WO2017098763A1 - Power supply device and method for controlling initial charging thereof - Google Patents

Power supply device and method for controlling initial charging thereof Download PDF

Info

Publication number
WO2017098763A1
WO2017098763A1 PCT/JP2016/076158 JP2016076158W WO2017098763A1 WO 2017098763 A1 WO2017098763 A1 WO 2017098763A1 JP 2016076158 W JP2016076158 W JP 2016076158W WO 2017098763 A1 WO2017098763 A1 WO 2017098763A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
transformer
supply device
circuit
voltage
Prior art date
Application number
PCT/JP2016/076158
Other languages
French (fr)
Japanese (ja)
Inventor
泰明 乗松
叶田 玲彦
馬淵 雄一
尊衛 嶋田
充弘 門田
祐樹 河口
瑞紀 中原
輝 米川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017098763A1 publication Critical patent/WO2017098763A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a power supply apparatus that performs power conversion for direct current power and alternating current power, and an initial charge control method thereof.
  • isolation transformers are used in the power system, but it is difficult to reduce the size and weight because it is driven at a low frequency of several tens of Hz (50/60 Hz in Japan). There was a problem.
  • the SST Solid State Transformer: hereinafter simply referred to as SST
  • SST Solid State Transformer
  • the SST is composed of a high-frequency transformer and a power conversion circuit, and the output or input of the SST is AC power having the same frequency as the conventional one.
  • a high frequency is generated by a power conversion circuit (DC / DC converter or inverter) and a high frequency transformer is driven to connect an input or output to an AC power system having the same frequency as the conventional one. It replaces the isolation transformer.
  • the high-frequency transformer can be driven at a high frequency of several tens to several hundreds of kHz, so that a significant reduction in size and weight can be realized as compared with a conventional insulation transformer alone.
  • PCS Power Conditioning System
  • an initial charge suppression circuit that suppresses the charging current to the capacitor on the system side SST when connecting to the system is required.
  • an initial charging resistor and an initial charging relay are required in addition to the main transformer. Since the equipment required for the initial charging needs to be compatible with 6.6 kV, there is a problem that the power supply using the power converter becomes large.
  • an object of the present invention is to provide a power supply apparatus that can be miniaturized including a function of suppressing inrush current and a method for controlling the initial charge thereof.
  • a first inverter unit that is connected to a power source via a switch and converts a DC input from a first capacitor to a high frequency and gives the output, and an output of the first inverter unit
  • a power supply device comprising a main circuit composed of a transformer connected to the side, a rectifier unit for rectifying the output of the transformer, and a second capacitor provided on the output side of the rectifier unit,
  • the apparatus is connected to a low-voltage DC power source for applying a DC voltage, an initial charging inverter unit that converts the output of the low-voltage DC power source into a high frequency, and an output side of the initial charging inverter unit.
  • An initial charging circuit including an initial charging transformer connected to the secondary side is provided.
  • the present invention insulation from the system can be ensured and a small initial charge control circuit can be obtained. Furthermore, according to the embodiment of the present invention, the volume of the initial charging transformer is reduced by increasing the frequency input to the initial charging transformer. In addition, a low-voltage element can be used as an element for driving the initial charge transformer. As a result, the first charging circuit as a whole can be reduced in size and weight, so that a high-voltage power converter can be reduced in size and weight.
  • FIG. 1 is a diagram illustrating a configuration of a power supply device according to a first embodiment.
  • the figure which shows the normal output power flow in the structure of the power supply device of FIG. The figure which shows a voltage and electric current waveform when LLC resonant frequency is equal to a drive frequency.
  • FIG. 6 is a diagram illustrating a configuration of a power supply device according to a second embodiment.
  • FIG. 6 is a diagram illustrating a configuration of a power supply device according to a third embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a power supply device according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a power supply device according to a fifth embodiment.
  • FIG. 1 shows the configuration of the power supply device according to the first embodiment.
  • the power supply device according to the embodiment has a configuration in which an input is connected to an AC system and a low-voltage DC is connected to an output. Note that the output low-voltage direct current may be further converted into alternating current at the subsequent stage and output.
  • the main circuit 10 is configured using a full-bridge type LLC resonant converter.
  • the main circuit 10 using a full-bridge type LLC resonant converter is connected to the input terminal Ti through an switch CB and a current suppressing coil L1 to an AC system, and provides a DC output to the output terminal To of the main circuit 10.
  • the main circuit 10 using a full-bridge type LLC resonant converter includes, from the input side, a first rectifier unit R1, a smoothing capacitor C1, a first inverter unit In1, an LLC transformer 3, and a second rectifier unit. R2 and a smoothing capacitor C2.
  • the LLC transformer 3 is a transformer primary winding side of a first reactor 31, a second reactor 32 as a primary winding, and a capacitor 33 arranged in series. It is a vessel.
  • the first inverter unit In1 has a single-phase full bridge configuration, and the semiconductor elements H1, H2, H3, and H4 are configured by MOS-FETs.
  • the first rectifier unit R1 converts the power of the AC system into DC
  • the first inverter unit In1 converts the DC into high-frequency AC
  • the LLC transformer 3 arbitrarily And then converted to direct current in the second rectifier section R2 and then output to the output terminal To.
  • the circuit configuration of the full-bridge type LLC resonant converter is applied to the subsequent stage of the first rectifier unit R1 (single-phase converter) composed of the semiconductor elements Q1, Q2, Q3, and Q4. 2 is configured to output a direct current output after full-bridge diode rectification by two rectifier units R2.
  • a single-phase converter is assumed as the first rectifier unit R1, but it may be applied to a three-phase converter.
  • the output is a direct current, but an inverter (second inverter unit In2) may be added to the subsequent stage to obtain an alternating current output.
  • the initial charging circuit 20 is connected to the secondary winding side of the LLC transformer 3 of the main circuit 10.
  • the initial charging circuit 20 includes a low-voltage DC power source 21, an initial charging inverter unit 22, and an initial charging transformer 23.
  • the DC voltage of the low-voltage DC power source 21 is converted into an AC voltage by the initial charging inverter unit 22,
  • the smoothing capacitors C1 and C2 are charged via the charging transformer 23.
  • the capacitors C1 and C2 are charged from the time before the switch CB is turned on, and the connected state may be maintained even after the power supply device is operated.
  • the smoothing capacitors C1 and C2 only the amount corresponding to the difference voltage flows, so that the inrush current is suppressed.
  • the second inverter unit In2 is provided in the subsequent stage of the second rectifier unit R2, and when the direct current is converted into the alternating current and then the alternating current is output to the output terminal To, the second inverter unit Is connected to the secondary winding side of the LLC transformer 3 of the main circuit 10 for supplying the gate power of the semiconductor elements Q5, Q6, Q7, Q8 and the power of the control circuit for generating the gate signal. Good.
  • the power supply circuit 17 obtains power from the secondary winding 34 of the LLC transformer 3 via the control circuit power supply transformer 4.
  • the control circuit power transformer 4 includes a primary winding 41 and a secondary winding 42 electromagnetically coupled to the primary winding 41.
  • the secondary winding 42 supplies DC power to the power supply circuit 17 via the single-phase bridge rectifier circuit 16.
  • the DC power of the power supply circuit 17 is used as gate power given to the gates of the semiconductor elements Q5, Q6, Q7, Q8 of the second inverter unit In2 or control circuit power.
  • voltage dividing resistors R1 and R2 are connected in series on the output side of the single-phase bridge rectifier circuit 16, and the connection point potential is used as a detection signal for the DC voltage Vdc of the main circuit.
  • the LLC transformer 3 operates at a high frequency
  • the device configuration can be reduced in size.
  • the control circuit power transformer 4 also operates at a high frequency, it can be miniaturized.
  • the voltage dividing circuit for detecting the main circuit DC voltage Vdc is also lower in potential than the case where it is installed in the main circuit and is insulated, so that the circuit is miniaturized.
  • the power supply circuit 17 supplies the gate power of the MOS-FET semiconductor elements Q5, Q6, Q7, and Q8 constituting the second inverter unit In2 and the power supply for the gate control circuit.
  • the power supply circuit for one inverter unit In1 is not shown.
  • a power supply circuit for the first inverter unit In1 is separately installed but is not described here. The reason for this is that the voltage level to be insulated (usually about 100 volts AC) is low on the first inverter unit In1 side, so that a high degree of insulation measure that is applied to the power supply circuit 17 is not required. This is because it can be handled by technology.
  • the DC voltage Vd2 provided by the full-bridge type LLC resonant converter is a DC voltage of 1000 V or less, and therefore it is assumed that a MOS FET suitable for high frequency driving is applied.
  • the switching frequency is assumed to be several tens kHz to several hundreds kHz.
  • a SiC MOS FET suitable for high withstand voltage and high frequency switching may be applied, and any other MOS FET having the same function may be used.
  • the secondary side of the LLC resonant converter is assumed to be smoothed by a diode.
  • Si-type Schottky barrier diodes and SiC Schottky barrier diodes may be applied to reduce conduction loss, and loss can be reduced by using SiC MOS FETs in synchronization. It may be any other one having the same function.
  • the LLC transformer 3 has an insulating function with respect to the system voltage, and in order to achieve LLC resonance, the leakage inductance Lr (first reactor 31) corresponding to resonance with the exciting inductance Lm (second reactor 32) of the high-frequency transformer. And a resonance capacitor Cr (capacitor 33).
  • the leakage inductance Lr is assumed to be integrated in the high-frequency transformer as a structure capable of adjusting the constant of the leakage magnetic flux in the high-frequency transformer, but is not limited thereto.
  • the resonance capacitor Cr is assumed to use a film capacitor or a ceramic capacitor, but may have any similar function.
  • Fig. 2 shows the normal output power flow of Fig. 1. Normally, the power flow is such that the DC voltage Vd1 rectified by the single-phase converter is output to Vd2 by a full-bridge type LLC resonant converter.
  • the control of the LLC resonant converter is not PWM but frequency control of duty 50% with dead time. It is assumed that the resonance frequency is determined by the values of the excitation inductance Lm, the leakage inductance Lr, and the resonance capacitor Cr, and is set to several tens to several hundreds kHz.
  • the control of the LLC resonant converter is executed by a control circuit that controls on / off of four sets of semiconductor elements constituting the full-bridge first inverter unit In1.
  • the control circuit itself has a circuit configuration that is usually performed, and a specific circuit configuration is omitted.
  • the semiconductor element is controlled as follows.
  • the upper right and lower left semiconductor elements H3 and H2 in FIG. 1 are the first set
