WO2017101714A1 - 换热器芯体和具有它的换热器 - Google Patents

换热器芯体和具有它的换热器 Download PDF

Info

Publication number
WO2017101714A1
WO2017101714A1 PCT/CN2016/108739 CN2016108739W WO2017101714A1 WO 2017101714 A1 WO2017101714 A1 WO 2017101714A1 CN 2016108739 W CN2016108739 W CN 2016108739W WO 2017101714 A1 WO2017101714 A1 WO 2017101714A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat tube
heat exchanger
exchanger core
width direction
core according
Prior art date
Application number
PCT/CN2016/108739
Other languages
English (en)
French (fr)
Inventor
梁欣
高强
Original Assignee
杭州三花微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花微通道换热器有限公司 filed Critical 杭州三花微通道换热器有限公司
Priority to US16/063,125 priority Critical patent/US10739076B2/en
Priority to EP16874771.5A priority patent/EP3392596B1/en
Publication of WO2017101714A1 publication Critical patent/WO2017101714A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators

Definitions

  • the present invention relates to the field of heat exchange technology, and in particular to a heat exchanger core and a heat exchanger having the heat exchanger core.
  • Parallel flow heat exchangers such as multi-channel heat exchangers include fins, flat tubes, and headers in which the refrigerant flows in the flat tubes and headers, and the fins exchange heat with the surrounding air.
  • the evaporation temperature of the refrigerant is low and the ambient air humidity is large, the temperature difference between the fin and the surrounding air is large, the frosting speed is accelerated, the frosting period is shortened, and the gap between the flat tubes is blocked by the frost in a short time, thereby affecting The energy efficiency ratio of the heat exchanger.
  • the present invention aims to solve at least one of the above technical problems in the related art to some extent.
  • the present invention proposes a heat exchanger core having the advantages of long frosting period and high energy efficiency ratio.
  • the invention also proposes a heat exchanger having the heat exchanger core.
  • a heat exchanger core comprising: a plurality of flat tubes; a plurality of fins, wherein the plurality of fins are respectively disposed in a phase Between adjacent flat tubes, the fins include a plurality of fin units arranged along a length direction of the flat tubes, each of the fin units having a windward end and a width direction of the flat tube An opposite leeward end of the windward end, at least one of the windward end and the leeward end of each of the fin units extending beyond the flat tube in a width direction of the flat tube and the at least At least one of a projection and a drain hole is provided at one end.
  • the heat exchanger core according to the present invention has the advantages of long frosting period and high energy efficiency ratio.
  • heat exchanger core according to the invention may also have the following additional technical features:
  • the windward end of the fin unit extends beyond the flat tube in the width direction of the flat tube.
  • the protrusion and the drain hole are simultaneously provided on the at least one end.
  • the protrusion on each of the fin units includes a first boss segment and a second boss segment, the drain hole being located in the first flange segment and the second in a thickness direction of the flat tube Between the raised segments.
  • the protrusion is a triangular prism shape extending in a thickness direction of the flat tube, and adjacent protrusions are spaced apart from each other or in contact with each other along a width direction of the flat tube.
  • the width of the fin unit along the thickness direction of the flat tube is H, and the length of each of the protrusions along the thickness direction of the flat tube is h, where 0.5 ⁇ h / H ⁇ 0.95.
  • Only the drain hole is provided on the at least one end of each of the fin units.
  • the drain holes are aligned along the length of the flat tube, and the drain holes are flanged holes having flanges.
  • the flat tube has an upper end and a lower end in the longitudinal direction, and a flange of each of the drain holes extends from a direction in which the fin unit is located toward a lower end of the flat tube.
  • the drain hole is a rectangular hole, and the flange of the drain hole includes a first flange portion and a second flange portion which are spaced apart from each other in a thickness direction of the flat tube and extend in a width direction of the flat tube.
  • Each of the at least one end portion has a length W2 along a width direction of the flat tube, and a maximum width of each of the protrusions along a width direction of the flat tube is W3, wherein 0.05 ⁇ w3 / W2 ⁇ 1.
  • Each of the at least one end portion has a length W2 along a width direction of the flat tube, and the flat tube has a width W1, wherein 0.05 ⁇ w2 / w1 ⁇ 1.0.
  • Each of the at least one end portion has a length W2 along a width direction of the flat tube, the flat tube has a width W1, and each of the fin units is along a width direction of the flat tube The length is W, where W ⁇ w1 + w2 ⁇ 1.1W.
  • a louver is provided on a portion of each of the fin units that does not extend beyond the flat tube in a width direction of the flat tube.
  • a plurality of louvers on each of the fin units are arranged at intervals along a width direction of the flat tubes, and a length of a plurality of the louvers in a thickness direction of the flat tubes is from a middle portion of the fin unit The direction to the at least one end gradually decreases.
  • Each of the fin units is provided with a heat exchange protrusion adjacent to the at least one end portion.
  • the louvers on each of the fin units are plural and arranged along the width direction of the flat tubes, and the louvers on the adjacent fin units are staggered along the width direction of the flat tubes.
  • a plurality of the flat tubes are arranged in a plurality of rows spaced apart from each other along a width direction of the flat tubes, and the flat tubes in the adjacent rows are in one-to-one correspondence, and each of the fins is disposed in an adjacent flat tube in each row At least one of the windward end and the leeward end of each of the fin units extends in a width direction of the flat tube beyond a flat tube located at an outermost side of a corresponding one of the plurality of rows of flat tubes.
  • the fin unit is provided with at least one of the protrusion, the drain hole, and the louver on a portion between adjacent rows.
  • a heat exchanger comprising: a first header and a second header; the heat exchanger core according to the first aspect of the invention, The first end of the flat tube of the heat exchanger core is connected to the first header, and the second end of the flat tube is connected to the second header.
  • Heat exchanger according to the present invention having frosting by using the heat exchanger core according to the first aspect of the invention Long cycle and high energy efficiency.
  • FIG. 1 is a perspective view of a heat exchanger core in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a heat exchanger core according to an embodiment of the present invention.
  • FIG 3 is a perspective view of a heat exchanger core in accordance with a first alternative embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a heat exchanger core according to a first alternative embodiment of the present invention.
  • Figure 5 is a schematic view showing the structure of a heat exchanger core according to a second alternative embodiment of the present invention.
  • Figure 6 is a schematic view showing the structure of a heat exchanger core according to a third alternative embodiment of the present invention.
  • Figure 7 is a schematic view showing the structure of a fin of a heat exchanger core according to a fourth alternative embodiment of the present invention.
  • Figure 8 is a schematic view showing the structure of a heat exchanger core according to a fourth alternative embodiment of the present invention.
  • Figure 9 is a schematic view showing the structure of a heat exchanger core according to a fifth alternative embodiment of the present invention.
  • Figure 10 is a schematic view showing the structure of a heat exchanger core according to a sixth alternative embodiment of the present invention.
  • Figure 11 is a schematic view showing the structure of a heat exchanger core according to a seventh alternative embodiment of the present invention.
  • Figure 12 is a graph comparing the performance of a heat exchanger core with an existing heat exchanger core in accordance with an embodiment of the present invention.
  • Fin unit 100 Windward end 110, leeward end 120, protrusion 130, first raised section 131, second raised section 132, drain hole 140, flange 141, first flanged section 142, second Flanging section 143, louver 150, heat exchange protrusion 160.
  • a heat exchanger core 1 according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
  • a heat exchanger core 1 includes a plurality of flat tubes 10 and a plurality of fins 20.
  • the relative positions of the components are described with the flat tube 10 as a reference, wherein the longitudinal direction of the flat tube 10 is as indicated by the arrow A in the drawing, and the width direction of the flat tube 10 is as indicated by the arrow B in the drawing.
  • the thickness direction of the flat tube 10 is as indicated by an arrow C in the drawing.
  • the plurality of flat tubes 10 are spaced apart and arranged in parallel along the thickness direction C of the flat tubes 10, and the longitudinal direction A of the plurality of flat tubes 10 may be oriented in the vertical direction or in the horizontal direction.
  • a plurality of fins 20 are respectively disposed between adjacent flat tubes 10, and the wings are respectively
