WO2017101807A1 - 带光学透镜的光模块光接口组件及其制造方法 - Google Patents

带光学透镜的光模块光接口组件及其制造方法 Download PDF

Info

Publication number
WO2017101807A1
WO2017101807A1 PCT/CN2016/110073 CN2016110073W WO2017101807A1 WO 2017101807 A1 WO2017101807 A1 WO 2017101807A1 CN 2016110073 W CN2016110073 W CN 2016110073W WO 2017101807 A1 WO2017101807 A1 WO 2017101807A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
connecting body
lens
optical lens
interface assembly
Prior art date
Application number
PCT/CN2016/110073
Other languages
English (en)
French (fr)
Inventor
苗祺壮
Original Assignee
武汉优信光通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉优信光通信设备有限公司 filed Critical 武汉优信光通信设备有限公司
Priority to US16/063,247 priority Critical patent/US10641940B2/en
Publication of WO2017101807A1 publication Critical patent/WO2017101807A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/003Lens or lenticular sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3809Dismountable connectors, i.e. comprising plugs without a ferrule embedding the fibre end, i.e. with bare fibre end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4226Positioning means for moving the elements into alignment, e.g. alignment screws, deformation of the mount
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements

Definitions

  • the invention belongs to the field of optical communication technologies, and more particularly to an optical module optical interface assembly with an optical lens and a manufacturing method thereof.
  • the optical module optical interface component includes a metal connector, an optical sub-module and an external optical fiber coupled to the two ends of the metal connector, and the optical sub-module is fixed by the TO positioning ring, whether it is a light-emitting optical interface component or a light-receiving optical interface component. .
  • a collimating lens is usually arranged between the metal joint and the light source, and a general design is to mount the collimating lens on the end of the TO positioning ring near the metal joint.
  • the design of the light-emitting optical path is generally the light source-lens-ceramic ferrule inner fiber-external fiber, which is subjected to the alignment coupling of the optical path of 3 times; the design of the light receiving optical path is generally an external fiber-lens-light source, which has to go through 2 times. Quasi-coupling, coupled alignment process is relatively complex and costly, and due to the different structure of light emission and light reception, the material management cost increases.
  • the existing optical module optical interface assembly has many defects.
  • the structure and type of the optical module component of the optical module that is applied to the transmitting end and applied to the receiving end are different, which results in the manufacturing cost of the optical module optical component of the optical module cannot be effectively reduced, and the The management difficulty of the optical module optical interface component is increased.
  • the principle of the optical module optical interface assembly applied to the transmitting end is "light source-lens-ceramic ferrule inner fiber-external optical fiber", it is necessary to manufacture the optical module optical interface component applied to the transmitting end.
  • the components constituting the optical interface component of the optical module perform the alignment coupling of the optical path 3 times; accordingly, since the principle of the optical interface component of the optical module applied to the receiving end is "external fiber-lens-light source", in manufacturing
  • the optical fiber alignment component is required to be aligned twice, which not only causes the manufacturing process of the optical interface component of the optical module to be increased, but also causes The manufacturing cost of the optical module optical interface component is increased, and since the optical interface component of the optical module needs to perform multiple alignment coupling of the optical path during the manufacturing process, the optical component of the optical module has low product yield and reliability. Poor.
  • the existing optical module optical interface component needs to use the optical fiber in the ceramic ferrule, which not only increases the manufacturing process of the optical module optical interface component due to the addition of the optical interface component of the optical module, but also causes the light to be Modular optical interface component system
  • the increase is caused, and in the process of manufacturing the optical interface component of the optical module, the optical fiber in the ceramic ferrule is easily damaged, thereby seriously restricting the production efficiency of the optical interface component of the optical module.
  • the existing metal joints, ceramic ferrules, and lenses of the optical module optical interface assembly are assembled after being separately fabricated, which results in the accuracy of the existing optical module optical interface assembly. High, can not meet the requirements of the environment where the optical fiber transmission capacity is high.
  • the invention provides an optical module optical interface component with an optical lens, which completely completely designs the optical path structure of the optical module optical component, and adopts a unified structural design to meet the requirements of the optical module and the optical receiving optical module.
  • the light path structure of the light emission is a light source-lens-external fiber, and the light path of the light receiving is designed as an external fiber-lens-light source, which greatly simplifies the component structure, and greatly reduces the component cost for removing the ceramic ferrule from the light emitting module.
  • An optical module optical interface assembly with an optical lens comprising a metal joint, and an optical sub-module and an external optical fiber coupled to the two ends of the metal joint, wherein the inside of the metal joint is disposed in a cavity connecting the optical sub-module and the external optical fiber There is a collimating lens that fits into the cavity within the metal joint.
  • the side wall of the collimating lens is provided with a ring of fixed fixing ring structure, and the inner wall of the cavity is provided with a recessed fixing groove structure, and the fixing ring structure is fitted and fixed inside the fixing groove structure.
  • the metal joint and the collimating lens are fixed in such a manner as to be directly fixed to the metal joint during the forming process of the collimating lens.
  • the metal joint is fixed to the collimating lens by using a low temperature glass to fix the fixed collimating lens in the cavity of the metal joint after the collimating lens is formed.
  • the metal joint and the collimating lens are fixed in such a manner that the fixed collimating lens is fixed in the cavity of the metal joint by using an adhesive after the collimating lens is formed.
  • the invention has the beneficial effects that the lens of the invention does not need to be provided with a lens between the metal sub-module and the optical sub-module, and the structure of the TO positioning ring can be simplified; and at the same time, in order to prevent the risk of the interlocking in the metal joint of the collimating lens, the metal joint Design a fixing ring with the fixing part of the collimating lens.
  • the component can meet the requirements of the use of the light emitting optical module and the light receiving optical module at the same time, thereby reducing the cost.
  • An advantage of the present invention is to provide an optical module optical interface assembly with an optical lens and a manufacturing method thereof, wherein the optical module optical interface assembly can eliminate the need for the TO positioning ring to simplify the accuracy of the optical module optical interface assembly and It is convenient to install the optical module optical interface component.
  • An advantage of the present invention is to provide an optical module optical interface assembly with an optical lens and a manufacturing method thereof, wherein the optical module optical interface assembly can be applied not only to the transmitting end but also to the receiving end, thereby When the optical interface component of the optical module is described, it is not necessary to distinguish the types of the optical interface components of the optical module, so as to facilitate installation, use, and maintenance.
  • One advantage of the present invention is to provide an optical module optical interface assembly with an optical lens, and the method of fabricating the same, wherein the optical module optical interface assembly can improve and ensure optical fiber transmission capability.
  • An advantage of the present invention is to provide an optical module optical interface assembly with an optical lens and a manufacturing method thereof, wherein the optical module optical interface assembly provides a connecting body and an optical lens, and the connecting body has a molding space for molding The optical lens.
  • An advantage of the present invention is to provide an optical module optical interface assembly with an optical lens and a manufacturing method thereof, wherein the two ends of the connecting body are respectively mounted and held by an optical sub-module and an external optical fiber to The optical lens is held between the optical sub-module and the external optical fiber.
  • An advantage of the present invention is to provide an optical module optical interface assembly with an optical lens, and a manufacturing method thereof, wherein the connecting body provides a first receiving space and a second receiving space, respectively, to the connecting body The two ends extend to communicate with the first receiving space and the second receiving space, respectively, wherein the optical sub-module can be held in the first receiving space, and the external optical fiber can be held in the The second accommodation space is described.
  • An advantage of the present invention is to provide an optical module optical interface assembly with an optical lens and a method of fabricating the same, wherein the connection body enables the optical lens to be stably held between the optical sub-module and the external optical fiber, And avoiding interference such as external light to interfere with the interaction position of the external optical fiber, the optical lens and the optical sub-module.
  • An advantage of the present invention is to provide an optical module optical interface assembly with an optical lens, and a method of manufacturing the same, wherein at least a portion of the surface of the connecting body is hardened, for example, the connecting body has a hardened inner wall to pass through The hardness of the inner wall of the connecting body is increased in an amplitude to ensure the accuracy of the connecting body and the optical module optical interface assembly formed by the connecting body.
  • the connecting body may be further subjected to a nitriding treatment after being formed to increase the hardness of the inner wall of the connecting body.
  • An advantage of the present invention is to provide an optical module optical interface assembly with an optical lens, and a manufacturing method thereof, wherein the connecting body has at least one positioning groove, and a peripheral wall of the optical lens has at least one positioning element, each of the optical lenses The positioning elements are respectively positioned at each of the connected bodies The groove is positioned such that the optical lens is held in the molding space of the connecting body.
  • An advantage of the present invention is to provide an optical module optical interface assembly with an optical lens, and the manufacturing method thereof, wherein the positioning groove of the connecting body can be annular, and the positioning element of the optical lens can also be in a ring shape. After the positioning element of the optical lens is positioned in the positioning groove of the connecting body, the optical lens is held in the molding space of the connecting body.
  • An advantage of the present invention is to provide an optical module optical interface assembly with an optical lens and a method of fabricating the same, wherein the manufacturing method can form the optical lens in the molding space of the connection body to produce the light Module optical interface component.
  • An advantage of the present invention is to provide an optical module optical interface assembly with an optical lens and a method of manufacturing the same, wherein the connection body is a metal member, for example, the connection body can be made of a stainless steel material to facilitate subsequent passage through the connection.
  • the main body mounts the optical module optical interface component.
  • the invention provides an optical module optical interface assembly with an optical lens, comprising:
  • optical lens wherein the optical lens has a first end surface and a second end surface, the first end surface and the second end surface corresponding to each other;
  • connecting body wherein the connecting body has a molding space, and the optical lens is held in the molding space, wherein the connecting body is provided with an end portion of an optical sub-module and an end portion of an external optical fiber.
  • the first end face of the optical lens faces an end of the optical sub-module, and the second end face faces an end of the outer optical fiber.
  • the optical lens is formed in the molding space of the connecting body.
  • the connecting body has at least one positioning groove, at least one of the positioning grooves respectively communicating with the molding space, the optical lens has at least one positioning element, wherein at least one of the optical lenses The positioning element is positioned at at least one of the positioning slots of the connecting body.
  • each of said positioning elements of said optical lens are respectively positioned in each of said positioning grooves of said connecting body.
  • the optical lens has one of the positioning elements
  • the connecting body has a positioning groove
  • the positioning element of the optical lens is positioned at the positioning of the connecting body groove.
  • the positioning element of the optical lens is annular
  • the positioning groove of the connecting body is annular
  • the annular positioning element of the optical lens is positioned at the connecting body The positioning groove of the ring.
  • the connecting body has at least one positioning element, at least one of the positioning elements being respectively located in the molding space, wherein the optical lens has at least one positioning groove, wherein at least one of the connecting body One of the positioning elements is positioned at at least one of the positioning slots of the optical lens.
  • each of said positioning elements of said connecting body are respectively positioned in at least one of said positioning grooves of said optical lens.
  • the connecting body has one of the positioning elements
  • the optical lens has one of the positioning grooves
  • the positioning element of the connecting body is positioned at the optical lens Positioning slot.
  • the positioning element of the connecting body is annular
  • the positioning groove of the optical lens is annular
  • the annular positioning element of the connecting body is positioned at the optical lens The positioning groove of the ring.
  • the positioning element of the optical lens is positioned by the positioning groove of the connecting body such that the positioning element of the optical lens is positioned on the connecting body The positioning slot.
  • the optical lens positions the positioning member of the connection body at the position by forming the positioning groove at a position corresponding to the positioning member of the connection body The positioning groove of the optical lens.
  • the optical lens is mounted to the molding space of the connecting body.
  • the optical module optical interface assembly further includes at least one holding member, wherein the connecting body is provided with at least one first holding groove, and at least one of the first holding grooves communicates with the molding space
  • the optical lens is provided with at least one second holding groove, wherein at least one of the second holding grooves of the optical lens corresponds to at least one of the first holding grooves of the connecting body, and the holding member is simultaneously Formed in the first holding groove and the second holding groove such that the optical lens is mounted to the molding space of the connecting body.
  • each of the second holding grooves of the optical lens and each of the first holding grooves of the connecting body respectively correspond, and each of the holding members is simultaneously formed at each The first holding groove and each of the second holding grooves.
  • the connecting body is provided with one of the first holding grooves
  • the optical lens is provided with one of the second holding grooves
  • the first holding groove of the connecting body is annular
  • the second holding groove of the optical lens is annular
  • the holding member is simultaneously formed on the first holding a portion of the trough and a portion of the second retaining trough.
  • the second holding groove is provided in a middle portion of the optical lens.
  • the second holding groove is provided on the first end surface of the optical lens.
  • the second holding groove is provided on the second end surface of the optical lens.
  • the retaining element is formed by curing with glue.
  • the connecting body is provided with a first holding groove, the first holding groove is connected to the molding space, and the optical lens is provided with a holding member, wherein the holding member is held in the The first holding groove is described such that the optical lens is mounted to the molding space of the connecting body.
  • the retaining element extends integrally with the first end face of the optical lens.
  • the retaining element extends integrally with the second end face of the optical lens.
  • the connecting body is provided with a holding member, the holding member is located in the molding space, and the optical lens is provided with a second holding groove, wherein the holding member is held at the second The groove is held such that the optical lens is mounted to the molding space of the connection body.
  • the second holding groove is formed on the first end surface of the optical lens.
  • the second holding groove is formed on the second end surface of the optical lens.
  • the optical lens is a collimating lens.
  • the end of the optical sub-module and the end of the outer optical fiber are respectively connected to both ends of the connecting body in such a manner as to be inserted into the inside of the connecting body, thereby
  • the optical sub-module, the optical lens, and the external optical fiber interact within the connection body.
  • the connecting body has a first receiving space and a second receiving space, the forming space respectively communicating the first receiving space and the second receiving space, wherein the optical sub- An end of the module is mounted to the first receiving space of the connecting body, and an end of the outer fiber is mounted to the second receiving space of the connecting body.
  • the two ends of the connecting body respectively form a cylindrical first holding arm and a cylindrical second holding arm, and the first holding arm forms the first receiving space.
  • the second holding arm forms the second receiving space, wherein when the end of the optical sub-module is mounted in the first receiving space, the first holding arm surrounds an end of the optical sub-module