  • the lower right and upper left semiconductor elements H1 and H4 are the second set.
  • the first conductive state in which the first set is ON and the second set is OFF, and the second conductive state in which the second set is ON and the first set is OFF are alternately formed.
  • the ON / OFF control is performed with a drive frequency having a period from the first conduction state to the first conduction state again through the second conduction state.
  • the horizontal axis represents time
  • the vertical axis represents the magnitude of voltage and current during one cycle.
  • FIG. 3 shows voltage and current waveforms when the LLC resonance frequency is equal to the drive frequency.
  • the drive frequency is controlled by a control circuit that controls on / off of the four sets of semiconductor elements constituting the full-bridge first inverter unit In1, and the drive frequency is a high-frequency transformer. This coincides with the resonance frequency determined by the values of the excitation inductance Lm, leakage inductance Lr, and resonance capacitor capacitance Cr of a certain LLC transformer 3.
  • the LLC resonance frequency is controlled to be equal to the drive frequency by the LLC control
  • the voltage on the secondary side of the LLC transformer 3 is VTout, and in short, a rectangular voltage output is obtained. Therefore, a rectangular wave voltage is input to the control circuit power transformer 4.
  • the voltage corresponding to the turn ratio with respect to the terminal voltage Vdc of the second capacitor C2 is output to the secondary side output of the power transformer 4 for the control circuit, the voltage fluctuation is similar to the LLC resonant converter. There is no need for a DC reactor.
  • FIG. 4 shows voltage and current waveforms when the drive frequency is lowered below the LLC resonance frequency and the boost operation is performed.
  • the secondary side voltage of the LLC transformer 3 becomes a rectangular wave voltage such as VTout.
  • This rectangular wave voltage is a waveform with a slight delay between rising and falling with respect to the power transformer 4 for the control circuit, but basically a rectangular wave is input. For this reason, since the voltage corresponding to the turn ratio with respect to the terminal voltage Vdc of the second capacitor C2 is output to the secondary side output of the power transformer 4 for the control circuit, the voltage fluctuation is similar to the LLC resonant converter. There is no need for a DC reactor.
  • FIG. 5 shows voltage and current waveforms when the drive frequency is raised above the LLC resonance frequency and the step-down operation is performed.
  • the MOS-FET In the state where the drive frequency is higher than the LLC resonance frequency, as shown in the waveform of the primary side current ITin of the LLC transformer 3, when the MOS-FET is ON, the current flowing through the MOS-FET is equal to that of the MOS-FET. Since it flows in the reverse direction through the body diode, it becomes ZVS (zero volt switching) and no switching loss occurs when it is ON. Since the current flowing through the MOS-FET does not decrease at the time of OFF, the switching loss at the time of OFF increases. However, in the case of the control operation by the PCS, the reduction in efficiency can be minimized by limiting the voltage range for the step-down control.
  • LLC resonance frequency drive frequency, LLC resonance frequency> drive frequency, LLC resonance frequency ⁇ drive frequency
  • FIG. 6 shows a power flow during charge control according to the present invention.
  • the second capacitor C2 is charged from the low-voltage DC power source 21 through the initial charging inverter unit 22 (low-voltage full-bridge MOS FET), the initial charging transformer 23, and the second rectifier unit R2.
  • the first capacitor C1 is charged from the low-voltage DC power source 21 via the initial charging inverter unit 22 (low-voltage full-bridge MOS FET), the initial charging transformer 23, and the first inverter unit R1.
  • the flow in this case is as illustrated in F1, F2, F3, and F4, but the flows F3 and F4 in the first inverter unit R1 are not performed by controlling the semiconductor elements H1, H2, H3, and H4.
  • the semiconductor elements H1, H2, H3, and H4 are formed of parallel diodes. This means that the capacitors C1 and C2 can be initially charged only by the initial charging circuit 20 even when the main circuit is not connected to the AC power source and power is not obtained from the outside.
  • the initial charge control is performed by inputting a duty 50% rectangular wave from the secondary side of the LLC transformer 3 in the first charge inverter unit 22 (low voltage full-bridge MOS FET).
  • the transformer voltage in the LLC control is a rectangular wave
  • the initial charge control is possible.
  • the frequency of the rectangular wave is assumed to be a high frequency of about several tens of kHz that is the same as the frequency in the LLC control, the initial charge transformer can be miniaturized by increasing the frequency as in the LLC transformer.
  • Fig. 7 shows the frequency difference in the initial charge control.
  • FIG. 8 shows the configuration of the power supply device according to the second embodiment.
  • Example 2 is a configuration in which a suppression reactor L2 is added in addition to the current suppression control at the start of initial charging using the circuit configuration of FIG. 1 shown in Example 1, for example. Since the initial charging inverter unit 22 performs high-frequency driving that is equal to or higher than the LLC resonance frequency at the start of the initial charging, the current suppressing effect at the start of the initial charging can be obtained in the first embodiment or more.
  • the reactor L2 is used in FIG. 8, you may use resistance.
  • an impedance component inside the initial charging transformer 23 may be used, or any component that can obtain the same effect may be used.
  • the initial charging transformer 23 is connected to the secondary side of the LLC transformer 3 to reduce the size by using the low-voltage drive element, to control the initial charging by the frequency, and to perform the initial charging by increasing the frequency.
  • the transformer can be miniaturized, and the entire power supply can be reduced in size and weight.
  • FIG. 9 shows the configuration of the power supply device according to the third embodiment.
  • the third embodiment has a multi-level configuration in which outputs of a plurality of main circuits 10 are connected in series, and is configured to step down from the system voltage and connect the output side of the main circuit 10 in parallel to increase the output voltage.
  • the multi-level configuration may be a single phase as shown in FIG. 9, or may be a three-phase connection configuration of ⁇ connection or Y connection.
  • the first charging circuit 20 since the LLC transformer 3 has an insulation function in multiple levels, the first charging circuit 20 has an advantage that an insulation function for the system is not required.
  • the first charging transformer 23 is connected to the secondary side of the LLC transformer 3, thereby reducing the size by using the low-voltage drive element, controlling the initial charging by the frequency, and increasing the frequency. It becomes possible to satisfy the downsizing of the initial charging transformer, and the power supply as a whole can be reduced in size and weight.
  • FIG. 10 shows the configuration of the power supply device according to the fourth embodiment.
  • Example 4 is a multi-level configuration in which outputs of a plurality of main circuits 10 are connected in series, and is configured to step down from a system voltage and output in parallel. Further, the charging of the system side capacitor C2 of each LLC converter is connected to the secondary side of the LLC transformer 3 and controlled as in the other embodiments.
  • the effect of miniaturization in which only one control circuit is controlled can be obtained by making the first charging transformer 22 connected to the LLC transformer 3 have multiple outputs. Specifically, a plurality of windings (secondary windings) on the LLC transformer 3 side of the initial charging transformer 22 are provided, and these secondary winding sides are connected to the secondary winding side of the LLC transformer 3 of the different main circuit 10. Connected. Also in this configuration, since the LLC transformer 3 has an insulating function, there is an advantage that the initial charging circuit 20 does not need an insulating function for the system.
  • the initial charging transformer 23 is connected to the secondary side of the LLC transformer 3 to reduce the size by using the low-voltage drive element, to control the initial charging by the frequency, and to increase the initial frequency by increasing the frequency. It becomes possible to satisfy the size reduction of the charging transformer, and the power supply device as a whole can be reduced in size and weight.
  • FIG. 11 shows the configuration of the power supply device according to the fifth embodiment.
  • Example 5 is a multi-level configuration in which outputs of a plurality of main circuits 10 are connected in series, and is configured to step down from a system voltage and output in parallel.
  • the charging of the system side capacitor C2 of each LLC converter is connected to the secondary side of the LLC transformer 3 and controlled as in the other embodiments. Furthermore, by switching the connection destination of the initial charging transformer 22 connected to the LLC transformer 3 with the switching relay 40, the effect of miniaturization of controlling the initial charging transformer 22 and the control circuit with only one can be obtained. Also in this configuration, since the LLC transformer has an insulating function, there is an advantage that the initial charging circuit does not need an insulating function for the system.
  • the initial charge transformer 23 is connected to the secondary side of the LLC transformer 3 to reduce the size by using the low-voltage drive element, to control the initial charge by frequency, and to increase the initial frequency by increasing the frequency. It becomes possible to satisfy the size reduction of the charging transformer, and the power supply device as a whole can be reduced in size and weight.
  • the initial charging circuit 20 at high frequency is connected to the secondary winding side of the LLC transformer 3 and the capacitors C1 and C2 are initially charged, so Inrush current can be suppressed.
  • the initial charge is performed by applying a high-frequency current to the secondary winding side of the LLC transformer 3 in a stage before connection to the AC system.
  • the high frequency applied to the secondary side of the LLC transformer is changed from a high frequency to a low frequency according to the initial charge voltage.
  • a circuit is formed via a parallel diode of a semiconductor element constituting the first inverter unit In1, and the capacitor C1 is initially charged. Further, after the power supply is connected, special disconnect control for the initial charging circuit 20 is unnecessary, and it may be left as it is.
  • the initial charge transformer 23 has a capacity different from that of the control circuit power supply transformer 4, so that it is preferable to arrange them separately.
  • CB Switch, L1, L2: Reactor, 10: Main circuit, R1, R2: Rectifier part, In1, In2: Inverter part, 3: LLC transformer, 20: Initial charging circuit, 13: Power supply circuit, 21: Low voltage DC power supply , 22: Inverter section for initial charging, 23: Initial charging transformer

Abstract

Reduction in size and weight is demanded of a transformer for system interconnection. By employing a SST for the transformer, reduction in size and weight can be achieved; however, reduction in size and weight is also demanded of a power supply for a control circuit, in addition to reduction in size and weight of the main-circuit transformer. There is also a need for reduction in size and weight of an initial charging circuit, which is necessary at the time of connecting a system as an input, and elements that are used need to be reduced in size and lowered in withstanding voltage. Provided is an initial charging circuit for a power conversion device, wherein: an LLC converter including an LLC transformer capable of insulation against system voltage is employed in a main circuit; a transformer for initial charging is connected to the secondary side of the LLC transformer; the initial-charging transformer drives at around a few tens of volts; and a low-voltage semiconductor element is used in a control circuit.