  • the sheet 20 includes a plurality of fin units 100 arranged along the longitudinal direction A of the flat tube 10, and the plurality of fin units 100 may be connected in a corrugated shape in the longitudinal direction A of the flat tube 10 to constitute the corrugated fins 20.
  • Each of the fin units 100 has a windward end portion 110 and a leeward end portion 120, and the windward end portion 110 and the leeward end portion 120 are opposed in the width direction B of the flat tube 10.
  • the windward end portion 110 refers to an end portion of the two end portions of the fin unit 100 that first exchanges heat with the air flow
  • the leeward end portion 120 refers to both end portions of the fin unit 100. The end of the heat exchange in contact with the air stream.
  • At least one of the windward end portion 110 and the leeward end portion 120 of each of the fin units 100 extends beyond the flat tube 10 in the width direction B of the flat tube 10.
  • each of the fin units 100 extends beyond the flat tube 10 in the width direction B of the flat tube 10. Further, at least one of the ends is provided with at least one of a protrusion 130 and a drain hole 140, that is, a portion of the fin unit 100 that extends beyond the flat tube 10 in the width direction B of the flat tube 10 is provided with a protrusion 130. And at least one of the drain holes 140.
  • the heat exchanger core 1 extends by extending at least one of the windward end portion 110 and the leeward end portion 120 of each fin unit 100 in the width direction B of the flat tube 10 beyond the flat tube 10
  • the heat exchange area of the fins 20 can be increased, so that the frosting thickness is thinner in the case of the same frosting amount, and on the other hand, the portion of the fins 20 beyond the flat tube 10 can put the frost between the flat tubes 10 Leading to the outside, slowing down the degree of clogging of the fins 20, extending the frosting cycle, thereby increasing the energy efficiency ratio of the heat exchanger core 1.
  • the projection 130 and the drain hole 140 is provided in a portion of the fin unit 100 that is beyond the flat tube 10.
  • the protrusion 130 can increase the effect of air disturbance to improve heat exchange efficiency, and the arrangement of the drainage hole 140 can facilitate the discharge of the defrosting water during defrosting.
  • the applicant compares the performances of the heat exchanger core 1 and the existing heat exchanger core according to the embodiment of the present invention through experiments. According to the experimental results, the heat exchanger according to the embodiment of the present invention is known.
  • the core 1 is superior to the existing heat exchanger core in the convenience of frosting cycle, energy efficiency ratio and drainage performance.
  • the heat exchanger core 1 according to the present invention has an advantage of a long frosting period and a high energy efficiency ratio.
  • a heat exchanger core 1 according to an embodiment of the present invention will now be described with reference to the accompanying drawings. As shown in Figures 1-12, a plurality of flat tubes 10 and a plurality of fins 20 are in accordance with an embodiment of the present invention.
  • the windward end portion 110 of the fin unit 100 extends beyond the flat tube 10 in the width direction B of the flat tube 10. Since the windward end portion 110 of the fin unit 100 is first in contact with the air flow during the operation of the heat exchanger core 1, the temperature difference of the windward end portion 110 of the fin unit 100 is relatively large, and the frost is most likely to be formed.
  • the windward end portion 110 of the 100 is beyond the flat tube 10, and the thickness of the frost layer at the windward end portion 110 can be thinned, and the frost at the windward end portion 110 can be directed to the outside of the flat tube 10, thereby avoiding clogging by frosting and ensuring the heat exchanger.
  • each end of the fin unit 100 beyond the end of the flat tube 10 has a length W2 along the width direction B of the flat tube 10, and the width of the flat tube 10 is W1.
  • the frost layer of the portion and can ensure the distance between the end of the fin unit 100 beyond the flat tube 10 and the flat tube 10, thereby facilitating heat transfer from the flat tube 10 to the end of the fin unit 100 beyond the flat tube 10. .
  • FIGS. 1 and 2 illustrate a heat exchanger core 1 in accordance with some embodiments of the present invention.
  • a louver 150 is provided on a portion of each fin unit 100 that does not extend beyond the flat tube 10 in the width direction B of the flat tube 10, and the end of the fin unit 100 beyond the flat tube 10 is provided.
  • a protrusion 130 and a drain hole 140 are provided.
  • FIGS. 1 and 2 An example in which the windward end portion 110 of the fin unit 100 is provided with the protrusion 130 and the drain hole 140 is shown in FIGS. 1 and 2.
  • the air first flows through the protrusions 130 of the windward end portion 110 and then flows to the louver 150. Since the windward end portion 110 extends beyond the flat tube 10, the temperature here is not too low, and the heat exchange efficiency of the protrusions 130 is lower than that of the louver 150. When the air flows through the protrusion 130, it will not form a frost quickly when it is cold, and only part of the moisture is removed, and the moisture at the windward end portion 110 is easily discharged, which has the effect of dehumidification. The dehumidified air flows through the louver 150.
  • the frosting between the flat tubes 10 can be led out to the flat tubes 10, thereby prolonging the period in which the fins 20 are blocked by the frost.
  • the arrangement of the drain holes 140 may facilitate the discharge of the defrosted water on the portion of the fin unit 100 beyond the flat tube 10.
  • the drain hole 140 is a rectangular hole extending in the width direction B of the flat tube 10 in the longitudinal direction, and the plurality of protrusions 130 on each of the fin units 100 are plural.
  • the flat tubes 10 are arranged in the width direction B and each of the protrusions 130 extends in the thickness direction C of the flat tube 10, and each of the protrusions 130 includes a first flange portion 131 and a second portion spaced apart in the thickness direction C of the flat tube 10.
  • the flange portion 132, the drain hole 140 is located at the center of the fin unit 100 in the thickness direction C of the flat tube 10, and is located between the first flange portion 131 and the second flange portion 132.
  • the protrusion 130 is a triangular prism shape extending along the thickness direction C of the flat tube 10 to improve the air disturbance effect and facilitate drainage, and the adjacent protrusions 130 are spaced apart from each other along the width direction B of the flat tube 10 or mutually. Pick up.
  • each end of the fin unit 100 beyond the end of the flat tube 10 has a length W2 along the width direction B of the flat tube 10, and each protrusion 130 is along the flat tube 10.
  • the maximum width of the width direction B is W3, wherein 0.05 ⁇ w3 / w2 ⁇ 1, preferably 0.2 ⁇ w3 / w2 ⁇ 0.45. This not only facilitates the stamping of the projections 130, but also utilizes the projections 130 to disturb the air.
  • each fin unit 100 along the width direction B of the flat tube 10 is W, wherein W ⁇ w1 + w2 ⁇ 1.1 W, that is, the protrusion 130 can penetrate into the flat tube 10
  • the portion of the projection 130 is not fenestrated, the heat transfer path between the excess portion of the fin unit 100 and the flat tube 10 is widened, and the heat exchange efficiency of the excess portion of the fin unit 100 can be improved.
  • the flat tube 10 has an upper end and a lower end in its length direction, i.e., the longitudinal direction A of the flat tube 10 is oriented in the vertical direction.
  • the drain holes 140 are aligned along the longitudinal direction A of the flat tube 10, and the drain holes 140 are flanged holes having a flange 141, and the flange 141 of each drain hole 140 is directed from the fin unit 100 toward the lower end of the flat tube 10. extend.
  • the drain hole 140 on the plurality of fin units 100 and the flange 141 thereof constitute a drain flow path, thereby facilitating drainage.
  • the drain hole 140 is a rectangular hole
  • the flange 141 of the drain hole 140 includes a first flange which is spaced apart from each other in the thickness direction C of the flat tube 10 and extends in the width direction B of the flat tube 10.
  • the segment 142 and the second cuff section 143, that is, the cuff 141 are open on both sides in the width direction B of the flat tube 10. Thereby, the flange 141 is parallel to the air flow, so that the wind resistance can be reduced.
  • FIGS. 3 and 4 show a heat exchanger core 1 according to a specific example of the present invention.
  • a louver 150 is provided on a portion of each fin unit 100 that does not extend beyond the flat tube 10 in the width direction B of the flat tube 10, and the end of each fin unit 100 that extends beyond the flat tube 10 Only the drain hole 140 is provided in the portion.
  • the flat tube 10 has an upper end and a lower end in its longitudinal direction, that is, the longitudinal direction A of the flat tube 10 is oriented in the vertical direction.
  • the drain holes 140 are aligned along the longitudinal direction A of the flat tube 10, and the drain holes 140 are flanged holes having a flange 141, and the flange 141 of each drain hole 140 extends from the fin unit 100 toward the lower end of the flat tube 10. .
  • the drain hole 140 on the plurality of fin units 100 and the flange 141 thereof constitute a drain flow path, thereby facilitating drainage.
