WO2017104647A1 - 抵抗スポット溶接方法および溶接部材の製造方法 - Google Patents

抵抗スポット溶接方法および溶接部材の製造方法 Download PDF

Info

Publication number
WO2017104647A1
WO2017104647A1 PCT/JP2016/087014 JP2016087014W WO2017104647A1 WO 2017104647 A1 WO2017104647 A1 WO 2017104647A1 JP 2016087014 W JP2016087014 W JP 2016087014W WO 2017104647 A1 WO2017104647 A1 WO 2017104647A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plates
spot welding
resistance spot
welding method
plating layer
Prior art date
Application number
PCT/JP2016/087014
Other languages
English (en)
French (fr)
Inventor
央海 澤西
公一 谷口
克利 ▲高▼島
松田 広志
池田 倫正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201680073909.7A priority Critical patent/CN108367378B/zh
Priority to US16/062,407 priority patent/US10946470B2/en
Priority to MX2018007315A priority patent/MX2018007315A/es
Priority to EP16875624.5A priority patent/EP3391988B1/en
Priority to KR1020187016477A priority patent/KR102058305B1/ko
Priority to JP2017508577A priority patent/JP6278154B2/ja
Publication of WO2017104647A1 publication Critical patent/WO2017104647A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/163Welding of coated materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/163Welding of coated materials
    • B23K11/166Welding of coated materials of galvanized or tinned materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles

Definitions

  • the present invention relates to a resistance spot welding method and a method for manufacturing a welded member.
  • a resistance spot welding method which is a kind of a lap resistance welding method, is used for joining stacked steel plates.
  • a high current welding current is applied between the upper and lower electrodes while pressing with a pair of electrodes 3 and 4 from above and below with two or more stacked steel plates 1 and 2 sandwiched between them.
  • This is a method of joining by energizing for a short time.
  • a spot-like welded portion 5 is obtained using resistance heat generated by flowing a high-current welding current.
  • This spot-like welded portion 5 is called a nugget and is a portion where both steel plates 1 and 2 are melted and solidified at the contact points of the steel plates when an electric current is passed through the stacked steel plates. Are joined together.
  • the surface-treated steel sheet is a zinc plating typified by electrogalvanizing or hot dip galvanizing (including galvannealed alloying), or a zinc alloy containing elements such as aluminum and magnesium in addition to zinc.
  • the steel plate which has metal plating layers, such as on the surface of a base material (underlying steel plate).
  • the crack of the said weld part originates in that melting
  • cracks in the welded part occur when the low-melting point metal plating layer on the steel sheet surface melts during spot welding, and when tensile stress due to electrode pressure, thermal expansion and contraction of the steel sheet is applied to the welded part.
  • This is a crack caused by so-called liquid metal embrittlement, in which the molten low melting point metal penetrates into the crystal grain boundary of the base material of the surface-treated steel sheet to lower the grain boundary strength and cause cracks in the weld.
  • the occurrence positions of cracks are various, such as the surface of the steel plates 1 and 2 on the side in contact with the electrodes 3 and 4 as shown in FIG. 1 and the surface of the steel plates 1 and 2 on the side in contact with the steel plates.
  • the composition of a steel sheet as a plate assembly is a specific range of composition, specifically, by weight, C: 0.003% to 0.01%, Mn: 0.05 to 0.5%, P: 0.02% or less, sol.Al: 0.1% or less, Ti: 48 ⁇ (N / 14) to 48 ⁇ ⁇ (N / 14) + (S / 32) ⁇ %, Nb: 93 ⁇ (C / 12) It has been proposed to have a composition comprising -0.1%, B: 0.0005-0.003%, N: 0.01% or less, Ni: 0.05% or less, the balance Fe and inevitable impurities.
  • Patent Document 2 is characterized in that, in spot welding of a high-strength plated steel sheet, spot welding is performed by setting a welding energization time and a holding time after welding energization so as to satisfy the following conditions (1) and (2). A spot welding method of high strength plated steel sheet is proposed.
  • the energization pattern is a multi-stage energization of three or more stages, and an appropriate current range ( ⁇ I: a current range in which a nugget having a desired nugget diameter or more and a molten residual thickness of 0.05 mm or more can be stably formed).
  • ⁇ I a current range in which a nugget having a desired nugget diameter or more and a molten residual thickness of 0.05 mm or more can be stably formed.
  • a method has been proposed in which welding conditions such as energization time and welding current are adjusted so that the cooling time is provided between the stages so that the current is 1.0 kA or more, preferably 2.0 kA or more.
  • Patent Document 1 since it is necessary to limit the amount of alloying elements in the steel sheet, there is a problem that the use of a steel sheet that satisfies the required performance is limited. In a situation where alloying is advanced, its application is extremely limited.
  • Patent Document 2 proposes only a crack suppression method when an excessive welding current that causes scattering is set, and does not mention cracking in a state where no scattering occurs.
  • Patent Document 3 has a problem that many man-hours are required for optimizing the welding conditions, and it cannot be applied to steel plates and plate assemblies in which it is difficult to ensure an appropriate current range.
  • Patent Documents 2 and 3 since the influence due to the misalignment of the electrodes is not examined, there are cases where the countermeasures are insufficient in consideration of the implementation process at the time of automobile assembly.
  • the present invention has been made in view of the circumstances as described above, and a resistance spot welding method and a welding member capable of suppressing the occurrence of cracks in a weld according to the degree of misalignment of an electrode regardless of the steel type. It aims at proposing the manufacturing method of this.
  • the effect of the present invention on cracks that occur during welding cannot be simply explained because various factors affect it in a complicated manner, but the basic mechanism is considered as follows.
  • the cause of cracks in the welded part is that the tensile stress described below occurs when the plated metal of the surface-treated steel sheet that has reached a high temperature is in contact with the base material of the surface-treated steel sheet (underlying steel sheet). Is mentioned.
  • This tensile stress has a region where the electrode is locally increased when the electrode is separated from the steel plate after the end of welding.
  • the present invention is based on the above findings, and the gist of the present invention is as follows. [1] In a resistance spot welding method in which a plate assembly in which a plurality of steel plates are overlapped is sandwiched between a pair of electrodes, and energized while being pressed and joined.
  • At least one of the plurality of steel plates is a surface-treated steel plate having a metal plating layer
  • the pressure holding time after energization is H (ms)
  • the electrode misalignment is D (mm)
  • the total thickness of the superposed steel plates is t (mm)
  • the most of the steel plates When the tensile strength of a steel plate having a large tensile strength is T (MPa), the applied pressure is F (N), and the tip diameter of the smaller one of the pair of electrodes is d (mm),
  • T tensile strength of a steel plate having a large tensile strength
  • the applied pressure is F (N)
  • the tip diameter of the smaller one of the pair of electrodes is d (mm)
  • At least one of the plurality of steel plates is a surface-treated steel plate having a metal plating layer, the melting point of the metal plating layer is lower than the melting point of the base material of the surface-treated steel plate,
  • the pressure holding time after energization is H (ms)
  • the electrode misalignment is D (mm)
  • the total thickness of the superposed steel plates is t (mm)
  • the most of the steel plates When the tensile strength of a steel plate having a large tensile strength is T (MPa), the applied pressure is F (N), and the tip diameter of the smaller one of the pair of electrodes is d (mm),
  • T tensile strength of a steel plate having a large tensile strength
  • the applied pressure is F (N)
  • the tip diameter of the smaller one of the pair of electrodes is d (mm)
  • At least one of the plurality of steel plates is a surface-treated steel plate having a metal plating layer
  • the pressure holding time after energization is H (ms)
  • the electrode misalignment is D (mm)
  • the total thickness of the superposed steel plates is t (mm)
  • the most of the steel plates The tensile strength of a steel plate with high tensile strength is T (MPa)
  • the applied pressure is F (N)
  • the tip diameter of the smaller electrode tip diameter is d (mm)
  • the electrode tip radius of curvature is smaller.
  • At least one of the plurality of steel plates is a surface-treated steel plate having a metal plating layer, the melting point of the metal plating layer is lower than the melting point of the base material of the surface-treated steel plate,
  • the pressure holding time after energization is H (ms)
  • the electrode misalignment is D (mm)
  • the total thickness of the superposed steel plates is t (mm)
  • the most of the steel plates The tensile strength of a steel plate with high tensile strength is T (MPa)
  • the applied pressure is F (N)
  • the tip diameter of the smaller electrode tip diameter is d (mm)
  • the electrode tip radius of curvature is smaller.
  • the occurrence of cracks in the welded portion can be suppressed regardless of the steel type.
  • the present invention is a resistance spot welding method in which a plate assembly in which a plurality of steel plates are overlapped is sandwiched between a pair of electrodes and is energized and joined while being pressed, and includes a step of holding the applied pressure after the energization is completed. is there.
  • the present invention is applied to a resistance spot welding method for a plate set in which at least one of the plurality of steel plates in the plate set is a surface-treated steel plate having a metal plating layer.
  • a welding apparatus that can be used in the resistance spot welding method of the present invention, it is possible to use a welding apparatus that includes a pair of upper and lower electrodes and that can arbitrarily control the pressure and welding current during welding.
  • the pressurizing mechanism air cylinder, servo motor, etc.
  • type stationary, robot gun, etc.
  • electrode shape, etc. of the welding apparatus are not particularly limited.
  • Examples of the electrode tip include DR type (dome radius type), R diameter (radius type), and D type (dome type) described in JIS C 9304: 1999.
  • the pressure holding time (hereinafter also referred to as hold time) after energization is H (ms)
  • the electrode misalignment amount is D (mm)
  • H (ms) the electrode misalignment amount
  • D (mm) the total thickness of the stacked steel plates T (mm), T (MPa) for the tensile strength of the steel plate with the largest tensile strength among the multiple steel plates, F (N) for the applied pressure, and d for the tip diameter of the smaller electrode tip diameter of the pair of electrodes (Mm)
  • F (N) for the applied pressure
  • d the tip diameter of the smaller electrode tip diameter of the pair of electrodes
  • the present invention specifically shows the case where the misalignment amount D is 0.5 (mm) or more.
  • D misalignment amount
  • the hold time H is a pressure holding time after the end of energization, and is the time from the end of energization to the time when the electrode is released from the steel plate.
  • the time when the electrode is released from the steel plate is when the electrode starts to leave the steel plate.
  • the applied pressure F is the applied pressure at the end of energization, and is the applied pressure at the end of the final energization when energizing a plurality of times.
  • the applied pressure during energization may or may not be constant.
  • the misalignment amount D of the electrode is constant during the process of maintaining the applied pressure during energization and at the end of energization. Note that the pressure F in the step of holding the pressure after the end of energization in this specification is an actual measurement value.