Description

電源装置およびその初充電制御方法Power supply device and its first charge control method
 本発明は、直流電力と交流電力を対象とした電力変換を行う電源装置およびその初充電制御方法に関するものである。 The present invention relates to a power supply apparatus that performs power conversion for direct current power and alternating current power, and an initial charge control method thereof.
 電力系統には多くの絶縁トランスが採用されているが、電力系統の周波数と同じ数十Hz(日本の場合、50/60Hz)の低周波で駆動されているため、小型・軽量化が難しいという課題があった。 Many isolation transformers are used in the power system, but it is difficult to reduce the size and weight because it is driven at a low frequency of several tens of Hz (50/60 Hz in Japan). There was a problem.
 これに対し、近年、高圧・大電力用途への適用が検討されているSST(ソリッドステートトランス:以下単にSSTと称する。)の技術を採用することで、小型・軽量化に貢献できることが期待されている。SSTは、高周波トランスと、電力変換回路で構成されており、その出力もしくは入力は従来と同じ周波数の交流電力である。SST内では、電力変換回路(DC/DCコンバータやインバータ)により高周波を生成して高周波トランスを駆動することで、入力または出力を従来と同じ周波数の交流電力系統に接続しており、これにより従来の絶縁トランスを代替するものである。この構成によれば、高周波トランスを数十~数百kHzの高周波駆動することによって、従来型絶縁トランス単体と比較して大幅な小型・軽量化を実現できる。 On the other hand, by adopting SST (Solid State Transformer: hereinafter simply referred to as SST) technology that has been studied for application to high-voltage and high-power applications in recent years, it is expected to contribute to reduction in size and weight. ing. The SST is composed of a high-frequency transformer and a power conversion circuit, and the output or input of the SST is AC power having the same frequency as the conventional one. In SST, a high frequency is generated by a power conversion circuit (DC / DC converter or inverter) and a high frequency transformer is driven to connect an input or output to an AC power system having the same frequency as the conventional one. It replaces the isolation transformer. According to this configuration, the high-frequency transformer can be driven at a high frequency of several tens to several hundreds of kHz, so that a significant reduction in size and weight can be realized as compared with a conventional insulation transformer alone.
 例えば電力系統向けの電力変換器の新たな用途として、太陽光発電や風力発電といった自然エネルギー導入の世界的な拡大に伴い、自然エネルギーの電力を制御して電力系統へ出力する高性能な電力変換器であるPCS(パワーコンディショニングシステム:以下単にPCSと称する。)が求められている。PCSは、電力系統に接続されて使用されるために、その出力側には高圧絶縁トランスを使用しており、電力系統の周波数と同じ数十Hzの低周波で駆動せざるを得ないために設備が大型化するという課題を有している。 For example, as a new application of power converters for power systems, high-performance power conversion that controls the power of natural energy and outputs it to the power system with the global expansion of natural energy introduction such as solar power generation and wind power generation. PCS (Power Conditioning System: hereinafter simply referred to as PCS) is required. Since the PCS is connected to the power system and used, a high-voltage insulation transformer is used on its output side, and it must be driven at a low frequency of several tens of Hz, which is the same as the frequency of the power system. There is a problem that the equipment becomes larger.
 また電力系統連系向け以外にも、例えば高圧のモータやポンプ向け、鉄道向け等の高圧電力を使用する電力変換器の場合にも、入力側に高圧絶縁トランスを使用しているものがある。出力側同様に入力側の場合であっても、高圧絶縁トランスは電力系統からの受電により電力系統の周波数と同じ数十Hzの低周波で駆動されているため設備が大型化するという同様の課題を抱えている。 In addition to power grid interconnections, there are some power converters that use high voltage power, such as for high voltage motors and pumps, and railways, that use a high voltage isolation transformer on the input side. Even when the output side is the same as the output side, the high voltage isolation transformer is driven at a low frequency of several tens of Hz that is the same as the frequency of the power system by receiving power from the power system. Have
 SST思想の採用により、これらの電力用途への適用拡大において、小型化装置での実現を可能としている。係るSST思想の採用による電源装置においても、通常の電源装置と同様に交流入力に接続される場合に電源装置に流れる突入電流を軽減する必要があり、通常は特許文献1に例示されるような充電電流抑制用の回路を入力側に設置する必要がある。 By adopting the SST concept, it is possible to realize with a miniaturized device in expanding the application to these power applications. Even in a power supply device employing such an SST concept, it is necessary to reduce the inrush current flowing through the power supply device when connected to an AC input as in a normal power supply device. It is necessary to install a charging current suppression circuit on the input side.
特開平5-48479号公報Japanese Patent Laid-Open No. 5-48479
 高圧系統から降圧する電力変換器の小型・軽量化の実現に向けてSSTを適用するには、系統側と低圧側の間で絶縁が必要であるため高周波トランスにて絶縁を確保するが、最初に系統と接続する際に系統側SSTのコンデンサへの充電電流を抑制する初充電抑制回路が必要となる。例えば6.6kV系統に接続する場合は、メインのトランスに加えて、初充電抵抗と初充電リレーも必要となる。初充電に必要な機器も6.6kVに対応する必要があるため、電力変換器を用いった電源送致が大型化するという問題がある。 In order to realize SST to reduce the size and weight of the power converter that steps down from the high-voltage system, it is necessary to insulate between the system side and the low-voltage side. Therefore, an initial charge suppression circuit that suppresses the charging current to the capacitor on the system side SST when connecting to the system is required. For example, when connecting to a 6.6 kV system, an initial charging resistor and an initial charging relay are required in addition to the main transformer. Since the equipment required for the initial charging needs to be compatible with 6.6 kV, there is a problem that the power supply using the power converter becomes large.
 以上のことから本発明においては、突入電流を抑制する機能も含めて小型化が可能な電源装置およびその初充電制御方法を提供することを目的とする。 In view of the above, an object of the present invention is to provide a power supply apparatus that can be miniaturized including a function of suppressing inrush current and a method for controlling the initial charge thereof.
 以上のような課題に対して本発明では、スイッチを介して電源に接続され、第1のコンデンサからの直流入力を高周波に変換して与える第1のインバータ部と、第1のインバータ部の出力側に接続されたトランスと、トランスの出力を整流する整流器部と、整流器部の出力側に設けられた第2のコンデンサで構成された主回路を含んで構成された電源装置であって、電源装置は、直流電圧を与える低圧DC電源と、低圧DC電源の出力を高周波に変換して与える初充電用インバータ部と、初充電用インバータ部の出力側に接続され、その出力側を前記トランスの2次側に接続する初充電用トランスで構成された初充電回路を備えていることを特徴とする。 In order to solve the above problems, in the present invention, a first inverter unit that is connected to a power source via a switch and converts a DC input from a first capacitor to a high frequency and gives the output, and an output of the first inverter unit A power supply device comprising a main circuit composed of a transformer connected to the side, a rectifier unit for rectifying the output of the transformer, and a second capacitor provided on the output side of the rectifier unit, The apparatus is connected to a low-voltage DC power source for applying a DC voltage, an initial charging inverter unit that converts the output of the low-voltage DC power source into a high frequency, and an output side of the initial charging inverter unit. An initial charging circuit including an initial charging transformer connected to the secondary side is provided.
 本発明によれば、系統との絶縁性を確保し、小型の初充電制御回路とすることができる。さらに本発明の実施例によれば、初充電トランスに入力される周波数の高周波化により初充電トランス体積を低減する。また、初充電トランスを駆動する素子には低圧の素子を使用可能となる。結果、初充電回路全体の小型・軽量化が可能となるため、高圧向けの電力変換器の小型・軽量化を実現できる。 According to the present invention, insulation from the system can be ensured and a small initial charge control circuit can be obtained. Furthermore, according to the embodiment of the present invention, the volume of the initial charging transformer is reduced by increasing the frequency input to the initial charging transformer. In addition, a low-voltage element can be used as an element for driving the initial charge transformer. As a result, the first charging circuit as a whole can be reduced in size and weight, so that a high-voltage power converter can be reduced in size and weight.
実施例1に係る電源装置の構成を示す図。1 is a diagram illustrating a configuration of a power supply device according to a first embodiment. 図1の電源装置の構成における通常の出力パワーフローを示す図。The figure which shows the normal output power flow in the structure of the power supply device of FIG. LLC共振周波数が駆動周波数と等しい時の電圧、電流波形を示す図。The figure which shows a voltage and electric current waveform when LLC resonant frequency is equal to a drive frequency. LLC共振周波数>駆動周波数のときの電圧、電流波形を示す図。The figure which shows the voltage and electric current waveform when LLC resonance frequency> drive frequency. LLC共振周波数<駆動周波数のときの電圧、電流波形を示す図。The figure which shows a voltage and electric current waveform at the time of LLC resonance frequency <drive frequency. 図1の電源装置の構成における充電制御時のパワーフローを示す図。The figure which shows the power flow at the time of charge control in the structure of the power supply device of FIG. 初充電制御における周波数の違いを示す図。The figure which shows the difference in the frequency in initial charge control. 実施例2に係る電源装置の構成を示す図。FIG. 6 is a diagram illustrating a configuration of a power supply device according to a second embodiment. 実施例3に係る電源装置の構成を示す図。FIG. 6 is a diagram illustrating a configuration of a power supply device according to a third embodiment. 実施例4に係る電源装置の構成を示す図。FIG. 10 is a diagram illustrating a configuration of a power supply device according to a fourth embodiment. 実施例5に係る電源装置の構成を示す図。FIG. 10 is a diagram illustrating a configuration of a power supply device according to a fifth embodiment.
 以下、本発明に係る電源装置およびその初充電制御方法の実施例について、図を用いて説明する。 Hereinafter, an embodiment of a power supply device and an initial charge control method thereof according to the present invention will be described with reference to the drawings.
 図1に実施例1に係る電源装置の構成を示す。実施例に係る電源装置は、入力が交流系統に接続され、出力に低圧の直流を接続した構成である。なお出力の低圧直流は、その後段で更に交流に変換されて出力されるものであってもよい。 FIG. 1 shows the configuration of the power supply device according to the first embodiment. The power supply device according to the embodiment has a configuration in which an input is connected to an AC system and a low-voltage DC is connected to an output. Note that the output low-voltage direct current may be further converted into alternating current at the subsequent stage and output.
 図1の電源装置では、主回路10をフルブリッジ型のLLC共振コンバータを用いて構成している。フルブリッジ型のLLC共振コンバータを用いた主回路10は、その入力端子TiにスイッチCBと電流抑制用コイルL1を介して交流系統に接続し、主回路10の出力端子Toに直流出力を与える。 1, the main circuit 10 is configured using a full-bridge type LLC resonant converter. The main circuit 10 using a full-bridge type LLC resonant converter is connected to the input terminal Ti through an switch CB and a current suppressing coil L1 to an AC system, and provides a DC output to the output terminal To of the main circuit 10.
 フルブリッジ型のLLC共振コンバータを用いた主回路10は、入力側から第1の整流器部R1と平滑用のコンデンサC1と、第1のインバータ部In1と、LLCトランス3と、第2の整流器部R2と、平滑用のコンデンサC2とで構成されている。ここでLLCトランス3とは、トランス1次巻線側を第1のリアクトル31、一次巻線としての第2のリアクトル32、コンデンサ33を直列配置することから、LLCのように呼称された絶縁変圧器である。 The main circuit 10 using a full-bridge type LLC resonant converter includes, from the input side, a first rectifier unit R1, a smoothing capacitor C1, a first inverter unit In1, an LLC transformer 3, and a second rectifier unit. R2 and a smoothing capacitor C2. Here, the LLC transformer 3 is a transformer primary winding side of a first reactor 31, a second reactor 32 as a primary winding, and a capacitor 33 arranged in series. It is a vessel.