  • the second holding arm surrounds an end of the outer optical fiber when an end of the outer optical fiber is mounted to the second receiving space.
  • the connecting body includes a cylindrical carrier and a hardened layer, and the hardened layer is formed at least on an inner surface of the carrier to form the connecting body by the hardened layer An inner wall, wherein an inner wall of the connecting body defines the first receiving space, the forming space, and the second receiving space.
  • the material of the carrier of the connecting body is selected from the group consisting of an alloy material, a metal material, a non-metal material, and a material group composed of a mixture of a metal material and a non-metal material.
  • the present invention further provides an optical module optical interface assembly with an optical lens, comprising:
  • optical interface unit wherein the optical interface unit comprises a cylindrical interface element and an optical lens disposed inside the interface element;
  • the holding arm unit includes a cylindrical first holding arm and a cylindrical second holding arm, wherein the first holding arm and the second holding arm respectively extend integrally Two end portions of the interface member, wherein the first holding arm forms a first receiving space, and the second holding arm forms a second receiving space, wherein the first end surface and the second end surface of the optical lens
  • the first receiving space and the second receiving space are respectively connected to the external environment.
  • the optical lens is a collimating lens.
  • the present invention further provides an optical module optical interface assembly with a collimating lens, comprising a metal joint, and an optical sub-module and an outer optical fiber coupled to both ends of the metal joint, wherein the metal joint
  • a collimating lens comprising a metal joint, and an optical sub-module and an outer optical fiber coupled to both ends of the metal joint, wherein the metal joint
  • the interior is provided with a collimating lens in a cavity connecting the optical sub-module and the external optical fiber, the collimating lens being fitted to the cavity in the metal joint.
  • the side wall of the collimating lens is provided with a ring of fixed fixing ring structure, and the inner wall of the cavity is provided with a recessed fixing groove structure, and the fixing ring structure is matched and fixed to the fixing groove structure. internal.
  • the metal joint and the collimating lens are fixed in such a manner as to be directly fixed to the metal joint during the forming process of the collimating lens.
  • the metal joint and the collimating lens are fixed in such a manner that the fixed collimating lens is fixed in the cavity of the metal joint using the low temperature glass after the collimating lens is formed.
  • the metal joint and the collimating lens are fixed in such a manner that the fixed collimating lens is fixed in the cavity of the metal joint by using an adhesive after the collimating lens is formed.
  • the present invention further provides a method of fabricating an optical module optical interface assembly with an optical lens, wherein the manufacturing method comprises the following steps:
  • the molding material in the step (c), is heated to cure the molding material in the molding space of the connecting body to form the optical lens.
  • the method further comprises the steps of:
  • the carrier in the step (a.2), is subjected to a nitriding treatment to harden the surface of the carrier, thereby obtaining the connecting body.
  • the method further comprises the steps of:
  • the method further comprises the steps of:
  • the step (a.4) is preceded by the step (a.3), thereby first grinding the inner wall of the connecting body for forming the molding space, and then removing the connection A hardened layer of the end faces of the two ends of the body such that the carrier is exposed at both ends of the connecting body.
  • the connecting body in the step (a), is provided with at least one positioning groove, and in the step (c), the positioning is formed when the optical lens is formed. At least one positioning element of the slot to retain the optical lens in the molding space of the connecting body after the optical module optical interface assembly is formed.
  • the optical lens is a collimating lens.
  • the present invention further provides a method of fabricating an optical module optical interface assembly with an optical lens, wherein the manufacturing method comprises the following steps:
  • a glue is applied in a second holding groove of the optical lens, and after the optical lens is mounted in the molding space, a second of the optical lens a retaining groove corresponding to the first retaining groove of the connecting body such that a portion of the glue held by the second retaining groove of the optical lens flows to the first retaining groove of the connecting body, and the glue is formed after solidification A holding member held in the second holding groove of the optical lens and the first holding groove of the connecting body such that the optical lens is held in the molding space of the connecting body.
  • the second holding groove of the optical lens corresponds to the first of the connecting body Holding the groove while applying glue to the first holding groove of the connecting body and the second holding groove of the optical lens to form a second holding groove and the connection held by the optical lens after the glue is solidified
  • a retaining member of the first retaining groove of the body such that the optical lens is retained in the molding space of the connecting body.
  • Figure 1 is a schematic view of the structure of the present invention.
  • FIG. 2 is a perspective view of an optical module optical interface assembly with an optical lens according to another preferred embodiment of the present invention.
  • FIG. 3 is a perspective, cross-sectional view of the optical module optical interface assembly with an optical lens according to the above preferred embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing the optical module optical interface assembly with an optical lens according to the above preferred embodiment of the present invention.
  • 5A is a cross-sectional view showing the optical module optical interface assembly with an optical lens according to the above preferred embodiment of the present invention when applied to a transmitting end.
  • FIG. 5B is a cross-sectional view showing the optical module optical interface assembly with optical lens according to the above preferred embodiment of the present invention when applied to the receiving end.
  • FIG. 6 is a schematic view showing one of manufacturing steps of the optical module optical interface assembly with an optical lens according to the above preferred embodiment of the present invention, which illustrates a cross-sectional state of a connecting body.
  • Figure 7 is a schematic view showing the second manufacturing step of the optical module optical interface assembly with an optical lens according to the above preferred embodiment of the present invention, illustrating a state in which the connection body is hardened.
  • Fig. 8 is a view showing the third manufacturing step of the optical module optical interface unit with an optical lens according to the above preferred embodiment of the present invention, which illustrates a state in which the end portion of the connecting body is removed from the hardened layer.
  • FIG. 9 is a schematic view showing the fourth manufacturing step of the optical module optical interface assembly with an optical lens according to the above preferred embodiment of the present invention, which illustrates the formation of the optical lens in the molding space of the connecting body. status.
  • FIG. 10 is a schematic view showing a fifth manufacturing step of the optical module optical interface assembly with an optical lens according to the above preferred embodiment of the present invention, which illustrates the formation of the optical in the molding space of the connecting body. The lens is followed to obtain the state of the optical module optical interface assembly.
  • Figure 11 is a cross-sectional view showing a first modified embodiment of the optical module optical interface assembly with optical lens according to the above preferred embodiment of the present invention.
  • Figure 12 is a cross-sectional view showing a second modified embodiment of the optical module optical interface assembly with optical lens according to the above preferred embodiment of the present invention.
  • FIG. 13 is an optical module optical interface assembly with an optical lens according to the above preferred embodiment of the present invention.
  • Figure 14 is a cross-sectional view showing a fourth modified embodiment of the optical module optical interface assembly with optical lens according to the above preferred embodiment of the present invention.
  • Figure 15 is a cross-sectional view showing a fifth modified embodiment of the optical module optical interface assembly with optical lens according to the above preferred embodiment of the present invention.
  • An optical module optical interface assembly with a collimating lens includes a metal joint 1, and an optical sub-module 4 and an external optical fiber 5 coupled to both ends of the metal joint 1, the inner portion of the metal joint 1 being A collimator lens 2 is disposed in the cavity connecting the optical sub-module 4 and the external optical fiber 5, and the collimator lens 2 is fitted to the cavity in the metal joint 1.
  • a fixed ring structure 6 is arranged on the side wall of the collimating lens 2.
  • the inner wall of the cavity is provided with a recessed fixing groove structure, and the fixing ring structure is fitted and fixed inside the fixing groove structure.
  • the fixing manner between the metal joint 1 and the collimating lens 2 may be directly fixed to the metal joint 1 during the forming process of the collimating lens 2, or may be formed by using low-temperature glass or gluing after the forming of the collimating lens 2
  • the metal joint 1 is fixed to the collimator lens 2.
  • the invention does not need to provide a lens between the metal joint and the optical sub-module, and can also simplify the structure of the TO positioning ring 3; at the same time, in order to prevent the risk of the interlocking in the metal joint of the collimating lens, the metal joint and the fixing part of the collimating lens are fixed. ring.
  • the component can meet the requirements of the light emitting optical module and the light receiving optical module at the same time, and the collimating lens is not required between the optical interface component and the light source, and the collimating lens is directly installed inside the metal joint, thereby reducing the cost.
  • optical module optical interface assembly with an optical lens according to a preferred embodiment of the present invention is illustrated in the following description, wherein the optical lens is provided
  • the optical module optical interface assembly includes a connecting body 10 and an optical lens 20. It is worth mentioning that in this In the following description and description, the optical module optical interface assembly with optical lens is simplified into an optical module optical interface assembly for convenience of explanation and understanding, and those skilled in the art can understand that the optical belt is optical.
  • the optical module optical interface assembly of the lens is simplified to the optical module optical interface assembly and should not be construed as limiting the scope and scope of the present invention. That is, the optical module optical interface assembly includes the connection body 10 and the optical lens 20.
  • the connecting body 10 has an inner wall 11 for defining a molding space 12. That is, the connecting body 10 has the molding space 12 for molding the optical lens 20.
  • the optical lens 20 has a first end surface 21 and a second end surface 22, wherein the first end surface 21 and the second end surface 22 of the optical lens 20 correspond to each other.
  • first end face 21 and the second end face 22 of the optical lens 20 are both implemented as convex surfaces in FIG. 3, the features and advantages of the optical module optical interface assembly of the present invention are illustrated.
  • the embodiment of the first end face 21 and the second end face 22 of the optical lens 20 is not limited to a convex surface.
  • the first end face 21 and the second end face 22 of the optical lens 20 can be implemented as a flat or concave surface or other aspherical surface, respectively. Therefore, the types of the first end face 21 and the second end face 22 of the optical lens 20 are not limited in the optical module light receiving component of the present invention.
  • the optical lens 20 is molded and held in the molding space 12 of the connection body 10 to form the light module light receiving assembly, wherein the first end face 21 and the first end of the optical lens 20
  • the two end faces 22 respectively correspond to the two end portions of the connecting body 10, for example, the first end face 21 and the second end face 22 of the optical lens 20 are respectively directed toward both end portions of the connecting body 10.
  • the connecting body 10 further has a first connecting end 13 and a second connecting end 14, wherein the first connecting end 13 and the second connecting end 14 correspond to each other, and the connecting body 10
  • the inner wall 11 extends to both end portions of the connecting body 10 to be respectively connected to the first connecting end 13 and the second connecting end 14 respectively.
  • the connecting body 10 is connected to an optical sub-module 30 and an external optical fiber 40, wherein the optical lens 20 is protected after the connecting main body 10 is connected to the optical sub-module 30 and the external optical fiber 40. Holding between the optical sub-module 30 and the outer optical fiber 40, and the first end surface 21 of the optical lens 20 faces the optical sub-module 30, the second end surface 22 of the optical lens 20 Facing the outer optical fiber 40.
  • optical sub-module 30 is mounted on the first end portion 13 of the connecting body 10
  • the external optical fiber 40 is mounted on the second end portion 14 of the connecting body 10, by The connecting body 10 connects the optical sub-module 30 and the external optical fiber 40.
  • the end of the optical sub-module 30 is mounted to the connecting body 10 by being inserted into the interior of the connecting body 10 from the first end 13 of the connecting body 10.
  • the end of the outer optical fiber 40 is mounted to the connecting body 10 by being inserted into the interior of the connecting body 10 from the second end portion 14 of the connecting body 10, in such a manner
  • the optical sub-module 30, the optical lens 20 and the external optical fiber 40 are interacted inside the connecting body 10 to prevent external light or the like from interfering with the optical sub-module 30 and the optical lens 20
  • the interaction position with the external optical fiber 40 ensures and improves the optical fiber transmission capability.
  • the optical sub-module 30 when the end of the optical sub-module 30 is inserted from the first end portion 13 of the connecting body 10 into the interior of the connecting body 10 and the end of the external optical fiber 40 After the second end portion 14 of the connecting body 10 is inserted into the interior of the connecting body 10, the optical sub-module 30 and the first end surface 21 of the optical lens 20 maintain a predetermined distance, the outer portion The optical fiber 40 and the second end face 22 of the optical lens 20 are maintained at a predetermined distance. That is, the optical sub-module 30 is not in direct contact with the first end face 21 of the optical lens 20, and the outer optical fiber 40 is not in direct contact with the second end face 22 of the optical lens 20.
  • the inner wall 11 of the connecting body 10 defines a first receiving space 15 and a second receiving space 16 at the first end portion 13 and the second end portion 14, respectively. That is, the connecting body 10 is provided with the first receiving space 15 at the first end portion 13 and the second receiving space 16 at the second end portion 13.
  • the molding spaces 12 extend toward the first end portion 13 and the second end portion 14 of the connecting body 10 to communicate with the first receiving space 15 and the second receiving space 16, respectively.
  • the end of the optical sub-module 30 is mounted and held in the first receiving space 15 of the connecting body 10
  • the end of the external optical fiber 40 being mounted and held in the
  • the second receiving space 16 of the main body 10 is connected such that the optical sub-module 30 and the external optical fiber 40 are connected by the connecting body 10.
  • the optical sub-module 30 when the optical sub-module 30 is from the first end of the connecting body 10 13 is mounted on the first receiving space 15 and the external optical fiber 40 is mounted on the second receiving space 16 from the second end portion 14 of the connecting body 10, the optical sub-module 30
  • the central axis, the central axis of the optical lens 20, and the central axis of the outer optical fiber 40 coincide with each other to ensure optical fiber transmission capability.
  • the optical sub-module 30 is mounted from the first end portion 13 of the connecting body 10 to the first receiving space 15 and the outer optical fiber 40 from the second end of the connecting body 10 After being mounted in the second accommodation space 16, the central axis of the optical sub-module 30, the central axis of the optical lens 20, and the central axis of the external optical fiber 40 are overlapped with each other in the present invention. There are no restrictions on the optical module components of the optical module.
  • the optical sub-module 30 and the external light ray 40 are respectively mounted on the first accommodating space 15 and the second accommodating space 16 of the connecting body 10 to make the central axis and the optical sub-module 30
  • the central axes of the external light rays 40 respectively coincide with the central axis of the connecting body 10 such that the central axis of the optical sub-module 30, the central axis of the optical lens 20, and the central axis of the external optical fiber 40 are mutually coincide.
  • the central axis of the optical lens 20 and the central axis of the connecting body 10 coincide with each other
  • the optical sub-module 30 and the external light ray 40 are respectively mounted on the first accommodating space 15 and the second accommodating space 16 of the connecting body 10
  • the central axis of the optical sub-module 30 can be directly directly directly
  • the central axis of the external light 40 and the central axis of the optical lens 20 respectively coincide with each other.
  • the inner wall 11 of the connecting body 10 may be a complete surface, that is, the first receiving space 15 of the connecting body 10.
  • the inner diameter of the molding space 12 and the second accommodation space 16 are the same.
  • the inner wall 11 of the connecting body 10 further includes a first inner wall 111, a second inner wall 112, and a third inner wall 113.
  • a first inner wall 111 is located at the first end portion 13 of the connecting body 10 for defining the first receiving space 15, and the third end portion 113 is located at the second end of the link body 10. 14 for defining the molding space 12 and the second accommodation space 15, wherein the second inner wall 112 is coupled to the first inner wall 111 and the third inner wall 113, respectively.
  • the first inner wall 111 and the The second inner walls 112 may be perpendicular to each other, and the second inner wall 112 and the third inner wall 113 may be perpendicular to each other, with reference to FIG.