  • the temperature of the welded part when tensile stress occurs can be lowered, and the surface treated steel sheet metal Liquid metal embrittlement of the plating layer (for example, zinc) can be prevented.
  • the plated metal melts once when heated by energization for welding, but if the hold time is secured above a certain level according to the misalignment amount and the temperature of the welded part is lowered, the subsequent electrode opening is prevented.
  • the hold time H can be set to 30 ms or less.
  • the misalignment when the misalignment is in the range of 0 mm or more and less than 2 mm, the bending stress applied to the weld due to misalignment is relatively small. For this reason, the tensile stress which generate
  • the misalignment is in the range of 2 mm or more and less than 5 mm, as the misalignment increases, the increase in the tensile stress generated in the weld after the electrode is released becomes significant. For this reason, it is necessary to increase the hold time corresponding to the increase in the tensile stress.
  • misalignment amount when the misalignment amount is 2 mm, the misalignment amount is substantially 2.0 mm, and when the misalignment amount is 5 mm, the misalignment amount is substantially 5.0 mm.
  • the misalignment When the misalignment is in the range of 5 mm or more and less than 10 mm, the tensile stress generated in the welded portion becomes very large. However, cracking can be prevented by releasing the electrode after the metal plating once melted is completely solidified. It is considered that cracking does not occur unless the molten metal plating remains.
  • the misalignment amount is in the range of 5 mm or more and less than 10 mm, a sufficient hold time is secured for the molten metal plating to solidify, so the increase in hold time relative to the misalignment amount may be small.
  • the distance between the nugget and the electrode tip increases as the misalignment amount increases, the cooling rate of the welded portion tends to decrease. Therefore, it is desirable to increase the hold time by a certain amount or more according to the misalignment amount.
  • misalignment amount is 10 mm or more, it is difficult to form an appropriate nugget between the upper and lower electrodes.
  • the electrode tip diameter d when the electrode tip diameter d is increased, the area where the electrode and the steel plate are in contact with each other is increased, so that it is considered that the local bending stress is reduced by dispersing the stress during pressurization. In addition, since heat removal to the electrode is also promoted, occurrence of cracks is suppressed. However, if the electrode tip diameter d becomes excessively large, the contact between the steel plates becomes unstable, so that it is desirable that 4 mm ⁇ d ⁇ 10 mm.
  • FIG. 3 shows an image diagram of the above.
  • FIG. 3 is a diagram showing respective equations when the electrode tip diameter is 6 mm, the total thickness t is 3.2 mm, the tensile strength T is 1500 MPa, and the applied pressure F is 2500N.
  • the effect of the present invention can be obtained more effectively by optimizing the tip curvature radius R of the electrode used.
  • R is less than 40 mm, the bending stress caused by misalignment increases, and cracks are likely to occur.
  • the electrode tip radius of curvature (mm) R is set to 40 ⁇ R ⁇ 200, and When 0 ⁇ D ⁇ 2, 2 ⁇ D ⁇ (t ⁇ T ⁇ R / (40 ⁇ F ⁇ d)) 1/2 ⁇ H When 2 ⁇ D ⁇ 5 (6 ⁇ D ⁇ 8) ⁇ (t ⁇ T ⁇ R / (40 ⁇ F ⁇ d)) 1/2 ⁇ H When 5 ⁇ D ⁇ 10 (D + 17) ⁇ (t ⁇ T ⁇ R / (40 ⁇ F ⁇ d)) 1/2 ⁇ H Satisfying this relationship is effective in suppressing cracking.
  • misalignment amount D when the misalignment amount D is 0.5 (mm) or more, specifically, When 0.5 ⁇ D ⁇ 2, 2 ⁇ D ⁇ (t ⁇ T ⁇ R / (40 ⁇ F ⁇ d)) 1/2 ⁇ H When 2 ⁇ D ⁇ 5 (6 ⁇ D ⁇ 8) ⁇ (t ⁇ T ⁇ R / (40 ⁇ F ⁇ d)) 1/2 ⁇ H When 5 ⁇ D ⁇ 10 (D + 17) ⁇ (t ⁇ T ⁇ R / (40 ⁇ F ⁇ d)) 1/2 ⁇ H It is.
  • the upper limit of the hold time H is desirably 2000 ms.
  • the tensile strength T of the steel plate is not particularly limited, and is, for example, 250 MPa to 2000 MPa.
  • the steel plate has a tensile strength of 590 MPa or more.
  • a greater effect can be obtained when at least one of the steel plates in the plate set has a tensile strength of 780 MPa or more.
  • the center of the welding point is the center of the nugget at the joint surface between the welded steel sheet and the steel sheet.
  • the shape of the nugget at the joint surface between the welded steel sheet and the steel sheet is a circle or an ellipse, and the center of the ellipse is the intersection of the major axis and the minor axis.
  • the center-to-center distance L is obtained with the center of gravity of the shape on the joint surface as the center.
  • the center distance L is preferably set to 8.0 mm or more. More preferably, the center-to-center distance L is more preferably 10.0 mm or more.
  • the steel type of the steel plate used in the present invention is not particularly limited.
  • the manufacturing method of a steel plate is arbitrary, such as cold rolling and hot rolling, and the structure of the steel plate is also arbitrary. Moreover, even if the hot-pressed steel plate is used for the steel plate of the plate set used in the present invention, there is no problem. Further, the thickness of the steel plate is not particularly limited as long as it can be used for a general automobile body (about 0.5 to 4.0 mm).
  • the composition of the metal plating layer of the surface-treated steel sheet having a metal plating layer is also arbitrary. As described above, cracks in the weld are partly due to the melting of the low melting point metal plating layer. large.
  • the melting point of the base material (underlying steel plate) is, for example, 1400 to 1570 ° C., and the melting point of the metal plating layer is, for example, 300 to 1200 ° C. If it is a general plating layer, melting
  • the metal plating layer include a Zn-based plating layer and an Al-based plating layer. For members that require corrosion resistance, Zn-based plating is superior to Al-based plating.
  • the corrosion rate of the base steel sheet can be reduced by the sacrificial anticorrosive action of zinc Zn.
  • Zn-based plating include general hot-dip galvanizing (GI), alloyed hot-dip galvanizing (GA), electrogalvanizing (EG), and Zn—Ni-based plating (for example, Zn—containing 10 to 25 mass% of Ni— Ni-based plating), Zn-Al-based plating, Zn-Mg-based plating, Zn-Al-Mg-based plating, and the like.
  • the Al plating include Al—Si plating (for example, Al—Si plating containing 10 to 20 mass% Si).
  • the metal plating layer may be provided on one side or both sides of the surface-treated steel sheet. The amount of plating applied is arbitrary, but from the viewpoint of weldability, it is desirable that the amount be 120 g / m 2 or less per side.
  • the plate set in the present invention is not particularly limited, and a plurality of the same type steel plates may be stacked or a plurality of different types of steel plates may be stacked. Further, there is no problem even if the thickness of each steel plate is different, and a combination of a steel plate having a metal plating layer having a melting point lower than that of the steel plate and a steel plate having no metal plating layer may be used.
  • the current value, energization time, and applied pressure during energization may be constant, but need not be constant.
  • the current value and applied pressure may be changed in two or more stages, and the cooling time may be set between each stage. It may be provided. Further, there is no problem even if a control method is used in which parameters such as resistance value and voltage value during welding are monitored and the current value and energization time are changed according to the fluctuation.
  • the following shows the preferred range of current value, energization time, and applied pressure during energization when welding is performed with one-stage energization.
  • the current value during energization is preferably less than 10 kA, for example.
  • the energization time is preferably 200 ms to 700 ms, for example.
  • the applied pressure during energization is preferably 2000N to 7000N, for example.
  • the upper limit of a suitable current value extends to 15 kA.
  • the upper limit of a suitable energization time extends to 1000 ms.
  • the energization time in the case of multistage energization is the sum of the energization times of each stage.
  • welding when performing welding, welding may be performed in a state where there is a gap between the steel plates, or in a state where the electrodes are inclined with respect to the steel plates.
  • the method for manufacturing a welding member of the present invention includes a step of superimposing a plurality of steel plates including at least one surface-treated steel plate having a metal plating layer to obtain a plate set, and the obtained plate set is subjected to the above resistance. And a step of welding by a spot welding method.
  • the resistance spot welding method When welding is performed using the resistance spot welding method, the occurrence of cracks in the welded portion can be suppressed, so that a welded member with reduced cracking in the welded portion can be manufactured.
  • Examples of the present invention are shown below. Resistance spot welding was performed on the two-layered or three-layered plate sets shown in Table 1 under the conditions shown in Table 2 (Tables 2-1 to 2-3) to produce joints (welded members).
  • the melting point of the base material of each test material in this example is in the range of 1400 to 1570 ° C.
  • the melting points of hot dip galvanizing (GI) and alloyed hot dip galvanizing (GA) are 400 to 500 ° C. and 600 ° C., respectively. It is in the range of ⁇ 950 ° C.
  • the tensile strength shown in Table 1 was determined by preparing a JIS No.
  • FIG. 5 shows a test method when the steel plates 1 and 2 are overlapped to form a two-layered plate set
  • FIG. 6 shows a three-layered plate set by overlapping the steel plates 1, 2 and 6. The test method in the case where it did is shown.
  • “None” is described in the “Pre-weld point” column in Table 2.
  • the “Last Welded Point” column in Table 2 describes the center-to-center distance L between the welded point and the already welded point.
  • the welding conditions for the evaluation welding and the existing welding were the same.
  • the welding apparatus used was an inverter DC resistance spot welder, and a DR-type chrome copper electrode was used as the electrode. Table 2 also shows the tip diameter and radius of curvature of the electrode used. The same electrode was used for the two electrodes.
  • the energization was performed once, and the current value during welding (welding current) was a constant value. Further, the misalignment amount was constant during the process of maintaining the applied pressure during energization and at the end of energization.
  • the applied pressure is the applied pressure at the end of energization, and was constant during the process of energizing and maintaining the applied pressure at the end of energization. Resistance spot welding was performed at room temperature, and the electrodes were always cooled in water.
  • C 2 out of 10 bodies have cracks of less than 10 ⁇ m in length, and all 10 joints have no cracks of 10 ⁇ m or more in length