 係る主回路10の構成において、第1のインバータ部In1は、単相のフルブリッジ構成とされ、その半導体素子H1、H2、H3、H4をMOS-FETで構成した例を示している。 In the configuration of the main circuit 10, the first inverter unit In1 has a single-phase full bridge configuration, and the semiconductor elements H1, H2, H3, and H4 are configured by MOS-FETs.
 この主回路10の構成によれば、第1の整流器部R1で交流系統の電力を直流に変換し、第1のインバータ部In1において、直流を高周波数の交流に変換し、LLCトランス3において任意の電圧に調整し、その後第2の整流器部R2において直流に変換した後出力端子Toに出力する。 According to the configuration of the main circuit 10, the first rectifier unit R1 converts the power of the AC system into DC, the first inverter unit In1 converts the DC into high-frequency AC, and the LLC transformer 3 arbitrarily And then converted to direct current in the second rectifier section R2 and then output to the output terminal To.
 このよう実施例1では、半導体素子Q1、Q2、Q3、Q4で構成された第1の整流器部R1(単相コンバータ)の後段にフルブリッジ型のLLC共振コンバータの回路構成を適用し、その後第2の整流器部R2によるフルブリッジダイオード整流後の直流出力を出力する構成である。実施例1では第1の整流器部R1として単相コンバータを想定しているが、三相コンバータに適用してもよい。また、出力は直流であるが、後段にインバータ(第2のインバータ部In2)を加えて交流出力としてもよい。 As described above, in the first embodiment, the circuit configuration of the full-bridge type LLC resonant converter is applied to the subsequent stage of the first rectifier unit R1 (single-phase converter) composed of the semiconductor elements Q1, Q2, Q3, and Q4. 2 is configured to output a direct current output after full-bridge diode rectification by two rectifier units R2. In the first embodiment, a single-phase converter is assumed as the first rectifier unit R1, but it may be applied to a three-phase converter. The output is a direct current, but an inverter (second inverter unit In2) may be added to the subsequent stage to obtain an alternating current output.
 本発明の電源装置では、主回路10のLLCトランス3の二次巻線側に初充電回路20を接続したものである。初充電回路20は、低圧直流電源21と初充電用インバータ部22と初充電トランス23により構成されており、低圧直流電源21の直流電圧を初充電用インバータ部22で交流電圧に変換し、初充電トランス23を介して平滑用のコンデンサC1、C2を充電している。コンデンサC1、C2の充電は、スイッチCBの投入前の時点から実施されており、電源装置稼働後にも接続状態を保持していてもよい。この結果、スイッチCBの投入により電源装置に流れる突入電流は、平滑用のコンデンサC1、C2が充電されていることから、差電圧に相当する分のみが流れるために突入電流が抑制されている。 In the power supply device of the present invention, the initial charging circuit 20 is connected to the secondary winding side of the LLC transformer 3 of the main circuit 10. The initial charging circuit 20 includes a low-voltage DC power source 21, an initial charging inverter unit 22, and an initial charging transformer 23. The DC voltage of the low-voltage DC power source 21 is converted into an AC voltage by the initial charging inverter unit 22, The smoothing capacitors C1 and C2 are charged via the charging transformer 23. The capacitors C1 and C2 are charged from the time before the switch CB is turned on, and the connected state may be maintained even after the power supply device is operated. As a result, since the inrush current flowing through the power supply device by turning on the switch CB is charged by the smoothing capacitors C1 and C2, only the amount corresponding to the difference voltage flows, so that the inrush current is suppressed.
 また本発明の電源装置では、第2の整流器部R2の後段に第2のインバータ部In2を備え、直流を交流に変換した後、出力端子Toに交流出力する場合には、第2のインバータ部を構成する半導体素子Q5、Q6、Q7、Q8のゲート電力およびゲート信号を生成する制御回路の電力を供給する電源回路13を主回路10のLLCトランス3の二次巻線側に接続するのがよい。 Moreover, in the power supply device of the present invention, the second inverter unit In2 is provided in the subsequent stage of the second rectifier unit R2, and when the direct current is converted into the alternating current and then the alternating current is output to the output terminal To, the second inverter unit Is connected to the secondary winding side of the LLC transformer 3 of the main circuit 10 for supplying the gate power of the semiconductor elements Q5, Q6, Q7, Q8 and the power of the control circuit for generating the gate signal. Good.
 図1のゲート用電源13において、電源回路17は、LLCトランス3の二次巻線34から制御回路用電源トランス4を介して電力を得ている。制御回路用電源トランス4は、図示の例では一次巻線41と一次巻線41に電磁結合された二次巻線42で構成されている。二次巻線42は、単相ブリッジ整流回路16を介して、電源回路17に対する直流電源を供給している。電源回路17の直流電力は、第2のインバータ部In2の半導体素子Q5、Q6、Q7、Q8のゲートに与えるゲート電力、あるいは制御回路用電力として利用される。 1, the power supply circuit 17 obtains power from the secondary winding 34 of the LLC transformer 3 via the control circuit power supply transformer 4. In the illustrated example, the control circuit power transformer 4 includes a primary winding 41 and a secondary winding 42 electromagnetically coupled to the primary winding 41. The secondary winding 42 supplies DC power to the power supply circuit 17 via the single-phase bridge rectifier circuit 16. The DC power of the power supply circuit 17 is used as gate power given to the gates of the semiconductor elements Q5, Q6, Q7, Q8 of the second inverter unit In2 or control circuit power.
 また単相ブリッジ整流回路16の出力側には分圧抵抗R1、R2が直列接続され、接続点電位を主回路の直流電圧Vdcの検出信号として利用している。 Further, voltage dividing resistors R1 and R2 are connected in series on the output side of the single-phase bridge rectifier circuit 16, and the connection point potential is used as a detection signal for the DC voltage Vdc of the main circuit.
 この構成によれば、LLCトランス3は高周波数で作動することから、装置構成の小型化が可能である。また制御回路用電源トランス4も高周波数で作動することから、小型化が可能である。さらに主回路直流電圧Vdc検出用の分圧回路も、主回路に設置する場合に比べて低電位でありかつ絶縁がされていることから回路の小型化が図られている。 According to this configuration, since the LLC transformer 3 operates at a high frequency, the device configuration can be reduced in size. Since the control circuit power transformer 4 also operates at a high frequency, it can be miniaturized. Further, the voltage dividing circuit for detecting the main circuit DC voltage Vdc is also lower in potential than the case where it is installed in the main circuit and is insulated, so that the circuit is miniaturized.
 なおこの図において、電源回路17は第2のインバータ部In2を構成するMOS-FETの半導体素子Q5、Q6、Q7、Q8のゲート電力およびゲート制御回路用電源を供給しているものであり、第1のインバータ部In1に対する電源回路を示したものではない。第1のインバータ部In1に対する電源回路は、別途設置されているがここには記述していない。この理由は、第1のインバータ部In1側については、絶縁すべき電圧レベル(通常は交流100ボルト程度)が低く、電源回路17に対して施すような高度の絶縁対策を必要としない、従って既存技術のもので対応が可能であるということによる。 In this figure, the power supply circuit 17 supplies the gate power of the MOS-FET semiconductor elements Q5, Q6, Q7, and Q8 constituting the second inverter unit In2 and the power supply for the gate control circuit. The power supply circuit for one inverter unit In1 is not shown. A power supply circuit for the first inverter unit In1 is separately installed but is not described here. The reason for this is that the voltage level to be insulated (usually about 100 volts AC) is low on the first inverter unit In1 side, so that a high degree of insulation measure that is applied to the power supply circuit 17 is not required. This is because it can be handled by technology.
 図1の構成において、フルブリッジ型のLLC共振コンバータが与える直流電圧Vd2は1000V以下の直流電圧であるため、高周波駆動に適したMOS FETを適用することを想定している。スイッチング周波数は数十kHzから数百kHzを想定している。
使用するMOS FETには高耐圧・高周波スイッチングに適したSiC MOS FETを適用しても構わないし、その他同様の機能を有するものであればよい。LLC共振コンバータの2次側はダイオードによる平滑を想定している。Siのダイオードの他に、導通損失を低減させるためにSi型のショットキーバリアダイオードやSiC ショットキーバリアダイオードを適用しても構わないし、SiC MOS FETを同期させて使用することで損失低減させてもよいし、その他同様の機能を有するものであればよい。
In the configuration of FIG. 1, the DC voltage Vd2 provided by the full-bridge type LLC resonant converter is a DC voltage of 1000 V or less, and therefore it is assumed that a MOS FET suitable for high frequency driving is applied. The switching frequency is assumed to be several tens kHz to several hundreds kHz.
As the MOS FET to be used, a SiC MOS FET suitable for high withstand voltage and high frequency switching may be applied, and any other MOS FET having the same function may be used. The secondary side of the LLC resonant converter is assumed to be smoothed by a diode. In addition to Si diodes, Si-type Schottky barrier diodes and SiC Schottky barrier diodes may be applied to reduce conduction loss, and loss can be reduced by using SiC MOS FETs in synchronization. It may be any other one having the same function.
 またLLCトランス3は、系統電圧との絶縁機能を有し、LLC共振とするために高周波トランスの励磁インダクタンスLm(第2のリアクトル32)に共振対応させたリーケージインダクタンスLr(第1のリアクトル31)と共振コンデンサCr(コンデンサ33)と接続される構成である。リーケージインダクタンスLrは高周波トランス内の漏れ磁束の定数の調整が可能となる構造として高周波トランス内で一体化した構成を想定しているがそれに限るものではない。共振コンデンサCrはフィルムコンデンサやセラミックコンデンサを使用することを想定しているが、同様の機能を有するものであればよい。 Further, the LLC transformer 3 has an insulating function with respect to the system voltage, and in order to achieve LLC resonance, the leakage inductance Lr (first reactor 31) corresponding to resonance with the exciting inductance Lm (second reactor 32) of the high-frequency transformer. And a resonance capacitor Cr (capacitor 33). The leakage inductance Lr is assumed to be integrated in the high-frequency transformer as a structure capable of adjusting the constant of the leakage magnetic flux in the high-frequency transformer, but is not limited thereto. The resonance capacitor Cr is assumed to use a film capacitor or a ceramic capacitor, but may have any similar function.
 図2に図1の通常の出力パワーフローを示す。通常は単相コンバータにより整流された直流電圧Vd1をフルブリッジ型のLLC共振コンバータでVd2に出力するパワーフローとなる。 Fig. 2 shows the normal output power flow of Fig. 1. Normally, the power flow is such that the DC voltage Vd1 rectified by the single-phase converter is output to Vd2 by a full-bridge type LLC resonant converter.
 この場合に、LLC共振コンバータの制御はPWMではなく、デッドタイムを付与したDuty50%の周波数制御である。前述した励磁インダクタンスLm、リーケージインダクタンスLr、共振コンデンサCrの値にて共振周波数は決まり、数十~数百kHzに設定することを想定している。 In this case, the control of the LLC resonant converter is not PWM but frequency control of duty 50% with dead time. It is assumed that the resonance frequency is determined by the values of the excitation inductance Lm, the leakage inductance Lr, and the resonance capacitor Cr, and is set to several tens to several hundreds kHz.
 なおLLC共振コンバータの制御は、フルブリッジ型の第1のインバータ部In1を構成する4組の半導体素子のオン、オフを制御する制御回路により実行される。制御回路自体は通常よく行われる回路構成のものであり、具体的な回路構成を省略するが、要するに以下のように半導体素子を制御する。 The control of the LLC resonant converter is executed by a control circuit that controls on / off of four sets of semiconductor elements constituting the full-bridge first inverter unit In1. The control circuit itself has a circuit configuration that is usually performed, and a specific circuit configuration is omitted. In short, the semiconductor element is controlled as follows.
 例えばフルブリッジ型の4組の半導体素子のうち、図1の右上と左下の半導体素子H3、H2を第1の組、右下と左上の半導体素子H1、H4を第2の組としたときに、第1の組をON、第2の組をOFFとする第1の導通状態と、第2の組をON、第1の組をOFFとする第2の導通状態を交互に形成するように制御し、第1の導通状態から第2の導通状態を経て再度第1の導通状態に達するまでの期間を一周期とする駆動周波数によりON、OFF制御を行うものである。 For example, among the four full-bridge semiconductor elements, the upper right and lower left semiconductor elements H3 and H2 in FIG. 1 are the first set, and the lower right and upper left semiconductor elements H1 and H4 are the second set. The first conductive state in which the first set is ON and the second set is OFF, and the second conductive state in which the second set is ON and the first set is OFF are alternately formed. The ON / OFF control is performed with a drive frequency having a period from the first conduction state to the first conduction state again through the second conduction state.