  • the inner diameter of the molding space 12 and the second accommodation space 16 defined by the third inner wall 113 are identical in FIG. 3, in other examples, the molding space 12 And the second accommodating space 16 may also be formed by inner walls having different inner diameters, that is, the inner diameters of the molding space 12 and the second accommodating space 16 are inconsistent, and the light module light receiving assembly of the present invention is in this respect Unlimited.
  • the optical lens 20 has a peripheral wall 23, wherein the peripheral wall 23 extends toward the first end surface 21 and the second end surface 22 of the optical lens 20, respectively, to be connected to the first An end face 21 and an edge of the second end face 22.
  • the optical lens 20 and the connecting body 10 can make the optical by bonding the peripheral wall 23 of the optical lens 20 and the inner wall 11 of the connecting body 10 together.
  • the lens 20 is fitted to the inner wall 11 of the connecting body 10 such that the relative position of the optical lens 20 and the connecting body 10 does not change when the optical module optical interface assembly is transported and mounted, In particular, the optical lens 20 does not perform radial movement with respect to the connecting body 10, in such a manner that the central axis of the optical lens 20 and the central axis of the connecting body 10 coincide with each other.
  • the inner wall 11 of the connecting body 10 is provided with at least one positioning groove 114, wherein each of the positioning grooves 114 is respectively communicated with the molding space 12, the peripheral wall of the optical lens 20. 23 is provided with at least one positioning element 24, wherein each of the positioning elements 24 of the optical lens 20 is formed in the same manner as the optical lens 20 is formed in the molding space 12 of the connecting body 10
  • Each of the positioning grooves 114 of the connecting body 10 is arranged such that the positioning member 24 is positioned in the positioning groove 114, so that the optical lens 20 is held in the molding space of the connecting body 10. 12.
  • each of the positioning elements 24 of the optical lens 20 and each of the positioning grooves 114 of the connecting body 10 can cooperate with each other to prevent the optical lens 20 from being opposite to the The axial movement of the main body 10 is connected to ensure the accuracy of the optical module optical interface assembly.
  • each of the positioning slots 114 of the connecting body 10 when the number of the positioning slots 114 of the connecting body 10 is implemented as a plurality, each of the positioning slots 114 may be disposed at the inner wall 11 at a distance from each other. . Preferably, the distance between any two of the positioning slots 114 is equal.
  • the number, position and size of the positioning elements 24 of the optical lens 20 and the number, position and size of each of the positioning grooves 114 of the connecting body 10 match each other.
  • the number of the positioning slots 114 of the connecting body 10 may be implemented as one, and the positioning slots 114 are preferably implemented as a ring, ie,
  • the connecting body 10 has an annular positioning groove 114.
  • the number of said positioning elements 24 of the optical lens 20 is also embodied as one, and the positioning element 24 is preferably embodied as a ring, i.e. the optical lens 20 has an annular positioning element 24.
  • the optical lens 20 may be provided with the positioning slot 114, and the inner wall 11 of the connecting body 10 is provided with Positioning element 24 such that the optical module optical interface assembly is formed such that the positioning element 24 of the connecting body 10 is positioned in the positioning groove 114 of the optical lens 20 And held in the molding space 12 of the connecting body 10.
  • the optical module optical interface assembly further includes an optical interface unit 50 and a holding arm unit 60.
  • the optical interface unit 50 includes a tubular interface member 51 and the optical lens 20, wherein the interface member 51 forms the molding space 12, and the optical lens 20 is mounted by being mounted in the molding space 12. It is held inside the interface element 51.
  • the retaining arm unit 60 includes a tubular first retaining arm 61 and a tubular second retaining arm 62, wherein the first retaining arm 61 and the second retaining arm 62 extend from the interface member 51, respectively. Two ends, wherein the first holding arm 61 forms the first receiving space 15 for accommodating the optical sub-module 30, and the second holding arm 62 forms the second receiving space 16 for accommodating The external optical fiber 40 is described.
  • the first holding arm 61 surrounds the optical sub-time. Module 30 Around the end.
  • the first holding arm 61 further has at least one fixed passage, wherein each of the fixed passages communicates with the first receiving space 15 and an external environment of the connecting body 10, respectively, when the optical sub-module
  • the optical sub-module 30 can be externally disposed outside the first holding arm 61 through each of the fixed passages
  • the first holding arm 61 is fixed together to prevent the optical sub-module 30 from moving relative to the connecting body 10 to ensure the reliability of the optical module optical interface assembly when it is used.
  • the fixed passage of the first holding arm 61 may be a laser welding passage to allow laser welding to be mounted on the outside of the connecting body 10 through the fixed passage.
  • the end of the optical sub-module 30 of the space 15 and the first holding arm 61 are fixed together.
  • the second holding arm 62 surrounds the end of the outer optical fiber 40 Around.
  • the optical lens 20 is implemented as a collimating lens in the optical module optical interface assembly of the present invention such that light can be collimated corrected when passing through the optical lens 20, in such a manner
  • the accuracy of the optical module optical interface component and the reliability of the optical module optical interface component when used are improved.
  • the connecting body 10 further includes a carrier 110 and a hardened layer 120, wherein the carrier 110 is tubular, and the hardened layer 120 is formed on the surface of the carrier 110, that is, The inner wall 11 of the connecting body 10 is also formed by the hardened layer 120. In this way, the precision of the optical module optical interface assembly can be improved.
  • the optical sub-module 30 and the external optical fiber 40 are respectively mounted to the first accommodation space 15 and the second accommodation space 16 of the connection body 10, the optical sub-module 30 and the exterior The optical fibers 40 are respectively in contact with the hardened layer 120 of the connecting body 10, in such a manner that the central axis of the optical sub-module 30, the central axis of the optical lens 20, and the external optical fiber 40 can be ensured on the one hand.
  • the central axis coincides, and on the other hand, when the optical sub-module 30 and the outer optical fiber 40 are mounted to the first accommodating space 15 and the second accommodating space 16 multiple times and from the first When the accommodating space 15 and the second accommodating space 16 are red detached, the optical sub-module 30 and the external optical fiber 40 repeatedly contact and rub with the hardened layer 120, respectively, without causing wear on the hardened layer 120. In order to ensure accuracy after the optical module optical interface assembly is repeatedly used.
  • the carrier 110 and the hardened layer of the connecting body 10 The 120 is formed of a different material, for example, the carrier 110 may be formed first, and then the hardened layer 120 may be formed on the inner wall of the carrier 110.
  • the carrier 110 and the hardened layer 120 of the connecting body 10 may also be formed of the same material, for example, the carrier 110 may be formed first, and then the process is performed by a nitriding process or the like.
  • the inner wall of the carrier 110 is hardened to form the hardened layer 120.
  • the material of the carrier 110 of the connecting body 10 is not limited.
  • the carrier 110 may be a metal member, that is, the connecting body 10 may form the first disclosed in FIG. 1 of the present invention.
  • the carrier 110 of the connecting body 10 may be made of a stainless steel material, in such a manner that the connecting body 10 can be easily mounted to use the optical module optical interface assembly of the present invention.
  • the carrier 110 of the connecting body 10 can also be made of other materials, such as an alloy material or a polymer material.
  • the optical module optical interface assembly is implemented as an example of a transmitting end and a receiving end, that is, the optical module optical interface assembly of the present invention can not only It is applied to the transmitting end, and can be applied to the receiving end. Therefore, when the optical module optical interface component is installed, it is not necessary to distinguish the types of the optical module optical interface components for use.
  • the optical module optical interface assembly when the optical module optical interface assembly is implemented as a transmitting end, light generated by the optical sub-module 30 can be performed by the optical lens 20 when passing through the optical lens 20. Optical alignment correction is provided to enable light passing through the optical lens 20 to enter and be transmitted by the external optical fiber 40.
  • FIG. 5B when the optical module optical interface assembly is implemented as a receiving end, light transmitted by the external optical fiber 40 can be optically aligned corrected by the optical lens 20 as it passes through the optical lens 20. So that light passing through the optical lens 20 can be received by the optical sub-module 30. That is, regardless of the optical module optical interface assembly being implemented as a transmitting end and as a receiving end, the optical lens 20 is capable of optically collimating the light passing through the optical lens 20 to ensure optical fiber. Transmission capacity.
  • FIG. 6 to FIG. 10 of the accompanying drawings of the present invention are schematic diagrams showing the manufacturing process of the optical module optical interface assembly according to the above preferred embodiment of the present invention.
  • the present invention may first provide the connecting body 10 and a molding material 80 for forming the optical lens 20.
  • the carrier 110 is first provided in a tubular shape, for example, the carrier 110 can be passed through a note
  • the plastic form is formed and can also be milled by a milling machine, and the invention is not limited in this respect.
  • the carrier 110 is provided with at least one of the positioning slots 114.
  • the surface of the carrier 110 is hardened again.
  • the hardened layer 120 can be formed on the surface of the carrier 110 by nitriding the surface of the carrier 110. In this way, the The hardness of the surface of the connecting body 10, in particular, the hardness of the inner wall 11 of the connecting body 10 can be increased, thereby forming the optical lens 20 in the molding space 12 of the connecting body 10.
  • the optical module optical interface component can ensure the accuracy of the optical module optical interface component. Then, the first end portion 13 of the connecting body 10 and the hardened layer 120 of the second end portion 14 are removed, for example, the joint body 10 can be removed by cutting or grinding or the like. The hardened layer 120 of the first end portion 13 and the second end portion 14 such that the carrier 110 is exposed at the first end portion 13 and the second end portion 14 of the connecting body 10, It is thereby facilitated to mount the connecting body 10 through the first end portion 13 and the second end portion 14.
  • the inner wall 11 of the connecting body 10 can also be ground to further improve the accuracy of the optical module optical interface assembly.
  • the molding material 80 is added to the molding space 12 of the connection body 10, and then at the first end portion 13 and the second portion of the connection body 10, respectively.
  • the end portion 14 forms the optical lens 20 in the molding space 12 of the connecting body 10 by a first molding jig 91 and a second molding jig 92, respectively.
  • the shape of the molding surface 93 of the first molding jig 91 and the second molding jig 92 determines the shape of the first end surface 21 and the second end surface 22 of the optical lens 20.
  • the first end portion 13 and the second end portion 14 of the connecting body 10 are respectively pressed by the first molding jig 91 and the second molding jig 92.
  • the material 80 may also be heated to cause the optical lens 20 to be in the connection body 10 by a process of hot pressing by the first molding jig 91 and the second molding jig 92.
  • the molding space 12 is molded to form the optical module optical interface assembly. It is worth mentioning that when the optical lens 20 is formed in the molding space 12 of the connecting body 10 by the first molding jig 91 and the second molding jig 92, the The molding space 12 of the connecting body 10 is placed into a molding die 90 composed of the first molding jig 91 and the second molding jig 92 as a reference to further improve the precision of the optical module optical interface assembly. .
  • the molding die 90 has a first molding jig 91 and one of the second moldings.
  • Figure 12 shows a variant embodiment of the optical module optical interface assembly of the present invention, wherein the inner wall 11 of the connecting body 10 is provided with at least one first retaining slot 115, each of the first retaining The groove 115 is respectively connected to the molding space 12, and the peripheral wall 23 of the optical lens 20 is provided with at least one second holding groove 231, wherein the optical module optical interface assembly further comprises at least one holding member 70, wherein At least one of the second holding grooves 231 of the optical lens 20 and at least one of the first holding grooves 115 of the connecting body 10 when the optical lens 20 is mounted on the molding space 12 of the connecting body 10.
  • the holding member 70 is simultaneously held in the first holding groove 115 of the connecting body 10 and the second holding groove 231 of the optical lens 20, in such a manner that the optical can be made
  • the lens 20 is held in the molding space 12 of the connection body 10.
  • the optical lens 20 is not formed in the molding space 12 of the connection body 10, but is provided separately in the connection body After the optical lens 20 is 10 and the optical lens 20 is attached to the molding space 12 of the connecting body 10.
  • each of the second holding grooves 231 and the connecting body 10 of the optical lens 20 correspond to each other.
  • the retaining member 70 can be formed by glue curing.
  • the glue in a fluid state may be first applied to each of the second holding slots 231 of the optical lens 20, for example, Applying the glue to each of the second holding grooves 231 of the optical lens 20 by a dispenser, and then mounting the optical lens 20 to the molding space 12 of the connecting body 10 so that Each of the second holding grooves 231 of each of the optical lenses 20 and each of the first holding grooves 115 of the connecting body 10 correspond to each other such that each of the optical lenses 20 is located a portion of the glue of the two holding grooves 231 can flow to each of the first holding grooves 115 of the connecting body 10, and subsequently, after the glue is cured, the first portion that is simultaneously held at the connecting body 10 is formed.
  • the holding member 70 of the groove 115 and the second holding groove 231 of the optical lens 20 is held to fix the optical lens 20 and the connecting body 10.
  • the glue may be applied to the first holding groove 115 of the connecting body 10 first, and then after the optical lens 20 is mounted on the molding space 12 of the connecting body 10, The glue located in the first holding groove 115 of the connecting body 10 A portion of the flow flows to the second holding groove 231 of the optical lens 20.
  • the manner in which the glue is solidified in the first holding groove 115 of the connecting body 10 and the second holding groove 115 of the optical lens 20 is not limited, for example, heat curing or cooling can be performed. Curing or the like, which is determined according to the type of the glue selected.
  • the substance used to form the holding member 70 may not be the glue, as long as it can be in a stable solid form after curing.
  • Figure 13 shows a variant embodiment of the optical module optical interface assembly of the present invention, wherein the first retaining groove 115 of the connecting body 10 is formed on the second inner wall 12 and the third inner wall a junction of 113 such that the first holding groove 115 is in communication with the first receiving space 15, wherein the second holding groove 231 of the optical lens 20 is formed on the peripheral wall 23 and the first end face 21 connection.
  • the first holding groove 115 of the connection body 10 and the second holding groove 231 of the optical lens 20 are mutually Correspondingly and in communication with the first receiving space 15 , the glue can be applied to the first holding groove 115 of the connecting body 10 and the optical lens 20 through the first receiving space 15
  • the second holding groove 231 is formed to be formed while being held by the first holding groove 115 of the connecting body 10 and the second holding groove 231 of the optical lens 20 after the glue is solidified.
  • the holding member 70 is fixed to fix the optical lens 20 and the connecting body 10 to produce the optical module optical interface assembly.
  • Figure 14 illustrates another variant embodiment of the optical module optical interface assembly of the present invention, wherein the retaining member 70 can extend integrally to the first end face 21 of the optical lens 20, When the optical lens 20 is mounted on the molding space 12 of the connecting body 10, the holding member 70 is held in the first holding groove 115 of the connecting body 10 to fix the optical lens 20 and the The main body 10 is connected to fabricate the optical module optical interface assembly.
  • Figure 15 shows another variant embodiment of the optical module optical interface assembly of the present invention, wherein the retaining member 70 may extend integrally to the inner wall of the connecting body 10 such that the optical lens 20 is When the molding space 12 of the connecting body 10 is mounted, the holding member 70 is held in the second holding groove 231 of the optical lens 20 to fix the optical lens 20 and the connecting body 10 To produce the optical module optical interface assembly.
  • the present invention further provides a method of fabricating an optical module optical interface assembly with an optical lens, wherein the manufacturing method comprises the following steps:
  • a molding material 80 is added to the molding space 12 of the connecting body 10;
  • the present invention further provides a method of fabricating an optical module optical interface assembly with an optical lens, wherein the manufacturing method comprises the following steps:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种带准直透镜的光模块光接口组件及其制造方法。光模块光接口组件包括一光学透镜(20)和一连接主体(10)。光学透镜(20)具有相互对应的第一端面(21)和第二端面(22),连接主体(10)具有一成型空间(12),光学透镜(20)被保持在成型空间(12)。连接主体(10)具有安装光学次模块(30)的端部和安装外部光纤(40)的端部,光学透镜(20)的第一端面(21)朝向光学次模块(30)的端部,第二端面(22)朝向外部光纤(40)的端部。光学透镜(20)被成型于或安装于连接主体(10)的成型空间(12)。还提供了光模块光接口组件的制造方法。