  • the drain hole 140 is a rectangular hole
  • the flange 141 of the drain hole 140 includes a plurality of flanges 141 spaced apart from each other in the thickness direction C of the flat tube 10 and extending in the width direction B of the flat tube 10.
  • a flange portion 142 and a second flange portion 143, that is, the flange 141 are open on both sides in the width direction B of the flat tube 10. Thereby, the flange 141 is parallel to the air flow, so that the wind resistance can be reduced.
  • each of the fin units 100 there are a plurality of drainage holes 140 on each of the fin units 100.
  • the plurality of drainage holes 140 are spaced apart along the thickness direction C of the flat tube 10, and each of the drainage holes 140 is a flat tube.
  • An oblong hole extending in the width direction B of 10, the width of the plurality of drainage holes 140 on each fin unit 100, along the thickness direction C of the flat tube 10, gradually decreasing from one of the adjacent two flat tubes 10 to the other small.
  • FIG. 5 illustrates a heat exchanger core 1 in accordance with some embodiments of the present invention.
  • the louver 150 is provided on a portion of each of the fin units 100 that does not extend beyond the flat tube 10 in the width direction B of the flat tube 10.
  • the end of the fin unit 100 beyond the flat tube 10 is provided only. Bumps 130.
  • the plurality of protrusions 130 on each of the fin units 100 are plural, and the plurality of protrusions 130 are arranged along the width direction B of the flat tube 10, and each of the protrusions 130 extends in the thickness direction C of the flat tube 10.
  • the adjacent protrusions 130 are spaced apart from each other or in contact with each other along the width direction B of the flat tube 10.
  • the air first flows through the protrusions 130 of the windward end portion 110 and then flows to the louver 150. Since the windward end portion 110 extends beyond the flat tube 10, the temperature here is not too low, and the heat exchange efficiency of the protrusions 130 is lower than that of the louver 150. When the air flows through the protrusions 130, it will not form a frost quickly when it is cold, and only part of the moisture is removed, and the moisture at the windward end portion 110 is easily removed, which has the effect of dehumidification. The dehumidified air flows through the louver 150, effectively reducing the louver 150 due to less moisture in the air.
  • the amount of frost at the place, and the moisture at the projections 130 are easily eliminated, reducing the amount of frost on the windward end portion 110. Therefore, the frosting between the flat tubes 10 can be led out to the flat tubes 10, thereby prolonging the period in which the fins 20 are blocked by the frost.
  • the width of the fin unit 100 along the thickness direction C of the flat tube 10 is H
  • the length of each protrusion 130 along the thickness direction C of the flat tube 10 is h
  • the fin unit 100 The length of each end portion beyond the end portion of the flat tube 10 in the width direction B of the flat tube 10 is W2
  • the maximum width of each protrusion 130 along the width direction B of the flat tube 10 is W3, where 0.5 ⁇ h /H ⁇ 0.95, 0.05 ⁇ w3 / w2 ⁇ 1.
  • FIG. 6 is a diagram showing a heat exchanger core 1 in accordance with some specific examples of the present invention. As shown in FIG. 6, the windward end portion 110 of each fin unit 100 extends beyond the flat tube 10, and the windward end portion 110 of each fin unit 100 is provided with a projection 130. A plurality of louvers 150 are provided on a portion of each fin unit 100 that does not extend beyond the flat tube 10 in the width direction B of the flat tube 10.
  • the plurality of louvers 150 are spaced apart along the width direction B of the flat tube 10, and the plurality of louvers 150 are The length in the thickness direction C of the flat tube 10 gradually decreases in the direction from the middle portion of the fin unit 100 to the windward end portion 110, and each fin unit 100 is provided with a heat exchange projection 160 adjacent to the windward end portion 110. .
  • the plurality of heat transfer projections 160 are provided between the louver 150 having a relatively small length and the adjacent flat tube 10 with respect to the longest louver 150.
  • the heat exchange protrusion 160 may be a spherical shape.
  • the heat transfer path between the protruding portion of the fin unit 100 and the flat tube 10 is increased, the heat exchange efficiency of the protruding portion of the fin unit 100 is improved, and on the other hand, the heat transfer protrusion 160 enhances the disturbance of the air. Conducive to heat transfer.
  • FIGS. 7 and 8 show a heat exchanger core 1 in accordance with some specific examples of the invention.
  • the windward end portion 110 of each fin unit 100 extends beyond the flat tube 10, and the windward end portion 110 of each fin unit 100 is provided with a projection 130.
  • a plurality of louvers 150 are provided on a portion of each of the fin units 100 that does not extend beyond the flat tube 10 in the width direction B of the flat tube 10.
  • the louvers 150 on the adjacent fin units 100 are staggered along the width direction B of the flat tube 10. . This can facilitate drainage, and the protruding portion of the fin unit 100 facilitates the outward introduction of frost to the flat tube 10, extending the period in which the fin 20 is blocked.
  • FIGS. 9-11 illustrate a heat exchanger core 1 in accordance with some embodiments of an embodiment of the present invention.
  • the plurality of flat tubes 10 are arranged in a plurality of rows spaced apart from each other in the width direction B of the flat tubes 10, and the flat tubes 10 in the adjacent rows are in one-to-one correspondence, and each of the fins 20 is disposed in Between adjacent flat tubes 10 in each row, at least one of the windward end portion 110 and the leeward end portion 120 of each fin unit 100 extends in the width direction B of the flat tube 10 beyond the corresponding flat tube in the plurality of rows The flat tube 10 located at the outermost side of 10.
  • the heat exchanger core 1 has a plurality of rows of flat tubes 10, each fin 20 extending through the plurality of rows of flat tubes 10, and located between adjacent flat tubes 10 of each row, the windward end of each fin unit 100 At least one of the end portion 110 and the leeward end portion 120 extends in the width direction B of the flat tube 10 beyond the entirety of the plurality of rows of the flat tubes 10.
  • the fin unit 100 is provided with at least one of a projection 130, a drain hole 140, a louver 150 and a heat exchange projection 160 on a portion between adjacent rows.
  • the fin unit 100 may not be located on the portion between adjacent rows. What structure.
  • the fin unit 100 is provided with a protrusion 130 and a drain hole 140 at the same time on a portion between adjacent rows.
  • the drain hole 140 is a rectangular hole extending in the width direction B of the flat tube 10 in the longitudinal direction, and a plurality of protrusions 130 are formed on each of the fin units 100, and the protrusion 130 is a triangular prism extending in the thickness direction C of the flat tube 10.
  • a plurality of protrusions 130 are arranged along the width direction B of the flat tube 10 and each protrusion 130 extends in the thickness direction C of the flat tube 10, and each protrusion 130 includes a section spaced apart in the thickness direction C of the flat tube 10.
  • the drain hole 140 is located at the center of the fin unit 100 in the thickness direction C of the flat tube 10, and is located at the first flange section 131 and the second flange section 132. between.
  • the fin unit 100 is provided with only the projections 130 on the portion between adjacent rows.
  • the adjacent protrusions 130 are spaced apart from each other or in contact with each other along the width direction B of the flat tube 10.
  • the fin unit 100 is provided with only the louver 150 on the portion between the adjacent rows, each louver 150 extending in the thickness direction C of the flat tube 10, and the plurality of louvers 150 along the width direction of the flat tube 10. B arranged.
  • a heat exchanger according to an embodiment of the present invention includes a first header, a second header, and a heat exchanger core.
  • the heat exchanger core is a heat exchanger core 1 according to the above embodiment of the present invention, and the first end of the flat tube 10 of the heat exchanger core 1 is connected to the first header, and the flat tube 10 The second end is connected to the second header.
  • the heat exchanger of the present invention by using the heat exchanger core 1 according to the above embodiment of the present invention, there is an advantage that the frosting period is long, the energy efficiency ratio is high, and the like.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” unless otherwise specifically defined and defined.
  • the terms should be understood in a broad sense. For example, they may be fixed connections, detachable connections, or integrated; they may be mechanical or electrical; they may be directly connected or indirectly connected through an intermediate medium. It is the internal communication of two components or the interaction of two components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热器芯体(1)和具有它的换热器,换热器芯体(1)包括:多个扁管(10);多个翅片(20),多个翅片(20)分别设在相邻的扁管(10)之间,翅片(20)包括沿扁管(10)的长度方向排列的多个翅片单元(100),每个翅片单元(100)具有迎风端部(110)和在扁管(10)的宽度方向上与迎风端部(110)相对的背风端部(120),每个翅片单元(100)的迎风端部(110)和背风端部(120)中的至少一个端部沿扁管(10)的宽度方向延伸超出扁管(10)且至少一个端部上设有凸起(130)和排水孔(140)中的至少一种。该换热器芯体及其换热器具有结霜周期长、能效比高的优点。