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

鋼種に関わらず、電極(3,4)の芯ずれの程度に応じて溶接部(5)の割れ発生を抑制する抵抗スポット溶接方法を提供する。本発明に係る抵抗スポット溶接方法は、通電終了後の加圧力保持時間をH(ms)、電極の芯ずれ量をD(mm)、重ね合わせた複数の鋼板(1,2,6)の板厚の総和をt(mm)、複数の鋼板(1,2,6)のうち最も引張強度が大きい鋼板の引張強度をT(MPa)、加圧力をF(N)、一対の電極(3,4)のうち電極先端径が小さい方の先端径をd(mm)としたとき、加圧力保持時間Hを、請求項1ないし4に係る発明で特定される、所定の値以上とする。

Description

抵抗スポット溶接方法および溶接部材の製造方法
 本発明は、抵抗スポット溶接方法および溶接部材の製造方法に関するものである。
 一般に、重ね合わせた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接方法が用いられている。この溶接法は、図1に示すように、重ね合わせた2枚以上の鋼板1、2を挟んでその上下から一対の電極3、4で加圧しつつ、上下電極間に高電流の溶接電流を短時間通電して接合する方法である。高電流の溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部5を得る。この点状の溶接部5はナゲットと呼ばれ、重ね合わせた鋼板に電流を流した際に鋼板の接触箇所で両鋼板1、2が溶融し、凝固した部分であり、これにより鋼板同士が点状に接合される。
 しかしながら、表面処理鋼板を含む複数の鋼板を重ね合わせた板組の抵抗スポット溶接においては、溶接部に割れが生じることがあるという問題があった。ここで、表面処理鋼板とは、電気亜鉛めっき、溶融亜鉛めっき(合金化溶融亜鉛めっきを含む)に代表される亜鉛めっきや、亜鉛の他にアルミニウムやマグネシウムなどの元素を含んだ亜鉛合金のめっきなどの金属めっき層を母材(下地鋼板)の表面上に有する鋼板を言う。上記溶接部の割れは、亜鉛めっきや亜鉛合金めっきの融点が、表面処理鋼板の母材の融点よりも低いことに起因する。
 すなわち、上記溶接部の割れは、スポット溶接中に鋼板表面の低融点の金属めっき層が溶融し、そのとき電極の加圧力や鋼板の熱膨張、収縮による引張応力が溶接部に加わった際に、溶融した低融点金属が表面処理鋼板の母材の結晶粒界に侵入して粒界強度を低下させ、溶接部に割れを引き起こす、いわゆる液体金属脆性に起因する割れである。割れの発生位置は、図1のような電極3、4と接する側の鋼板1、2の表面や、鋼板同士が接する側の鋼板1、2の表面など、様々である。
 このような割れの対策として、例えば特許文献1では、板組である鋼板の組成を特定範囲の組成、具体的には、重量%で、C:0.003 ~0.01%、Mn:0.05~0.5 %、P:0.02%以下、sol.Al:0.1%以下、Ti:48×(N/14)~48×{(N/14)+(S/32)}%、Nb:93×(C/12)~0.1 %、B:0.0005~0.003 %、N:0.01%以下、Ni:0.05%以下、残部Feおよび不可避的不純物からなる組成とすることが提案されている。
 特許文献2には、高強度めっき鋼板のスポット溶接において、下記条件(1)および(2)を満足させるように溶接通電時間および溶接通電後の保持時間を設定してスポット溶接を行うことを特徴とする高強度めっき鋼板のスポット溶接方法が提案されている。
0.25・(10・t+2)/50≦WT≦0.50・(10・t+2)/50  ・・(1)
300-500・t+250・t2≦HT                        ・・(2)
ただし、t:板厚(mm)、WT:溶接通電時間(ms)、HT:溶接通電後の保持時間(ms)
 また、特許文献2では、鋼板の板厚に応じて通電時間および通電後の電極の保持時間を適切に設定し、鋼板中の合金元素量が一定以下となる高張力亜鉛めっき鋼板を用いて溶接を行うことも提案されている。
 特許文献3では、通電パターンを3段以上の多段通電とし、適正電流範囲(ΔI:所望のナゲット径以上で、かつ溶融残厚が0.05mm以上であるナゲットを安定して形成できる電流範囲)が1.0 kA以上、好ましくは2.0kA以上となるように、通電時間、溶接電流等の溶接条件を調整し、各段の間に冷却時間を設ける方法が提案されている。
特開平10-195597号公報 特開2003-103377号公報 特開2003-236676号公報
 しかしながら、特許文献1では鋼板の合金元素量を限定する必要があるため、要求性能を満たす鋼板の使用が制限されるなどの課題があり、特に最近の鋼板での、高強度化に伴って高合金化が進んでいる状況下では、その適用は極めて制限される。
 特許文献2では、散りが発生するような過大な溶接電流を設定した際の割れ抑制方法のみが提案されており、散りが発生しない状態での割れについては言及されていない。
 特許文献3では、溶接条件の適正化に多くの工数が必要であり、また適正電流範囲の確保が困難な鋼板および板組に対しては適用できないという課題があった。加えて、特許文献2および3では、電極の芯ずれによる影響については検討されていないため、自動車組立て時の実施工程を考慮すると、対策としては不十分な場合があった。
 本発明は、上記のような事情に鑑みてなされたものであり、鋼種に関わらず、電極の芯ずれの程度に応じて溶接部の割れ発生を抑制することができる抵抗スポット溶接方法および溶接部材の製造方法を提案することを目的とする。
 発明者らは、上記の目的を達成すべく、鋭意検討を重ねた。溶接時に発生する割れは、散りが発生しない溶接条件範囲でも発生する。その発生は種々の要因の影響を受けるが、特に溶接時の芯ずれ量D(mm)(上電極の中心軸と下電極の中心軸がずれる量、図2)により大きな影響を受けることを知見した。そして、芯ずれ量に応じて通電終了後の加圧力保持時間(以下、ホールド時間ともいう)を適切に調整することにより、割れを抑止できるとの知見を得た。
 溶接時に発生する割れに対する本発明の効果は、種々の因子が複雑に影響しているため単純には説明できないが、基本的なメカニズムは以下のように考えられる。溶接部の割れが発生する原因としては、高温になった表面処理鋼板のめっき金属が、表面処理鋼板の母材(下地鋼板)と接している状態で、以下に説明する引張応力が発生することが挙げられる。この引張応力は、溶接終了後に電極が鋼板から離れることで局部的に大きくなる領域が存在する。
 通電中に溶接部5の膨張によって、溶接部周囲が圧縮変形した後、通電終了後の冷却により凝固収縮が生じるが、電極3、4にて加圧されている間は、その加圧力により拘束されることによって応力は圧縮状態、あるいは引張状態であったとしても応力が緩和される。しかし、電極加圧力による拘束から解放されると、引張応力が局所的に大きくなる領域が発生し、この領域で割れが発生すると考えられる。
 また種々の外乱がある状態で割れの評価を行った結果、芯ずれ量D(mm)がある場合、特に芯ずれ量D(mm)が大きい場合に、割れが発生しやすくなることが分かった。これは芯ずれがあると、溶接部に曲げ応力が加わり、局所的に大きな圧縮塑性変形が生じることで、電極解放後の引張応力が非常に大きくなることが原因と考えられる。前述のように、引張応力が溶接部に加わった際に、溶融した低融点金属が母材の結晶粒界に侵入して粒界強度を低下させ、割れを引き起こす。そのため、大きな引張応力が発生する際の溶接部の温度を芯ずれ量に応じて適度に低下させて低融点金属の鋼板の結晶粒界への侵入を抑制することができれば、この割れの発生を低減させることができるとの知見を得た。
 本発明は、上記の知見に立脚するものであり、その要旨構成は次のとおりである。
[1] 複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
 前記複数の鋼板のうち少なくとも1枚は、金属めっき層を有する表面処理鋼板であり、
 通電終了後の加圧力保持時間をH(ms)、電極の芯ずれ量をD(mm)、重ね合わせた前記複数の鋼板の板厚の総和をt(mm)、前記複数の鋼板のうち最も引張強度が大きい鋼板の引張強度をT(MPa)、加圧力をF(N)、前記一対の電極のうち電極先端径が小さい方の先端径をd(mm)としたとき、
0≦D<2 の場合に 2・D・(t・T / (F・d))1/2 ≦ H
2≦D<5 の場合に (6・D-8)・(t・T / (F・d))1/2 ≦ H
5≦D<10 の場合に (D+17)・(t・T / (F・d))1/2 ≦ H
の関係を満たす抵抗スポット溶接方法。
[2] 複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
 前記複数の鋼板のうち少なくとも1枚は、金属めっき層を有する表面処理鋼板であり、該金属めっき層の融点は、前記表面処理鋼板の母材の融点よりも低く、
 通電終了後の加圧力保持時間をH(ms)、電極の芯ずれ量をD(mm)、重ね合わせた前記複数の鋼板の板厚の総和をt(mm)、前記複数の鋼板のうち最も引張強度が大きい鋼板の引張強度をT(MPa)、加圧力をF(N)、前記一対の電極のうち電極先端径が小さい方の先端径をd(mm)としたとき、
0≦D<2 の場合に 2・D・(t・T / (F・d))1/2 ≦ H
2≦D<5 の場合に (6・D-8)・(t・T / (F・d))1/2 ≦ H
5≦D<10 の場合に (D+17)・(t・T / (F・d))1/2 ≦ H
の関係を満たす抵抗スポット溶接方法。
[3] 複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
 前記複数の鋼板のうち少なくとも1枚は、金属めっき層を有する表面処理鋼板であり、
 通電終了後の加圧力保持時間をH(ms)、電極の芯ずれ量をD(mm)、重ね合わせた前記複数の鋼板の板厚の総和をt(mm)、前記複数の鋼板のうち最も引張強度が大きい鋼板の引張強度をT(MPa)、加圧力をF(N)、前記一対の電極のうち電極先端径が小さい方の先端径をd(mm)、電極先端曲率半径が小さい方の電極先端曲率半径をR(mm)としたとき、40≦R≦200であり、かつ
0≦D<2 の場合に 2・D・(t・T・R / (40・F・d))1/2 ≦ H
2≦D<5 の場合に (6・D-8)・(t・T・R / (40・F・d))1/2 ≦ H
5≦D<10 の場合に (D+17)・(t・T・R / (40・F・d))1/2 ≦ H