Description

带光学透镜的光模块光接口组件及其制造方法 技术领域
本发明属于光通信技术领域,更具体地说涉及一种带光学透镜的光模块光接口组件及其制造方法。
背景技术
光模块光接口组件无论是光发射光接口组件,还是光接收光接口组件,都包括金属接头、以及与金属接头两端耦合连接的光学次模块和外部光纤,并通过TO定位环固定光学次模块。为了提高和保证光源效率,通常会在金属接头和光源之间设置准直透镜,并且一般设计会将准直透镜安装在TO定位环靠近金属接头一端。光发射光路的设计一般是光源-透镜-陶瓷插芯内光纤-外部光纤,要经过3次光路的对准耦合;光接收光路的设计一般是外部光纤-透镜-光源,要经过2次的对准耦合,耦合对准的工艺复杂成本比较高,同时由于光发射与光接收采用不同的结构,导致物料管理成本增加。
现有的该光模块光接口组件具有诸多的缺陷。首先,现有的被应用于发射端和被应用于接收端的该光模块光接口组件的结构和类型均不相同,这导致该光模块光接口组件的制造成本无法被有效地降低,且导致该光模块光接口组件的管理难度被增加。再次,由于被应用于发射端的该光模块光接口组件的原理是“光源-透镜-陶瓷插芯内光纤-外部光纤”,因此,在制造被应用于发射端的该光模块光接口组件时需要对组成该光模块光接口组件的各个部件进行3次光路的对准耦合;相应地,由于被应用于接收端的该光模块光接口组件的原理是“外部光纤-透镜-光源”,因此,在制造被应用于接收端的该光模块光接口组件时需要对组成该光模块光接口组件的各个部件进行2次光路的对准耦合,这不仅导致该光模块光接口组件的制造工序被增加和导致该光模块光接口组件的制造成本增加,而且由于该光模块光接口组件在被制造的过程中需要进行多次光路的对准耦合,导致该光模块光接口组件的产品良率较低且可靠性较差。另外,现有的该光模块光接口组件需要使用到陶瓷插芯内光纤,这不仅因增加了该光模块光接口组件的零部件而导致该光模块光接口组件的制造工序增加和导致该光模块光接口组件的制 造成本增加,而且在制造该光模块光接口组件的过程中,陶瓷插芯内光纤很容易损坏,从而严重地制约了该光模块光接口组件的生产效率。最后,现有的该光模块光接口组件的金属接头、陶瓷插芯和透镜等各个部件是在分别被制作完成后再组装在一起的,这导致现有的该光模块光接口组件的精度不高,不能够满足对光纤传输能力要求较高的环境中使用。
发明内容
本发明提出了一种带光学透镜的光模块光接口组件,对光模块光组件的光路结构进行完全不同的设计,采用统一的结构设计满足光发射和光接收两种光模块的需求。光发射的光路结构为光源-透镜-外部光纤,光接收的光路设计为外部光纤-透镜-光源,大大简化组件结构,同时对于光发射模块去掉陶瓷插芯而大幅度降低组件成本。
本发明具体是通过以下技术方案来实现的:
一种带光学透镜的光模块光接口组件,包括金属接头、以及与金属接头两端耦合连接的光学次模块和外部光纤,所述金属接头的内部处于连接光学次模块和外部光纤的腔体内设有准直透镜,所述准直透镜吻合于金属接头内的腔体。
优选地,所述准直透镜侧壁设置一圈凸起的固定环结构,所述腔体内壁设有一圈凹陷的固定槽结构,所述固定环结构吻合安装于固定槽结构内部。
优选地,所述金属接头与准直透镜之间的固定方式为:在准直透镜成型过程中直接与金属接头固定。
优选地,所述金属接头与准直透镜之间的固定方式为:在准直透镜成型后使用低温玻璃将固定准直透镜固定在金属接头的腔体内。
优选地,所述金属接头与准直透镜之间的固定方式为:在准直透镜成型后使用粘胶剂将固定准直透镜固定在金属接头的腔体内。
本发明产生的有益效果为:本发明金属接头与光学次模块之间不需要再设置透镜,也可以简化TO定位环的结构;同时为了预防准直透镜的金属接头内串动的风险,金属接头与准直透镜固定部位设计固定环。该组件可以同时满足光发射光模块和光接收光模块的使用要求,降低了成本。
本发明的一个优势在于提供一带光学透镜的光模块光接口组件及其制造方法,其中所述光模块光接口组件可以不需要所述TO定位环,以简化所述光模块光接口组件的精度和便于安装所述光模块光接口组件。
本发明的一个优势在于提供一带光学透镜的光模块光接口组件及其制造方法,其中所述光模块光接口组件不仅能够被应用于发射端,而且能够被应用于接收端,从而,在安装所述光模块光接口组件时,不需要对所述光模块光接口组件的类型进行区分,以便于安装、使用和维护。
本发明的一个优势在于提供一带光学透镜的光模块光接口组件及其制造方法,其中所述光模块光接口组件能够提高和保证光纤传输能力。
本发明的一个优势在于提供一带光学透镜的光模块光接口组件及其制造方法,其中所述光模块光接口组件提供一连接主体和一光学透镜,所述连接主体具有一成型空间,以供成型所述光学透镜。
本发明的一个优势在于提供一带光学透镜的光模块光接口组件及其制造方法,其中所述连接主体的两个端部分别供被安装和被保持一光学次模块和一外部光纤,以使所述光学透镜被保持在所述光学次模块和所述外部光纤之间。
本发明的一个优势在于提供一带光学透镜的光模块光接口组件及其制造方法,其中所述连接主体提供一第一容纳空间和一第二容纳空间,所述成型空间分别向所述连接主体的两个端部延伸,以分别连通于所述第一容纳空间和所述第二容纳空间,其中所述光学次模块能够被保持在所述第一容纳空间,所述外部光纤能够被保持在所述第二容纳空间。
本发明的一个优势在于提供一带光学透镜的光模块光接口组件及其制造方法,其中所述连接主体能够使所述光学透镜被稳定地保持在所述光学次模块和所述外部光纤之间,并且避免外部光线等污染物干扰所述外部光纤、所述光学透镜和所述光学次模块的互动位置。
本发明的一个优势在于提供一带光学透镜的光模块光接口组件及其制造方法,其中所述连接主体的表面的至少一部分被硬化处理,例如所述连接主体具有一个被硬化的内壁,以通过大幅度地提高所述连接主体的内壁的硬度,以保证所述连接主体和由所述连接主体形成的所述光模块光接口组件的精度。例如,所述连接主体在被制成后可以进一步被进行氮化处理,以提高所述连接主体的内壁的硬度。
本发明的一个优势在于提供一带光学透镜的光模块光接口组件及其制造方法,其中所述连接主体具有至少一定位槽,所述光学透镜的周壁具有至少一定位元件,所述光学透镜的每个所述定位元件分别被定位在所述连接主体的每个所述 定位槽,以使所述光学透镜被保持在所述连接主体的所述成型空间。
本发明的一个优势在于提供一带光学透镜的光模块光接口组件及其制造方法,其中所述连接主体的所述定位槽可以呈环状,所述光学透镜的所述定位元件也可以呈环状,以在所述光学透镜的所述定位元件被定位于所述连接主体的所述定位槽后,所述光学透镜被保持在所述连接主体的所述成型空间。
本发明的一个优势在于提供一带光学透镜的光模块光接口组件及其制造方法,其中所述制造方法可以在所述连接主体的所述成型空间内形成所述光学透镜,以制得所述光模块光接口组件。
本发明的一个优势在于提供一带光学透镜的光模块光接口组件及其制造方法,其中所述连接主体是金属件,例如所述连接主体可以由不锈钢材料制得,以便于在后续通过所述连接主体将所述光模块光接口组件安装。
依本发明的一个方面,本发明提供一带光学透镜的光模块光接口组件,其包括:
一光学透镜,其中所述光学透镜具有一第一端面和一第二端面,所述第一端面和所述第二端面相互对应;和
一连接主体,其中所述连接主体具有一成型空间,所述光学透镜被保持在所述成型空间,其中所述连接主体供被安装一光学次模块的端部和一外部光纤的端部,所述光学透镜的所述第一端面朝向所述光学次模块的端部,和所述第二端面朝向所述外部光纤的端部。
根据本发明的一个实施例,所述光学透镜被成型于所述连接主体的所述成型空间。
根据本发明的一个实施例,所述连接主体具有至少一定位槽,至少一个所述定位槽分别连通于所述成型空间,所述光学透镜具有至少一定位元件,其中所述光学透镜的至少一个所述定位元件被定位于所述连接主体的至少一个所述定位槽。
根据本发明的一个实施例,所述光学透镜的每个所述定位元件分别被定位于所述连接主体的每个所述定位槽。
根据本发明的一个实施例,所述光学透镜具有一个所述定位元件,所述连接主体具有一个所述定位槽,所述光学透镜的所述定位元件被定位于所述连接主体的所述定位槽。
根据本发明的一个实施例,所述光学透镜的所述定位元件呈环形,所述连接主体的所述定位槽呈环形,所述光学透镜的环形的所述定位元件被定位于所述连接主体的环形的所述定位槽。
根据本发明的一个实施例,所述连接主体具有至少一定位元件,至少一个所述定位元件分别位于所述成型空间内,其中所述光学透镜具有至少一定位槽,其中所述连接主体的至少一个所述定位元件被定位于所述光学透镜的至少一个所述定位槽。
根据本发明的一个实施例,所述连接主体的每个所述定位元件分别被定位于所述光学透镜的至少一个所述定位槽。
根据本发明的一个实施例,所述连接主体具有一个所述定位元件,所述光学透镜具有一个所述定位槽,其中所述连接主体的所述定位元件被定位于所述光学透镜的所述定位槽。
根据本发明的一个实施例,所述连接主体的所述定位元件呈环形,所述光学透镜的所述定位槽呈环形,所述连接主体的环形的所述定位元件被定位于所述光学透镜的环形的所述定位槽。
根据本发明的一个实施例,所述光学透镜的所述定位元件通过成型于所述连接主体的所述定位槽的方式,使所述光学透镜的所述定位元件被定位于所述连接主体的所述定位槽。
根据本发明的一个实施例,所述光学透镜通过在对应于所述连接主体的所述定位元件的位置形成所述定位槽的方式,使所述连接主体的所述定位元件被定位于所述光学透镜的所述定位槽。
根据本发明的一个实施例,所述光学透镜被安装于所述连接主体的所述成型空间。
根据本发明的一个实施例,所述光模块光接口组件进一步包括至少一保持元件,其中所述连接主体设有至少一第一保持槽,至少一个所述第一保持槽连通于所述成型空间,所述光学透镜设有至少一个第二保持槽,其中所述光学透镜的至少一个所述第二保持槽对应于所述连接主体的至少一个所述第一保持槽,所述保持元件被同时形成于所述第一保持槽和所述第二保持槽,以使所述光学透镜被安装于所述连接主体的所述成型空间。
根据本发明的一个实施例,所述光学透镜的每个所述第二保持槽和所述连接主体的每个所述第一保持槽分别对应,每个所述保持元件分别被同时形成于每个所述第一保持槽和每个所述第二保持槽。
根据本发明的一个实施例,所述连接主体设有一个所述第一保持槽,所述光学透镜设有一个所述第二保持槽。
根据本发明的一个实施例,所述连接主体的所述第一保持槽呈环形,所述光学透镜的所述第二保持槽呈环形,其中所述保持元件被同时形成于所述第一保持槽的一部分和所述第二保持槽的一部分。
根据本发明的一个实施例,所述第二保持槽设于所述光学透镜的中部。
根据本发明的一个实施例,所述第二保持槽设于所述光学透镜的所述第一端面。
根据本发明的一个实施例,所述第二保持槽设于所述光学透镜的所述第二端面。
根据本发明的一个实施例,所述保持元件由胶水固化后形成。
根据本发明的一个实施例,所述连接主体设有一第一保持槽,所述第一保持槽连通于所述成型空间,所述光学透镜设有一保持元件,其中所述保持元件被保持在所述第一保持槽,从而使得所述光学透镜被安装于所述连接主体的所述成型空间。
根据本发明的一个实施例,所述保持元件一体地延伸于所述光学透镜的所述第一端面。
根据本发明的一个实施例,所述保持元件一体地延伸于所述光学透镜的所述第二端面。
根据本发明的一个实施例,所述连接主体设有一保持元件,所述保持元件位于所述成型空间,所述光学透镜设有一第二保持槽,其中所述保持元件被保持在所述第二保持槽,从而使得所述光学透镜被安装于所述连接主体的所述成型空间。
根据本发明的一个实施例,所述第二保持槽形成于所述光学透镜的所述第一端面。
根据本发明的一个实施例,所述第二保持槽形成于所述光学透镜的所述第二端面。
根据本发明的一个实施例,所述光学透镜是一准直透镜。
根据本发明的一个实施例,所述光学次模块的端部和所述外部光纤的端部分别以插入到所述连接主体的内部的方式与所述连接主体的两个端部连接,从而使得所述光学次模块、所述光学透镜和所述外部光纤在所述连接主体的内部互动。
根据本发明的一个实施例,所述连接主体具有一第一容纳空间和一第二容纳空间,所述成型空间分别连通所述第一容纳空间和所述第二容纳空间,其中所述光学次模块的端部被安装于所述连接主体的所述第一容纳空间,所述外部光纤的端部被安装于所述连接主体的所述第二容纳空间。
根据本发明的一个实施例,所述连接主体的两端分别形成一筒状的第一保持臂和一筒状的第二保持臂,所述第一保持臂形成所述第一容纳空间,所述第二保持臂形成所述第二容纳空间,其中当所述光学次模块的端部被安装于所述第一容纳空间时,所述第一保持臂环绕在所述光学次模块的端部,当所述外部光纤的端部被安装于所述第二容纳空间时,所述第二保持臂环绕在所述外部光纤的端部。
根据本发明的一个实施例,所述连接主体包括一筒状的载体和一硬化层,所述硬化层至少形成在所述载体的内表面,以藉由所述硬化层形成所述连接主体的内壁,其中所述连接主体的内壁界定所述第一容纳空间、所述成型空间和所述第二容纳空间。
根据本发明的一个实施例,所述连接主体的所述载体的材料选自合金材料、金属材料、非金属材料以及金属材料和非金属材料的混合物组成的材料组。
依本发明的另一个方面,本发明进一步提供一带光学透镜的光模块光接口组件,其包括:
一光接口单元,其中所述光接口单元包括一筒状的接口元件和被设置于所述接口元件的内部的一光学透镜;和
一保持臂单元,其中所述保持臂单元包括一筒状的第一保持臂和一筒状的一第二保持臂,其中所述第一保持臂和所述第二保持臂分别一体地延伸于所述接口元件的两个端部,其中所述第一保持臂形成一第一容纳空间,所述第二保持臂形成一第二容纳空间,其中所述光学透镜的第一端面和第二端面分别通过所述第一容纳空间和所述第二容纳空间与外界环境连通。
根据本发明的一个实施例,所述光学透镜是一准直透镜。
依本发明的另一个方面,本发明进一步提供一种带准直透镜的光模块光接口组件,包括金属接头、以及与金属接头两端耦合连接的光学次模块和外部光纤,其中所述金属接头的内部处于连接光学次模块和外部光纤的腔体内设有准直透镜,所述准直透镜吻合于金属接头内的腔体。
根据本发明的一个实施例,所述准直透镜侧壁设置一圈凸起的固定环结构,所述腔体内壁设有一圈凹陷的固定槽结构,所述固定环结构吻合安装于固定槽结构内部。
根据本发明的一个实施例,所述金属接头与准直透镜之间的固定方式为:在准直透镜成型过程中直接与金属接头固定。
根据本发明的一个实施例,所述金属接头与准直透镜之间的固定方式为:在准直透镜成型后使用低温玻璃将固定准直透镜固定在金属接头的腔体内。
根据本发明的一个实施例,所述金属接头与准直透镜之间的固定方式为:在准直透镜成型后使用粘胶剂将固定准直透镜固定在金属接头的腔体内。
依本发明的另一个方面,本发明进一步提供一带光学透镜的光模块光接口组件的制造方法,其中所述制造方法包括如下步骤:
(a)提供具有一成型空间的一连接主体;
(b)将一成型材料加入到所述连接主体的所述成型空间;
(c)施压于所述成型材料以使所述成型材料在所述连接主体的所述成型空间内固化而形成一光学透镜,从而制得所述光模块光接口组件。
根据本发明的一个实施例,在所述步骤(c)中,加热所述成型材料以使所述成型材料在所述连接主体的所述成型空间内固化而形成所述光学透镜。
根据本发明的一个实施例,在所述步骤(a)中,进一步包括步骤:
(a.1)提供一筒状的载体;和
(a.2)硬化所述载体的表面,以得到所述连接主体。
根据本发明的一个实施例,在所述步骤(a.2)中,对所述载体进行氮化处理,以使所述载体的表面硬化,从而得到所述连接主体。
根据本发明的一个实施例,在所述步骤(a.2)之后,进一步包括步骤:
(a.3)去除所述连接主体的两个端部的端面的硬化层,以使所述载体在所述连接主体的两个端部裸露。
根据本发明的一个实施例,在所述步骤(a.2)之后,进一步包括步骤:
(a.4)研磨所述连接主体的用于形成所述成型空间的内壁。
根据本发明的一个实施例,所述步骤(a.4)在所述步骤(a.3)之前,从而首先研磨所述连接主体的用于形成所述成型空间的内壁,然后去除所述连接主体的两个端部的端面的硬化层,以使所述载体在所述连接主体的两个端部裸露。
根据本发明的一个实施例,在所述步骤(a)中,所述连接主体设有至少一定位槽,并且在所述步骤(c)中,当所述光学透镜成型时形成位于所述定位槽的至少一定位元件,以在所述光模块光接口组件成型后使所述光学透镜被保持在所述连接主体的所述成型空间。
根据本发明的一个实施例,所述光学透镜是一准直透镜。
依本发明的另一个方面,本发明进一步提供一带光学透镜的光模块光接口组件的制造方法,其中所述制造方法包括如下步骤:
(A)提供具有一成型空间的一连接主体;
(B)提供一光学透镜;以及
(C)将所述光学透镜安装于所述连接主体的所述成型空间,以制得所述光模块光接口组件。
根据本发明的一个实施例,在上述方法中,首先在所述光学透镜的第二保持槽内施凃胶水,在将所述光学透镜安装于所述成型空间后,所述光学透镜的第二保持槽对应于所述连接主体的第一保持槽,以使被保持在所述光学透镜的第二保持槽的胶水的一部分流动至所述连接主体的第一保持槽,并且胶水在固化后形成被保持在所述光学透镜的第二保持槽和所述连接主体的第一保持槽的一保持元件,以使所述光学透镜被保持在所述连接主体的所述成型空间。
根据本发明的一个实施例,在上述方法中,在所述光学透镜被安装于所述连接主体的所述成型空间后,所述光学透镜的第二保持槽对应于所述连接主体的第一保持槽,同时向所述连接主体的第一保持槽和所述光学透镜的第二保持槽施凃胶水,以在胶水固化后形成被保持在所述光学透镜的第二保持槽和所述连接主体的第一保持槽的一保持元件,以使所述光学透镜被保持在所述连接主体的所述成型空间。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的 附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图。
图2是依本发明的另一较佳实施例的一带光学透镜的光模块光接口组件的立体示意图。
图3是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件的立体剖视示意图。
图4是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件被应用时的剖视示意图。
图5A是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件在被应用于发射端时的剖视示意图。
图5B是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件在被应用于接收端时的剖视示意图。
图6是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件的制造步骤之一的示意图,其示意了一连接主体的剖视状态。
图7是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件的制造步骤之二的示意图,其示意了所述连接主体的被硬化处理的状态。
图8是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件的制造步骤之三的示意图,其示意了所述连接主体的端部被去除硬化层的状态。
图9是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件的制造步骤之四的示意图,其示意了在所述连接主体的成型空间内形成所述光学透镜的状态。
图10是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件的制造步骤之五的示意图,其示意了在所述连接主体的所述成型空间内形成所述光学透镜后以得到所述光模块光接口组件的状态。
图11是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件的第一个变形实施方式的剖视示意图。
图12是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件的第二个变形实施方式的剖视示意图。
图13是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件 的第三个变形实施方式的剖视示意图。
图14是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件的第四个变形实施方式的剖视示意图。
图15是依本发明的上述较佳实施例的所述带光学透镜的光模块光接口组件的第五个变形实施方式的剖视示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
示例:
如图1所示一种带准直透镜的光模块光接口组件,包括金属接头1、以及与金属接头1两端耦合连接的光学次模块4和外部光纤5,所述金属接头1的内部处于连接光学次模块4和外部光纤5的腔体内设有准直透镜2,所述准直透镜2吻合于金属接头1内的腔体。
本实施例中准直透镜2侧壁设置一圈凸起的固定环结构6,所述腔体内壁设有一圈凹陷的固定槽结构,所述固定环结构吻合安装于固定槽结构内部。
作为优选,金属接头1与准直透镜2之间的固定方式可以在准直透镜2成型过程中直接与金属接头1固定,也可以在准直透镜2成型后在使用低温玻璃或胶粘的方式将金属接头1与准直透镜2固定。发明金属接头与光学次模块之间不需要再设置透镜,也可以简化TO定位环3的结构;同时为了预防准直透镜的金属接头内串动的风险,金属接头与准直透镜固定部位设计固定环。该组件可以同时满足光发射光模块和光接收光模块的使用要求,光接口组件与光源之间不需要准直透镜,直接将准直透镜安装于金属接头内部,降低了成本。
实施例2
示例:
参考本发明的说明书附图之附图2至图10,依本发明的一较佳实施例的一带光学透镜的光模块光接口组件在接下来的描述中被阐述,其中所述带光学透镜的光模块光接口组件包括一连接主体10和一光学透镜20。值得一提的是,在本 文接下来的描述和说明中,将所述带光学透镜的光模块光接口组件简化成一光模块光接口组件,以便于说明和理解,本领域的技术人员可以理解的是,将所述带光学透镜的所述光模块光接口组件简化成所述光模块光接口组件并不应被视为对本发明的内容和范围的限制。也就是说,所述光模块光接口组件包括所述连接主体10和所述光学透镜20。
进一步地,参考附图3,所述连接主体10具有一内壁11,其中所述内壁11用于界定一成型空间12。也就是说,所述连接主体10具有所述成型空间12,以供成型所述光学透镜20。
所述光学透镜20具有一第一端面21和一第二端面22,其中所述光学透镜20的所述第一端面21和所述第二端面22相互对应。尽管在附图3中以所述光学透镜20的所述第一端面21和所述第二端面22均被实施为凸面为例,来说明本发明的所述光模块光接口组件的特征和优势,但本领域的技术人员应当理解,所述光学透镜20的所述第一端面21和所述第二端面22的实施方式不限于凸面。例如在另外的一些实例中,所述光学透镜20的所述第一端面21和所述第二端面22可以分别被实施为平面或者凹面或者其他的非球面。因此,所述光学透镜20的所述第一端面21和所述第二端面22的类型在本发明的所述光模块光接收组件中不受限制。
所述光学透镜20被成型和被保持在所述连接主体10的所述成型空间12,以形成所述光模块光接收组件,其中所述光学透镜20的所述第一端面21和所述第二端面22分别对应于所述连接主体10的两个端部,例如所述光学透镜20的所述第一端面21和所述第二端面22分别朝向所述连接主体10的两个端部。
具体地,所述连接主体10进一步具有一第一连接端13和一第二连接端14,其中所述第一连接端13和所述第二连接端14相互对应,所述连接主体10的所述内壁11向所述连接主体10的两个端部分别延伸以分别连接于所述第一连接端13和所述第二连接端14。所述光学透镜20在被安装于所述连接主体10的所述成型空间12后,所述光学透镜20的所述第一端面21朝向所述连接主体10的所述第一端部13,所述光学透镜20的所述第二端面22朝向所述连接主体10的所述第二端部14。
所述连接主体10供连接一光学次模块30和一外部光纤40,其中当所述连接主体10连接所述光学次模块30和所述外部光纤40后,所述光学透镜20被保 持在所述光学次模块30和所述外部光纤40之间,并且所述光学透镜20的所述第一端面21朝向所述光学次模块30,所述光学透镜20的所述第二端面22朝向所述外部光纤40。
进一步地,所述光学次模块30被安装于所述连接主体10的所述第一端部13,所述外部光纤40被安装于所述连接主体10的所述第二端部14,通过这样的方式,使得所述连接主体10连接所述光学次模块30和所述外部光纤40。
优选地,所述光学次模块30的端部通过自所述所述连接主体10的所述第一端部13插入到所述连接主体10的内部的方式被安装于所述连接主体10。相应地,所述外部光纤40的端部通过自所述连接主体10的所述第二端部14插入到所述连接主体10的内部的方式被安装于所述连接主体10,通过这样的方式,使得所述光学次模块30、所述光学透镜20和所述外部光纤40在所述连接主体10的内部互动,以避免外部光线等污染物干扰所述光学次模块30、所述光学透镜20和所述外部光纤40的互动位置,从而保证和提高光纤传输能力。
值得一提的是,当所述光学次模块30的端部自所述连接主体10的所述第一端部13插入到所述连接主体10的内部和所述外部光纤40的端部自所述连接主体10的所述第二端部14插入到所述连接主体10的内部后,所述光学次模块30和所述光学透镜20的所述第一端面21保持预设距离,所述外部光纤40和所述光学透镜20的所述第二端面22保持预设距离。也就是说,所述光学次模块30不与所述光学透镜20的所述第一端面21直接接触,所述外部光纤40不与所述光学透镜20的所述第二端面22直接接触。
所述连接主体10的所述内壁11分别在所述第一端部13和所述第二端部14界定一第一容纳空间15和一第二容纳空间16。也就是说,所述连接主体10在所述第一端部13设有所述第一容纳空间15和在所述第二端部13设有所述第二容纳空间16。所述成型空间12分别向所述连接主体10的所述第一端部13和所述第二端部14延伸,以连通于所述第一容纳空间15和所述第二容纳空间16。
参考附图4,所述光学次模块30的端部被安装和被保持在所述连接主体10的所述第一容纳空间15,所述外部光纤40的端部被安装和被保持在所述连接主体10的所述第二容纳空间16,从而藉由所述连接主体10连接所述光学次模块30和所述外部光纤40。
可以理解的是,当所述光学次模块30自所述连接主体10的所述第一端部 13被安装于所述第一容纳空间15和所述外部光纤40自所述连接主体10的所述第二端部14被安装于所述第二容纳空间16后,所述光学次模块30的中轴线、所述光学透镜20的中轴线和所述外部光纤40的中轴线相互重合,以保证光纤传输能力。
在所述光学次模块30自所述连接主体10的所述第一端部13被安装于所述第一容纳空间15和所述外部光纤40自所述连接主体10的所述第二端部14被安装于所述第二容纳空间16后,使所述光学次模块30的中轴线、所述光学透镜20的中轴线和所述外部光纤40的中轴线相互重合的方式在本发明的所述光模块光接口组件中不受限制。
例如在一个示例中,在所述光学透镜20被成型于所述连接主体10的所述成型空间12后,所述光学透镜20的中轴线和所述连接主体10的中轴线相互重合,在将所述光学次模块30和所述外部光线40分别安装于所述连接主体10的所述第一容纳空间15和所述第二容纳空间16后,使所述光学次模块30的中轴线和所述外部光线40的中轴线分别与所述连接主体10的中轴线相互重合,从而使得所述光学次模块30的中轴线、所述光学透镜20的中轴线和所述外部光纤40的中轴线相互重合。
在另一个示例中,在所述光学透镜20被成型于所述连接主体10的所述成型空间12后,所述光学透镜20的中轴线和所述连接主体10的中轴线相互重合,在将所述光学次模块30和所述外部光线40分别安装于所述连接主体10的所述第一容纳空间15和所述第二容纳空间16后,可以直接使所述光学次模块30的中轴线和所述外部光线40的中轴线分别与所述光学透镜20的中轴线相互重合。
另外,在本发明的所述光模块光接口组件的一个示例中,所述连接主体10的所述内壁11可以是一个完整的表面,即,所述连接主体10的所述第一容纳空间15、所述成型空间12和所述第二容纳空间16的内径一致。
在本发明的所述光模块光接口组件的另一个示例中,所述连接主体10的所述内壁11进一步包括一第一内壁111、一第二内壁112以及一第三内壁113,其中所述第一内壁111位于所述连接主体10的所述第一端部13以用于界定所述第一容纳空间15,所述第三端部113位于所述链接主体10的所述第二端部14以用于界定所述成型空间12和所述第二容纳空间15,其中所述第二内壁112分别连接于所述第一内壁111和所述第三内壁113。优选地,所述第一内壁111和所 述第二内壁112可以相互垂直,所述第二内壁112和所述第三内壁113可以相互垂直,参考附图3。
值得一提的是,尽管附图3中示出了所述第三内壁113界定的所述成型空间12和所述第二容纳空间16的内径一致,在其他的示例中,所述成型空间12和所述第二容纳空间16也可以由具有不同内径的内壁形成,即,所述成型空间12和所述第二容纳空间16的内径不一致,本发明的所述光模块光接收组件在这方面不受限制。
进一步参考附图3,所述光学透镜20具有一周壁23,其中所述周壁23分别向所述光学透镜20的所述第一端面21和所述第二端面22延伸,以连接于所述第一端面21和所述第二端面22的边缘。在所述光学透镜20被成型于所述连接主体10的所述成型空间12后,所述光学透镜20的所述周壁23和所述连接主体10的用于界定所述成型空间12的所述内壁11贴合在一起,从而使得所述光学透镜20和所述连接主体10的相对位置不会发生改变,以保证所述光学透镜20的中轴线和所述连接主体10的中轴线相互重合,以提高所述光模块光接口组件的产品良率。
也就是说,所述光学透镜20和所述连接主体10能够通过使所述光学透镜20的所述周壁23和所述连接主体10的所述内壁11贴合在一起的方式,使所述光学透镜20吻合于所述连接主体10的所述内壁11,从而在所述光模块光接口组件被运输和被安装时,所述光学透镜20和所述连接主体10的相对位置不会发生改变,尤其是所述光学透镜20不会做相对于所述所述连接主体10的径向运动,通过这样的方式,保证所述光学透镜20的中轴线和所述连接主体10的中轴线相互重合。
进一步参考附图3,所述连接主体10的所述内壁11设有至少一定位槽114,其中每个所述定位槽114分别连通于所述成型空间12,所述光学透镜20的所述周壁23设有至少一定位元件24,其中在所述光学透镜20成型于所述连接主体10的所述成型空间12的同时,所述光学透镜20的每个所述定位元件24分别以成型于所述连接主体10的每个所述定位槽114的方式,使所述定位元件24被定位于所述定位槽114,从而使所述光学透镜20被保持在所述连接主体10的所述成型空间12。另外,所述光学透镜20的每个所述定位元件24和所述连接主体10的每个所述定位槽114能够相互配合,以阻止所述光学透镜20做相对于所述 连接主体10的轴向运动,从而保证所述光模块光接口组件的精度。
在所述光模块光接口组件的一个示例中,所述连接主体10的所述定位槽114的数量被实施为多个时,每个所述定位槽114可以相互间隔地设于所述内壁11。优选地,任意两个所述定位槽114之间的距离相等。所述光学透镜20的所述定位元件24的数量、位置和尺寸和所述连接主体10的每个所述定位槽114的数量、位置和尺寸相互匹配。
在所述光模块光接口组件的另外一个示例中,所述连接主体10的所述定位槽114的数量可以被实施为一个,并且所述定位槽114被优选地实施为环形,即,所述连接主体10具有一个环形的所述定位槽114。所述光学透镜20的所述定位元件24的数量也被实施为一个,并且所述定位元件24被优选地实施为环形,即,所述光学透镜20具有一个环形的所述定位元件24。当所述光学透镜20的所述定位元件24被定位于所述连接主体10的所述定位槽114时,所述光学透镜20被可靠地保持在所述连接主体10的所述成型空间12内。
参考附图11,在本发明的所述光模块光接口组件的一个变形实施方式中,所述光学透镜20可以设有所述定位槽114,所述连接主体10的所述内壁11设有所述定位元件24,从而所述光模块光接口组件以所述连接主体10的所述定位元件24被定位于所述光学透镜20的所述定位槽114的方式,使所述光学透镜20被成型和被保持在所述连接主体10的所述成型空间12内。
依本发明的所述光模块光接口组件的另一个方面,所述光模块光接口组件进一步包括一光接口单元50和一保持臂单元60。
所述光接口单元50包括一管状的接口元件51和所述光学透镜20,其中所述接口元件51形成所述成型空间12,所述光学透镜20通过被安装于所述成型空间12的方式被保持在所述接口元件51的内部。
所述保持臂单元60包括一管状的第一保持臂61和一管状的第二保持臂62,其中所述第一保持臂61和所述第二保持臂62分别延伸自所述接口元件51的两端,其中所述第一保持臂61形成所述第一容纳空间15,以供容纳所述光学次模块30,所述第二保持臂62形成所述第二容纳空间16,以供容纳所述外部光纤40。
值得一提的是,当所述光学次模块30的端部被安装于所述第一保持臂61形成的所述第一容纳空间15时,所述第一保持臂61环绕在所述光学次模块30的 端部的四周。优选地,所述第一保持臂61进一步具有至少一固定通道,其中每个所述固定通道分别连通于所述第一容纳空间15和所述连接主体10的外部环境,当所述光学次模块30的端部被安装于所述第一保持臂61形成的所述第一容纳空间15时,通过每个所述固定通道能够在所述第一保持臂61的外部将所述光学次模块30和所述第一保持臂61固定在一起,从而避免所述光学次模块30做相对于所述连接主体10的移动,以保证所述光模块光接口组件在被使用时的可靠性。例如,所述第一保持臂61的所述固定通道可以是一个激光焊接通道,以允许在所述连接主体10的外部通过所述固定通道利用激光焊接的方式将被安装在所述第一容纳空间15的所述光学次模块30的端部和所述第一保持臂61固定在一起。
相应地,当所述外部光纤40的端部被安装于所述第二保持臂62形成的所述第二容纳空间16时,所述第二保持臂62环绕在所述外部光纤40的端部的四周。
优选地,所述光学透镜20在本发明的所述光模块光接口组件中被实施为准直透镜,以使光线在穿过所述光学透镜20时能够被进行准直矫正,通过这样的方式,提高所述光模块光接口组件的精度和所述光模块光接口组件在被使用时的可靠性。
另外,进一步参考附图3,所述连接主体10进一步包括一载体110和一硬化层120,其中所述载体110呈管状,所述硬化层120形成于所述载体110的表面,也就是说,所述连接主体10的所述内壁11也是所述硬化层120形成的,通过这样的方式,能够提高所述光模块光接口组件的精度。当所述光学次模块30和所述外部光纤40分别被安装于所述连接主体10的所述第一容纳空间15和所述第二容纳空间16时,所述光学次模块30和所述外部光纤40分别和所述连接主体10的所述硬化层120接触,通过这样的方式,一方面能够保证所述光学次模块30的中轴线、所述光学透镜20的中轴线和所述外部光纤40的中轴线重合,另一方面当所述光学次模块30和所述外部光纤40被多次安装于所述第一容纳空间15和所述第二容纳空间16和多次被从所述第一容纳空间15和所述第二容纳空间16红拆卸时,所述光学次模块30和所述外部光纤40分别与所述硬化层120反复地接触和摩擦而不会对所述硬化层120造成磨损,以在所述光模块光接口组件在被多次的时候之后仍然能够保证精度。
在本发明的一个实施例中,所述连接主体10的所述载体110和所述硬化层 120分别由不同的材料形成,例如可以先形成所述载体110,然后再在所述载体110的内壁形成所述硬化层120。在另一个实施例中,所述连接主体10的所述载体110和所述硬化层120也可以由相同的材料形成,例如可以先形成所述载体110,然后通过氮化处理等工艺使所述载体110的内壁硬化以形成所述硬化层120。
值得一提的是,所述连接主体10的所述载体110的材料不受限制,例如所述载体110可以是金属件,即,所述连接主体10可以形成本发明在附图1揭露的第一个实施例的所述金属接头1。优选地,所述连接主体10的所述载体110可以是由不锈钢材料制成的,通过这样的方式,能够便于将所述连接主体10进行安装,以使用本发明的所述光模块光接口组件。当然,本领域的技术人员可以理解的是,所述连接主体10的所述载体110也可以由其他的材料制成,例如合金材料或者高分子材料。
参考本发明的说明书附图之图5A和图5B,分别是所述光模块光接口组件在被实施为发射端和接收端的示例,也就是说,本发明的所述光模块光接口组件不仅能够被应用于发射端,而且能够被应用于接收端,这样,在安装所述光模块光接口组件时,不需要再对所述光模块光接口组件的类型进行区分,以便于使用。
具体地,参考附图5A,当所述光模块光接口组件被实施为发射端时,所述光学次模块30产生的光线在穿过所述光学透镜20时,能够被所述光学透镜20进行光学准直矫正,以使穿过所述光学透镜20的光线能够进入所述外部光纤40和被所述外部光纤40传输。参考附图5B,当所述光模块光接口组件被实施为接收端时,所述外部光纤40传输的光线在穿过所述光学透镜20时,能够被所述光学透镜20进行光学准直矫正,以使穿过所述光学透镜20的光线能够被所述光学次模块30接收。也就是说,无论所述光模块光接口组件被实施为发射端和被实施为接收端,所述光学透镜20均能够对穿过所述光学透镜20的光线进行光学准直矫正,以保证光纤传输能力。
参考本发明的说明书附图之图6至图10,是依本发明的上述较佳实施例的所述光模块光接口组件的制造流程示意图。
具体地,本发明可以先提供所述连接主体10和用于形成所述光学透镜20的一成型材料80。
更具体地,首先提供呈管状的所述载体110,例如所述载体110可以通过注 塑的方式形成,也可以通过铣床铣成,本发明在这方面不受限制。优选地,所述载体110设有至少一个所述定位槽114。再次对所述载体110的表面进行硬化处理,例如可以通过对所述载体110的表面进行氮化处理的方式在所述载体110的表面形成所述硬化层120,通过这样的方式,能够提高所述连接主体10的表面的硬度,尤其是能够提高所述连接主体10的所述内壁11的硬度,从而无论是在所述连接主体10的所述成型空间12内形成所述光学透镜20而形成所述光模块光接口组件时,还是在使用所述光模块光接口组件时,都能够保证所述光模块光接口组件的精度。然后,去除所述连接主体10的所述第一端部13和所述第二端部14的所述硬化层120,例如可以通过切削或者研磨等类似的方式去除所述连接主体10的所述第一端部13和所述第二端部14的所述硬化层120,以使所述载体110在所述连接主体10的所述第一端部13和所述第二端部14裸露,从而便于通过所述第一端部13和所述第二端部14将所述连接主体10安装。在一些实例中,还可以对所述连接主体10的所述内壁11进行研磨以进一步提高所述光模块光接口组件的精度。
进一步参考附图9和图10,将所述成型材料80加入到所述连接主体10的所述成型空间12,然后分别在所述连接主体10的所述第一端部13和所述第二端部14分别通过一第一成型夹具91和一第二成型夹具92使所述成型材料80在所述连接主体10的所述成型空间12内形成所述光学透镜20。值得一提的是,所述第一成型夹具91和所述第二成型夹具92的成型面93的形状决定了所述光学透镜20的所述第一端面21和所述第二端面22的形状。可以理解的是,在藉由所述第一成型夹具91和所述第二成型夹具92分别在所述连接主体10的所述第一端部13和所述第二端部14施压于所述成型材料80的过程中,还可以加热,以藉由所述第一成型夹具91和所述第二成型夹具92通过热压的工艺使所述光学透镜20在所述连接主体10的所述成型空间12内成型,从而制得所述光模块光接口组件。值得一提的是,在藉由所述第一成型夹具91和所述第二成型夹具92使所述光学透镜20在所述连接主体10的所述成型空间12内成型时,可以以所述连接主体10的所述成型空间12为基准放入到藉由所述第一成型夹具91和所述第二成型夹具92组成的成型模具90中,以进一步提高所述光模块光接口组件的精度。
也就是说,所述成型模具90具有一个第一成型夹具91和一个所述第二成型 夹具92,以供使所述光学透镜20成型在所述连接主体10的所述成型空间12。
附图12示出了本发明的所述光模块光接口组件的一个变形实施方式,其中所述连接主体10的所述内壁11设有至少一第一保持槽115,每个所述第一保持槽115分别连通所述成型空间12,所述光学透镜20的所述周壁23设有至少一第二保持槽231,其中所述光模块光接口组件进一步包括至少一保持元件70,其中当所述光学透镜20被安装在所述连接主体10的所述成型空间12时,所述光学透镜20的至少一个所述第二保持槽231和所述连接主体10的至少一个所述第一保持槽115相互对应,所述保持元件70同时被保持在所述连接主体10的所述第一保持槽115和所述光学透镜20的所述第二保持槽231,通过这样的方式,能够使所述光学透镜20被保持在所述连接主体10的所述成型空间12。
也就是说,在本发明的所述光模块光接口组件的这个实施例中,所述光学透镜20没有成型于所述连接主体10的所述成型空间12,而使在分别提供所述连接主体10和所述光学透镜20后,将所述光学透镜20安装于所述连接主体10的所述成型空间12。
优选地,当所述光学透镜20被安装在所述连接主体10的所述成型空间12时,所述光学透镜20的每个所述第二保持槽231和所述连接主体10的每个所述第一保持槽115分别对应。
在所述光模块光接口组件的一个具体示例中,所述保持元件70可以由胶水固化形成。具体地,在制造本发明的所述光模块光接口组件的过程中,可以先将呈流体状的所述胶水施凃在所述光学透镜20的每个所述第二保持槽231,例如可以通过点胶机将所述胶水施凃在所述光学透镜20的每个所述第二保持槽231,然后将所述光学透镜20安装于所述连接主体10的所述成型空间12,以使每个所述光学透镜20的每个所述第二保持槽231和所述连接主体10的每个所述第一保持槽115相互对应,从而使得位于所述光学透镜20的每个所述第二保持槽231所述胶水的一部分能够流动到所述连接主体10的每个所述第一保持槽115,后续,在使胶水固化后形成被同时保持在所述连接主体10的所述第一保持槽115和所述光学透镜20的所述第二保持槽231的所述保持元件70,以将所述光学透镜20和所述连接主体10固定。当然,也可以先将所述胶水施凃在所述连接主体10的所述第一保持槽115,然后在所述光学透镜20被安装在所述连接主体10的所述成型空间12后,使位于所述连接主体10的所述第一保持槽115的所述胶水 的一部分流动到所述光学透镜20的所述第二保持槽231。
可以理解的是,所述胶水在所述连接主体10的所述第一保持槽115和所述光学透镜20的所述第二保持槽115内固化的方式不受限制,例如可以加热固化或者降温固化等,其根据选择的所述胶水的类型被确定。当然,用于形成所述保持元件70的物质也可以不是所述胶水,其只要能够在固化后处于稳定的固体形态的材料均可。
附图13示出了本发明的所述光模块光接口组件的一个变形实施方式,其中所述连接主体10的所述第一保持槽115形成于所述第二内壁12和所述第三内壁113的连接处,以使得所述第一保持槽115连通于所述第一容纳空间15,其中所述光学透镜20的所述第二保持槽231形成于所述周壁23和所述第一端面21的连接处。当所述光学透镜20被安装于所述连接主体10的所述成型空间12时,所述连接主体10的所述第一保持槽115和所述光学透镜20的所述第二保持槽231相互对应且均连通于所述第一容纳空间15,从而可以通过所述第一容纳空间15将所述胶水施凃在所述连接主体10的所述第一保持槽115和所述光学透镜20的所述第二保持槽231,以在所述胶水固化后,形成同时被保持在所述连接主体10的所述第一保持槽115和所述光学透镜20的所述第二保持槽231的所述保持元件70,从而固定所述光学透镜20和所述连接主体10,以制得所述光模块光接口组件。
附图14示出了本发明的所述光模块光接口组件的另一个变形实施方式,其中所述保持元件70可以一体地延伸于所述光学透镜20的所述第一端面21,在将所述光学透镜20安装于所述连接主体10的所述成型空间12时,所述保持元件70被保持在所述连接主体10的所述第一保持槽115,以固定所述光学透镜20和所述连接主体10,以制得所述光模块光接口组件。
附图15示出了本发明的所述光模块光接口组件的另一个变形实施方式,其中所述保持元件70可以一体地延伸于所述连接主体10的内壁,从而在将所述光学透镜20安装于所述连接主体10的所述成型空间12时,所述保持元件70被保持在所述光学透镜20的所述第二保持槽231,以固定所述光学透镜20和所述连接主体10,以制得所述光模块光接口组件。
依本发明的一个方面,本发明进一步提供一带光学透镜的光模块光接口组件的制造方法,其中所述制造方法包括如下步骤:
(a)提供具有一成型空间12的一连接主体10;
(b)将一成型材料80加入到所述连接主体10的所述成型空间12;
(c)施压于所述成型材料以使所述成型材料80在所述连接主体10的所述成型空间12内固化而形成一光学透镜20,从而制得所述光模块光接口组件。
依本发明的另一个方面,本发明进一步提供一带光学透镜的光模块光接口组件的制造方法,其中所述制造方法包括如下步骤:
(A)提供具有一成型空间12的一连接主体10;
(B)提供一光学透镜20;以及
(C)将所述光学透镜20安装于所述连接主体10的所述成型空间12,以制得所述光模块光接口组件。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (56)

  1. 一带光学透镜的光模块光接口组件,其特征在于,包括:
    一光学透镜,其中所述光学透镜具有一第一端面和一第二端面,所述第一端面和所述第二端面相互对应;和
    一连接主体,其中所述连接主体具有一成型空间,所述光学透镜被保持在所述成型空间,其中所述连接主体供被安装一光学次模块的端部和一外部光纤的端部,所述光学透镜的所述第一端面朝向所述光学次模块的端部,和所述第二端面朝向所述外部光纤的端部。
  2. 根据权利要求1所述的光模块光接口组件,其中所述光学透镜被成型于所述连接主体的所述成型空间。
  3. 根据权利要求2所述的光模块光接口组件,其中所述连接主体具有至少一定位槽,至少一个所述定位槽分别连通于所述成型空间,所述光学透镜具有至少一定位元件,其中所述光学透镜的至少一个所述定位元件被定位于所述连接主体的至少一个所述定位槽。
  4. 根据权利要求3所述的光模块光接口组件,其中所述光学透镜的每个所述定位元件分别被定位于所述连接主体的每个所述定位槽。
  5. 根据权利要求3所述的光模块光接口组件,其中所述光学透镜具有一个所述定位元件,所述连接主体具有一个所述定位槽,所述光学透镜的所述定位元件被定位于所述连接主体的所述定位槽。
  6. 根据权利要求5所述的光模块光接口组件,其中所述光学透镜的所述定位元件呈环形,所述连接主体的所述定位槽呈环形,所述光学透镜的环形的所述定位元件被定位于所述连接主体的环形的所述定位槽。
  7. 根据权利要求2所述的光模块光接口组件,其中所述连接主体具有至少一定位元件,至少一个所述定位元件分别位于所述成型空间内,其中所述光学透镜具有至少一定位槽,其中所述连接主体的至少一个所述定位元件被定位于所述光学透镜的至少一个所述定位槽。
  8. 根据权利要求7所述的光模块光接口组件,其中所述连接主体的每个所述定位元件分别被定位于所述光学透镜的至少一个所述定位槽。
  9. 根据权利要求7所述的光模块光接口组件,其中所述连接主体具有一个所述定位元件,所述光学透镜具有一个所述定位槽,其中所述连接主体的所述定位元件被定位于所述光学透镜的所述定位槽。
  10. 根据权利要求9所述的光模块光接口组件,其中所述连接主体的所述定位元件呈环形,所述光学透镜的所述定位槽呈环形,所述连接主体的环形的所述定位元件被定位于所述光学透镜的环形的所述定位槽。
  11. 根据权利要求3至6中任一所述的光模块光接口组件,其中所述光学透镜的所述定位元件通过成型于所述连接主体的所述定位槽的方式,使所述光学透镜的所述定位元件被定位于所述连接主体的所述定位槽。
  12. 根据权利要求7至10中任一所述的光模块光接口组件,其中所述光学透镜通过在对应于所述连接主体的所述定位元件的位置形成所述定位槽的方式,使所述连接主体的所述定位元件被定位于所述光学透镜的所述定位槽。
  13. 根据权利要求1所述的光模块光接口组件,其中所述光学透镜被安装于所述连接主体的所述成型空间。
  14. 根据权利要求13所述的光模块光接口组件,进一步包括至少一保持元件,其中所述连接主体设有至少一第一保持槽,至少一个所述第一保持槽连通于所述成型空间,所述光学透镜设有至少一个第二保持槽,其中所述光学透镜的至少一个所述第二保持槽对应于所述连接主体的至少一个所述第一保持槽,所述保持元件被同时形成于所述第一保持槽和所述第二保持槽,以使所述光学透镜被安装于所述连接主体的所述成型空间。
  15. 根据权利要求14所述的光模块光接口组件,其中所述光学透镜的每个所述第二保持槽和所述连接主体的每个所述第一保持槽分别对应,每个所述保持元件分别被同时形成于每个所述第一保持槽和每个所述第二保持槽。
  16. 根据权利要求13所述的光模块光接口组件,其中所述连接主体设有一个所述第一保持槽,所述光学透镜设有一个所述第二保持槽。
  17. 根据权利要求16所述的光模块光接口组件,其中所述连接主体的所述第一保持槽呈环形,所述光学透镜的所述第二保持槽呈环形,其中所述保持元件被同时形成于所述第一保持槽的一部分和所述第二保持槽的一部分。
  18. 根据权利要求17所述的光模块光接口组件,其中所述第二保持槽设于所述光学透镜的中部。
  19. 根据权利要求17所述的光模块光接口组件,其中所述第二保持槽设于所述光学透镜的所述第一端面。
  20. 根据权利要求17所述的光模块光接口组件,其中所述第二保持槽设于所述光学透镜的所述第二端面。
  21. 根据权利要求14至20中任一所述的光模块光接口组件,其中所述保持元件由胶水固化后形成。
  22. 根据权利要求13所述的光模块光接口组件,其中所述连接主体设有一第一保持槽,所述第一保持槽连通于所述成型空间,所述光学透镜设有一保持元件,其中所述保持元件被保持在所述第一保持槽,从而使得所述光学透镜被安装于所述连接主体的所述成型空间。
  23. 根据权利要求22所述的光模块光接口组件,其中所述保持元件一体地延伸于所述光学透镜的所述第一端面。
  24. 根据权利要求22所述的光模块光接口组件,其中所述保持元件一体地延伸于所述光学透镜的所述第二端面。
  25. 根据权利要求13所述的光模块光接口组件,其中所述连接主体设有一保持元件,所述保持元件位于所述成型空间,所述光学透镜设有一第二保持槽,其中所述保持元件被保持在所述第二保持槽,从而使得所述光学透镜被安装于所述连接主体的所述成型空间。
  26. 根据权利要求25所述的光模块光接口组件,其中所述第二保持槽形成于所述光学透镜的所述第一端面。
  27. 根据权利要求25所述的光模块光接口组件,其中所述第二保持槽形成于所述光学透镜的所述第二端面。
  28. 根据权利要求1至10、13至20或者22至27中任一所述的光模块光接口组件,其中所述光学透镜是一准直透镜。
  29. 根据权利要求1至10、13至20或者22至27中任一所述的光模块光接口组件,其中所述光学次模块的端部和所述外部光纤的端部分别以插入到所述连接主体的内部的方式与所述连接主体的两个端部连接,从而使得所述光学次模块、所述光学透镜和所述外部光纤在所述连接主体的内部互动。
  30. 根据权利要求1至10、13至20或者22至27中任一所述的光模块光接口组件,其中所述连接主体具有一第一容纳空间和一第二容纳空间,所述成型空 间分别连通所述第一容纳空间和所述第二容纳空间,其中所述光学次模块的端部被安装于所述连接主体的所述第一容纳空间,所述外部光纤的端部被安装于所述连接主体的所述第二容纳空间。
  31. 根据权利要求30所述的光模块光接口组件,其中所述连接主体的两端分别形成一筒状的第一保持臂和一筒状的第二保持臂,所述第一保持臂形成所述第一容纳空间,所述第二保持臂形成所述第二容纳空间,其中当所述光学次模块的端部被安装于所述第一容纳空间时,所述第一保持臂环绕在所述光学次模块的端部,当所述外部光纤的端部被安装于所述第二容纳空间时,所述第二保持臂环绕在所述外部光纤的端部。
  32. 根据权利要求30所述的光模块光接口组件,其中所述连接主体包括一筒状的载体和一硬化层,所述硬化层至少形成在所述载体的内表面,以藉由所述硬化层形成所述连接主体的内壁,其中所述连接主体的内壁界定所述第一容纳空间、所述成型空间和所述第二容纳空间。
  33. 根据权利要求32所述的光模块光接口组件,其中所述载体在所述连接主体的两个端部的端面裸露。
  34. 根据权利要求32所述的光模块光接口组件,其中所述连接主体的所述载体的材料选自合金材料、金属材料、非金属材料以及金属材料和非金属材料的混合物组成的材料组。
  35. 一带光学透镜的光模块光接口组件,其特征在于,包括:
    一光接口单元,其中所述光接口单元包括一筒状的接口元件和被设置于所述接口元件的内部的一光学透镜;和
    一保持臂单元,其中所述保持臂单元包括一筒状的第一保持臂和一筒状的一第二保持臂,其中所述第一保持臂和所述第二保持臂分别一体地延伸于所述接口元件的两个端部,其中所述第一保持臂形成一第一容纳空间,所述第二保持臂形成一第二容纳空间,其中所述光学透镜的第一端面和第二端面分别通过所述第一容纳空间和所述第二容纳空间与外界环境连通。
  36. 根据权利要求35所述的光模块光接口组件,其中所述光学透镜是一准直透镜。
  37. 一种带准直透镜的光模块光接口组件,包括金属接头、以及与金属接头两端耦合连接的光学次模块和外部光纤,其特征在于,所述金属接头的内部处于 连接光学次模块和外部光纤的腔体内设有准直透镜,所述准直透镜吻合于金属接头内的腔体。
  38. 根据权利要求37所述的带准直透镜的光模块光接口组件,其中所述准直透镜侧壁设置一圈凸起的固定环结构,所述腔体内壁设有一圈凹陷的固定槽结构,所述固定环结构吻合安装于固定槽结构内部。
  39. 根据权利要求37所述的带准直透镜的光模块光接口组件,其中所述金属接头与准直透镜之间的固定方式为:在准直透镜成型过程中直接与金属接头固定。
  40. 根据权利要求37所述的带准直透镜的光模块光接口组件,其中所述金属接头与准直透镜之间的固定方式为:在准直透镜成型后使用低温玻璃将固定准直透镜固定在金属接头的腔体内。
  41. 根据权利要求37所述的带准直透镜的光模块光接口组件,其中所述金属接头与准直透镜之间的固定方式为:在准直透镜成型后使用粘胶剂将固定准直透镜固定在金属接头的腔体内。
  42. 一带光学透镜的光模块光接口组件的制造方法,其特征在于,所述制造方法包括如下步骤:
    (a)提供具有一成型空间的一连接主体;
    (b)将一成型材料加入到所述连接主体的所述成型空间;
    (c)施压于所述成型材料以使所述成型材料在所述连接主体的所述成型空间内固化而形成一光学透镜,从而制得所述光模块光接口组件。
  43. 根据权利要求42所述的制造方法,其中在所述步骤(c)中,加热所述成型材料以使所述成型材料在所述连接主体的所述成型空间内固化而形成所述光学透镜。
  44. 根据权利要求42或43所述的制造方法,其中在所述步骤(a)中,进一步包括步骤:
    (a.1)提供一筒状的载体;和
    (a.2)硬化所述载体的表面,以得到所述连接主体。
  45. 根据权利要求44所述的制造方法,其中在所述步骤(a.2)中,对所述载体进行氮化处理,以使所述载体的表面硬化,从而得到所述连接主体。
  46. 根据权利要求45所述的制造方法,其中在所述步骤(a.2)之后,进一步包括步骤:
    (a.3)去除所述连接主体的两个端部的端面的硬化层,以使所述载体在所述连接主体的两个端部裸露。
  47. 根据权利要求45所述的制造方法,其中在所述步骤(a.2)之后,进一步包括步骤:
    (a.4)研磨所述连接主体的用于形成所述成型空间的内壁。
  48. 根据权利要求46所述的制造方法,其中在所述步骤(a.2)之后,进一步包括步骤:
    (a.4)研磨所述连接主体的用于形成所述成型空间的内壁。
  49. 根据权利要求48所述的制造方法,其中所述步骤(a.4)在所述步骤(a.3)之前,从而首先研磨所述连接主体的用于形成所述成型空间的内壁,然后去除所述连接主体的两个端部的端面的硬化层,以使所述载体在所述连接主体的两个端部裸露。
  50. 根据权利要求42或43所述的制造方法,其中在所述步骤(a)中,所述连接主体设有至少一定位槽,并且在所述步骤(c)中,当所述光学透镜成型时形成位于所述定位槽的至少一定位元件,以在所述光模块光接口组件成型后使所述光学透镜被保持在所述连接主体的所述成型空间。
  51. 根据权利要求49所述的制造方法,其中在所述步骤(a)中,所述连接主体设有至少一定位槽,并且在所述步骤(c)中,当所述光学透镜成型时形成位于所述定位槽的至少一定位元件,以在所述光模块光接口组件成型后使所述光学透镜被保持在所述连接主体的所述成型空间。
  52. 根据权利要求42或43所述的制造方法,其中所述光学透镜是一准直透镜。
  53. 根据权利要求41所述的制造方法,其中所述光学透镜是一准直透镜。
  54. 一带光学透镜的光模块光接口组件的制造方法,其特征在于,所述制造方法包括如下步骤:
    (A)提供具有一成型空间的一连接主体;
    (B)提供一光学透镜;以及
    (C)将所述光学透镜安装于所述连接主体的所述成型空间,以制得所述光模块光接口组件。
  55. 根据权利要求54所述的制造方法,其中在上述方法中,首先在所述光学透镜的第二保持槽内施凃胶水,在将所述光学透镜安装于所述成型空间后,所述光学透镜的第二保持槽对应于所述连接主体的第一保持槽,以使被保持在所述光学透镜的第二保持槽的胶水的一部分流动至所述连接主体的第一保持槽,并且胶水在固化后形成被保持在所述光学透镜的第二保持槽和所述连接主体的第一保持槽的一保持元件,以使所述光学透镜被保持在所述连接主体的所述成型空间。
  56. 根据权利要求54所述的制造方法,其中在上述方法中,在所述光学透镜被安装于所述连接主体的所述成型空间后,所述光学透镜的第二保持槽对应于所述连接主体的第一保持槽,同时向所述连接主体的第一保持槽和所述光学透镜的第二保持槽施凃胶水,以在胶水固化后形成被保持在所述光学透镜的第二保持槽和所述连接主体的第一保持槽的一保持元件,以使所述光学透镜被保持在所述连接主体的所述成型空间。
PCT/CN2016/110073 2015-12-16 2016-12-15 带光学透镜的光模块光接口组件及其制造方法 WO2017101807A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/063,247 US10641940B2 (en) 2015-12-16 2016-12-15 Optical module optical interface assembly with an optical lens and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510943877.9A CN105372771B (zh) 2015-12-16 2015-12-16 一种带准直透镜的光模块光接口组件
CN201510943877.9 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017101807A1 true WO2017101807A1 (zh) 2017-06-22

Family

ID=55375114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110073 WO2017101807A1 (zh) 2015-12-16 2016-12-15 带光学透镜的光模块光接口组件及其制造方法

Country Status (3)

Country Link
US (1) US10641940B2 (zh)
CN (1) CN105372771B (zh)
WO (1) WO2017101807A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105372771B (zh) * 2015-12-16 2018-10-19 武汉优信技术股份有限公司 一种带准直透镜的光模块光接口组件
JP7488098B2 (ja) * 2020-04-17 2024-05-21 矢崎総業株式会社 光コネクタ装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218326A (ja) * 1996-02-09 1997-08-19 Nippon Sheet Glass Co Ltd 光モジュールの製造方法
US20060024003A1 (en) * 2004-07-30 2006-02-02 Infineon Technologies Fiber Optics Gmbh Coupling unit for coupling an optical transmitting and/or receiving module to an optical fiber connector
CN1926727A (zh) * 2004-03-03 2007-03-07 菲尼萨公司 带有光限幅元件的光发射组件与光接收组件
CN101794002A (zh) * 2009-02-03 2010-08-04 恩益禧电子股份有限公司 光学模块及其制造工艺
CN105093440A (zh) * 2015-06-30 2015-11-25 青岛光路玻璃器件有限公司 光纤接口组件及其制备方法
CN105372771A (zh) * 2015-12-16 2016-03-02 武汉优信光通信设备有限责任公司 一种带准直透镜的光模块光接口组件

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218777A (ja) * 1994-01-26 1995-08-18 Alps Electric Co Ltd 光通信用モジュール
JP3831078B2 (ja) * 1997-07-30 2006-10-11 日本板硝子株式会社 光モジュールの製造方法
JP2001350075A (ja) * 2000-06-07 2001-12-21 Enplas Corp 撮像レンズ
US6793406B1 (en) * 2001-03-12 2004-09-21 Phillip J. Edwards Light source monitoring apparatus
JP2003227968A (ja) * 2002-02-01 2003-08-15 Sony Corp 光リンク装置
CN1239895C (zh) * 2003-05-08 2006-02-01 一品光学工业股份有限公司 光纤收发器光学次模块的检测及组装方法
JP4208811B2 (ja) * 2004-10-06 2009-01-14 株式会社タムロン ロック機構付きレンズ鏡筒
US8259401B2 (en) * 2004-11-19 2012-09-04 Eastman Kodak Company Castellated optical mounting structure
CN201004104Y (zh) * 2006-12-05 2008-01-09 深圳新飞通光电子技术有限公司 小型化致冷型光发射组件
JP2008177310A (ja) * 2007-01-18 2008-07-31 Sumitomo Electric Ind Ltd 光モジュール及びそれを搭載した光トランシーバ
CN102036004B (zh) * 2009-09-30 2013-07-03 鸿富锦精密工业(深圳)有限公司 成像模组
CN201910805U (zh) * 2010-12-22 2011-07-27 深圳新飞通光电子技术有限公司 一种单光纤双向传输光收发一体组件
DE102012206252A1 (de) * 2012-04-17 2013-10-17 Robert Bosch Gmbh Kameramodul und Verfahren zum Herstellen eines Kameramoduls

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218326A (ja) * 1996-02-09 1997-08-19 Nippon Sheet Glass Co Ltd 光モジュールの製造方法
CN1926727A (zh) * 2004-03-03 2007-03-07 菲尼萨公司 带有光限幅元件的光发射组件与光接收组件
US20060024003A1 (en) * 2004-07-30 2006-02-02 Infineon Technologies Fiber Optics Gmbh Coupling unit for coupling an optical transmitting and/or receiving module to an optical fiber connector
CN101794002A (zh) * 2009-02-03 2010-08-04 恩益禧电子股份有限公司 光学模块及其制造工艺
CN105093440A (zh) * 2015-06-30 2015-11-25 青岛光路玻璃器件有限公司 光纤接口组件及其制备方法
CN105372771A (zh) * 2015-12-16 2016-03-02 武汉优信光通信设备有限责任公司 一种带准直透镜的光模块光接口组件

Also Published As

Publication number Publication date
US20180372937A1 (en) 2018-12-27
US10641940B2 (en) 2020-05-05
CN105372771B (zh) 2018-10-19
CN105372771A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
US10234637B2 (en) Expanded beam fiber optic connector, and cable assembly, and methods for manufacturing
TWI279598B (en) Optical component and method of manufacturing the same
TWI544247B (zh) Optical socket and its light module
US7782550B2 (en) Lens structure, optical transmitter, and method for producing same
US20120014645A1 (en) Single lens, multi-fiber optical connection method and apparatus
US9091818B2 (en) Ferrule with encapsulated protruding fibers
TW201307934A (zh) 光插座及具有它之光模組
US7874741B2 (en) Optical module and process for manufacturing the same
CN202815264U (zh) 一种光纤耦合结构
WO2017101807A1 (zh) 带光学透镜的光模块光接口组件及其制造方法
JP4662153B2 (ja) 光モジュール、及び光モジュールを備えた光コネクタ
JP2002043675A (ja) 光モジュール
US20090092362A1 (en) Optical module providing a sleeve burying a tubular member
JP2011513774A (ja) 光伝送装置の製造方法及び光伝送装置
JPH07134225A (ja) スリーブ一体型レンズ及びこのレンズを用いた光結合素子モジュール
US20040146250A1 (en) Ferrule and optical coupling structure using the same
JP2007193270A (ja) レンズ付きキャップ及びその製造方法
JP2009093041A (ja) 光モジュール
JP2004163535A (ja) 光モジュール
JP2008203546A (ja) レンズアセンブリ及びそれを用いた光モジュール
CN104685397B (zh) 光通信用的透镜、光通信模块及成形模具
JP6279352B2 (ja) 光結合部品、光コネクタおよび光結合方法
TW201903446A (zh) 光次模組及其製造方法
JP5657944B2 (ja) レンズ付き光コネクタ
JP2004239970A (ja) 光コリメータ素子とその製造方法並びに光コリメータモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874864

Country of ref document: EP

Kind code of ref document: A1