Description

换热器芯体和具有它的换热器 技术领域
本发明涉及热交换技术领域,具体而言,涉及一种换热器芯体和具有所述换热器芯体的换热器。
背景技术
诸如多通道换热器的平行流换热器包括翅片、扁管以及集流管,其中,冷媒在扁管和集流管内流动,翅片与周围空气进行热交换。当冷媒的蒸发温度较低且周围空气湿度较大时,翅片与周围空气的温差较大,结霜速度加快,结霜周期缩短,扁管间的间隙在短时间内被霜堵塞,从而影响换热器的能效比。
发明内容
本发明旨在至少在一定程度上解决相关技术中的上述技术问题之一。为此,本发明提出一种换热器芯体,该换热器芯体具有结霜周期长、能效比高等优点。
本发明还提出一种具有所述换热器芯体的换热器。
为实现上述目的,根据本发明的第一方面提出一种换热器芯体,所述换热器芯体包括:多个扁管;多个翅片,多个所述翅片分别设在相邻的扁管之间,所述翅片包括沿所述扁管的长度方向排列的多个翅片单元,每个所述翅片单元具有迎风端部和在所述扁管的宽度方向上与所述迎风端部相对的背风端部,每个所述翅片单元的迎风端部和背风端部中的至少一个端部沿所述扁管的宽度方向延伸超出所述扁管且所述至少一个端部上设有凸起和排水孔中的至少一种。
根据本发明的换热器芯体具有结霜周期长、能效比高等优点。
另外,根据本发明的换热器芯体还可以具有如下附加的技术特征:
所述翅片单元的迎风端部沿所述扁管的宽度方向延伸超出所述扁管。
所述至少一个端部上同时设有所述凸起和排水孔。
每个所述翅片单元上的凸起包括第一凸起段和第二凸起段,所述排水孔在所述扁管的厚度方向上位于所述第一凸起段与所述第二凸起段之间。
所述凸起为沿所述扁管的厚度方向延伸的三棱柱形,相邻凸起之间沿所述扁管的宽度方向彼此间隔开或彼此相接。
每个所述翅片单元的所述至少一个端部上仅设有所述凸起。
所述翅片单元沿所述扁管的厚度方向的宽度为H,每个所述凸起沿所述扁管的厚度方向的长度为h,其中0.5≤h/H≤0.95。
每个所述翅片单元的所述至少一个端部上仅设有所述排水孔。
所述排水孔沿所述扁管的长度方向对齐,所述排水孔为具有翻边的翻边孔。
所述扁管在所述长度方向上具有上端和下端,每个所述排水孔的翻边从所在翅片单元朝向所述扁管的下端的方向延伸。
所述排水孔为矩形孔,所述排水孔的翻边包括沿所述扁管的厚度方向彼此间隔开且沿所述扁管的宽度方向延伸的第一翻边段和第二翻边段。
所述至少一个端部中的每一个端部沿所述扁管的宽度方向的长度为W2,每个所述凸起沿所述扁管的宽度方向的最大宽度为W3,其中0.05≤w3/w2<1。
所述至少一个端部中的每一个端部沿所述扁管的宽度方向的长度为W2,所述扁管的宽度为W1,其中0.05≤w2/w1≤1.0。
所述至少一个端部中的每一个端部沿所述扁管的宽度方向的长度为W2,所述扁管的宽度为W1,每个所述翅片单元沿所述扁管的宽度方向的长度为W,其中W≤w1+w2≤1.1W。
每个所述翅片单元的沿所述扁管的宽度方向未超出所述扁管的部分上设有百叶窗。
每个所述翅片单元上的百叶窗为多个且沿所述扁管的宽度方向间隔布置,多个所述百叶窗在所述扁管的厚度方向上的长度沿从所述翅片单元的中部到所述至少一个端部的方向逐渐减小。
每个所述翅片单元上设有邻近所述至少一端部的换热凸起。
每个所述翅片单元上的百叶窗为多个且沿所述扁管的宽度方向排列,相邻所述翅片单元上的百叶窗沿所述扁管的宽度方向交错设置。
多个所述扁管排列成沿所述扁管的宽度方向彼此间隔开的多排,相邻排中的扁管一一对应,每个所述翅片设在每排中相邻扁管之间,每个所述翅片单元的迎风端部和背风端部中的至少一个端部沿所述扁管的宽度方向延伸超出多排中对应的扁管中位于最外侧的扁管。
所述翅片单元在相邻排之间的部分上设有所述凸起、所述排水孔和百叶窗中的至少一种。
根据本发明的第二方面提出一种换热器,所述换热器包括:第一集流管和第二集流管;根据本发明的第一方面所述的换热器芯体,所述换热器芯体的扁管的第一端与所述第一集流管相连,所述扁管的第二端与所述第二集流管相连。
根据本发明的换热器,通过利用根据本发明的第一方面所述的换热器芯体,具有结霜 周期长、能效比高等优点。
附图说明
图1是根据本发明实施例的换热器芯体的立体图。
图2是根据本发明实施例的换热器芯体的结构示意图。
图3是根据本发明第一可选实施例的换热器芯体的立体图。
图4是根据本发明第一可选实施例的换热器芯体的结构示意图。
图5是根据本发明第二可选实施例的换热器芯体的结构示意图。
图6是根据本发明第三可选实施例的换热器芯体的结构示意图。
图7是根据本发明第四可选实施例的换热器芯体的翅片的结构示意图。
图8是根据本发明第四可选实施例的换热器芯体的结构示意图。
图9是根据本发明第五可选实施例的换热器芯体的结构示意图。
图10是根据本发明第六可选实施例的换热器芯体的结构示意图。
图11是根据本发明第七可选实施例的换热器芯体的结构示意图。
图12是根据本发明实施例的换热器芯体与现有换热器芯体的性能对比图。
附图标记:
换热器芯体1、
扁管10、翅片20、
翅片单元100、迎风端部110、背风端部120、凸起130、第一凸起段131、第二凸起段132、排水孔140、翻边141、第一翻边段142、第二翻边段143、百叶窗150、换热凸起160。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述根据本发明实施例的换热器芯体1。
如图1-图12所示,根据本发明实施例的换热器芯体1包括多个扁管10和多个翅片20。为了便于理解,以扁管10为参照物描述各部件的相对位置,其中,扁管10的长度方向如附图中的箭头A所示,扁管10的宽度方向如附图中的箭头B所示,扁管10的厚度方向如附图中的箭头C所示。
多个扁管10沿扁管10的厚度方向C间隔且平行设置,多个扁管10的长度方向A可以沿竖直方向定向,也可以沿水平方向定向。多个翅片20分别设在相邻的扁管10之间,翅 片20包括沿扁管10的长度方向A排列的多个翅片单元100,多个翅片单元100可以沿扁管10的长度方向A依次连接成波纹状,以构成波纹型翅片20。