の関係を満たす抵抗スポット溶接方法。
[4] 複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
 前記複数の鋼板のうち少なくとも1枚は、金属めっき層を有する表面処理鋼板であり、該金属めっき層の融点は、前記表面処理鋼板の母材の融点よりも低く、
 通電終了後の加圧力保持時間をH(ms)、電極の芯ずれ量をD(mm)、重ね合わせた前記複数の鋼板の板厚の総和をt(mm)、前記複数の鋼板のうち最も引張強度が大きい鋼板の引張強度をT(MPa)、加圧力をF(N)、前記一対の電極のうち電極先端径が小さい方の先端径をd(mm)、電極先端曲率半径が小さい方の電極先端曲率半径をR(mm)としたとき、40≦R≦200であり、かつ
0≦D<2 の場合に 2・D・(t・T・R / (40・F・d))1/2 ≦ H
2≦D<5 の場合に (6・D-8)・(t・T・R / (40・F・d))1/2 ≦ H
5≦D<10 の場合に (D+17)・(t・T・R / (40・F・d))1/2 ≦ H
の関係を満たす抵抗スポット溶接方法。
[5] Dが0.5以上である[1]~[4]のいずれか一つに記載の抵抗スポット溶接方法。
[6] 前記金属めっき層が、Zn系めっき層またはAl系めっき層である[1]~[5]のいずれか一つに記載の抵抗スポット溶接方法。
[7] 前記複数の鋼板のうち少なくとも1枚は、引張強度が590MPa以上である[1]~[6]のいずれか一つに記載の抵抗スポット溶接方法。
[8] 溶接点の周囲に、既溶接点が1点以上存在する場合、前記溶接点と最も近い既溶接点との中心間距離Lを6.0mm以上として溶接する[1]~[7]のいずれか一つに記載の抵抗スポット溶接方法。
[9] 金属めっき層を有する表面処理鋼板を少なくとも1枚含む複数の鋼板を重ね合わせて板組を得る工程と、
得られた板組を[1]~[8]のいずれか一つに記載の抵抗スポット溶接方法により溶接する工程とを有する溶接部材の製造方法。
 本発明によれば、鋼種に関わらず、溶接部の割れ発生を抑制することができる。
抵抗スポット溶接方法を示す図である。 抵抗スポット溶接方法における電極の芯ずれを示す図である。 本発明の抵抗スポット溶接方法が満たす式を示すイメージ図である。 溶接点と既溶接点との中心間距離を示す図である。 実施例における2枚重ねの板組とした場合の試験方法を示す図である。 実施例における3枚重ねの板組とした場合の試験方法を示す図である。
 以下、本発明を具体的に説明する。
 本発明は、複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、加圧力を通電終了後に保持する工程を有するものである。本発明は、板組の複数の鋼板のうち少なくとも1枚が、金属めっき層を有する表面処理鋼板である板組の抵抗スポット溶接方法に適用される。なお、金属めっき層の融点は、表面処理鋼板の母材の融点よりも低いものを対象とすることが好ましい。
 本発明の抵抗スポット溶接方法で使用可能な溶接装置としては、上下一対の電極を備え、溶接中に加圧力および溶接電流をそれぞれ任意に制御可能な溶接装置を用いることができる。溶接装置の加圧機構(エアシリンダやサーボモータ等)、形式(定置式、ロボットガン等)、電極形状等はとくに限定されない。電極先端の形式としては、例えば、JIS C 9304:1999に記載されるDR形(ドームラジアス形)、R径(ラジアス形)、D形(ドーム形)等が挙げられる。
 そして、本発明は、通電終了後の加圧力保持時間(以下、ホールド時間とも言う)をH(ms)、電極の芯ずれ量をD(mm)、重ね合わせた複数の鋼板の板厚の総和をt(mm)、複数の鋼板のうち最も引張強度が大きい鋼板の引張強度をT(MPa)、加圧力をF(N)、一対の電極のうち電極先端径が小さい方の先端径をd(mm)としたとき、
0≦D<2 の場合に 2・D・(t・T / (F・d))1/2 ≦ H
2≦D<5 の場合に (6・D-8)・(t・T / (F・d))1/2 ≦ H
5≦D<10 の場合に (D+17)・(t・T / (F・d))1/2 ≦ H
の関係を満たす。また、上記式において、芯ずれ量Dが0.5(mm)以上の場合を具体的に示すと、本発明は、
0.5≦D<2 の場合に 2・D・(t・T / (F・d))1/2 ≦ H
2≦D<5 の場合に (6・D-8)・(t・T / (F・d))1/2 ≦ H
5≦D<10 の場合に (D+17)・(t・T / (F・d))1/2 ≦ H
の関係を満たす。
 ホールド時間Hは、通電終了後の加圧力保持時間であり、通電終了時から電極を鋼板から解放した時までの時間である。ここで、電極を鋼板から解放した時とは、電極が鋼板から離れ始めたときである。また、加圧力Fは、通電終了時の加圧力であり、複数回の通電を行う場合は最後の通電終了時の加圧力である。通電中の加圧力は一定でも一定でなくてもよい。また、電極の芯ずれ量Dは、通電中および通電終了時の加圧力を保持する工程の間中、一定である。なお、本明細書における通電終了後に加圧力を保持する工程の加圧力Fは、実測値である。
 これにより、芯ずれがある場合でも、例えばスポット溶接時に割れが発生しやすい芯ずれ量が0.5mm以上の場合でも、引張応力発生時の溶接部の温度を下げることができ、表面処理鋼板の金属めっき層(たとえば、亜鉛)の液体金属脆化を防ぐことができる。具体的には、めっき金属は、溶接するための通電による加熱時に一旦は溶融するが、ホールド時間を芯ずれ量に応じて一定以上確保して溶接部の温度を下げると、その後の電極開放の際の引張応力発生時にはめっき金属が既に凝固しているため、めっき金属が結晶粒界に侵入せず、割れの発生を低減することができると考えられる。なお、電極が常に水冷されている状態でスポット溶接は行われるため、ホールド時間を長くすると、冷却速度が大きくなり、引張応力発生時の溶接部の温度を下げることができる。金属めっき層の凝固のみを考慮すればホールド時間を長くすればよいが、本発明においては必要以上に長時間にする必要はなく、例えばホールド時間を、式を満たす下限値付近とすることにより割れの発生が抑制され且つ生産性の良好な抵抗スポット溶接方法とすることができる。例えば、ホールド時間Hを30ms以下とすることもできる。
 前述したように、芯ずれがあると、溶接部に曲げ応力が加わり、局所的に大きな圧縮塑性変形が生じ、電極解放後の引張応力が非常に大きくなる。そのため、芯ずれ量に応じて適切にホールド時間を調整することが重要となる。
 すなわち、芯ずれ量が0mm以上かつ2mm未満の範囲においては、芯ずれにより溶接部に加わる曲げ応力は比較的小さい。このため、電極解放後に溶接部に発生する引張応力もそれほど大きくならない。つまり、芯ずれ量に対するホールド時間の増加代は小さくてよい。
 芯ずれ量が2mm以上かつ5mm未満の範囲においては、芯ずれ量が大きくなるにつれて電極解放後に溶接部に発生する引張応力の増加代が顕著になる。このため、その分引張り応力の増加代に応じてホールド時間を増加させる必要がある。
 なお、芯ずれ量が2mmとは芯ずれ量が実質的に2.0mmであり、また、芯ずれ量が5mmとは芯ずれ量が実質的に5.0mmである。
 芯ずれ量が5mm以上かつ10mm未満の範囲においては、溶接部に発生する引張応力が非常に大きくなる。しかしながら、一度溶融した金属めっきが完全に凝固してから電極を解放させることで割れ発生を防ぐことができる。溶融した金属めっきが残存していなければ割れは発生しないと考えられる。芯ずれ量が5mm以上かつ10mm未満の範囲においては、溶融した金属めっきが凝固するのに十分なホールド時間を確保しているため、芯ずれ量に対するホールド時間の増加代は小さくてよい。ただし芯ずれ量が大きくなるとナゲットと電極先端間の距離が大きくなるため、溶接部の冷却速度が低下する傾向にある。そのため芯ずれ量に応じて一定以上はホールド時間を増加させることが望ましい。
 なお、芯ずれ量が10mm以上の場合は、上下の電極間に適正なナゲットを形成するのが難しくなるので、ここでは対象としていない。
 上述では、溶接時に発生する割れに対する芯ずれとホールド時間との関係について説明したが、以下に、溶接時に発生する割れに対する他の影響因子についても述べる。
 溶接を行う鋼板の板厚の総和tが大きくなると、電極への抜熱が十分でなくなる。このため、溶接部の冷却速度が低下する。また、溶接部の拘束も強くなる。そのため、割れが発生しやすくなる。
 同様に、溶接を行う鋼板の引張強度Tが大きくなると、溶接部の拘束が大きくなり、また、電極解放後に溶接部に発生する引張応力も大きくなる。そのため、割れが発生しやすくなる。
 電極による加圧力Fが大きくなると、溶接部周囲への溶融した金属めっきの排出が促される。これにより、溶接部近傍において母材と接する金属めっきの量が減少し、割れの発生が抑制されると考えられる。
 また、電極先端径dが大きくなると、電極と鋼板が接する面積が大きくなるため、加圧時の応力が分散されることで局所的な曲げ応力が低減すると考えられる。加えて、電極への抜熱も促進されるので、割れの発生が抑制される。ただし電極先端径dが過度に大きくなると、鋼板同士の接触が不安定になるため、4mm≦d≦10mm程度とすることが望ましい。
 これらの理由から、上記の関係式を見い出した。関係式中の係数については、芯ずれ量に応じて実験により最適な係数を求めた。
 また、割れ発生が生じやすい板組の場合や、溶接部の拘束が強い状態で溶接を行う場合において、割れを低減させるためには、
0≦D<2 の場合に 3・D・(t・T / (F・d))1/2 ≦ H
2≦D<5 の場合に (10・D-14)・(t・T / (F・d))1/2 ≦ H
5≦D<10 の場合に (D+31)・(t・T / (F・d))1/2 ≦ H
の関係を満たすことが好適である。さらに望ましくは、
0≦D<2 の場合に 4・D・(t・T / (F・d))1/2 ≦ H
2≦D<5 の場合に (15・D-22)・(t・T / (F・d))1/2 ≦ H
5≦D<10 の場合に (D+48)・(t・T / (F・d))1/2 ≦ H
の関係を満たすことがより好適である。
 上述した本発明の抵抗スポット溶接方法が満たす式(図3中(a))、および、満たすことが好適な式(図3中(b))並びにより好適な式(図3中(c))のイメージ図を、図3に示す。なお、図3は、電極先端径6mm、板厚の総和t:3.2mm、引張強度T:1500MPa、加圧力F:2500Nの場合の各式を示す図である。
 また、使用する電極の先端曲率半径Rを適正化することで、本発明の効果をより有効に得る事ができる。Rが40mm未満の場合は、芯ずれにより生じる曲げ応力が大きくなるため、割れが発生しやすくなる。
 逆に、Rが過度に大きい場合は、電極と鋼板の接触面積が大きくなるため、鋼板間に加わる圧力は低下し、鋼板同士の接触が不安定となることで散りが発生しやすくなる。散り発生時には溶融金属が周囲へ飛散することで溶接部の体積が減少するため、電極が大きく鋼板に押込まれることで大きな張力が鋼板表面に加わり、割れが発生しやすくなる。
 そのため電極先端曲率半径(mm)Rを40≦R≦200とし、かつ
0≦D<2 の場合に 2・D・(t・T・R / (40・F・d))1/2 ≦ H
2≦D<5 の場合に (6・D-8)・(t・T・R / (40・F・d))1/2 ≦ H
5≦D<10 の場合に (D+17)・(t・T・R / (40・F・d))1/2 ≦ H
の関係を満たすことが割れ抑制に有効である。また、上記式において、芯ずれ量Dが0.5(mm)以上の場合を具体的に示すと、
0.5≦D<2 の場合に 2・D・(t・T・R / (40・F・d))1/2 ≦ H
2≦D<5 の場合に (6・D-8)・(t・T・R / (40・F・d))1/2 ≦ H
5≦D<10 の場合に (D+17)・(t・T・R / (40・F・d))1/2 ≦ H
である。
 さらに、割れ発生が生じやすい板組の場合や、溶接部の拘束が強い状態で溶接を行う場合において、割れを低減させるためには、
0≦D<2 の場合に 3・D・(t・T・R / (40・F・d))1/2 ≦ H
2≦D<5 の場合に (10・D-14)・(t・T・R / (40・F・d))1/2 ≦ H
5≦D<10 の場合に (D+31)・(t・T・R / (40・F・d))1/2 ≦ H
の関係を満たすことが好適である。さらに望ましくは、
0≦D<2 の場合に 4・D・(t・T・R / (40・F・d))1/2 ≦ H
2≦D<5 の場合に (15・D-22)・(t・T・R / (40・F・d))1/2 ≦ H
5≦D<10 の場合に (D+48)・(t・T・R / (40・F・d))1/2 ≦ H
の関係を満たすことがより好適である。
 このように芯ずれ量Dに応じてホールド時間を一定以上とすることで、割れを抑制することができる。一方で、冷却速度の過度な増加はナゲットのじん性を低下させる可能性があるため、ホールド時間Hの上限は2000msとすることが望ましい。
 また、鋼板の引張強度Tは特に限定されず例えば250MPa~2000MPaであるが、上述したように板組の引張強度が大きくなると割れが発生しやすくなるため、板組の鋼板のうち少なくとも1枚の鋼板が、引張強度が590MPa以上である板組に対して、本発明を適用することで、より良好な効果を得ることができる。特に、板組の鋼板のうち少なくとも1枚が、引張強度が780MPa以上である場合に、より大きな効果を得ることができる。
 また、溶接を行う溶接点の近傍に、既溶接点がある場合は、既溶接点により鋼板の変形が制限されることになり、非常に強い拘束を受けた状態で溶接が行われることになる。このため、溶接部に発生する引張応力が大きくなり、割れが発生しやすくなる。そのため図4のように、溶接点の周囲に既溶接点が1点以上存在する場合、溶接点と最も近い既溶接点との中心間距離Lとした場合、中心間距離Lを6.0mm以上とすることで、溶接部の割れ発生抑制のより大きな効果を得ることができる。なお、溶接点の中心とは、溶接された鋼板と鋼板との接合面におけるナゲットの中心である。溶接された鋼板と鋼板との接合面におけるナゲットの形状は、円や楕円になるが、楕円の中心は長軸と短軸の交点である。また、円や楕円以外の形状の場合は、接合面における形状の重心を中心として、中心間距離Lを求める。
 割れが発生しやすい板組や、芯ずれ量Dが大きい場合などは、中心間距離Lを8.0mm以上とすることが好適である。さらに望ましくは、中心間距離Lを10.0mm以上とすることがより好適である。
 本発明に用いる板組の鋼板の鋼種は、特に限定されない。鋼板の製造方法は、冷間圧延・熱間圧延など任意であり、鋼板の組織も同様に任意である。また、本発明に用いる板組の鋼板は、熱間プレスされた鋼板を用いても何ら問題ない。また、鋼板の板厚についても、一般的な自動車車体に用いられ得る範囲(0.5~4.0mm程度)であれば問わない。
 金属めっき層を有する表面処理鋼板の金属めっき層の組成についても、任意である。上述した通り、溶接部の割れは低融点の金属めっき層が溶融することが一因であることから、母材よりも低融点のめっき層を有している場合に溶接部の割れ抑制効果が大きい。母材(下地鋼板)の融点は例えば1400~1570℃であり、金属めっき層の融点は例えば300~1200℃である。一般的なめっき層であれば、鋼板よりも融点は低い。金属めっき層としては、Zn系めっき層やAl系めっき層が挙げられる。耐食性が必要とされる部材では、Al系めっきに比べて、Zn系めっきが優れている。これは、亜鉛Znの犠牲防食作用により、下地鋼板の腐食速度を低下することができるためである。Zn系めっきとしては、一般的な溶融亜鉛めっき(GI)、合金化溶融亜鉛めっき(GA)、電気亜鉛めっき(EG)、Zn-Ni系めっき(例えば、10~25mass%のNiを含むZn-Ni系めっき)、Zn-Al系めっき、Zn-Mg系めっき、Zn-Al-Mg系めっきなどが例示できる。また、Al系めっきとしては、Al-Si系めっき(例えば、10~20mass%のSiを含むAl-Si系めっき)などが例示できる。金属めっき層は、表面処理鋼板の片面に設けられていても両面に設けられていてもよい。めっきの付着量も任意であるが、溶接性の観点からは片面あたり120g/m2以下とすることが望ましい。
 本発明における板組は特に限定されず、同種鋼板を複数枚重ねてもよいし、あるいは異種鋼板を複数枚重ねてもよい。また、各鋼板の板厚が異なっても何ら問題ないし、鋼板よりも低融点の金属めっき層を有する鋼板と金属めっき層を有さない鋼板の組合せとなってもよい。
 さらに、通電中の電流値・通電時間・加圧力は一定でもよいが一定である必要はなく、電流値や加圧力を2段階以上に変化させてもよいし、各段の間に冷却時間を設けてもよい。また、溶接中の抵抗値・電圧値といったパラメータを監視し、その変動に応じて電流値や通電時間を変化させる制御方法を用いても何ら問題ない。
 1段階の通電で溶接を行う場合の電流値、通電時間、通電中の加圧力の好適範囲を次に示す。通電中の電流値は、例えば10kA未満が好ましい。また、通電時間は、例えば200ms~700msが好ましい。通電中の加圧力は、例えば2000N~7000Nが好ましい。
 また、本通電の前後に短時間の予・後通電を行う多段通電の場合は、好適な電流値の上限は15kAまで広がる。また、好適な通電時間の上限は1000msまで広がる。ただし、多段通電の場合の通電時間は、各段の通電時間の総和である。
 また、溶接実施の際には、鋼板間に隙間がある状態や、鋼板に対して電極が傾いた状態で溶接を行ってもよい。
 上記本発明の抵抗スポット溶接方法を用いて、金属めっき層を有する表面処理鋼板を少なくとも1枚含む複数の鋼板が溶接された溶接部材を得ることができる。具体的には、本発明の溶接部材の製造方法は、金属めっき層を有する表面処理鋼板を少なくとも1枚含む複数の鋼板を重ね合わせて板組を得る工程と、得られた板組を上記抵抗スポット溶接方法により溶接する工程とを有する溶接部材の製造方法である。上記抵抗スポット溶接方法を用いて溶接すると溶接部の割れ発生が抑制できるため、溶接部の割れが低減された溶接部材を製造することができる。
 本発明の実施例を以下に示す。表1に示す2枚重ねあるいは3枚重ねの各板組について、表2(表2-1~表2-3)に示す条件で抵抗スポット溶接を行い、継手(溶接部材)を作製した。なお、本実施例における各供試材料の母材の融点は1400~1570℃の範囲であり、溶融亜鉛めっき(GI)および合金化溶融亜鉛めっき(GA)の融点はそれぞれ400~500℃、600~950℃の範囲である。表1に示される引張強度は、各鋼板から、圧延方向に対して平行方向にJIS5号引張試験片を作製し、JIS Z 2241:2011の規定に準拠して引張試験を実施して求めた引張強度である。また、表2に示される通電終了後に加圧力を保持する工程の加圧力Fは、実測値である。図5は、鋼板1と2とを重ね合わせて2枚重ねの板組とした場合の試験方法を示し、図6は、鋼板1、2および6とを重ね合わせて3枚重ねの板組とした場合の試験方法を示している。評価する溶接点の周囲に既溶接点が無い場合は、表2中の「既溶接点」欄には「無し」と記載している。また、既溶接点がある場合は、表2中の「既溶接点」欄には、溶接点と既溶接点との中心間距離Lを記載している。なお、評価溶接と既溶接における溶接条件は同じとした。
 溶接装置はインバータ直流抵抗スポット溶接機を用い、電極にはDR形のクロム銅製電極を用いた。用いた電極の先端径および先端の曲率半径も表2に示す。2つの電極は同じものを用いた。通電は1回とし、通電中の電流値(溶接電流)を一定値とした。また、芯ずれ量は、通電中および通電終了時の加圧力を保持する工程の間中、一定とした。加圧力は通電終了時の加圧力であり、通電中および通電終了時の加圧力を保持する工程の間中、一定とした。また、抵抗スポット溶接は室温で行い、電極を常に水冷した状態で行った。
 得られた各継手について、溶接部を鋼板板厚方向に切断して断面を鏡面研磨し、走査型電子顕微鏡(倍率2000倍)により割れの有無を観察した。同条件で10体の継手を作製・観察し、以下の基準で結果を判定した。A~Cを○(合格)、Fを×(不合格)とした。
A:10体全ての継手で割れ無し
B:10体の内1体に長さ10μm未満の割れありで、且つ、10体全ての継手で長さ10μm以上の割れ無し
C:10体の内2体に長さ10μm未満の割れありで、且つ、10体全ての継手で長さ10μm以上の割れ無し
F:10体の内3体以上に長さ10μm未満の割れあり、或いは、10体の内1体以上に長さ10μm以上の割れあり
 本発明を満たすようにホールド時間を設定した継手(本発明例)は、散り発生の有無にかかわらず全てA~Cのいずれかの評価(○(合格))であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1、2、6  鋼板
 3、4  電極
 5  溶接部(ナゲット)

Claims (9)

  1.  複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
     前記複数の鋼板のうち少なくとも1枚は、金属めっき層を有する表面処理鋼板であり、
     通電終了後の加圧力保持時間をH(ms)、電極の芯ずれ量をD(mm)、重ね合わせた前記複数の鋼板の板厚の総和をt(mm)、前記複数の鋼板のうち最も引張強度が大きい鋼板の引張強度をT(MPa)、加圧力をF(N)、前記一対の電極のうち電極先端径が小さい方の先端径をd(mm)としたとき、
    0≦D<2 の場合に 2・D・(t・T / (F・d))1/2 ≦ H
    2≦D<5 の場合に (6・D-8)・(t・T / (F・d))1/2 ≦ H
    5≦D<10 の場合に (D+17)・(t・T / (F・d))1/2 ≦ H
    の関係を満たす抵抗スポット溶接方法。
  2.  複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
     前記複数の鋼板のうち少なくとも1枚は、金属めっき層を有する表面処理鋼板であり、該金属めっき層の融点は、前記表面処理鋼板の母材の融点よりも低く、
     通電終了後の加圧力保持時間をH(ms)、電極の芯ずれ量をD(mm)、重ね合わせた前記複数の鋼板の板厚の総和をt(mm)、前記複数の鋼板のうち最も引張強度が大きい鋼板の引張強度をT(MPa)、加圧力をF(N)、前記一対の電極のうち電極先端径が小さい方の先端径をd(mm)としたとき、
    0≦D<2 の場合に 2・D・(t・T / (F・d))1/2 ≦ H
    2≦D<5 の場合に (6・D-8)・(t・T / (F・d))1/2 ≦ H
    5≦D<10 の場合に (D+17)・(t・T / (F・d))1/2 ≦ H
    の関係を満たす抵抗スポット溶接方法。
  3.  複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
     前記複数の鋼板のうち少なくとも1枚は、金属めっき層を有する表面処理鋼板であり、
     通電終了後の加圧力保持時間をH(ms)、電極の芯ずれ量をD(mm)、重ね合わせた前記複数の鋼板の板厚の総和をt(mm)、前記複数の鋼板のうち最も引張強度が大きい鋼板の引張強度をT(MPa)、加圧力をF(N)、前記一対の電極のうち電極先端径が小さい方の先端径をd(mm)、電極先端曲率半径が小さい方の電極先端曲率半径をR(mm)としたとき、40≦R≦200であり、かつ
    0≦D<2 の場合に 2・D・(t・T・R / (40・F・d))1/2 ≦ H
    2≦D<5 の場合に (6・D-8)・(t・T・R / (40・F・d))1/2 ≦ H
    5≦D<10 の場合に (D+17)・(t・T・R / (40・F・d))1/2 ≦ H
    の関係を満たす抵抗スポット溶接方法。
  4.  複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
     前記複数の鋼板のうち少なくとも1枚は、金属めっき層を有する表面処理鋼板であり、該金属めっき層の融点は、前記表面処理鋼板の母材の融点よりも低く、
     通電終了後の加圧力保持時間をH(ms)、電極の芯ずれ量をD(mm)、重ね合わせた前記複数の鋼板の板厚の総和をt(mm)、前記複数の鋼板のうち最も引張強度が大きい鋼板の引張強度をT(MPa)、加圧力をF(N)、前記一対の電極のうち電極先端径が小さい方の先端径をd(mm)、電極先端曲率半径が小さい方の電極先端曲率半径をR(mm)としたとき、40≦R≦200であり、かつ
    0≦D<2 の場合に 2・D・(t・T・R / (40・F・d))1/2 ≦ H
    2≦D<5 の場合に (6・D-8)・(t・T・R / (40・F・d))1/2 ≦ H
    5≦D<10 の場合に (D+17)・(t・T・R / (40・F・d))1/2 ≦ H
    の関係を満たす抵抗スポット溶接方法。
  5.  Dが0.5以上である請求項1~4のいずれか一項に記載の抵抗スポット溶接方法。
  6.  前記金属めっき層が、Zn系めっき層またはAl系めっき層である請求項1~5のいずれか一項に記載の抵抗スポット溶接方法。
  7.  前記複数の鋼板のうち少なくとも1枚は、引張強度が590MPa以上である請求項1~6のいずれか一項に記載の抵抗スポット溶接方法。
  8.  溶接点の周囲に、既溶接点が1点以上存在する場合、前記溶接点と最も近い既溶接点との中心間距離Lを6.0mm以上として溶接する請求項1~7のいずれかに記載の抵抗スポット溶接方法。
  9.  金属めっき層を有する表面処理鋼板を少なくとも1枚含む複数の鋼板を重ね合わせて板組を得る工程と、
    得られた板組を請求項1~8のいずれか一項に記載の抵抗スポット溶接方法により溶接する工程とを有する溶接部材の製造方法。
PCT/JP2016/087014 2015-12-16 2016-12-13 抵抗スポット溶接方法および溶接部材の製造方法 WO2017104647A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680073909.7A CN108367378B (zh) 2015-12-16 2016-12-13 电阻点焊方法及焊接构件的制造方法
US16/062,407 US10946470B2 (en) 2015-12-16 2016-12-13 Resistance spot welding method and welded member production method
MX2018007315A MX2018007315A (es) 2015-12-16 2016-12-13 Metodo de soldadura por puntos de resistencia y metodo de produccion de miembros soldados.
EP16875624.5A EP3391988B1 (en) 2015-12-16 2016-12-13 Resistance spot welding methods and method of manufacturing welded member using such method
KR1020187016477A KR102058305B1 (ko) 2015-12-16 2016-12-13 저항 스폿 용접 방법 및 용접 부재의 제조 방법
JP2017508577A JP6278154B2 (ja) 2015-12-16 2016-12-13 抵抗スポット溶接方法および溶接部材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-244823 2015-12-16
JP2015244823 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017104647A1 true WO2017104647A1 (ja) 2017-06-22

