat, Preferentially Refrigerated Fresh Salmon

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111624A (ja) * 1997-06-12 1999-01-06 Showa Denko Plast Prod Kk 熱可塑性樹脂組成物
JP2002281894A (ja) * 2001-03-27 2002-10-02 Seiwa Technics:Kk 青果物の鮮度保持ケース
IL155836A0 (en) * 2003-05-11 2003-12-23 Univ Ben Gurion Encapsulated essential oils
CN101269719B (zh) * 2008-05-01 2011-09-21 钟楚杰 一种气调保鲜袋及其无菌气调保鲜法
CN102585412A (zh) * 2011-01-14 2012-07-18 邓靖 一种基于精油/β-环糊精包合物的活性包装膜及其制备方法
ES2659955T3 (es) * 2012-11-30 2018-03-20 Kimberly-Clark Worldwide, Inc. Composiciones de liberación controlada y métodos para su uso
CN103283828A (zh) * 2013-06-24 2013-09-11 湖南工业大学 一种基于精油/β-环糊精包合物的抗菌果蜡制备方法
US20160325911A1 (en) * 2014-01-14 2016-11-10 Instituo Technologico Del Embalaje Transporte Y Logistica (Itene) Antimicrobial compositions for food packaging consisting of salicylaldehyde and carvacrol, thymol or their mixture
CN103788494A (zh) * 2014-02-28 2014-05-14 上海海洋大学 一种果蔬保鲜薄膜及其制备方法
CN103910911B (zh) * 2014-03-27 2016-10-05 华侨大学 一种具缓释作用的长效抗菌可食膜的制备方法
CN104441899B (zh) * 2014-12-03 2016-08-17 华侨大学 遇水敏感性、高效抗菌复合薄膜的制备方法
ES2588261B1 (es) * 2016-04-15 2017-05-10 Universidad Politécnica De Cartagena Envase de cartón para envasado activo de frutas y hortalizas frescas, y procedimiento de fabricación del mismo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080220036A1 (en) * 2004-06-29 2008-09-11 Victoria University Antimicrobial Packaging Material
WO2006009502A1 (en) * 2004-07-19 2006-01-26 Add-X Biotech Ab Packages
US20100229462A1 (en) * 2010-05-26 2010-09-16 Cerowa, Lp Degradable and Compostable Plastic Films for Agriculture
US20140154426A1 (en) * 2010-12-03 2014-06-05 Universidad De Santiago De Chile Process for Obtaining a Film Comprised of the Incorporation of Naturally-Sourced Antimicrobial Agents in a Polymeric Structure to Develop Packages for Increasing the Shelf Life of Refrigerated Meat, Preferentially Refrigerated Fresh Salmon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3395170A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107858784A (zh) * 2017-06-30 2018-03-30 浙江工业大学 一种负载肉桂醛精油的抗菌活性包装膜的制备方法
EP3569644A1 (en) * 2018-05-16 2019-11-20 Soremartec S.A. Packaging material
LU100799B1 (en) * 2018-05-16 2019-11-21 Soremartec Sa Packaging material
US11110694B2 (en) 2018-05-16 2021-09-07 Soremartec S.A. Packaging material

Also Published As

Publication number Publication date
US20190008146A1 (en) 2019-01-10
CL2015003698A1 (es) 2016-06-17
MX2018007779A (es) 2018-08-15
CN108471740A (zh) 2018-08-31
EP3395170A4 (en) 2019-05-29
EP3395170A1 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
WO2017106984A1 (es) Pelicula de empaque degradable para frutas y hortalizas
Sani et al. Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method
Peighambardoust et al. Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications
Khaneghah et al. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions
Mlalila et al. Antimicrobial packaging based on starch, poly (3-hydroxybutyrate) and poly (lactic-co-glycolide) materials and application challenges
Ahmadi et al. Functional biocompatible nanocomposite films consisting of selenium and zinc oxide nanoparticles embedded in gelatin/cellulose nanofiber matrices
Martı́nez-Abad et al. Development and characterization of silver-based antimicrobial ethylene–vinyl alcohol copolymer (EVOH) films for food-packaging applications
da Costa et al. Poly (hydroxybutyrate-co-hydroxyvalerate)-based nanocomposites for antimicrobial active food packaging containing oregano essential oil
Boro et al. Synthesis and characterization of poly (lactic acid)/clove essential oil/alkali-treated halloysite nanotubes composite films for food packaging applications
Mittal et al. Development of poly (hydroxybutyrate) film incorporated with nano silica and clove essential oil intended for active packaging of brown bread
Zhang et al. Antifungal electrospinning nanofiber film incorporated with Zanthoxylum bungeanum essential oil for strawberry and sweet cherry preservation
Boro et al. Antimicrobial bionanocomposites of poly (lactic acid)/ZnO deposited halloysite nanotubes for potential food packaging applications
Roy et al. Recent progress in PBAT-based films and food packaging applications: A mini-review
Paidari et al. Bio-nanocomposites and their potential applications in physiochemical properties of cheese: An updated review
Zhang et al. Advances in sustainable food packaging applications of chitosan/polyvinyl alcohol blend films
KR101877020B1 (ko) 천연 항균 기능성 물질을 함유하는 서방성 복합 나노 입자 및 이의 제조방법
WO2013149356A1 (es) Envase que extiende la vida útil de los alimentos que contiene, especialmente berries, al incorporar en su superficie un agente antifúngico. particularmente berries. procedimiento de preparación y usos
Nath et al. Nanocomposites in food packaging
Phala et al. Development of EVA and LLDPE polymer-based carvone and spearmint essential oil release systems for citrus postharvest diseases applications
Jiménez et al. Antimicrobial nanocomposites for food packaging applications: novel approaches
Mistry Development of LDPE-based antimicrobial films for food packaging
Singaram et al. Review on functionalized pectin films for active food packaging
Ananthi et al. Development of biodegradable films reinforced with silver functionalized cow milk carbon dots for active food packaging applications
Mathew et al. Silver-based nanomaterials for food packaging applications
Medina‐Jaramillo et al. A Biodegradable and Active Bilayer Nanocomposite Obtained from Starch‐Yerba Mate Extract and Starch‐TiO2 Nanoparticles Films for Packaging Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/007779

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016877058

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016877058

Country of ref document: EP

Effective date: 20180723