每个翅片单元100具有迎风端部110和背风端部120,迎风端部110和背风端部120在扁管10的宽度方向B上相对。这里可以理解地是,迎风端部110是指翅片单元100的两个端部中先与空气流接触进行换热的端部,而背风端部120是指翅片单元100的两个端部中后与空气流接触进行换热的端部。每个翅片单元100的迎风端部110和背风端部120中的至少一个端部沿扁管10的宽度方向B延伸超出扁管10。换言之,每一个翅片单元100均至少一端部沿扁管10的宽度方向B延伸超出扁管10。并且,所述至少一个端部上设有凸起130和排水孔140中的至少一种,即翅片单元100的沿扁管10的宽度方向B超出扁管10的部分上设有凸起130和排水孔140中的至少一种。
根据本发明实施例的换热器芯体1,通过将每个翅片单元100的迎风端部110和背风端部120中的至少一个端部沿扁管10的宽度方向B延伸超出扁管10,一方面可以增加翅片20的换热面积,使得在相同结霜量的情况下,结霜厚度更薄,另一方面翅片20的超出扁管10的部分可以把扁管10间的霜往外部引,减缓翅片20被结霜堵塞程度,延长结霜周期,从而提高换热器芯体1的能效比。
并且,翅片单元100的超出扁管10的部分上设有凸起130和排水孔140中的至少一种。其中,凸起130能增加空气扰动的功效,以提高换热效率,而排水孔140的设置可以利于化霜时化霜水的排放。
如图12所示,申请人通过实验对比根据本发明实施例的换热器芯体1与现有换热器芯体的各项性能,根据实验结果可知,根据本发明实施例的换热器芯体1,在结霜周期、能效比和排水性能等方便均优于现有换热器芯体。
因此,根据本发明的换热器芯体1具有结霜周期长、能效比高等优点。
下面参考附图描述根据本发明具体实施例的换热器芯体1。如图1-图12所示,根据本发明实施例的多个扁管10和多个翅片20。
具体地,如图1-图11所示,翅片单元100的迎风端部110沿扁管10的宽度方向B延伸超出扁管10。由于换热器芯体1在工作过程中,翅片单元100的迎风端部110首先与空气流接触,翅片单元100的迎风端部110的温差相对较大,最容易结霜,翅片单元100的迎风端部110超出扁管10,可以减薄迎风端部110的霜层厚度,且可以将迎风端部110的霜引向扁管10外,从而避免被结霜堵塞,保证换热器芯体1的能效比。
可选地,如图2所示,翅片单元100的超出扁管10的端部中的每一个端部沿扁管10的宽度方向B的长度为W2,扁管10的宽度为W1,其中,0.05≤w2/w1≤1.0,优选地,0.2≤w2/w1≤0.5。由此不仅可以保证将结霜引至扁管10外的比例高于1%,有效分担内 部的霜层,而且可以保证翅片单元100的超出扁管10的端部与扁管10之间的距离,从而便于扁管10的热量传递至翅片单元100的超出扁管10的端部。
图1和图2示出了根据本发明一些具体实施例的换热器芯体1。如图1和图2所示,每个翅片单元100的沿扁管10的宽度方向B未超出扁管10的部分上设有百叶窗150,翅片单元100的超出扁管10的端部上同时设有凸起130和排水孔140。
图1和图2中示出了翅片单元100的迎风端部110同时设有凸起130和排水孔140的示例。
空气首先流经迎风端部110的凸起130再流向百叶窗150,由于迎风端部110超出扁管10,此处的温度不会太低,且凸起130的换热效率相比百叶窗150较低,空气流经凸起130时遇冷不会快速结霜,只会除掉部分水分,且迎风端部110的水分容易排出,起到了除湿的效果。除湿后的空气流经百叶窗150,由于空气中的水分较少,有效的降低了百叶窗150处的结霜量,而且凸起130处的水分方便排出,降低了迎风端部110的结霜量。因此,可以把扁管10间的结霜往扁管10外引,从而延长翅片20被霜堵塞的周期。排水孔140的设置可以便于翅片单元100的超出扁管10的部分上的化霜水的排出。
具体而言,如图2所示,排水孔140为长度方向沿扁管10的宽度方向B延伸的长方形孔,每个翅片单元100上的凸起130为多个,多个凸起130沿扁管10的宽度方向B排列且每个凸起130沿扁管10的厚度方向C延伸,每个凸起130包括沿扁管10的厚度方向C间隔开的第一凸起段131和第二凸起段132,排水孔140在扁管10的厚度方向C上位于翅片单元100的中心处,且位于第一凸起段131与第二凸起段132之间。
其中,凸起130为沿扁管10的厚度方向C延伸的三棱柱形,以提高空气扰动效果且便于排水,相邻凸起130之间沿扁管10的宽度方向B彼此间隔开或彼此相接。
可选地,如图2所示,翅片单元100的超出扁管10的端部中的每一个端部沿扁管10的宽度方向B的长度为W2,每个凸起130沿扁管10的宽度方向B的最大宽度为W3,其中,0.05≤w3/w2<1,优选地,0.2≤w3/w2≤0.45。由此不仅可以利于凸起130冲压成型,而且可以利用凸起130扰动空气。
进一步地,如图2所示,每个翅片单元100沿扁管10的宽度方向B的长度为W,其中,W≤w1+w2≤1.1W,即凸起130可以深入到扁管10之间,由于凸起130部分没有开窗,翅片单元100的超出部分与扁管10间的传热路径加宽,可提高翅片单元100的超出部分的换热效率。
有利地,如图1所示,扁管10在其长度方向上具有上端和下端,即扁管10的长度方向A沿竖直方向定向。排水孔140沿扁管10的长度方向A对齐,排水孔140为具有翻边141的翻边孔,每个排水孔140的翻边141从所在翅片单元100朝向扁管10的下端的方向 延伸。由此,多个翅片单元100上的排水孔140以及其翻边141构成一个排水流道,从而有利于排水。
进一步地,如图1所示,排水孔140为矩形孔,排水孔140的翻边141包括沿扁管10的厚度方向C彼此间隔开且沿扁管10的宽度方向B延伸的第一翻边段142和第二翻边段143,即翻边141在扁管10的宽度方向B的两侧敞开。由此,翻边141与空气流平行,进而可以减小风阻。
图3和图4示出了根据本发明一个具体示例的换热器芯体1。如图3和图4所示,每个翅片单元100的沿扁管10的宽度方向B未超出扁管10的部分上设有百叶窗150,每个翅片单元100的超出扁管10的端部上仅设有排水孔140。
具体而言,如图3所示,扁管10在其长度方向上具有上端和下端,即扁管10的长度方向A沿竖直方向定向。排水孔140沿扁管10的长度方向A对齐,排水孔140为具有翻边141的翻边孔,每个排水孔140的翻边141从所在翅片单元100朝向扁管10的下端的方向延伸。由此,多个翅片单元100上的排水孔140以及其翻边141构成一个排水流道,从而有利于排水。
进一步地,如图3和图4所示,排水孔140为矩形孔,排水孔140的翻边141包括沿扁管10的厚度方向C彼此间隔开且沿扁管10的宽度方向B延伸的第一翻边段142和第二翻边段143,即翻边141在扁管10的宽度方向B的两侧敞开。由此,翻边141与空气流平行,进而可以减小风阻。
可选地,如图4所示,每个翅片单元100上的排水孔140为多个,多个排水孔140沿扁管10的厚度方向C间隔设置,每个排水孔140为沿扁管10的宽度方向B延伸的长方形孔,每个翅片单元100上的多个排水孔140的宽度,沿扁管10的厚度方向C,从相邻两个扁管10中一个至另一个逐渐减小。
图5示出了根据本发明一些具体实施例的换热器芯体1。如图5所示,每个翅片单元100的沿扁管10的宽度方向B未超出扁管10的部分上设有百叶窗150,翅片单元100的超出扁管10的端部上仅设有凸起130。
具体地,每个翅片单元100上的凸起130为多个,多个凸起130沿扁管10的宽度方向B排列,且每个凸起130为沿扁管10的厚度方向C延伸的三棱柱形,相邻凸起130之间沿扁管10的宽度方向B彼此间隔开或彼此相接。
空气首先流经迎风端部110的凸起130再流向百叶窗150,由于迎风端部110超出扁管10,此处的温度不会太低,且凸起130的换热效率相比百叶窗150较低,空气流经凸起130时遇冷不会快速结霜,只会除掉部分水分,且迎风端部110的水分容易排除,起到了除湿的效果。除湿后的空气流经百叶窗150,由于空气中的水分较少,有效的降低了百叶窗150 处的结霜量,而且凸起130处的水分方便排除,降低了迎风端部110的结霜量。因此,可以把扁管10间的结霜往扁管10外引,从而延长翅片20被霜堵塞的周期。
可选地,如图5所示,翅片单元100沿扁管10的厚度方向C的宽度为H,每个凸起130沿扁管10的厚度方向C的长度为h,翅片单元100的超出扁管10的端部中的每一个端部沿扁管10的宽度方向B的长度为W2,每个凸起130沿扁管10的宽度方向B的最大宽度为W3,其中,0.5≤h/H≤0.95,0.05≤w3/w2<1。由此不仅可以利用凸起130对空气的扰动,而且可以利于凸起130的冲压成型。
图6是示出了根据本发明一些具体示例的换热器芯体1。如图6所示,每个翅片单元100的迎风端部110超出扁管10,且每个翅片单元100的迎风端部110设有凸起130。每个翅片单元100的沿扁管10的宽度方向B未超出扁管10的部分上设有多个百叶窗150,多个百叶窗150沿扁管10的宽度方向B间隔布置,多个百叶窗150在扁管10的厚度方向C上的长度,沿从翅片单元100的中部到迎风端部110的方向逐渐减小,每个翅片单元100上设有邻近迎风端部110的换热凸起160。
换言之,越靠近迎风端部110的百叶窗150的长度越小,相对于长度最长的百叶窗150而言,长度相对较小的百叶窗150与邻近的扁管10之间设有若干换热凸起160,换热凸起160可以为球缺形。一方面增大了翅片单元100的突出部分与扁管10间的传热路径,提高了翅片单元100的突出部分的换热效率,另一方面换热凸起160增强了空气的扰动,有利于换热。
图7和图8示出了根据本发明一些具体示例的换热器芯体1。如图7和图8所示,每个翅片单元100的迎风端部110超出扁管10,且每个翅片单元100的迎风端部110设有凸起130。每个翅片单元100的沿扁管10的宽度方向B未超出扁管10的部分上设有多个百叶窗150,相邻翅片单元100上的百叶窗150沿扁管10的宽度方向B交错设置。由此可以利于排水,且翅片单元100的突出部分利于把霜往扁管10外引,延长翅片20被堵塞的周期。
图9-图11示出了根据本发明实施例的一些具体实施例的换热器芯体1。如图9-图11所示,多个扁管10排列成沿扁管10的宽度方向B彼此间隔开的多排,相邻排中的扁管10一一对应,每个翅片20设在每排中相邻扁管10之间,每个翅片单元100的迎风端部110和背风端部120中的至少一个端部沿扁管10的宽度方向B延伸超出多排中对应的扁管10中位于最外侧的扁管10。换言之,换热器芯体1具有多排扁管10,每个翅片20贯穿多排扁管10,且位于每一排的相邻扁管10之间,每个翅片单元100的迎风端部110和背风端部120中的至少一个端部沿扁管10的宽度方向B延伸超出多排扁管10的整体。
有利地,翅片单元100在相邻排之间的部分上设有凸起130、排水孔140、百叶窗150和换热凸起160中的至少一种。当然,翅片单元100在相邻排之间的部分上也可以不设任 何结构。
举例而言,如图9所示,翅片单元100在相邻排之间的部分上同时设有凸起130和排水孔140。排水孔140为长度方向沿扁管10的宽度方向B延伸的长方形孔,每个翅片单元100上的凸起130为多个,凸起130为沿扁管10的厚度方向C延伸的三棱柱形,多个凸起130沿扁管10的宽度方向B排列且每个凸起130沿扁管10的厚度方向C延伸,每个凸起130包括沿扁管10的厚度方向C间隔开的第一凸起段131和第二凸起段132,排水孔140在扁管10的厚度方向C上位于翅片单元100的中心处,且位于第一凸起段131与第二凸起段132之间。
如图10所示,翅片单元100在相邻排之间的部分上仅设有凸起130。每个翅片单元100上的凸起130为多个,多个凸起130沿扁管10的宽度方向B排列,且每个凸起130为沿扁管10的厚度方向C延伸的三棱柱形,相邻凸起130之间沿扁管10的宽度方向B彼此间隔开或彼此相接。
如图11所示,翅片单元100在相邻排之间的部分上仅设有百叶窗150,每个百叶窗150沿扁管10的厚度方向C延伸,多个百叶窗150沿扁管10的宽度方向B排列。
下面描述根据本发明实施例的换热器。根据本发明实施例的换热器包括第一集流管、第二集流管和换热器芯体。
所述换热器芯体为根据本发明上述实施例的换热器芯体1,换热器芯体1的扁管10的第一端与所述第一集流管相连,扁管10的第二端与所述第二集流管相连。
根据本发明的换热器,通过利用根据本发明上述实施例的换热器芯体1,具有结霜周期长、能效比高等优点。
根据本发明实施例的换热器的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本发明的描述中,需要理解的是,术语“中心”、“长度方向”、“宽度方向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定” 等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (21)

  1. 一种换热器芯体,其特征在于,包括:
    多个扁管;
    多个翅片,多个所述翅片分别设在相邻的扁管之间,所述翅片包括沿所述扁管的长度方向排列的多个翅片单元,每个所述翅片单元具有迎风端部和在所述扁管的宽度方向上与所述迎风端部相对的背风端部,每个所述翅片单元的迎风端部和背风端部中的至少一个端部沿所述扁管的宽度方向延伸超出所述扁管且所述至少一个端部上设有凸起和排水孔中的至少一种。
  2. 根据权利要求1所述的换热器芯体,其特征在于,所述翅片单元的迎风端部沿所述扁管的宽度方向延伸超出所述扁管。
  3. 根据权利要求1所述的换热器芯体,其特征在于,所述至少一个端部上同时设有所述凸起和排水孔。
  4. 根据权利要求3所述的换热器芯体,其特征在于,每个所述翅片单元上的凸起包括第一凸起段和第二凸起段,所述排水孔在所述扁管的厚度方向上位于所述第一凸起段与所述第二凸起段之间。
  5. 根据权利要求4所述的换热器芯体,其特征在于,所述凸起为沿所述扁管的厚度方向延伸的三棱柱形,相邻凸起之间沿所述扁管的宽度方向彼此间隔开或彼此相接。
  6. 根据权利要求1所述的换热器芯体,其特征在于,每个所述翅片单元的所述至少一个端部上仅设有所述凸起。
  7. 根据权利要求6所述的换热器芯体,其特征在于,所述翅片单元沿所述扁管的厚度方向的宽度为H,每个所述凸起沿所述扁管的厚度方向的长度为h,其中0.5≤h/H≤0.95。
  8. 根据权利要求1所述的换热器芯体,其特征在于,每个所述翅片单元的所述至少一个端部上仅设有所述排水孔。
  9. 根据权利要求3或8所述的换热器芯体,其特征在于,所述排水孔沿所述扁管的长度方向对齐,所述排水孔为具有翻边的翻边孔。
  10. 根据权利要求9所述的换热器芯体,其特征在于,所述扁管在所述长度方向上具有上端和下端,每个所述排水孔的翻边从所在翅片单元朝向所述扁管的下端的方向延伸。
  11. 根据权利要求9所述的换热器芯体,其特征在于,所述排水孔为矩形孔,所述排水孔的翻边包括沿所述扁管的厚度方向彼此间隔开且沿所述扁管的宽度方向延伸的第一翻边段和第二翻边段。
  12. 根据权利要求3-7中任一项所述的换热器芯体,其特征在于,所述至少一个端部 中的每一个端部沿所述扁管的宽度方向的长度为W2,每个所述凸起沿所述扁管的宽度方向的最大宽度为W3,其中0.05≤w3/w2<1。
  13. 根据权利要求1所述的换热器芯体,其特征在于,所述至少一个端部中的每一个端部沿所述扁管的宽度方向的长度为W2,所述扁管的宽度为W1,其中0.05≤w2/w1≤1.0。
  14. 根据权利要求1所述的换热器芯体,其特征在于,所述至少一个端部中的每一个端部沿所述扁管的宽度方向的长度为W2,所述扁管的宽度为W1,每个所述翅片单元沿所述扁管的宽度方向的长度为W,其中W≤w1+w2≤1.1W。
  15. 根据权利要求1所述的换热器芯体,其特征在于,每个所述翅片单元的沿所述扁管的宽度方向未超出所述扁管的部分上设有百叶窗。
  16. 根据权利要求15所述的换热器芯体,其特征在于,每个所述翅片单元上的百叶窗为多个且沿所述扁管的宽度方向间隔布置,多个所述百叶窗在所述扁管的厚度方向上的长度沿从所述翅片单元的中部到所述至少一个端部的方向逐渐减小。
  17. 根据权利要求16所述的换热器芯体,其特征在于,每个所述翅片单元上设有邻近所述至少一端部的换热凸起。
  18. 根据权利要求15所述的换热器芯体,其特征在于,每个所述翅片单元上的百叶窗为多个且沿所述扁管的宽度方向排列,相邻所述翅片单元上的百叶窗沿所述扁管的宽度方向交错设置。
  19. 根据权利要求1所述的换热器芯体,其特征在于,多个所述扁管排列成沿所述扁管的宽度方向彼此间隔开的多排,相邻排中的扁管一一对应,每个所述翅片设在每排中相邻扁管之间,每个所述翅片单元的迎风端部和背风端部中的至少一个端部沿所述扁管的宽度方向延伸超出多排中对应的扁管中位于最外侧的扁管。
  20. 根据权利要求19所述的换热器芯体,其特征在于,所述翅片单元在相邻排之间的部分上设有所述凸起、所述排水孔和百叶窗中的至少一种。
  21. 一种换热器,其特征在于,包括:
    第一集流管和第二集流管;
    根据权利要求1-20中任一项所述的换热器芯体,所述换热器芯体的扁管的第一端与所述第一集流管相连,所述扁管的第二端与所述第二集流管相连。
PCT/CN2016/108739 2015-12-16 2016-12-06 换热器芯体和具有它的换热器 WO2017101714A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/063,125 US10739076B2 (en) 2015-12-16 2016-12-06 Heat exchanger coil and heat exchanger having the same
EP16874771.5A EP3392596B1 (en) 2015-12-16 2016-12-06 Heat exchanger core and heat exchanger having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201521051917.0 2015-12-16
CN201521051917.0U CN205352165U (zh) 2015-12-16 2015-12-16 换热器芯体和具有它的换热器

Publications (1)

Publication Number Publication Date
WO2017101714A1 true WO2017101714A1 (zh) 2017-06-22

Family

ID=56169273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108739 WO2017101714A1 (zh) 2015-12-16 2016-12-06 换热器芯体和具有它的换热器

Country Status (5)

Country Link
US (1) US10739076B2 (zh)
EP (1) EP3392596B1 (zh)
CN (1) CN205352165U (zh)
AR (1) AR109824A1 (zh)
WO (1) WO2017101714A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205352165U (zh) 2015-12-16 2016-06-29 杭州三花微通道换热器有限公司 换热器芯体和具有它的换热器
CN108253834A (zh) * 2016-12-28 2018-07-06 丹佛斯微通道换热器(嘉兴)有限公司 用于换热器的扁管和具有该扁管的换热器
CN109974346B (zh) * 2018-12-20 2024-05-28 上海加冷松芝汽车空调股份有限公司 一种换热器
FR3106000B1 (fr) * 2020-01-03 2022-01-14 Valeo Systemes Thermiques Échangeur de chaleur à tubes comportant des intercalaires
JP2021110511A (ja) * 2020-01-14 2021-08-02 マーレベーアサーマルシステムズジャパン株式会社 ヒートポンプ式冷凍サイクル用室外熱交換器
JP2023072100A (ja) * 2020-04-06 2023-05-24 三菱電機株式会社 熱交換器、熱交換器を搭載した空気調和機、及び熱交換器の製造方法
WO2022219719A1 (ja) * 2021-04-13 2022-10-20 三菱電機株式会社 熱交換器および冷凍サイクル装置
JPWO2022249281A1 (zh) * 2021-05-25 2022-12-01
CN117561416A (zh) * 2021-06-29 2024-02-13 三菱电机株式会社 热交换器、制冷循环装置以及热交换器制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102047064A (zh) * 2008-06-20 2011-05-04 大金工业株式会社 热交换器
CN103299150A (zh) * 2011-01-21 2013-09-11 大金工业株式会社 热交换器和空调机
CN103314269A (zh) * 2011-01-21 2013-09-18 大金工业株式会社 热交换器及空调机
CN103403487A (zh) * 2011-01-21 2013-11-20 大金工业株式会社 热交换器及空调机
CN104285118A (zh) * 2012-04-26 2015-01-14 三菱电机株式会社 换热器、换热器的制造方法以及空调机
CN104764353A (zh) * 2015-04-24 2015-07-08 珠海格力电器股份有限公司 换热器翅片及换热器
CN205352165U (zh) * 2015-12-16 2016-06-29 杭州三花微通道换热器有限公司 换热器芯体和具有它的换热器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217195A (ja) * 1982-06-10 1983-12-17 Mitsubishi Electric Corp 熱交換器
US4709753A (en) * 1986-09-08 1987-12-01 Nordyne, Inc. Uni-directional fin-and-tube heat exchanger
JPH03181759A (ja) 1989-12-08 1991-08-07 Nippondenso Co Ltd 冷媒蒸発器
US5280488A (en) * 1990-11-08 1994-01-18 Neal Glover Reed-Solomon code system employing k-bit serial techniques for encoding and burst error trapping
US5360060A (en) * 1992-12-08 1994-11-01 Hitachi, Ltd. Fin-tube type heat exchanger
US5975200A (en) * 1997-04-23 1999-11-02 Denso Corporation Plate-fin type heat exchanger
JP3417310B2 (ja) * 1998-08-31 2003-06-16 株式会社デンソー プレートフィン型熱交換器及びその製造方法
JP4117429B2 (ja) * 1999-02-01 2008-07-16 株式会社デンソー 熱交換器用フィン
EP1167909A3 (en) * 2000-02-08 2005-10-12 Calsonic Kansei Corporation Core structure of integral heat-exchanger
JP2002372389A (ja) * 2001-06-13 2002-12-26 Denso Corp 熱交換器
JP4005526B2 (ja) * 2003-03-26 2007-11-07 カルソニックカンセイ株式会社 コルゲートフィンの成形方法
US7021370B2 (en) * 2003-07-24 2006-04-04 Delphi Technologies, Inc. Fin-and-tube type heat exchanger
WO2007088850A1 (ja) * 2006-02-01 2007-08-09 Calsonic Kansei Corporation 車両用熱交換器
JP2007232246A (ja) * 2006-02-28 2007-09-13 Denso Corp 熱交換器
JP5125344B2 (ja) 2006-09-29 2013-01-23 ダイキン工業株式会社 熱交換器
US20110139414A1 (en) * 2009-12-14 2011-06-16 Delphi Technologies, Inc. Low Pressure Drop Fin with Selective Micro Surface Enhancement
KR20110083017A (ko) * 2010-01-13 2011-07-20 엘지전자 주식회사 열 교환기용 핀 및 이를 갖는 열 교환기
WO2013160950A1 (ja) * 2012-04-26 2013-10-31 三菱電機株式会社 熱交換器、及び空気調和機
KR102218301B1 (ko) * 2013-07-30 2021-02-22 삼성전자주식회사 열교환기 및 그 코르게이트 핀

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102047064A (zh) * 2008-06-20 2011-05-04 大金工业株式会社 热交换器
CN103299150A (zh) * 2011-01-21 2013-09-11 大金工业株式会社 热交换器和空调机
CN103314269A (zh) * 2011-01-21 2013-09-18 大金工业株式会社 热交换器及空调机
CN103403487A (zh) * 2011-01-21 2013-11-20 大金工业株式会社 热交换器及空调机
CN104285118A (zh) * 2012-04-26 2015-01-14 三菱电机株式会社 换热器、换热器的制造方法以及空调机
CN104764353A (zh) * 2015-04-24 2015-07-08 珠海格力电器股份有限公司 换热器翅片及换热器
CN205352165U (zh) * 2015-12-16 2016-06-29 杭州三花微通道换热器有限公司 换热器芯体和具有它的换热器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392596A4 *

Also Published As

Publication number Publication date
EP3392596A1 (en) 2018-10-24
US20190360755A1 (en) 2019-11-28
AR109824A1 (es) 2019-01-30
US10739076B2 (en) 2020-08-11
CN205352165U (zh) 2016-06-29
EP3392596B1 (en) 2021-06-09
EP3392596A4 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
WO2017101714A1 (zh) 换热器芯体和具有它的换热器
CN103314267B (zh) 热交换器及空调机
JP4952196B2 (ja) 熱交換器
US10082344B2 (en) Fin-and-tube heat exchanger and refrigeration cycle apparatus including the same
WO2018054319A1 (zh) 换热器芯体和具有其的换热器
JP6701371B2 (ja) 熱交換器及び冷凍サイクル装置
US20170248370A1 (en) Heat exchanger and method for manufacturing plate-shaped fins for heat exchanger
JP5869665B2 (ja) 熱交換器
JP2013245884A (ja) フィンチューブ熱交換器
WO2014012286A1 (zh) 一种带填料耦合盘管蒸发式冷凝器的冷水机组
JP2014511992A5 (zh)
WO2018040036A1 (zh) 微通道换热器及风冷冰箱
JP5020886B2 (ja) 熱交換器
WO2018041138A1 (zh) 翅片和具有该翅片的换热器
JP2010091145A (ja) 熱交換器
JP2005201492A (ja) 熱交換器
JP2004271113A (ja) 熱交換器
JP5736794B2 (ja) 熱交換器および空気調和機
JP5569409B2 (ja) 熱交換器および空気調和機
JP5404571B2 (ja) 熱交換器及び機器
WO2018040037A1 (zh) 微通道换热器及风冷冰箱
WO2016031032A1 (ja) 熱交換器および空気調和装置
WO2018040035A1 (zh) 微通道换热器及风冷冰箱
WO2018040034A1 (zh) 微通道换热器及风冷冰箱
CN208254272U (zh) 斜向叠置式平行流换热器模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016874771

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016874771

Country of ref document: EP

Effective date: 20180716