Family

ID=59056912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087014 WO2017104647A1 (ja) 2015-12-16 2016-12-13 抵抗スポット溶接方法および溶接部材の製造方法

Country Status (7)

Country Link
US (1) US10946470B2 (ja)
EP (1) EP3391988B1 (ja)
JP (1) JP6278154B2 (ja)
KR (1) KR102058305B1 (ja)
CN (1) CN108367378B (ja)
MX (1) MX2018007315A (ja)
WO (1) WO2017104647A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082102A (ja) * 2018-11-19 2020-06-04 株式会社神戸製鋼所 接合構造体及び接合構造体の製造方法
WO2020130079A1 (ja) * 2018-12-21 2020-06-25 Jfeスチール株式会社 スポット溶接部材
US20210362266A1 (en) * 2018-02-09 2021-11-25 Jfe Steel Corporation Resistance spot welding method and method for producing resistance spot welded joint
JP2022015124A (ja) * 2020-07-08 2022-01-21 フタバ産業株式会社 抵抗スポット溶接方法及び抵抗スポット溶接装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057893B1 (ko) * 2015-09-03 2019-12-20 닛폰세이테츠 가부시키가이샤 스폿 용접 방법
JP2020082104A (ja) * 2018-11-19 2020-06-04 株式会社神戸製鋼所 接合構造体及び接合構造体の製造方法
MX2021011062A (es) * 2019-03-14 2021-10-13 Nippon Steel Corp Metodo de fabricacion de junta soldada, junta soldada, dispositivo de templado y aparato de soldadura.
JP7299192B2 (ja) * 2020-04-15 2023-06-27 株式会社神戸製鋼所 抵抗溶接部材の製造方法
CN113340703B (zh) * 2021-05-28 2023-03-21 天津中车唐车轨道车辆有限公司 一种用于覆盖t型对接接头的焊接工艺评定试验法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471787A (ja) * 1990-07-11 1992-03-06 Toyota Motor Corp スポット溶接用電極の清浄化方法
JP2001232480A (ja) * 2000-02-24 2001-08-28 Toyota Auto Body Co Ltd スポット溶接ガン電極の軸心ズレ確認方法及びその装置
JP2004122153A (ja) * 2002-09-30 2004-04-22 Nippon Steel Corp 高強度鋼板スポット溶接継手の疲労強度向上方法
WO2015049998A1 (ja) * 2013-10-04 2015-04-09 Jfeスチール株式会社 抵抗スポット溶接方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195597A (ja) 1996-11-14 1998-07-28 Sumitomo Metal Ind Ltd 接合性に優れた薄鋼板
JP2003103377A (ja) 2001-09-27 2003-04-08 Nippon Steel Corp 高強度めっき鋼板のスポット溶接方法
JP3849539B2 (ja) 2002-02-19 2006-11-22 Jfeスチール株式会社 高張力亜鉛系めっき鋼板のスポット溶接方法
KR101143177B1 (ko) 2010-08-20 2012-05-08 주식회사 포스코 도금강재의 저항점용접 방법
JP5267640B2 (ja) * 2011-11-25 2013-08-21 Jfeスチール株式会社 抵抗スポット溶接継手の評価方法
BR112017020590A2 (pt) * 2015-03-30 2018-07-03 Nippon Steel & Sumitomo Metal Corp método de soldagem por pontos de chapa de aço chapeada

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471787A (ja) * 1990-07-11 1992-03-06 Toyota Motor Corp スポット溶接用電極の清浄化方法
JP2001232480A (ja) * 2000-02-24 2001-08-28 Toyota Auto Body Co Ltd スポット溶接ガン電極の軸心ズレ確認方法及びその装置
JP2004122153A (ja) * 2002-09-30 2004-04-22 Nippon Steel Corp 高強度鋼板スポット溶接継手の疲労強度向上方法
WO2015049998A1 (ja) * 2013-10-04 2015-04-09 Jfeスチール株式会社 抵抗スポット溶接方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210362266A1 (en) * 2018-02-09 2021-11-25 Jfe Steel Corporation Resistance spot welding method and method for producing resistance spot welded joint
US11992892B2 (en) * 2018-02-09 2024-05-28 Jfe Steel Corporation Resistance spot welding method and method for producing resistance spot welded joint
JP2020082102A (ja) * 2018-11-19 2020-06-04 株式会社神戸製鋼所 接合構造体及び接合構造体の製造方法
WO2020130079A1 (ja) * 2018-12-21 2020-06-25 Jfeスチール株式会社 スポット溶接部材
JP6750762B1 (ja) * 2018-12-21 2020-09-02 Jfeスチール株式会社 スポット溶接部材
KR20210089764A (ko) * 2018-12-21 2021-07-16 제이에프이 스틸 가부시키가이샤 스폿 용접 부재
CN113195145A (zh) * 2018-12-21 2021-07-30 杰富意钢铁株式会社 点焊部件
CN113195145B (zh) * 2018-12-21 2022-10-11 杰富意钢铁株式会社 点焊部件
KR102514674B1 (ko) 2018-12-21 2023-03-27 제이에프이 스틸 가부시키가이샤 스폿 용접 부재
JP2022015124A (ja) * 2020-07-08 2022-01-21 フタバ産業株式会社 抵抗スポット溶接方法及び抵抗スポット溶接装置
JP7208193B2 (ja) 2020-07-08 2023-01-18 フタバ産業株式会社 抵抗スポット溶接方法及び抵抗スポット溶接装置

Also Published As

Publication number Publication date
US20190001429A1 (en) 2019-01-03
KR102058305B1 (ko) 2019-12-20
JPWO2017104647A1 (ja) 2017-12-21
US10946470B2 (en) 2021-03-16
KR20180081581A (ko) 2018-07-16
EP3391988A1 (en) 2018-10-24
CN108367378A (zh) 2018-08-03
MX2018007315A (es) 2018-09-06
EP3391988B1 (en) 2021-03-03
JP6278154B2 (ja) 2018-02-14
EP3391988A4 (en) 2019-02-13
CN108367378B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
JP6278154B2 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP6168246B1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP7047535B2 (ja) 抵抗スポット溶接方法
KR102057893B1 (ko) 스폿 용접 방법
WO2018181231A1 (ja) 抵抗スポット溶接継手の製造方法
JP2017047475A (ja) スポット溶接方法
KR102197434B1 (ko) 저항 스폿 용접 방법
WO2022215103A1 (ja) 抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
WO2024063009A1 (ja) 溶接部材およびその製造方法
JP7364113B2 (ja) 抵抗スポット溶接部材およびその抵抗スポット溶接方法
JP7355282B1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
JP7508031B1 (ja) 抵抗スポット溶接方法
JP6372639B1 (ja) 抵抗スポット溶接方法
JP7435935B1 (ja) 溶接部材およびその製造方法
JP7477059B1 (ja) 溶接部材およびその製造方法
WO2024122355A1 (ja) 抵抗スポット溶接方法
WO2024063010A1 (ja) 溶接部材およびその製造方法
WO2023233705A1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
JP7305396B2 (ja) 亜鉛系めっき鋼板のスポット溶接方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017508577

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187016477

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187016477

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/007315

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016875624

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016875624

Country of ref document: EP

Effective date: 20180716