 図3、図4、図5により、LLC共振周波数、駆動周波数の大小関係と、第1のインバータ部In1の電圧、電流波形の関係を説明する。これらの図において横軸は時間、縦軸は1周期間における電圧、電流の大きさを示している。 3, 4, and 5, the magnitude relationship between the LLC resonance frequency and the drive frequency, and the relationship between the voltage and current waveform of the first inverter unit In <b> 1 will be described. In these figures, the horizontal axis represents time, and the vertical axis represents the magnitude of voltage and current during one cycle.
 図3に、LLC共振周波数が駆動周波数と等しい時の電圧、電流波形を示す。この場合には、前記したフルブリッジ型の第1のインバータ部In1を構成する4組の半導体素子のオン、オフを制御する制御回路により駆動周波数が制御されており、かつ駆動周波数は高周波トランスであるLLCトランス3の励磁インダクタンスLm、リーケージインダクタンスLr、共振コンデンサ容量Crの値にて定まる共振周波数と一致している。 FIG. 3 shows voltage and current waveforms when the LLC resonance frequency is equal to the drive frequency. In this case, the drive frequency is controlled by a control circuit that controls on / off of the four sets of semiconductor elements constituting the full-bridge first inverter unit In1, and the drive frequency is a high-frequency transformer. This coincides with the resonance frequency determined by the values of the excitation inductance Lm, leakage inductance Lr, and resonance capacitor capacitance Cr of a certain LLC transformer 3.
 LLC共振周波数が駆動周波数と等しい状態では、LLCトランス3の1次側電流ITinの波形を図示しているように、半導体素子であるMOS-FETのON時には、MOS-FETを流れる電流はMOS-FETのボディダイオードを通して逆方向に流れるため、ZVS(ゼロボルトスイッチング)となり、ON時のスイッチング損失は発生しない。MOS-FETのOFF時には、MOS-FETを流れる電流はピークアウトして十分に低く抑えられ、OFF時のスイッチング損失も小さくなるため、LLC共振制御によって高効率なスイッチングが実現でき、パワーデバイスの冷却器の小型化が実現できる。 In the state where the LLC resonance frequency is equal to the drive frequency, as shown in the waveform of the primary side current ITin of the LLC transformer 3, when the MOS-FET which is a semiconductor element is ON, the current flowing through the MOS-FET is MOS− Since it flows in the reverse direction through the body diode of the FET, it becomes ZVS (zero volt switching), and no switching loss occurs when it is ON. When the MOS-FET is OFF, the current flowing through the MOS-FET peaks out and is kept low enough, and the switching loss when OFF is also small. Therefore, high-efficiency switching can be realized by LLC resonance control, and the power device is cooled. The device can be downsized.
 LLC制御によりLLC共振周波数が駆動周波数と等しく制御された時、LLCトランス3の2次側の電圧はVToutのようであり、要するに矩形状の電圧出力が得られる。
したがって、制御回路用電源トランス4には矩形波電圧が入力される。このため、制御回路用電源トランス4の2次側出力には、第2のコンデンサC2の端子電圧Vdcに対して巻数比に応じた電圧が出力されるため、LLC共振コンバータと同様に電圧変動は無く、直流リアクトルも不要である。
When the LLC resonance frequency is controlled to be equal to the drive frequency by the LLC control, the voltage on the secondary side of the LLC transformer 3 is VTout, and in short, a rectangular voltage output is obtained.
Therefore, a rectangular wave voltage is input to the control circuit power transformer 4. For this reason, since the voltage corresponding to the turn ratio with respect to the terminal voltage Vdc of the second capacitor C2 is output to the secondary side output of the power transformer 4 for the control circuit, the voltage fluctuation is similar to the LLC resonant converter. There is no need for a DC reactor.
 図4に、駆動周波数をLLC共振周波数よりも低下させて、昇圧動作となった時の電圧、電流波形を示す。 FIG. 4 shows voltage and current waveforms when the drive frequency is lowered below the LLC resonance frequency and the boost operation is performed.
 駆動周波数をLLC共振周波数よりも低下させた状態では、LLCトランス3の1次側電流ITinの波形を図示しているように、MOS-FETのON時にはMOS-FETを流れる電流はMOS-FETのボディダイオードを通して逆方向に流れるため、ZVS(ゼロボルトスイッチング)となりON時のスイッチング損失は発生しない。OFF時にはMOS-FETを流れる電流はピークアウト後に十分に低く横ばいの値に抑えられるため、OFF時のスイッチング損失は共振周波数駆動と同様に小さくなる。 In a state where the drive frequency is lower than the LLC resonance frequency, as shown in the waveform of the primary side current ITin of the LLC transformer 3, when the MOS-FET is ON, the current flowing through the MOS-FET is equal to that of the MOS-FET. Since it flows in the reverse direction through the body diode, it becomes ZVS (zero volt switching) and no switching loss occurs when it is ON. Since the current flowing through the MOS-FET is sufficiently low and leveled off after peaking out when it is OFF, the switching loss when OFF is small as with resonant frequency driving.
 LLC制御によりLLC共振周波数が駆動周波数よりも高く制御された時、LLCトランス3の2次側の電圧はVToutのような矩形波電圧となる。この矩形波電圧は、制御回路用電源トランス4に対しては、立ち上がり、立下りで少し遅れがでる波形であるが、基本的には矩形波が入力される。このため、制御回路用電源トランス4の2次側出力には、第2のコンデンサC2の端子電圧Vdcに対して巻数比に応じた電圧が出力されるため、LLC共振コンバータと同様に電圧変動は無く、直流リアクトルも不要である。 When the LLC resonance frequency is controlled to be higher than the drive frequency by the LLC control, the secondary side voltage of the LLC transformer 3 becomes a rectangular wave voltage such as VTout. This rectangular wave voltage is a waveform with a slight delay between rising and falling with respect to the power transformer 4 for the control circuit, but basically a rectangular wave is input. For this reason, since the voltage corresponding to the turn ratio with respect to the terminal voltage Vdc of the second capacitor C2 is output to the secondary side output of the power transformer 4 for the control circuit, the voltage fluctuation is similar to the LLC resonant converter. There is no need for a DC reactor.
 図5に、駆動周波数をLLC共振周波数よりも上昇させて、降圧動作となった時の電圧、電流波形を示す。 FIG. 5 shows voltage and current waveforms when the drive frequency is raised above the LLC resonance frequency and the step-down operation is performed.
 駆動周波数をLLC共振周波数よりも上昇させた状態では、LLCトランス3の1次側電流ITinの波形を図示しているように、MOS-FETのON時にはMOS-FETを流れる電流はMOS-FETのボディダイオードを通して逆方向に流れるため、ZVS(ゼロボルトスイッチング)となりON時のスイッチング損失は発生しない。OFF時にはMOS-FETを流れる電流は低下しない状態での遮断となるため、OFF時のスイッチング損失は大きくなる。ただし、PCSでの制御動作の場合は、降圧制御となる電圧範囲を制限することで効率の低下を最小限とすることができる。 In the state where the drive frequency is higher than the LLC resonance frequency, as shown in the waveform of the primary side current ITin of the LLC transformer 3, when the MOS-FET is ON, the current flowing through the MOS-FET is equal to that of the MOS-FET. Since it flows in the reverse direction through the body diode, it becomes ZVS (zero volt switching) and no switching loss occurs when it is ON. Since the current flowing through the MOS-FET does not decrease at the time of OFF, the switching loss at the time of OFF increases. However, in the case of the control operation by the PCS, the reduction in efficiency can be minimized by limiting the voltage range for the step-down control.
 LLC制御により駆動周波数をLLC共振周波数よりも上昇させた時、LLCトランス3の2次側の電圧はVToutのようであり、要するに矩形状の電圧出力が得られる。したがって、制御回路用電源トランス4には矩形波電圧が入力される。このため、制御回路用電源トランス4の2次側出力には、第2のコンデンサC2の端子電圧Vdcに対して巻数比に応じた電圧が出力されるため、LLC共振コンバータ1と同様に電圧変動は無く、直流リアクトルも不要である。 When the drive frequency is raised above the LLC resonance frequency by the LLC control, the voltage on the secondary side of the LLC transformer 3 is like VTout, and in short, a rectangular voltage output is obtained. Therefore, a rectangular wave voltage is input to the control circuit power transformer 4. For this reason, since the voltage corresponding to the turn ratio with respect to the terminal voltage Vdc of the second capacitor C2 is output to the secondary side output of the power transformer 4 for the control circuit, the voltage fluctuation is the same as in the LLC resonant converter 1. There is no need for a DC reactor.
 上記したLLC制御における3種の運転態様(LLC共振周波数=駆動周波数、LLC共振周波数>駆動周波数、LLC共振周波数<駆動周波数)は、電力変換装置の実運用場面で適宜選択実行される。 The above three operation modes in the LLC control (LLC resonance frequency = drive frequency, LLC resonance frequency> drive frequency, LLC resonance frequency <drive frequency) are appropriately selected and executed in the actual operation scene of the power converter.
 図6に本発明による充電制御時のパワーフローを示す。このパワーフローでは、低圧DC電源21から初充電用インバータ部22(低圧のフルブリッジMOS FET)、初充電用トランス23、第2の整流器部R2を経由して第2のコンデンサC2を充電し、また低圧DC電源21から初充電用インバータ部22(低圧のフルブリッジMOS FET)、初充電用トランス23、第1のインバータ部R1を経由して第1のコンデンサC1を充電する。この場合のフローは、図示するF1、F2、F3、F4の通りであるが、第1のインバータ部R1におけるフローF3、F4は半導体素子H1、H2、H3、H4を制御して行うのではなく、半導体素子H1、H2、H3、H4の並列ダイオードにより形成されている。このことは、主回路が交流電源に未接続であり外部から電力を得られていない状態においても、初充電回路20のみでコンデンサC1、C2の初充電が可能であることを意味している。 FIG. 6 shows a power flow during charge control according to the present invention. In this power flow, the second capacitor C2 is charged from the low-voltage DC power source 21 through the initial charging inverter unit 22 (low-voltage full-bridge MOS FET), the initial charging transformer 23, and the second rectifier unit R2. Further, the first capacitor C1 is charged from the low-voltage DC power source 21 via the initial charging inverter unit 22 (low-voltage full-bridge MOS FET), the initial charging transformer 23, and the first inverter unit R1. The flow in this case is as illustrated in F1, F2, F3, and F4, but the flows F3 and F4 in the first inverter unit R1 are not performed by controlling the semiconductor elements H1, H2, H3, and H4. The semiconductor elements H1, H2, H3, and H4 are formed of parallel diodes. This means that the capacitors C1 and C2 can be initially charged only by the initial charging circuit 20 even when the main circuit is not connected to the AC power source and power is not obtained from the outside.
 このパワーフロー形成に当たり、初充電用インバータ部22(低圧のフルブリッジMOS FET)において、Duty50%の矩形波をLLCトランス3の2次側から入力することで初充電制御を実施する。前述の通り、LLC制御におけるトランス電圧は矩形波であるため、初充電制御が可能となる。また、矩形波の周波数はLLC制御における周波数と同程度の数十kHz程度の高周波を想定しているため、LLCトランス同様に初充電トランスにおいても高周波化による小型化が可能となる。 In this power flow formation, the initial charge control is performed by inputting a duty 50% rectangular wave from the secondary side of the LLC transformer 3 in the first charge inverter unit 22 (low voltage full-bridge MOS FET). As described above, since the transformer voltage in the LLC control is a rectangular wave, the initial charge control is possible. Further, since the frequency of the rectangular wave is assumed to be a high frequency of about several tens of kHz that is the same as the frequency in the LLC control, the initial charge transformer can be miniaturized by increasing the frequency as in the LLC transformer.
 初充電制御における周波数の違いを図7に示す。系統側の直流電圧Vd1は、LLCの共振周波数の前後で変化させることで、通常出力と逆方向においても直流電圧Vd1を変化させることが可能となる。したがって、実施例1では初充電開始時は高周波として充電電流を抑制し、共振周波数まで低下後に更に周波数を低下させることで直流電圧Vd1を高電圧まで初充電を完了させることを想定している。もちろん電流値に問題が無い場合は一定周波数での制御でも構わない。 Fig. 7 shows the frequency difference in the initial charge control. By changing the DC voltage Vd1 on the system side before and after the resonance frequency of the LLC, it becomes possible to change the DC voltage Vd1 in the direction opposite to the normal output. Therefore, in Example 1, it is assumed that the charging current is suppressed as a high frequency at the start of the initial charging, and the initial charging is completed until the DC voltage Vd1 is increased to a high voltage by further reducing the frequency after the resonance frequency is lowered. Of course, if there is no problem in the current value, control at a constant frequency may be used.
 以上の説明から、初充電トランス1をLLCトランス2の2次側に接続することで、低圧駆動素子の使用による小型化、周波数による初充電の制御、高周波化による初充電トランス小型化を満たすことが可能となり、電源装置全体での小型・軽量化が可能となる。 From the above description, by connecting the initial charging transformer 1 to the secondary side of the LLC transformer 2, miniaturization by using a low-voltage drive element, control of initial charging by frequency, and miniaturization of the initial charging transformer by high frequency are satisfied. This makes it possible to reduce the size and weight of the entire power supply device.
 図8に実施例2に係る電源装置の構成を示す。 FIG. 8 shows the configuration of the power supply device according to the second embodiment.
 実施例2は、実施例1で示した例えば図1の回路構成を用いた初充電開始時の電流抑制制御に加えて、抑制用のリアクトルL2を追加した構成である。初充電開始時に初充電用インバータ部22ではLLC共振周波数以上の高周波駆動を行うため、実施例1以上に初充電開始時の電流抑制効果が得られる。なお図8ではリアクトルL2を使用しているが、抵抗を使用してもよい。また、初充電トランス23内部のインピーダンス成分を使用してもよいし、同様の効果が得られる物であればよい。 Example 2 is a configuration in which a suppression reactor L2 is added in addition to the current suppression control at the start of initial charging using the circuit configuration of FIG. 1 shown in Example 1, for example. Since the initial charging inverter unit 22 performs high-frequency driving that is equal to or higher than the LLC resonance frequency at the start of the initial charging, the current suppressing effect at the start of the initial charging can be obtained in the first embodiment or more. In addition, although the reactor L2 is used in FIG. 8, you may use resistance. In addition, an impedance component inside the initial charging transformer 23 may be used, or any component that can obtain the same effect may be used.
 実施例2も実施例1と同様に、初充電トランス23をLLCトランス3の2次側に接続することで、低圧駆動素子の使用による小型化、周波数による初充電の制御、高周波化による初充電トランス小型化を満たすことが可能となり、電源装置全体での小型・軽量化が可能となる。 In the second embodiment, similarly to the first embodiment, the initial charging transformer 23 is connected to the secondary side of the LLC transformer 3 to reduce the size by using the low-voltage drive element, to control the initial charging by the frequency, and to perform the initial charging by increasing the frequency. The transformer can be miniaturized, and the entire power supply can be reduced in size and weight.
 図9に実施例3に係る電源装置の構成を示す。 FIG. 9 shows the configuration of the power supply device according to the third embodiment.
 実施例3は、複数の主回路10の出力を直列接続したマルチレベル構成であり、系統電圧から降圧し、主回路10の出力側を並列に接続して、出力電圧を上げるための構成である。マルチレベルの構成としては図9のように単相としても良いし、Δ結線やY結線の接続構成として三相としても良い。 The third embodiment has a multi-level configuration in which outputs of a plurality of main circuits 10 are connected in series, and is configured to step down from the system voltage and connect the output side of the main circuit 10 in parallel to increase the output voltage. . The multi-level configuration may be a single phase as shown in FIG. 9, or may be a three-phase connection configuration of Δ connection or Y connection.
 なお各LLCコンバータの系統側コンデンサC2の充電については実施例1、2と同様にLLCトランス22の2次側に接続して制御する構成を採用している。 In addition, about the charge of the system side capacitor | condenser C2 of each LLC converter, the structure connected to the secondary side of the LLC transformer 22 similarly to Example 1, 2 is employ | adopted.
 またマルチレベルにおいてLLCトランス3が絶縁機能を持つため、初充電回路20に系統に対する絶縁機能が不要となる利点が得られる。 In addition, since the LLC transformer 3 has an insulation function in multiple levels, the first charging circuit 20 has an advantage that an insulation function for the system is not required.
 実施例3も実施例1、2と同様に、初充電トランス23をLLCトランス3の2次側に接続することで、低圧駆動素子の使用による小型化、周波数による初充電の制御、高周波化による初充電トランス小型化を満たすことが可能となり、電源装置全体での小型・軽量化が可能となる。 In the third embodiment, similarly to the first and second embodiments, the first charging transformer 23 is connected to the secondary side of the LLC transformer 3, thereby reducing the size by using the low-voltage drive element, controlling the initial charging by the frequency, and increasing the frequency. It becomes possible to satisfy the downsizing of the initial charging transformer, and the power supply as a whole can be reduced in size and weight.
 図10に実施例4に係る電源装置の構成を示す。 FIG. 10 shows the configuration of the power supply device according to the fourth embodiment.
 実施例4は、複数の主回路10の出力を直列接続したマルチレベル構成で、系統電圧から降圧し、並列に出力する構成である。また各LLCコンバータの系統側コンデンサC2の充電については他の実施例と同様にLLCトランス3の2次側に接続して制御する構成である。 Example 4 is a multi-level configuration in which outputs of a plurality of main circuits 10 are connected in series, and is configured to step down from a system voltage and output in parallel. Further, the charging of the system side capacitor C2 of each LLC converter is connected to the secondary side of the LLC transformer 3 and controlled as in the other embodiments.
 さらに実施例4では、LLCトランス3に接続する初充電トランス22を多出力とすることで制御回路を1つのみで制御する小型化の効果が得られる。具体的には初充電トランス22のLLCトランス3側の巻線(二次巻線)を複数備えて、これらの二次巻線側を異なる主回路10のLLCトランス3の二次巻線側に接続している。本構成においてもLLCトランス3が絶縁機能を持つため、初充電回路20に系統に対する絶縁機能が不要となる利点が得られる。 Further, in the fourth embodiment, the effect of miniaturization in which only one control circuit is controlled can be obtained by making the first charging transformer 22 connected to the LLC transformer 3 have multiple outputs. Specifically, a plurality of windings (secondary windings) on the LLC transformer 3 side of the initial charging transformer 22 are provided, and these secondary winding sides are connected to the secondary winding side of the LLC transformer 3 of the different main circuit 10. Connected. Also in this configuration, since the LLC transformer 3 has an insulating function, there is an advantage that the initial charging circuit 20 does not need an insulating function for the system.
 実施例4も他の実施例と同様に、初充電トランス23をLLCトランス3の2次側に接続することで、低圧駆動素子の使用による小型化、周波数による初充電の制御、高周波化による初充電トランス小型化を満たすことが可能となり、電源装置全体での小型・軽量化が可能となる。 In the fourth embodiment, as in the other embodiments, the initial charging transformer 23 is connected to the secondary side of the LLC transformer 3 to reduce the size by using the low-voltage drive element, to control the initial charging by the frequency, and to increase the initial frequency by increasing the frequency. It becomes possible to satisfy the size reduction of the charging transformer, and the power supply device as a whole can be reduced in size and weight.
 図11に実施例5に係る電源装置の構成を示す。 FIG. 11 shows the configuration of the power supply device according to the fifth embodiment.
 実施例5は、複数の主回路10の出力を直列接続したマルチレベル構成で、系統電圧から降圧し、並列に出力する構成である。 Example 5 is a multi-level configuration in which outputs of a plurality of main circuits 10 are connected in series, and is configured to step down from a system voltage and output in parallel.
 各LLCコンバータの系統側コンデンサC2の充電については他の実施例と同様にLLCトランス3の2次側に接続して制御する構成である。さらにLLCトランス3に接続する初充電トランス22の接続を切り替えリレー40で接続先を切り替えることで、初充電トランス22および制御回路を1つのみで制御する小型化の効果が得られる。また、本構成においてもLLCトランスが絶縁機能を持つため、初充電回路に系統に対する絶縁機能が不要となる利点が得られる。 The charging of the system side capacitor C2 of each LLC converter is connected to the secondary side of the LLC transformer 3 and controlled as in the other embodiments. Furthermore, by switching the connection destination of the initial charging transformer 22 connected to the LLC transformer 3 with the switching relay 40, the effect of miniaturization of controlling the initial charging transformer 22 and the control circuit with only one can be obtained. Also in this configuration, since the LLC transformer has an insulating function, there is an advantage that the initial charging circuit does not need an insulating function for the system.
 実施例5も他の実施例と同様に、初充電トランス23をLLCトランス3の2次側に接続することで、低圧駆動素子の使用による小型化、周波数による初充電の制御、高周波化による初充電トランス小型化を満たすことが可能となり、電源装置全体での小型・軽量化が可能となる。 In the fifth embodiment, as in the other embodiments, the initial charge transformer 23 is connected to the secondary side of the LLC transformer 3 to reduce the size by using the low-voltage drive element, to control the initial charge by frequency, and to increase the initial frequency by increasing the frequency. It becomes possible to satisfy the size reduction of the charging transformer, and the power supply device as a whole can be reduced in size and weight.
 以上、多くの実施例を挙げたが、用途に応じて適宜実施例に記述した内容を組み合わせて使用してもよい。 Although many examples have been described above, the contents described in the examples may be combined as appropriate according to the application.
 以上複数の実施例を通じて、本発明においては高周波数での初充電回路20をLLCトランス3の2次巻線側に接続し、コンデンサC1、C2を初充電しておくことで、電源接続時の突入電流を抑制可能としている。 Through the above embodiments, in the present invention, the initial charging circuit 20 at high frequency is connected to the secondary winding side of the LLC transformer 3 and the capacitors C1 and C2 are initially charged, so Inrush current can be suppressed.
 この初充電回路20を用いた初充電制御方法に関し、初充電は交流系統への接続前の段階においてLLCトランス3の2次巻線側に、高周波電流を与えることで実行する。またLLCトランスの2次側に与える高周波を、初充電電圧に応じて高周波から低周波に変化させる。 Regarding the initial charge control method using the initial charge circuit 20, the initial charge is performed by applying a high-frequency current to the secondary winding side of the LLC transformer 3 in a stage before connection to the AC system. The high frequency applied to the secondary side of the LLC transformer is changed from a high frequency to a low frequency according to the initial charge voltage.
 ここでは、第1のインバータ部In1を構成する半導体素子の並列ダイオード経由で回路形成してコンデンサC1を初充電する。また電源接続後は初充電回路20についての格別の切離し制御などは不要であって、そのままに放置すればよい。なお図1のように電源回路13を並置する場合に、初充電トランス23は制御回路用電源トランス4とは容量が相違するため、別配置とされるのがよい。 Here, a circuit is formed via a parallel diode of a semiconductor element constituting the first inverter unit In1, and the capacitor C1 is initially charged. Further, after the power supply is connected, special disconnect control for the initial charging circuit 20 is unnecessary, and it may be left as it is. When the power supply circuit 13 is juxtaposed as shown in FIG. 1, the initial charge transformer 23 has a capacity different from that of the control circuit power supply transformer 4, so that it is preferable to arrange them separately.
 なお上記説明の本発明に係る電源装置においては、交流系統から電力を得て、直流または交流出力する事例を説明した。これは、交流系統に接続するときの突入電流を緩和するのが主目的であったことに由来している。敢えて直流入力を対象にしなかったのは例えば直流入力として太陽光発電装置を接続するような場合には、発電を行わない夜間に接続しておけば夜明けとともに徐々に直流電圧が発生し上昇することになるため突入電流の恐れがないということによる。従って、太陽光発電装置以外の直流電源に接続することが想定される場合には、同様に本発明が適用できることは言うまでもない。 In addition, in the power supply device according to the present invention described above, an example in which power is obtained from an AC system and DC or AC output is described has been described. This is because the main purpose was to alleviate the inrush current when connecting to the AC system. For example, when a solar power generation device is connected as DC input, the DC voltage is gradually generated and rises at dawn if it is connected at night when power generation is not performed. This is because there is no fear of inrush current. Therefore, when connecting with direct-current power supplies other than a solar power generation device is assumed, it cannot be overemphasized that this invention is applicable similarly.
CB:スイッチ,L1、L2:リアクトル,10:主回路,R1、R2:整流器部,In1、In2:インバータ部,3:LLCトランス,20:初充電回路,13:電源回路,21:低圧DC電源,22:初充電用インバータ部,23:初充電トランス CB: Switch, L1, L2: Reactor, 10: Main circuit, R1, R2: Rectifier part, In1, In2: Inverter part, 3: LLC transformer, 20: Initial charging circuit, 13: Power supply circuit, 21: Low voltage DC power supply , 22: Inverter section for initial charging, 23: Initial charging transformer

Claims (13)

  1.  スイッチを介して電源に接続され、第1のコンデンサからの直流入力を高周波に変換して与える第1のインバータ部と、該第1のインバータ部の出力側に接続されたトランスと、該トランスの出力を整流する整流器部と、該整流器部の出力側に設けられた第2のコンデンサで構成された主回路を含んで構成された電源装置であって、
     該電源装置は、直流電圧を与える低圧DC電源と、該低圧DC電源の出力を高周波に変換して与える初充電用インバータ部と、該初充電用インバータ部の出力側に接続され、その出力側を前記トランスの2次側に接続する初充電用トランスで構成された初充電回路を備えていることを特徴とする電源装置。
    A first inverter unit that is connected to a power source via a switch and converts the DC input from the first capacitor to a high frequency, and a transformer connected to the output side of the first inverter unit; A power supply device configured to include a main circuit composed of a rectifier unit that rectifies an output and a second capacitor provided on the output side of the rectifier unit,
    The power supply device is connected to an output side of the low-voltage DC power supply for applying a DC voltage, an initial charging inverter unit for converting the output of the low-voltage DC power source into a high frequency, and an output side of the initial charging inverter unit. A power supply device comprising: an initial charging circuit configured by an initial charging transformer for connecting a power source to a secondary side of the transformer.
  2.  請求項1に記載の電源装置であって、
     前記トランスは、その1次巻線に直列にリアクトルとコンデンサを直列配置したLLCトランスであることを特徴とする電源装置。
    The power supply device according to claim 1,
    The transformer is an LLC transformer in which a reactor and a capacitor are arranged in series with a primary winding of the transformer.
  3.  請求項1または請求項2に記載の電源装置であって、
     前記第1のインバータ部は、並列ダイオードを備えた半導体素子によるフルブリッジ回路で構成されていることを特徴とする電源装置。
    The power supply device according to claim 1 or 2, wherein
    The power supply apparatus according to claim 1, wherein the first inverter unit includes a full bridge circuit including a semiconductor element including a parallel diode.
  4.  請求項1から請求項3のいずれか1項に記載の電源装置であって、
     電源装置は、前記第2のコンデンサの出力を商用周波数の交流に変換する第2のインバータ部を備えるとともに、
     前記トランスの二次巻線に接続された制御回路用電源トランスと、該制御回路用電源トランスの二次側に接続された整流回路と、該整流回路の直流電力を前記第2のインバータ部を構成する半導体素子のゲートに与えるゲート電力、あるいは制御回路用電力として利用する電源回路を含むゲート用電源を備えていることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 3,
    The power supply device includes a second inverter unit that converts the output of the second capacitor into an alternating current of commercial frequency,
    A control circuit power transformer connected to the secondary winding of the transformer; a rectifier circuit connected to the secondary side of the control circuit power transformer; and direct current power of the rectifier circuit to the second inverter unit A power supply device comprising a gate power supply including a power supply circuit used as gate power applied to a gate of a semiconductor element to be configured or power for control circuit.
  5.  請求項1から請求項4のいずれか1項に記載の電源装置であって、
     前記初充電用トランスの2次側と、前記トランスの2次側を接続する回路にリアクトルを含むことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 4,
    A power supply device comprising a reactor in a circuit connecting a secondary side of the initial charging transformer and a secondary side of the transformer.
  6.  請求項1から請求項5のいずれか1項に記載の電源装置であって、
     複数の前記主回路について、その出力側を直列接続して高圧化されていることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 5,
    The power supply apparatus according to claim 1, wherein the plurality of main circuits are increased in voltage by connecting their output sides in series.
  7.  請求項6に記載の電源装置であって、
     複数の前記主回路ごとに前記初充電回路を備えていることを特徴とする電源装置。
    The power supply device according to claim 6,
    A power supply apparatus comprising the initial charging circuit for each of the plurality of main circuits.
  8.  請求項1から請求項5のいずれか1項に記載の電源装置であって、
     前記主回路は、その出力側を並列接続して大電流化されていることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 5,
    The main circuit has a large current by connecting its output sides in parallel, and the power supply device is characterized in that:
  9.  請求項8に記載の電源装置であって、
     複数の前記主回路ごとに前記初充電回路を共通に備えていることを特徴とする電源装置。
    The power supply device according to claim 8, wherein
    A power supply apparatus comprising the initial charging circuit in common for each of the plurality of main circuits.
  10.  請求項9に記載の電源装置であって、
     前記共通に備えられた前記初充電回路の前記初充電用トランスは、複数の2次巻線を備えており、それぞれの2次巻線が、前記複数の主回路の前記トランスの2次側に接続されていることを特徴とする電源装置。
    The power supply device according to claim 9,
    The initial charging transformer of the initial charging circuit provided in common includes a plurality of secondary windings, and each secondary winding is provided on the secondary side of the transformer of the plurality of main circuits. A power supply device characterized by being connected.
  11.  請求項9に記載の電源装置であって、
     前記共通に備えられた前記初充電回路の前記初充電用トランスは、その2次巻線出力を、前記複数の主回路の前記トランスの2次側に切替接続されていることを特徴とする電源装置。
    The power supply device according to claim 9,
    The initial charging transformer of the first charging circuit provided in common has its secondary winding output switched and connected to the secondary side of the transformers of the plurality of main circuits. apparatus.
  12.  スイッチを介して電源に接続され、第1のコンデンサからの直流入力を高周波に変換して与える第1のインバータ部と、該第1のインバータ部の出力側に接続されたトランスと、該トランスの出力を整流する整流器部と、該整流器部の出力側に設けられた第2のコンデンサで構成された主回路を含んで構成された電源装置の初充電制御方法であって、
     直流を高周波に変換して前記トランスの2次側に与えることを特徴とする電源装置の初充電制御方法。
    A first inverter unit that is connected to a power source via a switch and converts the DC input from the first capacitor to a high frequency, and a transformer connected to the output side of the first inverter unit; An initial charge control method for a power supply device configured to include a main circuit composed of a rectifier unit that rectifies an output and a second capacitor provided on the output side of the rectifier unit,
    An initial charge control method for a power supply device, characterized in that a direct current is converted into a high frequency and applied to a secondary side of the transformer.
  13.  請求項12に記載の電源装置の初充電制御方法であって、
     前記トランスの2次側に与える高周波を、初充電電圧に応じて高周波から低周波に変化させることを特徴とする電源装置の初充電制御方法。
    An initial charge control method for a power supply device according to claim 12,
    An initial charge control method for a power supply apparatus, wherein a high frequency applied to a secondary side of the transformer is changed from a high frequency to a low frequency according to an initial charge voltage.
PCT/JP2016/076158 2015-12-11 2016-09-06 Power supply device and method for controlling initial charging thereof WO2017098763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-241885 2015-12-11
JP2015241885A JP2019041428A (en) 2015-12-11 2015-12-11 Power supply device and initial charging control method therefor

Publications (1)

Publication Number Publication Date
WO2017098763A1 true WO2017098763A1 (en) 2017-06-15

Family

ID=59013967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076158 WO2017098763A1 (en) 2015-12-11 2016-09-06 Power supply device and method for controlling initial charging thereof

Country Status (2)

Country Link
JP (1) JP2019041428A (en)
WO (1) WO2017098763A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719533B (en) * 2019-07-11 2021-02-21 台達電子工業股份有限公司 Power apparatus applied in sst structure and three-phase power source system having the same
US10944338B2 (en) 2019-07-11 2021-03-09 Delta Electronics, Inc. Power apparatus applied in SST structure and three-phase power source system having the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022202206A1 (en) 2021-03-25 2022-09-29

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237577A (en) * 1993-02-10 1994-08-23 Meidensha Corp Capacitor charging power supply
JP2001204170A (en) * 2000-01-17 2001-07-27 Meidensha Corp Capacitor charging device
JP2002218743A (en) * 2001-01-23 2002-08-02 Meidensha Corp Charger for capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237577A (en) * 1993-02-10 1994-08-23 Meidensha Corp Capacitor charging power supply
JP2001204170A (en) * 2000-01-17 2001-07-27 Meidensha Corp Capacitor charging device
JP2002218743A (en) * 2001-01-23 2002-08-02 Meidensha Corp Charger for capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719533B (en) * 2019-07-11 2021-02-21 台達電子工業股份有限公司 Power apparatus applied in sst structure and three-phase power source system having the same
US10944338B2 (en) 2019-07-11 2021-03-09 Delta Electronics, Inc. Power apparatus applied in SST structure and three-phase power source system having the same
US11515800B2 (en) 2019-07-11 2022-11-29 Delta Electronics, Inc. Power apparatus applied in SST structure and three-phase power source system having the same

Also Published As

Publication number Publication date
JP2019041428A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP4995277B2 (en) Bidirectional DC / DC converter
US20170093299A1 (en) Power Supply Device
KR101811153B1 (en) Dc power supply device and refrigeration cycle device
JP6289618B2 (en) Power converter
JP6488194B2 (en) Power supply
JP2008187821A (en) Insulated ac-dc converter and dc power supply unit for led using it
JP6186357B2 (en) Power converter
JP5308682B2 (en) Bidirectional DC / DC converter
WO2005091483A1 (en) Dc-dc converter
KR20180004675A (en) Bidirectional Converter with Auxiliary LC Resonant Circuit and Operating Method thereof
US11296607B2 (en) DC-DC converter
JP2017147812A (en) Electric power supply and initial charge control method
WO2010107060A1 (en) Dc-dc converter
JP6551340B2 (en) Voltage converter
JP2017028873A (en) Power conversion device
WO2017098763A1 (en) Power supply device and method for controlling initial charging thereof
JP2008086107A (en) Motor drive controller
JP2009060747A (en) Dc-dc converter
KR20190115364A (en) Single and three phase combined charger
WO2010098486A1 (en) Dc-dc converter
WO2017098762A1 (en) Power conversion device, power supply device, and method for controlling same
US10840807B2 (en) DC to DC converter sourcing variable DC link voltage
JP3934654B2 (en) DC-DC converter
KR101548528B1 (en) DC/DC converter
JP4635584B2 (en) Switching power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP