WO2017098762A1 - Power conversion device, power supply device, and method for controlling same - Google Patents

Power conversion device, power supply device, and method for controlling same Download PDF

Info

Publication number
WO2017098762A1
WO2017098762A1 PCT/JP2016/076154 JP2016076154W WO2017098762A1 WO 2017098762 A1 WO2017098762 A1 WO 2017098762A1 JP 2016076154 W JP2016076154 W JP 2016076154W WO 2017098762 A1 WO2017098762 A1 WO 2017098762A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
transformer
voltage
circuit
output
Prior art date
Application number
PCT/JP2016/076154
Other languages
French (fr)
Japanese (ja)
Inventor
泰明 乗松
叶田 玲彦
馬淵 雄一
尊衛 嶋田
充弘 門田
祐樹 河口
輝 米川
瑞紀 中原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017098762A1 publication Critical patent/WO2017098762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device, a power supply device, and a control method thereof for DC power and AC power.
  • isolation transformers are used in the power system, but it is difficult to reduce the size and weight because it is driven at a low frequency of several tens of Hz (50/60 Hz in Japan). There was a problem.
  • the SST Solid State Transformer: hereinafter simply referred to as SST
  • SST Solid State Transformer
  • the SST is composed of a high-frequency transformer and a power conversion circuit, and the output or input of the SST is AC power having the same frequency as the conventional one.
  • a high frequency is generated by a power conversion circuit (DC / DC converter or inverter) and a high frequency transformer is driven to connect an input or output to an AC power system having the same frequency as the conventional one. It replaces the isolation transformer.
  • the high-frequency transformer can be driven at a high frequency of several tens to several hundreds of kHz, so that a significant reduction in size and weight can be realized as compared with a conventional insulation transformer alone.
  • PCS Power Conditioning System
  • FIG. 2 shows a multi-level high-voltage inverter using multiple transformers as insulation transformers.
  • the multilevel in FIG. 2 shows an example of a one-stage configuration.
  • the electric power of the main circuit inverter 11 is input from the three-phase AC multiple transformer 12 and is output from the main circuit inverter 11 as a single-phase AC.
  • the main circuit inverter 11 is composed of a rectifier section R, a smoothing capacitor C2, and an inverter section In2.
  • the gate power supply 13 for supplying power for starting the semiconductor elements constituting the inverter unit In2 in the main circuit inverter 11 is provided for each of the single-phase transformer 4, the single-phase bridge rectifier circuit 16, the DC reactor 14, and the semiconductor elements.
  • the power supply circuit 17 is configured. The starting power is supplied by extracting a single phase from the output of the three-phase AC multiple transformer 12.
  • the multi-level high-voltage inverter shown in FIG. 2 insulation between the power system (several kV to several tens of kV) is achieved by the above-described connection configuration using the multiple transformer 12, the main circuit inverter 11, and the gate power supply 13. Is ensured by the multiple transformer 12. For this reason, the single-phase transformer 15 for the gate power supply 13 can be reduced to a voltage (about several hundred volts) required for one multilevel stage, and a control circuit for controlling voltage conversion can be eliminated.
  • Patent Document 1 discloses a high-voltage inverter power supply apparatus basically having the same configuration as that shown in FIG. 2, although there is a difference in that the multiple transformer 12 is a single phase.
  • the single-phase transformer 15 used in Patent Document 1 is driven at 50/60 Hz which is the same as the frequency of the power system, it is particularly difficult to reduce the size of the transformer core. Further, since the conversion to the DC voltage for the gate power supply 13 is performed by the single-phase bridge rectifier circuit 16, the voltage fluctuation is increased by the load of the control circuit, and a DC / DC converter or voltage fluctuation corresponding to the voltage fluctuation is obtained. It is necessary to add a DC reactor 14 for suppressing the power supply as necessary, and the power supply for the gate power supply 13 is enlarged.
  • the main circuit inverter 11 As a configuration of the main circuit inverter 11, a control power source configuration in which the DC voltage is stepped down by a DC / DC converter is conceivable. In this case as well, insulation between the power system can be ensured by the multiple transformer 12. Further, the transformer and the reactor necessary for the DC / DC converter are driven at the driving frequency of the DC / DC converter, so that the size can be reduced. However, in this configuration, since the DC voltage of the main circuit inverter 11 is several hundred volts, the application corresponding to the several hundred volts used for the main circuit inverter 11 is also applied to the DC / DC converter for the gate power supply 13.
  • an object of the present invention is to provide a power conversion device, a power supply device, and a control method thereof that can reduce the size of an insulating transformer and its peripheral circuits.
  • a first inverter unit that obtains a DC input and gives a high-frequency output
  • an LLC transformer that converts the high-frequency output of the first inverter unit, and an output of the LLC transformer
  • a rectifier unit for conversion a second inverter unit for converting the direct current output of the rectifier unit to alternating current, and a control circuit power supply transformer connected in parallel to the secondary circuit of the LLC transformer through the rectifier circuit
  • a power supply circuit that obtains the gate power of the semiconductor element constituting the inverter unit and the power of the control circuit that supplies the gate signal of the semiconductor element, and divides the DC voltage of the rectifier circuit and introduces it to the control circuit as the DC output of the rectifier unit.
  • This is a power conversion device and a power supply device.
  • a control method for a power conversion device or a power supply device in which the resonance frequency in the LLC transformer and the drive frequency in the first inverter unit are an operation mode in which the drive frequency and the resonance frequency are equal, and the drive frequency is greater than the resonance frequency
  • the control method is characterized in that the first inverter unit is controlled by switching between a higher operation mode and an operation mode in which the dynamic frequency is lower than the resonance frequency.
  • the present invention it is possible to provide a power conversion device, a power supply device, and a control method thereof that can reduce the size of the peripheral circuit including the isolation transformer.
  • the volume of the control circuit power transformer is reduced by increasing the frequency inputted to the control circuit power transformer, and the control circuit for voltage conversion becomes unnecessary.
  • a low-voltage element can be used in addition to the power transformer for the control circuit. As a result, the entire control circuit can be reduced in size and weight, so that the high-voltage power converter can be reduced in size and weight.
  • the figure which shows the structure of the power converter device which concerns on Example 1 of this invention The circuit diagram which shows the structure of the conventional multilevel high voltage inverter.
  • the figure which shows a voltage and electric current waveform when LLC resonant frequency is equal to a drive frequency.
  • FIG. 10 is a diagram illustrating a specific circuit configuration example of the gate power supply according to the third embodiment.
  • FIG. FIG. 10 is a diagram illustrating a specific circuit configuration example of a gate power supply according to a fifth embodiment.
  • FIG. 10 is a diagram illustrating a specific circuit configuration example of a gate power supply according to a fifth embodiment.
  • FIG. 10 is a diagram illustrating a specific circuit configuration example of a gate power supply according to a sixth embodiment.
  • a power conversion apparatus for a PCS of several hundred kW to several MW class whose input is DC 600 to 1000 V and whose output is connected to a high voltage system of 6.6 kV system. Assumed.
  • the main circuit 100 is configured by a series circuit of a full-bridge type LLC resonant converter 1 and a single-phase inverter 2.
  • the full-bridge type LLC resonant converter 1 is connected to a DC power source by, for example, photovoltaic power generation at an input terminal Ti, and provides an AC output to an output terminal To of the single-phase inverter 2.
  • the full-bridge type LLC resonant converter 1 includes a smoothing capacitor C1, a first inverter unit In1, an LLC transformer 3, a rectifier unit R, and a smoothing capacitor C2 from the input side.
  • the LLC transformer 3 is a transformer primary winding side of a first reactor 31, a second reactor 32 as a primary winding, and a capacitor 33 arranged in series. It is a vessel.
  • the single-phase inverter 2 includes a second inverter unit In2.
  • the first inverter unit In1 and the second inverter unit In2 have a single-phase full bridge configuration, and these inverter units In1 and In2 have their semiconductor elements configured by MOS-FETs. An example is shown.
  • a direct current input by photovoltaic power generation applied to the input terminal Ti is converted into a high frequency alternating current and adjusted to an arbitrary voltage in the LLC transformer 3.
  • the second inverter section In2 converts to a frequency (50/60 Hz) that can be connected to, for example, a commercial AC power source and outputs it to the output terminal To.
  • the power supply circuit 17 obtains power from the secondary winding 34 of the LLC transformer 3 via the control circuit power supply transformer 4.
  • the control circuit power transformer 4 includes a primary winding 41 and a secondary winding 42 electromagnetically coupled to the primary winding 41.
  • the secondary winding 42 supplies DC power to the power supply circuit 17 via the single-phase bridge rectifier circuit 16.
  • the DC power of the power supply circuit 17 is used as gate power given to the gates of the semiconductor elements Q1, Q2, Q3, and Q4 of the second inverter unit In2, or as control circuit power.
  • voltage dividing resistors R1 and R2 are connected in series on the output side of the single-phase bridge rectifier circuit 16, and the connection point potential is used as a detection signal for the DC voltage Vdc of the main circuit.
  • the LLC transformer 3 operates at a high frequency
  • the device configuration can be reduced in size.
  • the control circuit power transformer 4 also operates at a high frequency, it can be miniaturized.
  • the voltage dividing circuit for detecting the main circuit DC voltage Vdc is also lower in potential than the case where it is installed in the main circuit and is insulated, so that the circuit is miniaturized.
  • the power supply circuit 17 supplies the gate power of the MOS-FET semiconductor elements Q1, Q2, Q3, Q4 constituting the second inverter section In2 and the power supply for the gate control circuit.
  • the power supply circuit for one inverter unit In1 is not shown.
  • a power supply circuit for the first inverter unit In1 is separately installed but is not described here. The reason for this is that the voltage level to be insulated (usually about 100 volts AC) is low on the first inverter unit In1 side, so that a high degree of insulation measure that is applied to the power supply circuit 17 is not required. This is because it can be handled by technology.
  • the configuration of the main circuit 100 in FIG. 1 is a configuration in which the DC output after full-bridge diode rectification in the full-bridge type LLC resonant converter 1 is AC-output to the power system via the single-phase inverter 2.
  • a single-phase inverter 2 is assumed, but a three-level inverter configuration may be applied.
  • FIG. 1 shows a single-phase output, but three-phase is required for connection to an AC system. Therefore, practical applications suitable for the three-phase configuration of FIG. 3 are made.
  • FIG. 3 is a diagram illustrating the configuration of the three-phase power supply device using the power conversion device according to the first embodiment. In this application, the output side of the single-phase output main circuit 100 is connected in multiple stages for each of the three phases U, V, and W.
  • FIG. 1 shows a detailed configuration of the power converter
  • FIG. 3 shows the configuration of a three-phase power supply device as an example of deployment to a three-phase power system.
  • a series multi-level configuration connected in series can support high-voltage output.
  • the input voltage of each main circuit 100 is 600 to 1000 VDC, 6.6 kV can be obtained as the voltage between the three-phase lines.
  • relatively low-voltage semiconductor elements Q1, Q2, Q3, and Q4 such as 1700V, 1200V, and 650V can be used when viewed as a single-phase inverter 2.
  • the terminal voltage Vdc of the second capacitor C2 is also a voltage according to the semiconductor elements Q1, Q2, Q3, and Q4, it means that the DC capacitor C2 can use a capacitor having a lower voltage than the power system voltage. is doing.
  • the specifications and functions of the components constituting the power conversion device or power supply device shown in FIGS. 1 and 3 may be as follows, and the following effects can be exhibited.
  • the full-bridge type LLC resonant converter 1 has a DC voltage of 1000 V or less, it is assumed that a MOS-FET suitable for high-frequency driving is applied as the first inverter unit In1.
  • the switching frequency of the semiconductor element of the first inverter unit In1 is assumed to be several tens kHz to several hundreds kHz.
  • a SiC MOS-FET suitable for high withstand voltage / high frequency switching may be applied, and any other one having a similar function may be used.
  • the secondary side rectifier section R of the LLC resonant converter 1 is assumed to be smoothed by a diode.
  • Si-type diodes Si-type Schottky barrier diodes or SiC Schottky barrier diodes may be applied to reduce conduction loss, and loss can be reduced by using SiC MOS-FETs in synchronization. It does not matter if it has other similar functions.
  • the LLC transformer 3 has an insulating function from the power system voltage, and the first reactor 31 on the transformer primary winding side, the second reactor 32 as the primary winding, and the capacitor 33 are arranged in series. It is an insulation transformer called as follows. Of these circuit components, the first reactor 31 defines the leakage inductance Lr, the second reactor 32 as the primary winding defines the exciting inductance Lm of the high-frequency transformer, and the capacitor 33 defines the resonant capacitor capacitance Cr. is doing.
  • the LLC resonant transformer 3 has a configuration in which a leakage inductance Lr and a resonant capacitor capacitance Cr are connected to resonate with the exciting inductance Lm of the high-frequency transformer to achieve LLC resonance.
  • the leakage inductance Lr may be integrated in the high frequency transformer as a structure that can adjust the constant of the leakage magnetic flux in the high frequency transformer.
  • the resonance capacitor capacity Cr is assumed to use a film capacitor, but may have any similar function.
  • FIG. 1 shows an example in which the semiconductor element of the second inverter unit In2 is composed of a MOS-FET, this may be an IGBT.
  • the second inverter unit In2 may employ an IGBT because the switching frequency of the series multiplex PWM is as low as several kHz or less as a whole compared to the drive frequency of the LLC resonant converter 1.
  • the number of single-phase inverters 2 per phase is assumed to be about 8 to 6 stages in series.
  • a Y-connection configuration is assumed, but a ⁇ -connection configuration is also possible.
  • the phase voltage is 1 / ⁇ 3 with respect to the line voltage of 6.6 kV, and the DC voltage of the entire phase is based on ⁇ 2 times, so the second capacitor C2 in the case of eight stages
  • the terminal voltage Vdc is about 600 to 700V.
  • these specifications and functions may be as follows, and the following effects can be exhibited.
  • the power transformer 4 for the control circuit shown in FIG. 1 is configured to be connected to the secondary side of the LLC transformer 3, and is driven at several tens to several hundreds of kHz by the LLC control, so that several hundreds of volts on the primary side is secondary.
  • the side can be converted to several tens to several V.
  • the excitation inductance of the power transformer 4 for the control circuit has a sufficiently large value with respect to the LLC transformer 3.
  • the excitation inductance Lm of the LLC transformer 3 is several hundred ⁇ H
  • the excitation inductance of the power transformer 4 for the control circuit is set to be a value of several hundred mH or more. It is not limited.
  • control circuit power transformer 4 is driven by the LLC control, a controller for controlling voltage conversion becomes unnecessary.
  • the power transformer 4 for the control circuit can be reduced to an insulation function of about several hundred volts that is equal to or higher than the terminal voltage Vdc of the second capacitor C2.
  • the voltage dividing resistors R1 and R2 installed as the detection circuit for the DC voltage Vdc of the main circuit on the output side of the single-phase bridge rectifier circuit 16 can be applied to a low voltage circuit. The size can be greatly reduced compared to the case where it is provided.
  • each semiconductor element Q1, Q2, Q3, Q4 supplies isolated output to power supply circuits 17a, 17b, 17c, 17d for the gate and a controller (such as a microcomputer) for controlling the gate. is doing.
  • a controller such as a microcomputer
  • a configuration assuming that the gates of the semiconductor elements Q1, Q2, Q3, and Q4 have a voltage stabilizing circuit (such as a linear regulator) and a driving photoMOS, and the controller is controlled by driving a light emitting diode of the photoMOS. It is.
  • the power required for each output is assumed to be about several tens to several hundreds mW, but is not limited thereto.
  • an LLC transformer 3 is employed in the LLC resonant converter 1.
  • a control method peculiar to the LLC resonant converter 1 including the LLC transformer 3 and its effect will be described.
  • the resonance frequency is determined by the values of the excitation inductance Lm, leakage inductance Lr, and resonance capacitor capacitance Cr of the high-frequency transformer described above for the first inverter unit In1, and the resonance frequency is set to several tens to several hundreds kHz. Assumed.
  • the control of the LLC resonant converter 1 is executed by a control circuit that controls on / off of four sets of semiconductor elements constituting the full-bridge first inverter unit In1.
  • the control circuit itself has a circuit configuration that is usually performed, and a specific circuit configuration is omitted.
  • the semiconductor element is controlled as follows.
  • the upper right and lower left semiconductor elements Q9 and Q8 in FIG. 1 are the first set
  • the lower right and upper left semiconductor elements Q10 and Q7 are the second set.
  • the first conductive state in which the first set is ON and the second set is OFF, and the second conductive state in which the second set is ON and the first set is OFF are alternately formed.
  • the ON / OFF control is performed with a drive frequency having a period from the first conduction state to the first conduction state again through the second conduction state.
  • the horizontal axis represents time
  • the vertical axis represents the magnitude of voltage and current during one cycle.
  • FIG. 4 shows voltage and current waveforms when the LLC resonance frequency is equal to the drive frequency.
  • the drive frequency is controlled by a control circuit that controls on / off of the four sets of semiconductor elements constituting the full-bridge first inverter unit In1, and the drive frequency is a high-frequency transformer. This coincides with the resonance frequency determined by the values of the excitation inductance Lm, leakage inductance Lr, and resonance capacitor capacitance Cr of a certain LLC transformer 3.
  • FIG. 5 shows voltage and current waveforms when the drive frequency is lowered below the LLC resonance frequency and the boost operation is performed.
  • the secondary side voltage of the LLC transformer 3 becomes a rectangular wave voltage such as VTout.
  • This rectangular wave voltage is a waveform with a slight delay between rising and falling with respect to the power transformer 4 for the control circuit, but basically a rectangular wave is input. For this reason, since the voltage corresponding to the turn ratio with respect to the terminal voltage Vdc of the second capacitor C2 is output to the secondary side output of the power transformer 4 for the control circuit, the voltage fluctuation is the same as in the LLC resonant converter 1. There is no need for a DC reactor.
  • FIG. 6 shows voltage and current waveforms when the drive frequency is raised above the LLC resonance frequency and the step-down operation is performed.
  • the MOS-FET In the state where the drive frequency is higher than the LLC resonance frequency, as shown in the waveform of the primary side current ITin of the LLC transformer 3, when the MOS-FET is ON, the current flowing through the MOS-FET is equal to that of the MOS-FET. Since it flows in the reverse direction through the body diode, it becomes ZVS (zero volt switching) and no switching loss occurs when it is ON. Since the current flowing through the MOS-FET does not decrease at the time of OFF, the switching loss at the time of OFF increases. However, in the case of the control operation by the PCS, the reduction in efficiency can be minimized by limiting the voltage range for the step-down control.
  • LLC resonance frequency drive frequency, LLC resonance frequency> drive frequency, LLC resonance frequency ⁇ drive frequency
  • FIG. 7 is a diagram illustrating a case example of LLC control when applied to solar power generation.
  • FIG. 7 shows the relationship between the terminal voltage Vdc of the second capacitor C2, the photovoltaic power generation output, and the driving frequency with respect to the input voltage Vin by photovoltaic power generation.
  • the magnitude of the input voltage Vin and the photovoltaic power generation output by the photovoltaic power generation is variable depending on the weather (fine weather, cloudy weather).
  • the range of the voltage input to the PCS (that is, the input voltage Vin by solar power generation) is divided into a first region D1, a second region D2, and a third region D3.
  • the drive frequency is made lower than the LLC resonance frequency by LLC control so that the terminal voltage Vdc of the second capacitor C2 is boosted so as not to be lower than the lower limit value.
  • the drive frequency is made higher than the LLC resonance frequency by LLC control so that the terminal voltage Vdc of the second capacitor C2 is stepped down so as not to exceed the upper limit value.
  • the drive frequency is made equal to the LLC resonance frequency by the LLC control and is made constant, thereby enabling high-efficiency operation.
  • the region may be set based on the upper and lower limits of the terminal voltage Vdc of the second capacitor C2.
  • the second threshold value Vin2 that defines the upper limit region is set to be equal to or higher than the maximum output point voltage in normal sunny weather. It is good. By doing so, the probability of the step-down operation in the third region is reduced.
  • the voltage on the secondary side of the LLC transformer 3 by this LLC control is VTout. Since a rectangular wave is input to the power transformer 4 for the control circuit, a voltage corresponding to the turn ratio with respect to the terminal voltage Vdc of the second capacitor C2 is output to the secondary output, so that the same as the LLC converter There is no voltage fluctuation and no DC reactor is required.
  • connecting the power transformer 4 for the control circuit to the secondary side of the LLC transformer 3 reduces the dielectric breakdown voltage, eliminates the need for voltage conversion drive control, suppresses voltage fluctuations due to the load, and reduces the size of the transformer due to higher frequencies. It becomes possible to satisfy the requirements, and the entire power supply device can be reduced in size and weight.
  • Example 3 shows a specific circuit configuration example of the gate power supply 13 of FIG.
  • a gate power supply circuit 17a, 17b, 17c, 17d and a single-phase bridge rectifier circuit are provided for each of the semiconductor elements Q1, Q2, Q3, Q4 of the second inverter unit In2.
  • 16a, 16b, 16c, and 16d are provided, and a control power supply circuit 17j and a single-phase bridge rectifier circuit 16j are provided.
  • the control circuit power transformer 4 is configured so that the secondary side of the control circuit transformer 4 has multiple outputs by secondary windings 42a, 42b, 42c, 42d, and 42j, so that each single-phase bridge rectifier circuit 16a, 16b, 16c, 16d and 16j.
  • the control circuit transformer 4 shows an example of a one-to-n connection method in which the primary side is a single winding and the secondary side is a plurality of windings.
  • voltage dividing resistors R1 and R2 are connected in series to the output side of the single-phase bridge rectifier circuit 16j, and the connection point potential is introduced into the control power supply circuit 17j as a detection signal of the DC voltage Vdc of the main circuit and used for control. ing.
  • the configuration of the third embodiment in FIG. 8 uses the secondary side of the control circuit transformer 4 as multiple outputs, so that it can be used for the voltage detection of the DC voltage Vdc and the microcomputer in the control power supply circuit 17j shown in the first embodiment.
  • the power source for driving the gates of the semiconductor elements Q1, Q2, Q3, and Q4 for driving the inverter is generated.
  • the gates of the semiconductor elements Q1, Q2, Q3, and Q4 have a voltage stabilizing circuit (such as a linear regulator) and a driving photo MOS, and the microcomputer controls the driving element by driving the light emitting diode of the photo MOS.
  • a voltage stabilizing circuit such as a linear regulator
  • the microcomputer controls the driving element by driving the light emitting diode of the photo MOS.
  • the inverter driving semiconductor elements Q1, Q2, Q3, and Q4 may use IGBTs instead of MOS FETs. Since the inverter section In2 for output has a switching frequency of the serial multiplex PWM as low as several kHz or less as a whole compared with the drive frequency of the LLC resonant converter, problems such as heat generation are small even when the IGBT is applied.
  • FIG. 10 shows a configuration when the control circuit power transformer 4 has a single output. It is assumed that the present invention is applied to a case where a plurality of control circuit power transformers 4a, 4b, 4c, 4d, and 4j can be individually arranged on the secondary side of the LLC transformer 3 so that downsizing in a distributed arrangement becomes possible. is doing.
  • FIG. 11 shows a configuration when the control circuit power transformer 4 is divided into four outputs for the gate power circuits 17a, 17b, 17c and 17d and a single output for the control power circuit 17j.
  • the turns ratio of the four outputs for the gate power supply circuits 17a, 17b, 17c and 17d is the same, and the turn ratio of one output for the control power supply circuit 17j is the four outputs for the gate power supply circuits 17a, 17b, 17c and 17d.
  • the configuration of FIG. 11 is a configuration in which the voltage detection of the DC voltage Vdc is divided on the side of the gate power supply circuit 17d and supplied to the control power supply circuit 17j. It is assumed that an error such as an influence of a voltage drop of the rectifying element of the control circuit power transformer 1 is reduced by dividing the voltage from a voltage higher than that on the control power circuit 17j side to improve detection accuracy.
  • the control method in the third embodiment is basically the same as that described above.
  • the third embodiment is also the control of the LLC resonant converter 1 and the duty control of 50% duty with a dead time. It is assumed that the resonance frequency is determined by the values of the excitation inductance Lm, the leakage inductance Lr, and the resonance capacitor capacitance Cr, and is set to several tens to several hundreds kHz.
  • Example 3 the waveform when the voltage is changed is the same as in FIGS. 4, 5, and 6. Even if the load is changed, VTout is a rectangular wave, so the Vdc turns ratio is independent of the load. A control voltage can be generated.
  • control circuit transformer 4 by connecting the control circuit transformer 4 to the secondary side of the LLC transformer 3, downsizing due to a reduction in dielectric strength, no need for voltage conversion drive control, suppression of voltage fluctuation due to load, downsizing of the transformer due to higher frequency It is possible to satisfy all of the above, and the power supply as a whole can be reduced in size and weight.
  • FIG. 12 shows the configuration of the power conversion apparatus according to the fourth embodiment.
  • the configuration of the third embodiment is a configuration in which the number of semiconductor elements constituting the rectifier unit R of the LLC resonant converter 1 is halved.
  • the voltage width input to the primary-side LLC transformer 3 is 1 ⁇ 2 of the full-bridge configuration of FIG. 1, but can be similarly adjusted by the turn ratio of the LLC transformer 3.
  • the control method of Example 3 is a frequency control of Duty 50% performed by controlling the LLC resonant converter 1 and giving a dead time. It is assumed that the resonance frequency is determined by the values of the excitation inductance Lm, the leakage inductance Lr, and the resonance capacitor capacitance Cr, and is set to several tens to several hundreds kHz.
  • the waveforms when the voltage is changed are the same as those in FIGS. 4, 5, and 6, and even if the load is changed, VTout is a rectangular wave. Therefore, the second capacitor C2 does not depend on the load.
  • the control voltage can be generated with the turn ratio of the terminal voltage Vdc.
  • control circuit transformer 1 is connected to the secondary side of the LLC transformer 2 to reduce the size due to a decrease in the withstand voltage, no need for voltage conversion drive control, the suppression of voltage fluctuation due to the load, and the downsizing of the transformer due to the higher frequency. It is possible to satisfy all of the above, and the power supply as a whole can be reduced in size and weight.
  • FIG. 13 and 14 show the configuration of the power conversion apparatus according to the fifth embodiment.
  • the configuration of the fifth embodiment assumes a system in which output is connected to three phases of U, V, and W phases in a single-stage configuration, and a motor and a pump are driven to output.
  • the output of the power transformer 3 for the control circuit is assumed to be a total of seven power circuits, including six for driving the semiconductor elements and one for the controller in accordance with the three-phase driving of the U, V, and W phases.
  • the number is not limited as long as the configuration has the same function.
  • FIG. 14 shows a configuration in which the number of outputs of the control circuit transformer 4 is reduced. Since the source voltages of the semiconductor elements Q2, Q4, and Q6 are the same, the number of outputs of the control circuit transformer 1 can be reduced by using the same output.
  • the control method of Example 5 is frequency control of Duty 50% performed by control of the LLC resonant converter 1 and provided with dead time. It is assumed that the resonance frequency is determined by the values of the excitation inductance Lm, the leakage inductance Lr, and the resonance capacitor capacitance Cr, and is set to several tens to several hundreds kHz.
  • the waveform when the voltage is changed is the same as that of FIGS. 4, 5, and 6. Even if the load is changed, VTout is a rectangular wave, so the second capacitor C2 does not depend on the load.
  • the control voltage can be generated with the turn ratio of the terminal voltage Vdc.
  • FIG. 15 shows a configuration in which the control circuit power transformer 4 of FIG. 1 is divided and distributed in series.
  • the primary winding and the secondary winding are configured to 1: n.
  • n 5 controls are provided as the control circuit power transformer 4 on the secondary side of the LLC transformer 3.
  • Circuit power transformers 4a, 4b, 4c, 4d, and 4j are connected in series. This connection form is applied when the control circuit power transformer 4 is divided into power supply circuits 17a, 17b, 17c, 17d and dispersed in series, and can be miniaturized in a distributed arrangement. Is assumed.

Abstract

Provided are a power conversion device in which an insulating transformer and peripheral circuits thereof can be reduced in size, a power supply device, and a method for controlling the same. Disclosed are a power conversion device and a power supply device, comprising: a first inverter unit that obtains a direct-current input and provides a high-frequency output; an LLC transformer that transduces the voltage of the high-frequency output of the first inverter unit; a rectifier unit that converts the output of the LLC transformer into a direct current; a second inverter unit that converts the direct-current output of the rectifier unit into an alternating current; and a power supply circuit that obtains, via a rectifying circuit from a control-circuit power supply transformer connected in parallel to the secondary circuit of the LLC transformer, power for a control circuit which provides gate power for semiconductor elements constituting the second inverter unit and a gate signal for said semiconductor elements. A direct-current voltage of the rectifying circuit is divided and is introduced to the control circuit as a direct-current output of the rectifier unit.

Description

電力変換装置、電源装置およびその制御方法Power conversion device, power supply device and control method thereof
 本発明は、直流電力と交流電力を対象とした電力変換装置、電源装置およびその制御方法に関するものである。 The present invention relates to a power conversion device, a power supply device, and a control method thereof for DC power and AC power.
 電力系統には多くの絶縁トランスが採用されているが、電力系統の周波数と同じ数十Hz(日本の場合、50/60Hz)の低周波で駆動されているため、小型・軽量化が難しいという課題があった。 Many isolation transformers are used in the power system, but it is difficult to reduce the size and weight because it is driven at a low frequency of several tens of Hz (50/60 Hz in Japan). There was a problem.
 これに対し、近年、高圧・大電力用途への適用が検討されているSST(ソリッドステートトランス:以下単にSSTと称する。)の技術を採用することで、小型・軽量化に貢献できることが期待されている。SSTは、高周波トランスと、電力変換回路で構成されており、その出力もしくは入力は従来と同じ周波数の交流電力である。SST内では、電力変換回路(DC/DCコンバータやインバータ)により高周波を生成して高周波トランスを駆動することで、入力または出力を従来と同じ周波数の交流電力系統に接続しており、これにより従来の絶縁トランスを代替するものである。この構成によれば、高周波トランスを数十~数百kHzの高周波駆動することによって、従来型絶縁トランス単体と比較して大幅な小型・軽量化を実現できる。 On the other hand, by adopting SST (Solid State Transformer: hereinafter simply referred to as SST) technology that has been studied for application to high-voltage and high-power applications in recent years, it is expected to contribute to reduction in size and weight. ing. The SST is composed of a high-frequency transformer and a power conversion circuit, and the output or input of the SST is AC power having the same frequency as the conventional one. In SST, a high frequency is generated by a power conversion circuit (DC / DC converter or inverter) and a high frequency transformer is driven to connect an input or output to an AC power system having the same frequency as the conventional one. It replaces the isolation transformer. According to this configuration, the high-frequency transformer can be driven at a high frequency of several tens to several hundreds of kHz, so that a significant reduction in size and weight can be realized as compared with a conventional insulation transformer alone.
 例えば電力系統向けの電力変換器の新たな用途として、太陽光発電や風力発電といった自然エネルギー導入の世界的な拡大に伴い、自然エネルギーの電力を制御して電力系統へ出力する高性能な電力変換器であるPCS(パワーコンディショニングシステム:以下単にPCSと称する。)が求められている。PCSは、電力系統に接続されて使用されるために、その出力側には高圧絶縁トランスを使用しており、電力系統の周波数と同じ数十Hzの低周波で駆動せざるを得ないために設備が大型化するという課題を有している。 For example, as a new application of power converters for power systems, high-performance power conversion that controls the power of natural energy and outputs it to the power system with the global expansion of natural energy introduction such as solar power generation and wind power generation. PCS (Power Conditioning System: hereinafter simply referred to as PCS) is required. Since the PCS is connected to the power system and used, a high-voltage insulation transformer is used on its output side, and it must be driven at a low frequency of several tens of Hz, which is the same as the frequency of the power system. There is a problem that the equipment becomes larger.
 また電力系統連系向け以外にも、例えば高圧のモータやポンプ向け、鉄道向け等の高圧電力を使用する電力変換器の場合にも、入力側に高圧絶縁トランスを使用しているものがある。出力側同様に入力側の場合であっても、高圧絶縁トランスは電力系統からの受電により電力系統の周波数と同じ数十Hzの低周波で駆動されているため設備が大型化するという同様の課題を抱えている。 In addition to power grid interconnections, there are some power converters that use high voltage power, such as for high voltage motors and pumps, and railways, that use a high voltage isolation transformer on the input side. Even when the output side is the same as the output side, the high voltage isolation transformer is driven at a low frequency of several tens of Hz that is the same as the frequency of the power system by receiving power from the power system. Have
 然るに、高圧向け電力変換器の小型・軽量化の実現に向けてSSTを適用するには、電力変換器の制御回路の電源においても高周波絶縁トランスの1次側と2次側との間での絶縁が必要である。 However, to apply SST for the realization of miniaturization and weight reduction of the power converter for high voltage, even in the power supply of the control circuit of the power converter, between the primary side and the secondary side of the high frequency isolation transformer. Insulation is necessary.
 これに対し、一般的な高圧向け電力変換器とその制御回路電源において採用されている絶縁トランスの1次側と2次側との間での絶縁対策を施した事例として、図2の構成のものが知られている。図2には、絶縁トランスに多重トランスを使用したマルチレベル構成の高圧インバータを示している。図2におけるマルチレベルは1段の構成例を示している。 On the other hand, as an example of a countermeasure against insulation between the primary side and the secondary side of an insulation transformer employed in a general high-voltage power converter and its control circuit power supply, the configuration of FIG. Things are known. FIG. 2 shows a multi-level high-voltage inverter using multiple transformers as insulation transformers. The multilevel in FIG. 2 shows an example of a one-stage configuration.
 図2の従来構成においては、主回路インバータ11の電力が三相交流の多重トランス12から入力され、主回路インバータ11から単相交流出力される。これにより、適宜電圧値あるいは周波数が調整されて主回路インバータ11から得られる。なお主回路インバータ11は、整流器部Rと平滑用のコンデンサC2とインバータ部In2とで構成されている。 2, the electric power of the main circuit inverter 11 is input from the three-phase AC multiple transformer 12 and is output from the main circuit inverter 11 as a single-phase AC. As a result, the voltage value or frequency is appropriately adjusted and obtained from the main circuit inverter 11. The main circuit inverter 11 is composed of a rectifier section R, a smoothing capacitor C2, and an inverter section In2.
 主回路インバータ11内のインバータ部In2を構成する半導体素子の点弧用の電力を供給するゲート用電源13は、単相トランス4、単相ブリッジ整流回路16、直流リアクトル14、半導体素子ごとに設けられた電源回路17で構成されている。点弧用の電力は、三相交流の多重トランス12の出力から単相を抜き出して供給されている。 The gate power supply 13 for supplying power for starting the semiconductor elements constituting the inverter unit In2 in the main circuit inverter 11 is provided for each of the single-phase transformer 4, the single-phase bridge rectifier circuit 16, the DC reactor 14, and the semiconductor elements. The power supply circuit 17 is configured. The starting power is supplied by extracting a single phase from the output of the three-phase AC multiple transformer 12.
 図2のマルチレベル構成の高圧インバータでは、多重トランス12と主回路インバータ11とゲート用電源13により、上記の接続構成とすることで、電力系統との間の絶縁(数kV~数十kV)は多重トランス12が確保する。このためゲート用電源13用の単相トランス15はマルチレベル1段に必要な電圧(数百V程度)に低減可能となり、かつ電圧変換を制御する制御回路も不要とすることができる。 In the multi-level high-voltage inverter shown in FIG. 2, insulation between the power system (several kV to several tens of kV) is achieved by the above-described connection configuration using the multiple transformer 12, the main circuit inverter 11, and the gate power supply 13. Is ensured by the multiple transformer 12. For this reason, the single-phase transformer 15 for the gate power supply 13 can be reduced to a voltage (about several hundred volts) required for one multilevel stage, and a control circuit for controlling voltage conversion can be eliminated.
 特許文献1には、多重トランス12が単相である点の相違はあるが、基本的に図2と同じ構成の高圧インバータ電源装置が開示されている。 Patent Document 1 discloses a high-voltage inverter power supply apparatus basically having the same configuration as that shown in FIG. 2, although there is a difference in that the multiple transformer 12 is a single phase.
特開2007-151224号公報JP 2007-151224 A
 しかし、特許文献1で使用する単相トランス15は電力系統の周波数と同じ50/60Hzで駆動されることから、特にトランスコアの小型化が難しい。また、ゲート用電源13用の直流電圧への変換は単相ブリッジ整流回路16で行われることから制御回路の負荷によって電圧変動が大きくなる特性となり、電圧変動に対応したDC/DCコンバータや電圧変動を抑制するための直流リアクトル14も必要に応じて加える必要があり、ゲート用電源13用の電源が大型化する。 However, since the single-phase transformer 15 used in Patent Document 1 is driven at 50/60 Hz which is the same as the frequency of the power system, it is particularly difficult to reduce the size of the transformer core. Further, since the conversion to the DC voltage for the gate power supply 13 is performed by the single-phase bridge rectifier circuit 16, the voltage fluctuation is increased by the load of the control circuit, and a DC / DC converter or voltage fluctuation corresponding to the voltage fluctuation is obtained. It is necessary to add a DC reactor 14 for suppressing the power supply as necessary, and the power supply for the gate power supply 13 is enlarged.
 また、高圧向け電力変換器の小型・軽量化の実現に向けてSSTを適用する場合には、高圧のパワー系と低圧の制御系の間で絶縁が必要であり、高圧のパワー系の電圧を検出するために低圧に変換する必要がある。例えば主回路の直流電圧を検出して、これを一定に制御する制御回路に帰還信号として導入するにあたり、一般的には直流電圧を分圧抵抗により分圧して検知している。しかしながら、主回路の600V~1200Vの直流電圧の検出においては、分圧抵抗も1個当たり100V耐圧以上の素子が必要となり、沿面距離を確保する必要もあることから回路が大型化する。 In addition, when applying SST for the realization of a compact and lightweight power converter for high voltage, insulation is required between the high voltage power system and the low voltage control system, and the voltage of the high voltage power system is reduced. It needs to be converted to a low pressure for detection. For example, when a DC voltage of a main circuit is detected and introduced as a feedback signal into a control circuit that controls the DC voltage, the DC voltage is generally divided by a voltage dividing resistor and detected. However, in detecting a DC voltage of 600 V to 1200 V in the main circuit, an element having a breakdown voltage of 100 V or more is required for each voltage dividing resistor, and a creepage distance must be secured, so that the circuit becomes large.
 なお、主回路インバータ11の構成として、DC電圧からDC/DCコンバータで降圧する制御電源構成が考えられるが、この場合も電力系統との間の絶縁は多重トランス12が確保する構成にできる。また、DC/DCコンバータに必要なトランスやリアクトルもDC/DCコンバータの駆動周波数で駆動するため小型化が可能となる。しかしこの構成では、主回路インバータ11のDC電圧が数百Vであることから、ゲート用電源13用のDC/DCコンバータにも主回路インバータ11に使用する数百Vに対応した素子の適用と、素子それぞれに数百Vの絶縁距離の確保が必要となり、数百V入力に対応したDC/DCコンバータ用のゲート用電源13も必要となる。従って結果的には、DC/DCコンバータを適用した構成においてもゲート用電源13用の電源が大型化する。 In addition, as a configuration of the main circuit inverter 11, a control power source configuration in which the DC voltage is stepped down by a DC / DC converter is conceivable. In this case as well, insulation between the power system can be ensured by the multiple transformer 12. Further, the transformer and the reactor necessary for the DC / DC converter are driven at the driving frequency of the DC / DC converter, so that the size can be reduced. However, in this configuration, since the DC voltage of the main circuit inverter 11 is several hundred volts, the application corresponding to the several hundred volts used for the main circuit inverter 11 is also applied to the DC / DC converter for the gate power supply 13. It is necessary to secure an insulation distance of several hundred volts for each element, and a gate power supply 13 for a DC / DC converter corresponding to several hundred volts input is also required. Therefore, as a result, the power source for the gate power source 13 is increased in size even in the configuration to which the DC / DC converter is applied.
 以上のことから本発明においては、絶縁トランスをはじめその周辺回路の小型化が可能な電力変換装置、電源装置およびその制御方法を提供することを目的とする。 In view of the above, an object of the present invention is to provide a power conversion device, a power supply device, and a control method thereof that can reduce the size of an insulating transformer and its peripheral circuits.
 以上のような課題に対して本発明では、直流入力を得て高周波出力を与える第1のインバータ部と、第1のインバータ部の高周波出力を電圧変換するLLCトランスと、LLCトランスの出力を直流変換する整流器部と、整流器部の直流出力を交流に変換する第2のインバータ部と、LLCトランスの二次回路に並列に接続された制御回路用電源トランスから整流回路を介して、第2のインバータ部を構成する半導体素子のゲート電力および当該半導体素子のゲート信号を与える制御回路の電力を得る電源回路から成るとともに、整流回路の直流電圧を分圧し整流器部の直流出力として制御回路に導入することを特徴とする電力変換装置および電源装置である。 In order to solve the above problems, in the present invention, a first inverter unit that obtains a DC input and gives a high-frequency output, an LLC transformer that converts the high-frequency output of the first inverter unit, and an output of the LLC transformer A rectifier unit for conversion, a second inverter unit for converting the direct current output of the rectifier unit to alternating current, and a control circuit power supply transformer connected in parallel to the secondary circuit of the LLC transformer through the rectifier circuit, A power supply circuit that obtains the gate power of the semiconductor element constituting the inverter unit and the power of the control circuit that supplies the gate signal of the semiconductor element, and divides the DC voltage of the rectifier circuit and introduces it to the control circuit as the DC output of the rectifier unit. This is a power conversion device and a power supply device.
 また電力変換装置あるいは電源装置のための制御方法であって、LLCトランスにおける共振周波数と、第1のインバータ部における駆動周波数について、駆動周波数と共振周波数が等しい運転態様と、駆動周波数が共振周波数よりも高い運転態様と、動周波数が共振周波数よりも低い運転態様とを切り替えて、第1のインバータ部を制御することを特徴とする制御方法である。 Also, a control method for a power conversion device or a power supply device, in which the resonance frequency in the LLC transformer and the drive frequency in the first inverter unit are an operation mode in which the drive frequency and the resonance frequency are equal, and the drive frequency is greater than the resonance frequency The control method is characterized in that the first inverter unit is controlled by switching between a higher operation mode and an operation mode in which the dynamic frequency is lower than the resonance frequency.
 本発明によれば、絶縁トランスをはじめその周辺回路の小型化が可能な電力変換装置、電源装置およびその制御方法を提供することができる。 According to the present invention, it is possible to provide a power conversion device, a power supply device, and a control method thereof that can reduce the size of the peripheral circuit including the isolation transformer.
 また本発明の実施例によれば、制御回路用電源トランスに入力される周波数の高周波化により制御回路用電源トランス体積を低減し、電圧変換に関する制御回路も不要となる。
また、制御回路用電源トランス以外には低圧の素子を使用可能となる。結果、制御回路全体の小型・軽量化が可能となるため、高圧向けの電力変換器の小型・軽量化を実現できる。
Further, according to the embodiment of the present invention, the volume of the control circuit power transformer is reduced by increasing the frequency inputted to the control circuit power transformer, and the control circuit for voltage conversion becomes unnecessary.
In addition to the power transformer for the control circuit, a low-voltage element can be used. As a result, the entire control circuit can be reduced in size and weight, so that the high-voltage power converter can be reduced in size and weight.
本発明の実施例1に係る電力変換装置の構成を示す図。The figure which shows the structure of the power converter device which concerns on Example 1 of this invention. 従来のマルチレベル高圧インバータの構成を示す回路図。The circuit diagram which shows the structure of the conventional multilevel high voltage inverter. 本発明の実施例1に係る電力変換装置による3相電源装置の構成を示す図。The figure which shows the structure of the three-phase power supply device by the power converter device which concerns on Example 1 of this invention. LLC共振周波数が駆動周波数と等しい時の電圧、電流波形を示す図。The figure which shows a voltage and electric current waveform when LLC resonant frequency is equal to a drive frequency. LLC共振周波数>駆動周波数のときの電圧、電流波形を示す図。The figure which shows the voltage and electric current waveform when LLC resonance frequency> drive frequency. LLC共振周波数<駆動周波数のときの電圧、電流波形を示す図。The figure which shows a voltage and electric current waveform at the time of LLC resonance frequency <drive frequency. 太陽光発電による入力電圧に対する直流電圧Vdc、太陽光発電出力、駆動周波数の関係を示す図。The figure which shows the relationship of DC voltage Vdc with respect to the input voltage by photovoltaic power generation, photovoltaic power generation output, and a driving frequency. 実施例3に係るゲート用電源の具体的な回路構成事例を示す図。FIG. 10 is a diagram illustrating a specific circuit configuration example of the gate power supply according to the third embodiment. IGBTを採用した実施例3に係るゲート用電源の具体的な回路構成事例を示す図。The figure which shows the specific circuit structural example of the power supply for gates which concerns on Example 3 which employ | adopted IGBT. 制御回路用電源トランスを単出力とした実施例3に係るゲート用電源の具体的な回路構成事例を示す図。The figure which shows the specific circuit structural example of the power supply for gates concerning Example 3 which used the power transformer for control circuits as the single output. 制御回路用電源トランスをゲート用電源回路用の4出力と、制御用電源回路用の単出力とに分割した場合の構成を示す図。The figure which shows the structure at the time of dividing | segmenting the power transformer for control circuits into 4 outputs for power supplies for gates, and the single output for power supplies for controls. 実施例4に係る電力変換装置の構成を示す図。The figure which shows the structure of the power converter device which concerns on Example 4. FIG. 実施例5に係るゲート用電源の具体的な回路構成事例を示す図。FIG. 10 is a diagram illustrating a specific circuit configuration example of a gate power supply according to a fifth embodiment. 実施例5に係るゲート用電源の具体的な回路構成事例を示す図。FIG. 10 is a diagram illustrating a specific circuit configuration example of a gate power supply according to a fifth embodiment. 実施例6に係るゲート用電源の具体的な回路構成事例を示す図。FIG. 10 is a diagram illustrating a specific circuit configuration example of a gate power supply according to a sixth embodiment.
 以下、本発明の電力変換装置、電源装置およびその制御方法の実施例について、図を用いて説明する。 Hereinafter, embodiments of the power conversion device, the power supply device, and the control method thereof according to the present invention will be described with reference to the drawings.
 まず、実施例1に係る電力変換装置の構成について図1を用いて説明する。 First, the configuration of the power conversion apparatus according to the first embodiment will be described with reference to FIG.
 図1に示す実施例1の電力変換装置では、入力が直流600~1000Vであり、出力を6.6kV系の高圧系統へ連系する数百kWから数MW級のPCS向けの電力変換装置を想定している。 In the power conversion apparatus of the first embodiment shown in FIG. 1, a power conversion apparatus for a PCS of several hundred kW to several MW class whose input is DC 600 to 1000 V and whose output is connected to a high voltage system of 6.6 kV system. Assumed.
 図1の電力変換装置では、主回路100をフルブリッジ型のLLC共振コンバータ1と単相インバータ2の直列回路で構成している。フルブリッジ型のLLC共振コンバータ1は、その入力端子Tiに例えば太陽光発電による直流電源を接続し、単相インバータ2の出力端子Toに交流出力を与える。 1, the main circuit 100 is configured by a series circuit of a full-bridge type LLC resonant converter 1 and a single-phase inverter 2. The full-bridge type LLC resonant converter 1 is connected to a DC power source by, for example, photovoltaic power generation at an input terminal Ti, and provides an AC output to an output terminal To of the single-phase inverter 2.
 フルブリッジ型のLLC共振コンバータ1は、入力側から平滑用のコンデンサC1と、第1のインバータ部In1と、LLCトランス3と、整流器部Rと、平滑用のコンデンサC2とで構成されている。ここでLLCトランス3とは、トランス1次巻線側を第1のリアクトル31、一次巻線としての第2のリアクトル32、コンデンサ33を直列配置することから、LLCのように呼称された絶縁変圧器である。 The full-bridge type LLC resonant converter 1 includes a smoothing capacitor C1, a first inverter unit In1, an LLC transformer 3, a rectifier unit R, and a smoothing capacitor C2 from the input side. Here, the LLC transformer 3 is a transformer primary winding side of a first reactor 31, a second reactor 32 as a primary winding, and a capacitor 33 arranged in series. It is a vessel.
 また図1において、単相インバータ2は第2のインバータ部In2を含んで構成されている。係る主回路100の構成において、第1のインバータ部In1と第2のインバータ部In2は、単相のフルブリッジ構成とされ、かつこれらのインバータ部In1、In2はその半導体素子をMOS-FETで構成した例を示している。 In FIG. 1, the single-phase inverter 2 includes a second inverter unit In2. In the configuration of the main circuit 100, the first inverter unit In1 and the second inverter unit In2 have a single-phase full bridge configuration, and these inverter units In1 and In2 have their semiconductor elements configured by MOS-FETs. An example is shown.
 この主回路100の構成によれば、第1のインバータ部In1において、入力端子Tiに印加された太陽光発電による直流入力を高周波数の交流に変換し、LLCトランス3において任意の電圧に調整し、その後整流器部Rにおいて直流に変換した後、第2のインバータ部In2において例えば商用の交流電源に接続可能な周波数(50/60Hz)に変換して出力端子Toに出力する。 According to the configuration of the main circuit 100, in the first inverter unit In1, a direct current input by photovoltaic power generation applied to the input terminal Ti is converted into a high frequency alternating current and adjusted to an arbitrary voltage in the LLC transformer 3. Then, after converting into direct current in the rectifier section R, the second inverter section In2 converts to a frequency (50/60 Hz) that can be connected to, for example, a commercial AC power source and outputs it to the output terminal To.
 図1のゲート用電源13において、電源回路17は、LLCトランス3の二次巻線34から制御回路用電源トランス4を介して電力を得ている。制御回路用電源トランス4は、図示の例では一次巻線41と一次巻線41に電磁結合された二次巻線42で構成されている。二次巻線42は、単相ブリッジ整流回路16を介して、電源回路17に対する直流電源を供給している。電源回路17の直流電力は、第2のインバータ部In2の半導体素子Q1、Q2、Q3、Q4のゲートに与えるゲート電力、あるいは制御回路用電力として利用される。 1, the power supply circuit 17 obtains power from the secondary winding 34 of the LLC transformer 3 via the control circuit power supply transformer 4. In the illustrated example, the control circuit power transformer 4 includes a primary winding 41 and a secondary winding 42 electromagnetically coupled to the primary winding 41. The secondary winding 42 supplies DC power to the power supply circuit 17 via the single-phase bridge rectifier circuit 16. The DC power of the power supply circuit 17 is used as gate power given to the gates of the semiconductor elements Q1, Q2, Q3, and Q4 of the second inverter unit In2, or as control circuit power.
 また単相ブリッジ整流回路16の出力側には分圧抵抗R1、R2が直列接続され、接続点電位を主回路の直流電圧Vdcの検出信号として利用している。 Further, voltage dividing resistors R1 and R2 are connected in series on the output side of the single-phase bridge rectifier circuit 16, and the connection point potential is used as a detection signal for the DC voltage Vdc of the main circuit.
 この構成によれば、LLCトランス3は高周波数で作動することから、装置構成の小型化が可能である。また制御回路用電源トランス4も高周波数で作動することから、小型化が可能である。さらに主回路直流電圧Vdc検出用の分圧回路も、主回路に設置する場合に比べて低電位でありかつ絶縁がされていることから回路の小型化が図られている。 According to this configuration, since the LLC transformer 3 operates at a high frequency, the device configuration can be reduced in size. Since the control circuit power transformer 4 also operates at a high frequency, it can be miniaturized. Further, the voltage dividing circuit for detecting the main circuit DC voltage Vdc is also lower in potential than the case where it is installed in the main circuit and is insulated, so that the circuit is miniaturized.
 なおこの図において、電源回路17は第2のインバータ部In2を構成するMOS-FETの半導体素子Q1、Q2、Q3、Q4のゲート電力およびゲート制御回路用電源を供給しているものであり、第1のインバータ部In1に対する電源回路を示したものではない。第1のインバータ部In1に対する電源回路は、別途設置されているがここには記述していない。この理由は、第1のインバータ部In1側については、絶縁すべき電圧レベル(通常は交流100ボルト程度)が低く、電源回路17に対して施すような高度の絶縁対策を必要としない、従って既存技術のもので対応が可能であるということによる。 In this figure, the power supply circuit 17 supplies the gate power of the MOS-FET semiconductor elements Q1, Q2, Q3, Q4 constituting the second inverter section In2 and the power supply for the gate control circuit. The power supply circuit for one inverter unit In1 is not shown. A power supply circuit for the first inverter unit In1 is separately installed but is not described here. The reason for this is that the voltage level to be insulated (usually about 100 volts AC) is low on the first inverter unit In1 side, so that a high degree of insulation measure that is applied to the power supply circuit 17 is not required. This is because it can be handled by technology.
 このように図1の主回路100の構成は、フルブリッジ型のLLC共振コンバータ1内におけるフルブリッジダイオード整流後の直流出力が単相インバータ2を介して電力系統へ交流出力される構成である。なお図1の実施例では、単相インバータ2を想定しているが、これは3レベルインバータ構成を適用してもよい。 As described above, the configuration of the main circuit 100 in FIG. 1 is a configuration in which the DC output after full-bridge diode rectification in the full-bridge type LLC resonant converter 1 is AC-output to the power system via the single-phase inverter 2. In the embodiment of FIG. 1, a single-phase inverter 2 is assumed, but a three-level inverter configuration may be applied.
 図1は、単相出力を示すものであるが、交流系統への接続に際しては3相であることが要求される。このため実用的には図3の三相構成に適した応用がなされる。図3は、実施例1に係る電力変換装置による3相電源装置の構成を示す図である。この応用は、単相出力の主回路100の出力側を、3相のU、V、Wの各相について多段接続したものである。 FIG. 1 shows a single-phase output, but three-phase is required for connection to an AC system. Therefore, practical applications suitable for the three-phase configuration of FIG. 3 are made. FIG. 3 is a diagram illustrating the configuration of the three-phase power supply device using the power conversion device according to the first embodiment. In this application, the output side of the single-phase output main circuit 100 is connected in multiple stages for each of the three phases U, V, and W.
 図1に電力変換装置の詳細構成を示し、図3に三相電力系統への展開事例として3相電源装置の構成を示した本発明の実施例1によれば、単相インバータ2の出力を直列接続した直列マルチレベル構成とすることで高圧出力に対応できる。例えば、個々の主回路100の入力電圧は直流600~1000Vでありながら、3相線間の電圧としては6.6kVを得ることができる。このことは、単相インバータ2の単体としてみると、1700V、1200V、650Vといった比較的低圧の半導体素子Q1、Q2、Q3、Q4を使用可能となることを意味している。また第2のコンデンサC2の端子電圧Vdcも半導体素子Q1、Q2、Q3、Q4に準じた電圧となるため、直流コンデンサC2も電力系統電圧と比較して低圧のコンデンサを使用可能となることを意味している。 FIG. 1 shows a detailed configuration of the power converter, and FIG. 3 shows the configuration of a three-phase power supply device as an example of deployment to a three-phase power system. A series multi-level configuration connected in series can support high-voltage output. For example, although the input voltage of each main circuit 100 is 600 to 1000 VDC, 6.6 kV can be obtained as the voltage between the three-phase lines. This means that relatively low-voltage semiconductor elements Q1, Q2, Q3, and Q4 such as 1700V, 1200V, and 650V can be used when viewed as a single-phase inverter 2. Further, since the terminal voltage Vdc of the second capacitor C2 is also a voltage according to the semiconductor elements Q1, Q2, Q3, and Q4, it means that the DC capacitor C2 can use a capacitor having a lower voltage than the power system voltage. is doing.
 図1及び図3に示す電力変換装置または電源装置を構成する各部の仕様、機能は、以下のようなものであればよく、これにより以下に示すところの効果を発揮することが可能である。 The specifications and functions of the components constituting the power conversion device or power supply device shown in FIGS. 1 and 3 may be as follows, and the following effects can be exhibited.
 まずフルブリッジ型のLLC共振コンバータ1は、1000V以下の直流電圧であるため、第1のインバータ部In1としては高周波駆動に適したMOS-FETを適用することを想定している。第1のインバータ部In1の半導体素子のスイッチング周波数は、数十kHzから数百kHzを想定している。使用するMOS-FETには高耐圧・高周波スイッチングに適したSiC MOS-FETを適用しても構わないし、その他同様の機能を有するものであればよい。 First, since the full-bridge type LLC resonant converter 1 has a DC voltage of 1000 V or less, it is assumed that a MOS-FET suitable for high-frequency driving is applied as the first inverter unit In1. The switching frequency of the semiconductor element of the first inverter unit In1 is assumed to be several tens kHz to several hundreds kHz. As the MOS-FET to be used, a SiC MOS-FET suitable for high withstand voltage / high frequency switching may be applied, and any other one having a similar function may be used.
 LLC共振コンバータ1の2次側の整流器部Rは、ダイオードによる平滑を想定している。Si型のダイオードの他に、導通損失を低減させるためにSi型のショットキーバリアダイオードやSiCショットキーバリアダイオードを適用しても構わないし、SiC MOS-FETを同期させて使用することで損失低減させても構わないし、その他同様の機能を有するものであればよい。 The secondary side rectifier section R of the LLC resonant converter 1 is assumed to be smoothed by a diode. In addition to Si-type diodes, Si-type Schottky barrier diodes or SiC Schottky barrier diodes may be applied to reduce conduction loss, and loss can be reduced by using SiC MOS-FETs in synchronization. It does not matter if it has other similar functions.
 LLCトランス3は、電力系統電圧との絶縁機能を有し、トランス1次巻線側について第1のリアクトル31、一次巻線としての第2のリアクトル32、コンデンサ33を直列配置することから、このように呼称された絶縁変圧器である。またこれら回路部品のうち、第1のリアクトル31はリーケージインダクタンスLrを規定し、一次巻線としての第2のリアクトル32は高周波トランスの励磁インダクタンスLmを規定し、コンデンサ33は共振コンデンサ容量Crを規定している。LLC共振トランス3は、LLC共振とするために、高周波トランスの励磁インダクタンスLmに共振対応させたリーケージインダクタンスLrと共振コンデンサ容量Crとが接続される構成である。なお、リーケージインダクタンスLrは高周波トランス内の漏れ磁束の定数の調整が可能となる構造として高周波トランス内で一体化しても構わない。共振コンデンサ容量Crはフィルムコンデンサを使用することを想定しているが、同様の機能を有するものであればよい。 The LLC transformer 3 has an insulating function from the power system voltage, and the first reactor 31 on the transformer primary winding side, the second reactor 32 as the primary winding, and the capacitor 33 are arranged in series. It is an insulation transformer called as follows. Of these circuit components, the first reactor 31 defines the leakage inductance Lr, the second reactor 32 as the primary winding defines the exciting inductance Lm of the high-frequency transformer, and the capacitor 33 defines the resonant capacitor capacitance Cr. is doing. The LLC resonant transformer 3 has a configuration in which a leakage inductance Lr and a resonant capacitor capacitance Cr are connected to resonate with the exciting inductance Lm of the high-frequency transformer to achieve LLC resonance. The leakage inductance Lr may be integrated in the high frequency transformer as a structure that can adjust the constant of the leakage magnetic flux in the high frequency transformer. The resonance capacitor capacity Cr is assumed to use a film capacitor, but may have any similar function.
 なお図1において第2のインバータ部In2の半導体素子はMOS-FETで構成する例を示したが、これはIGBTであってもよい。第2のインバータ部In2は、LLC共振コンバータ1の駆動周波数と比較して、直列多重PWMのスイッチング周波数が全体で数kHz以下と低いため、IGBTを適用してもよい。 Although FIG. 1 shows an example in which the semiconductor element of the second inverter unit In2 is composed of a MOS-FET, this may be an IGBT. The second inverter unit In2 may employ an IGBT because the switching frequency of the series multiplex PWM is as low as several kHz or less as a whole compared to the drive frequency of the LLC resonant converter 1.
 また図3の3相電力系統への適用に際し、以下のようにすることもできる。図3における電力変換装置の直列多重構成は、相あたりで単相インバータ2は8段から6段程度の直列数を想定している。図3では単相インバータ2の段数を少なくするため、Y結線の構成を想定しているが、Δ結線の構成でも実現可能である。Y結線の場合は、線間電圧6.6kVに対して相電圧は1/√3となり、相全体の直流電圧は√2倍が基準となるため、8段の場合の第2のコンデンサC2の端子電圧Vdcは600~700V程度となる。この結果、単相インバータ2に1200VのMOS―FETが使用可能な電圧となり、低圧素子で高圧出力を実現可能である。LLC共振コンバータ1が対地電圧に対して1000V以下なのに対して、単相インバータ2はフローティング接続となるため、LLCトランス3が電力系統の6.6kVに対応した絶縁機能を有することを想定している。以上のような直列マルチレベル構成とすることで、出力電圧が6.6kV以外の場合にも段数とLLCトランス3の絶縁を場合により変更するだけで柔軟に対応可能な構成が実現できる。 In addition, when applied to the three-phase power system of FIG. In the series multiplexing configuration of the power conversion device in FIG. 3, the number of single-phase inverters 2 per phase is assumed to be about 8 to 6 stages in series. In FIG. 3, in order to reduce the number of stages of the single-phase inverter 2, a Y-connection configuration is assumed, but a Δ-connection configuration is also possible. In the case of Y connection, the phase voltage is 1 / √3 with respect to the line voltage of 6.6 kV, and the DC voltage of the entire phase is based on √2 times, so the second capacitor C2 in the case of eight stages The terminal voltage Vdc is about 600 to 700V. As a result, a voltage at which a 1200-V MOS-FET can be used for the single-phase inverter 2 is obtained, and a high-voltage output can be realized by a low-voltage element. Since the LLC resonant converter 1 is 1000 V or less with respect to the ground voltage, the single-phase inverter 2 is in a floating connection, and therefore, it is assumed that the LLC transformer 3 has an insulation function corresponding to 6.6 kV of the power system. . By adopting such a serial multi-level configuration as described above, it is possible to realize a configuration that can flexibly cope with changes in the number of stages and the insulation of the LLC transformer 3 depending on circumstances even when the output voltage is other than 6.6 kV.
 さらに制御回路用電源トランス4の仕様、機能について、これらの仕様、機能は、以下のようなものであればよく、これにより以下に示すところの効果を発揮することが可能である。 Furthermore, regarding the specifications and functions of the power transformer 4 for the control circuit, these specifications and functions may be as follows, and the following effects can be exhibited.
 図1に示す制御回路用電源トランス4は、LLCトランス3の2次側に接続する構成であり、LLC制御によって数十~数百kHzで駆動されることで1次側数百Vを2次側数十~数Vに変換可能である。 The power transformer 4 for the control circuit shown in FIG. 1 is configured to be connected to the secondary side of the LLC transformer 3, and is driven at several tens to several hundreds of kHz by the LLC control, so that several hundreds of volts on the primary side is secondary. The side can be converted to several tens to several V.
 ここで電源回路17に必要な電力は、単相インバータ2の100%出力に対して1%未満であるため、制御回路用電源トランス4の励磁インダクタンスはLLCトランス3に対して十分に大きな値にすることを想定している。例えばLLCトランス3の励磁インダクタンスLmが数百μHであるのに対して、制御回路用電源トランス4の励磁インダクタンスは数百mH以上の値となるように設定することを想定しているがこれに限るものではない。 Here, since the power required for the power supply circuit 17 is less than 1% with respect to the 100% output of the single-phase inverter 2, the excitation inductance of the power transformer 4 for the control circuit has a sufficiently large value with respect to the LLC transformer 3. Assumes that For example, it is assumed that the excitation inductance Lm of the LLC transformer 3 is several hundred μH, whereas the excitation inductance of the power transformer 4 for the control circuit is set to be a value of several hundred mH or more. It is not limited.
 駆動電圧の詳細は後述するが、LLC制御によって制御回路用電源トランス4は駆動されるため、電圧変換を制御するコントローラは不要となる。 Although details of the drive voltage will be described later, since the control circuit power transformer 4 is driven by the LLC control, a controller for controlling voltage conversion becomes unnecessary.
 電力系統との絶縁は前述の通りLLCトランス3が確保するため、制御回路用電源トランス4は第2のコンデンサC2の端子電圧Vdc以上となる数百V程度の絶縁機能に低減可能となる。またこの結果として、単相ブリッジ整流回路16の出力側に主回路の直流電圧Vdcの検出回路として設置された分圧抵抗R1、R2は、低電圧回路に適用することができるために、首魁色に設ける場合に比べて大幅な小型化が可能である。 As described above, since the LLC transformer 3 secures insulation from the power system, the power transformer 4 for the control circuit can be reduced to an insulation function of about several hundred volts that is equal to or higher than the terminal voltage Vdc of the second capacitor C2. As a result, the voltage dividing resistors R1 and R2 installed as the detection circuit for the DC voltage Vdc of the main circuit on the output side of the single-phase bridge rectifier circuit 16 can be applied to a low voltage circuit. The size can be greatly reduced compared to the case where it is provided.
 図1の実施例では、本発明の概要を説明したために、電源回路17を簡便に記述したが、実際には実施例3以降に示すように、制御回路用電源トランス4の2次側は多出力構成を想定しており、半導体素子Q1、Q2、Q3、Q4ごとにゲート用の電源回路17a、17b、17c、17dと、ゲートを制御するためのコントローラ(マイコン等)にそれぞれ絶縁出力を供給している。半導体素子Q1、Q2、Q3、Q4のゲートには電圧安定化回路(リニアレギュレータ等)と駆動用のフォトMOSがあり、コントローラがフォトMOSの発光ダイオードを駆動することで制御することを想定した構成である。各出力に必要な電力は数十~数百mW程度を想定しているがそれに限るものではない。 In the embodiment of FIG. 1, since the outline of the present invention has been described, the power supply circuit 17 is simply described, but actually, as shown in the third and subsequent embodiments, the secondary side of the power transformer 4 for the control circuit has many secondary sides. Assuming an output configuration, each semiconductor element Q1, Q2, Q3, Q4 supplies isolated output to power supply circuits 17a, 17b, 17c, 17d for the gate and a controller (such as a microcomputer) for controlling the gate. is doing. A configuration assuming that the gates of the semiconductor elements Q1, Q2, Q3, and Q4 have a voltage stabilizing circuit (such as a linear regulator) and a driving photoMOS, and the controller is controlled by driving a light emitting diode of the photoMOS. It is. The power required for each output is assumed to be about several tens to several hundreds mW, but is not limited thereto.
 以上の想定する構成から、制御回路用電源トランス4にはパルストランスを使用することを想定しているが、同様の機能を有するものであれば上記構成に限定されるものではない。 From the above assumed configuration, it is assumed that a pulse transformer is used for the power transformer 4 for the control circuit. However, the configuration is not limited to the above as long as it has a similar function.
 図1に例示する本発明の電力変換装置においては、LLC共振コンバータ1内にLLCトランス3を採用している。実施例2においてはLLCトランス3を含むLLC共振コンバータ1に特有の制御方法とその効果について説明する。 In the power conversion device of the present invention illustrated in FIG. 1, an LLC transformer 3 is employed in the LLC resonant converter 1. In the second embodiment, a control method peculiar to the LLC resonant converter 1 including the LLC transformer 3 and its effect will be described.
 本発明のLLC共振コンバータ1内の第1のインバータ部In1の制御では、PWMではなく、デッドタイムを付与したDuty50%の周波数制御を実施する。この場合、第1のインバータ部In1について前述した高周波トランスの励磁インダクタンスLm、リーケージインダクタンスLr、共振コンデンサ容量Crの値にて共振周波数が決まり、共振周波数は数十~数百kHzに設定することを想定している。 In the control of the first inverter section In1 in the LLC resonant converter 1 of the present invention, frequency control of duty 50% with dead time added is performed instead of PWM. In this case, the resonance frequency is determined by the values of the excitation inductance Lm, leakage inductance Lr, and resonance capacitor capacitance Cr of the high-frequency transformer described above for the first inverter unit In1, and the resonance frequency is set to several tens to several hundreds kHz. Assumed.
 なおLLC共振コンバータ1の制御は、フルブリッジ型の第1のインバータ部In1を構成する4組の半導体素子のオン、オフを制御する制御回路により実行される。制御回路自体は通常よく行われる回路構成のものであり、具体的な回路構成を省略するが、要するに以下のように半導体素子を制御する。 The control of the LLC resonant converter 1 is executed by a control circuit that controls on / off of four sets of semiconductor elements constituting the full-bridge first inverter unit In1. The control circuit itself has a circuit configuration that is usually performed, and a specific circuit configuration is omitted. In short, the semiconductor element is controlled as follows.
 例えばフルブリッジ型の4組の半導体素子のうち、図1の右上と左下の半導体素子Q9、Q8を第1の組、右下と左上の半導体素子Q10、Q7を第2の組としたときに、第1の組をON、第2の組をOFFとする第1の導通状態と、第2の組をON、第1の組をOFFとする第2の導通状態を交互に形成するように制御し、第1の導通状態から第2の導通状態を経て再度第1の導通状態に達するまでの期間を一周期とする駆動周波数によりON、OFF制御を行うものである。 For example, among the four full-bridge semiconductor elements, the upper right and lower left semiconductor elements Q9 and Q8 in FIG. 1 are the first set, and the lower right and upper left semiconductor elements Q10 and Q7 are the second set. The first conductive state in which the first set is ON and the second set is OFF, and the second conductive state in which the second set is ON and the first set is OFF are alternately formed. The ON / OFF control is performed with a drive frequency having a period from the first conduction state to the first conduction state again through the second conduction state.
 図4、図5、図6により、LLC共振周波数、駆動周波数の大小関係と、第1のインバータ部In1の電圧、電流波形の関係を説明する。これらの図において横軸は時間、縦軸は1周期間における電圧、電流の大きさを示している。 4, 5, and 6, the magnitude relationship between the LLC resonance frequency and the drive frequency, and the relationship between the voltage and current waveform of the first inverter unit In <b> 1 will be described. In these figures, the horizontal axis represents time, and the vertical axis represents the magnitude of voltage and current during one cycle.
 図4に、LLC共振周波数が駆動周波数と等しい時の電圧、電流波形を示す。この場合には、前記したフルブリッジ型の第1のインバータ部In1を構成する4組の半導体素子のオン、オフを制御する制御回路により駆動周波数が制御されており、かつ駆動周波数は高周波トランスであるLLCトランス3の励磁インダクタンスLm、リーケージインダクタンスLr、共振コンデンサ容量Crの値にて定まる共振周波数と一致している。 FIG. 4 shows voltage and current waveforms when the LLC resonance frequency is equal to the drive frequency. In this case, the drive frequency is controlled by a control circuit that controls on / off of the four sets of semiconductor elements constituting the full-bridge first inverter unit In1, and the drive frequency is a high-frequency transformer. This coincides with the resonance frequency determined by the values of the excitation inductance Lm, leakage inductance Lr, and resonance capacitor capacitance Cr of a certain LLC transformer 3.
 LLC共振周波数が駆動周波数と等しい状態では、LLCトランス3の1次側電流ITinの波形を図示しているように、半導体素子であるMOS-FETのON時には、MOS-FETを流れる電流はMOS-FETのボディダイオードを通して逆方向に流れるため、ZVS(ゼロボルトスイッチング)となり、ON時のスイッチング損失は発生しない。MOS-FETのOFF時には、MOS-FETを流れる電流はピークアウトして十分に低く抑えられ、OFF時のスイッチング損失も小さくなるため、LLC共振制御によって高効率なスイッチングが実現でき、パワーデバイスの冷却器の小型化が実現できる。 In the state where the LLC resonance frequency is equal to the drive frequency, as shown in the waveform of the primary side current ITin of the LLC transformer 3, when the MOS-FET which is a semiconductor element is ON, the current flowing through the MOS-FET is MOS− Since it flows in the reverse direction through the body diode of the FET, it becomes ZVS (zero volt switching), and no switching loss occurs when it is ON. When the MOS-FET is OFF, the current flowing through the MOS-FET peaks out and is kept low enough, and the switching loss when OFF is also small. Therefore, high-efficiency switching can be realized by LLC resonance control, and the power device is cooled. The device can be downsized.
 LLC制御によりLLC共振周波数が駆動周波数と等しく制御された時、LLCトランス3の2次側の電圧はVToutのようであり、要するに矩形状の電圧出力が得られる。
したがって、制御回路用電源トランス4には矩形波電圧が入力される。このため、制御回路用電源トランス4の2次側出力には、第2のコンデンサC2の端子電圧Vdcに対して巻数比に応じた電圧が出力されるため、LLC共振コンバータ1と同様に電圧変動は無く、直流リアクトルも不要である。
When the LLC resonance frequency is controlled to be equal to the drive frequency by the LLC control, the voltage on the secondary side of the LLC transformer 3 is VTout, and in short, a rectangular voltage output is obtained.
Therefore, a rectangular wave voltage is input to the control circuit power transformer 4. For this reason, since the voltage corresponding to the turn ratio with respect to the terminal voltage Vdc of the second capacitor C2 is output to the secondary side output of the power transformer 4 for the control circuit, the voltage fluctuation is the same as in the LLC resonant converter 1. There is no need for a DC reactor.
 図5に、駆動周波数をLLC共振周波数よりも低下させて、昇圧動作となった時の電圧、電流波形を示す。 FIG. 5 shows voltage and current waveforms when the drive frequency is lowered below the LLC resonance frequency and the boost operation is performed.
 駆動周波数をLLC共振周波数よりも低下させた状態では、LLCトランス3の1次側電流ITinの波形を図示しているように、MOS-FETのON時にはMOS-FETを流れる電流はMOS-FETのボディダイオードを通して逆方向に流れるため、ZVS(ゼロボルトスイッチング)となりON時のスイッチング損失は発生しない。OFF時にはMOS-FETを流れる電流はピークアウト後に十分に低く横ばいの値に抑えられるため、OFF時のスイッチング損失は共振周波数駆動と同様に小さくなる。 In a state where the drive frequency is lower than the LLC resonance frequency, as shown in the waveform of the primary side current ITin of the LLC transformer 3, when the MOS-FET is ON, the current flowing through the MOS-FET is equal to that of the MOS-FET. Since it flows in the reverse direction through the body diode, it becomes ZVS (zero volt switching) and no switching loss occurs when it is ON. Since the current flowing through the MOS-FET is sufficiently low and leveled off after peaking out when it is OFF, the switching loss when OFF is small as with resonant frequency driving.
 LLC制御によりLLC共振周波数が駆動周波数よりも高く制御された時、LLCトランス3の2次側の電圧はVToutのような矩形波電圧となる。この矩形波電圧は、制御回路用電源トランス4に対しては、立ち上がり、立下りで少し遅れがでる波形であるが、基本的には矩形波が入力される。このため、制御回路用電源トランス4の2次側出力には、第2のコンデンサC2の端子電圧Vdcに対して巻数比に応じた電圧が出力されるため、LLC共振コンバータ1と同様に電圧変動は無く、直流リアクトルも不要である。 When the LLC resonance frequency is controlled to be higher than the drive frequency by the LLC control, the secondary side voltage of the LLC transformer 3 becomes a rectangular wave voltage such as VTout. This rectangular wave voltage is a waveform with a slight delay between rising and falling with respect to the power transformer 4 for the control circuit, but basically a rectangular wave is input. For this reason, since the voltage corresponding to the turn ratio with respect to the terminal voltage Vdc of the second capacitor C2 is output to the secondary side output of the power transformer 4 for the control circuit, the voltage fluctuation is the same as in the LLC resonant converter 1. There is no need for a DC reactor.
 図6に、駆動周波数をLLC共振周波数よりも上昇させて、降圧動作となった時の電圧、電流波形を示す。 FIG. 6 shows voltage and current waveforms when the drive frequency is raised above the LLC resonance frequency and the step-down operation is performed.
 駆動周波数をLLC共振周波数よりも上昇させた状態では、LLCトランス3の1次側電流ITinの波形を図示しているように、MOS-FETのON時にはMOS-FETを流れる電流はMOS-FETのボディダイオードを通して逆方向に流れるため、ZVS(ゼロボルトスイッチング)となりON時のスイッチング損失は発生しない。OFF時にはMOS-FETを流れる電流は低下しない状態での遮断となるため、OFF時のスイッチング損失は大きくなる。ただし、PCSでの制御動作の場合は、降圧制御となる電圧範囲を制限することで効率の低下を最小限とすることができる。 In the state where the drive frequency is higher than the LLC resonance frequency, as shown in the waveform of the primary side current ITin of the LLC transformer 3, when the MOS-FET is ON, the current flowing through the MOS-FET is equal to that of the MOS-FET. Since it flows in the reverse direction through the body diode, it becomes ZVS (zero volt switching) and no switching loss occurs when it is ON. Since the current flowing through the MOS-FET does not decrease at the time of OFF, the switching loss at the time of OFF increases. However, in the case of the control operation by the PCS, the reduction in efficiency can be minimized by limiting the voltage range for the step-down control.
 LLC制御により駆動周波数をLLC共振周波数よりも上昇させた時、LLCトランス3の2次側の電圧はVToutのようであり、要するに矩形状の電圧出力が得られる。したがって、制御回路用電源トランス4には矩形波電圧が入力される。このため、制御回路用電源トランス4の2次側出力には、第2のコンデンサC2の端子電圧Vdcに対して巻数比に応じた電圧が出力されるため、LLC共振コンバータ1と同様に電圧変動は無く、直流リアクトルも不要である。 When the drive frequency is raised above the LLC resonance frequency by the LLC control, the voltage on the secondary side of the LLC transformer 3 is like VTout, and in short, a rectangular voltage output is obtained. Therefore, a rectangular wave voltage is input to the control circuit power transformer 4. For this reason, since the voltage corresponding to the turn ratio with respect to the terminal voltage Vdc of the second capacitor C2 is output to the secondary side output of the power transformer 4 for the control circuit, the voltage fluctuation is the same as in the LLC resonant converter 1. There is no need for a DC reactor.
 上記したLLC制御における3種の運転態様(LLC共振周波数=駆動周波数、LLC共振周波数>駆動周波数、LLC共振周波数<駆動周波数)は、電力変換装置の実運用場面で適宜選択実行される。 The above three operation modes in the LLC control (LLC resonance frequency = drive frequency, LLC resonance frequency> drive frequency, LLC resonance frequency <drive frequency) are appropriately selected and executed in the actual operation scene of the power converter.
 例えば図1の電力変換装置の直流入力を太陽光発電から得るシステム構成とした場合には、天候の具合に応じて図7のように切替運用されるのがよい。図7は、太陽光発電に適用した場合のLLC制御の態様事例を示す図である。 For example, in the case of a system configuration in which the DC input of the power conversion device in FIG. 1 is obtained from solar power generation, the switching operation is preferably performed as shown in FIG. 7 according to the weather conditions. FIG. 7 is a diagram illustrating a case example of LLC control when applied to solar power generation.
 図7には、太陽光発電による入力電圧Vinに対する、第2のコンデンサC2の端子電圧Vdc、太陽光発電出力、駆動周波数の関係を示している。 FIG. 7 shows the relationship between the terminal voltage Vdc of the second capacitor C2, the photovoltaic power generation output, and the driving frequency with respect to the input voltage Vin by photovoltaic power generation.
 図7において中段の太陽光発電による入力電圧Vinと太陽光発電出力の関係についてみると、太陽光発電による入力電圧Vin及び太陽光発電出力は、天候(晴天、曇天)により大きさが可変である。実施例2の運用においては、PCSに入力される電圧(すなわち太陽光発電による入力電圧Vin)の範囲を、第1領域D1、第2領域D2、第3領域D3に区分する。 In FIG. 7, regarding the relationship between the input voltage Vin and the photovoltaic power generation output by the solar power generation in the middle stage, the magnitude of the input voltage Vin and the photovoltaic power generation output by the photovoltaic power generation is variable depending on the weather (fine weather, cloudy weather). . In the operation of the second embodiment, the range of the voltage input to the PCS (that is, the input voltage Vin by solar power generation) is divided into a first region D1, a second region D2, and a third region D3.
 入力電圧Vinが第1の閾値Vin1より低い第1領域D1では、LLC制御により駆動周波数をLLC共振周波数よりも低くして、第2のコンデンサC2の端子電圧Vdcが下限値以下にならないように昇圧制御を実施する。入力電圧Vinが第2の閾値Vin2より高い第3領域D3では、LLC制御により駆動周波数をLLC共振周波数よりも高くして、第2のコンデンサC2の端子電圧Vdcが上限値以上にならないように降圧制御を実施する。第1の閾値Vin1と第2の閾値Vin2の中間の第2領域D2では、LLC制御により駆動周波数をLLC共振周波数に等しくし、一定にすることで、高効率運用を可能とする。 In the first region D1 where the input voltage Vin is lower than the first threshold value Vin1, the drive frequency is made lower than the LLC resonance frequency by LLC control so that the terminal voltage Vdc of the second capacitor C2 is boosted so as not to be lower than the lower limit value. Implement control. In the third region D3 where the input voltage Vin is higher than the second threshold value Vin2, the drive frequency is made higher than the LLC resonance frequency by LLC control so that the terminal voltage Vdc of the second capacitor C2 is stepped down so as not to exceed the upper limit value. Implement control. In the second region D2 between the first threshold value Vin1 and the second threshold value Vin2, the drive frequency is made equal to the LLC resonance frequency by the LLC control and is made constant, thereby enabling high-efficiency operation.
 なお、領域の設定は第2のコンデンサC2の端子電圧Vdcの上下限により定めればよいがこの場合、上限領域を定める第2の閾値Vin2については通常の晴天時の最大出力点電圧以上とするのがよい。このようにすることで、第3領域の降圧動作となる確率が低下する。 The region may be set based on the upper and lower limits of the terminal voltage Vdc of the second capacitor C2. In this case, the second threshold value Vin2 that defines the upper limit region is set to be equal to or higher than the maximum output point voltage in normal sunny weather. It is good. By doing so, the probability of the step-down operation in the third region is reduced.
 本LLC制御によるLLCトランス3の2次側の電圧はVToutとなる。制御回路用電源トランス4には矩形波が入力されるため、2次側出力には第2のコンデンサC2の端子電圧Vdcに対して巻数比に応じた電圧が出力されるため、LLCコンバータ同様に電圧変動は無く、直流リアクトルも不要である。 The voltage on the secondary side of the LLC transformer 3 by this LLC control is VTout. Since a rectangular wave is input to the power transformer 4 for the control circuit, a voltage corresponding to the turn ratio with respect to the terminal voltage Vdc of the second capacitor C2 is output to the secondary output, so that the same as the LLC converter There is no voltage fluctuation and no DC reactor is required.
 以上の3つの動作において負荷を変更してもVToutは矩形波であるため、負荷によらず第2のコンデンサC2の端子電圧Vdcの巻数比で制御用電圧を生成することが可能となる。 Even if the load is changed in the above three operations, since VTout is a rectangular wave, the control voltage can be generated with the turn ratio of the terminal voltage Vdc of the second capacitor C2 regardless of the load.
 以上の理由により、制御回路用電源トランス4をLLCトランス3の2次側に接続することで、絶縁耐圧低下、電圧変換駆動制御不要、負荷による電圧変動の抑制、高周波化によるトランス小型化を全て満たすことが可能となり、電源装置全体での小型・軽量化が可能となる。 For the above reasons, connecting the power transformer 4 for the control circuit to the secondary side of the LLC transformer 3 reduces the dielectric breakdown voltage, eliminates the need for voltage conversion drive control, suppresses voltage fluctuations due to the load, and reduces the size of the transformer due to higher frequencies. It becomes possible to satisfy the requirements, and the entire power supply device can be reduced in size and weight.
 実施例3は、図1のゲート用電源13の具体的な回路構成事例を示している。 Example 3 shows a specific circuit configuration example of the gate power supply 13 of FIG.
 図8に示す具体的なゲート用電源13の構成では、第2のインバータ部In2の半導体素子Q1、Q2、Q3、Q4ごとにゲート用電源回路17a、17b、17c、17dと単相ブリッジ整流回路16a、16b、16c、16dを設け、また制御用電源回路17jと単相ブリッジ整流回路16jを備えている。制御回路用電源トランス4は、制御回路用トランス4の2次側を二次巻線42a、42b、42c、42d、42jによる多出力とすることで各単相ブリッジ整流回路16a、16b、16c、16d、16jに接続している。なお図8の構成では、制御回路用トランス4は一次側を単一巻線、二次側を複数巻線とした1対n接続方式の例を示している。 In the specific configuration of the gate power supply 13 shown in FIG. 8, a gate power supply circuit 17a, 17b, 17c, 17d and a single-phase bridge rectifier circuit are provided for each of the semiconductor elements Q1, Q2, Q3, Q4 of the second inverter unit In2. 16a, 16b, 16c, and 16d are provided, and a control power supply circuit 17j and a single-phase bridge rectifier circuit 16j are provided. The control circuit power transformer 4 is configured so that the secondary side of the control circuit transformer 4 has multiple outputs by secondary windings 42a, 42b, 42c, 42d, and 42j, so that each single-phase bridge rectifier circuit 16a, 16b, 16c, 16d and 16j. In the configuration of FIG. 8, the control circuit transformer 4 shows an example of a one-to-n connection method in which the primary side is a single winding and the secondary side is a plurality of windings.
 また単相ブリッジ整流回路16jの出力側には分圧抵抗R1、R2が直列接続され、接続点電位を主回路の直流電圧Vdcの検出信号として制御用電源回路17jに導入され、制御に利用している。 Further, voltage dividing resistors R1 and R2 are connected in series to the output side of the single-phase bridge rectifier circuit 16j, and the connection point potential is introduced into the control power supply circuit 17j as a detection signal of the DC voltage Vdc of the main circuit and used for control. ing.
 図8の実施例3の構成は、制御回路用トランス4の2次側を多出力とすることで、実施例1で示した直流電圧Vdcの電圧検出と制御用電源回路17j内のマイコンに使用するだけではなく、インバータ駆動用の半導体素子Q1、Q2、Q3、Q4のゲート駆動用電源を生成する構成としている。 The configuration of the third embodiment in FIG. 8 uses the secondary side of the control circuit transformer 4 as multiple outputs, so that it can be used for the voltage detection of the DC voltage Vdc and the microcomputer in the control power supply circuit 17j shown in the first embodiment. In addition, the power source for driving the gates of the semiconductor elements Q1, Q2, Q3, and Q4 for driving the inverter is generated.
 半導体素子Q1、Q2、Q3、Q4のゲートには電圧安定化回路(リニアレギュレータ等)と駆動用のフォトMOSがあり、マイコンがフォトMOSの発光ダイオードを駆動することで駆動素子を制御することを想定した構成である。各出力に必要な電力は数十~数百mW程度を想定しているがそれに限るものではない。 The gates of the semiconductor elements Q1, Q2, Q3, and Q4 have a voltage stabilizing circuit (such as a linear regulator) and a driving photo MOS, and the microcomputer controls the driving element by driving the light emitting diode of the photo MOS. This is an assumed configuration. The power required for each output is assumed to be about several tens to several hundreds mW, but is not limited thereto.
 以上の想定する構成から、制御回路用電源トランス4にはパルストランスを使用することを想定しているが、同様の機能を有するものであれば構わない。インバータ駆動用の半導体素子Q1、Q2、Q3、Q4は、図9に示すようにMOS FETではなくIGBTを使用しても構わない。出力用のインバータ部In2はLLC共振コンバータの駆動周波数と比較して、直列多重PWMのスイッチング周波数が全体で数kHz以下と低いため、IGBTを適用しても発熱等の問題は小さい。 From the configuration assumed above, it is assumed that a pulse transformer is used for the power transformer 4 for the control circuit. However, any structure having the same function may be used. As shown in FIG. 9, the inverter driving semiconductor elements Q1, Q2, Q3, and Q4 may use IGBTs instead of MOS FETs. Since the inverter section In2 for output has a switching frequency of the serial multiplex PWM as low as several kHz or less as a whole compared with the drive frequency of the LLC resonant converter, problems such as heat generation are small even when the IGBT is applied.
 図10に制御回路用電源トランス4を単出力とした場合の構成を示す。LLCトランス3の二次側に、複数の制御回路用電源トランス4a、4b、4c、4d、4jを個別に配置することで、分散配置での小型化が可能となる場合に適用することを想定している。 FIG. 10 shows a configuration when the control circuit power transformer 4 has a single output. It is assumed that the present invention is applied to a case where a plurality of control circuit power transformers 4a, 4b, 4c, 4d, and 4j can be individually arranged on the secondary side of the LLC transformer 3 so that downsizing in a distributed arrangement becomes possible. is doing.
 図11に制御回路用電源トランス4をゲート用電源回路17a、17b、17c、17d用の4出力と、制御用電源回路17j用の単出力とに分割した場合の構成を示す。ゲート用電源回路17a、17b、17c、17d用の4出力の巻数比を同じとし、制御用電源回路17j用の1出力の巻数比をゲート用電源回路17a、17b、17c、17d用の4出力より低電圧で出力できるようにすることで製造性を向上するとともに、全体の損失を低減可能となる。また、出力を分割とすることで小型化が可能となる効果も想定している。 FIG. 11 shows a configuration when the control circuit power transformer 4 is divided into four outputs for the gate power circuits 17a, 17b, 17c and 17d and a single output for the control power circuit 17j. The turns ratio of the four outputs for the gate power supply circuits 17a, 17b, 17c and 17d is the same, and the turn ratio of one output for the control power supply circuit 17j is the four outputs for the gate power supply circuits 17a, 17b, 17c and 17d. By enabling output at a lower voltage, productivity can be improved and overall loss can be reduced. In addition, it is assumed that the size can be reduced by dividing the output.
 また図11の構成は、直流電圧Vdcの電圧検出をゲート用電源回路17dの側で分圧して制御用電源回路17jに与える構成である。制御用電源回路17j側よりも高い電圧から分圧することで制御回路用電源トランス1の整流素子の電圧降下の影響等の誤差を小さくして、検出精度を向上させることを想定する。 The configuration of FIG. 11 is a configuration in which the voltage detection of the DC voltage Vdc is divided on the side of the gate power supply circuit 17d and supplied to the control power supply circuit 17j. It is assumed that an error such as an influence of a voltage drop of the rectifying element of the control circuit power transformer 1 is reduced by dividing the voltage from a voltage higher than that on the control power circuit 17j side to improve detection accuracy.
 実施例3における制御方法は、基本的に先述のものと同じである。実施例3でもLLC共振コンバータ1の制御であり、デッドタイムを付与したDuty50%の周波数制御である。前述した励磁インダクタンスLm、リーケージインダクタンスLr、共振コンデンサ容量Crの値にて共振周波数は決まり、数十~数百kHzに設定することを想定している。 The control method in the third embodiment is basically the same as that described above. The third embodiment is also the control of the LLC resonant converter 1 and the duty control of 50% duty with a dead time. It is assumed that the resonance frequency is determined by the values of the excitation inductance Lm, the leakage inductance Lr, and the resonance capacitor capacitance Cr, and is set to several tens to several hundreds kHz.
 実施例3においても電圧を変化させた場合の波形は図4、図5、図6と同様であり、負荷を変更してもVToutは矩形波であるため、負荷によらずVdcの巻数比で制御用電圧を生成することが可能となる。 In Example 3 as well, the waveform when the voltage is changed is the same as in FIGS. 4, 5, and 6. Even if the load is changed, VTout is a rectangular wave, so the Vdc turns ratio is independent of the load. A control voltage can be generated.
 この実施例でも、制御回路用トランス4をLLCトランス3の2次側に接続することで、絶縁耐圧低下による小型化、電圧変換駆動制御不要、負荷による電圧変動の抑制、高周波化によるトランス小型化を全て満たすことが可能となり、電源装置全体での小型・軽量化が可能となる。 Also in this embodiment, by connecting the control circuit transformer 4 to the secondary side of the LLC transformer 3, downsizing due to a reduction in dielectric strength, no need for voltage conversion drive control, suppression of voltage fluctuation due to load, downsizing of the transformer due to higher frequency It is possible to satisfy all of the above, and the power supply as a whole can be reduced in size and weight.
 図12に実施例4に係る電力変換装置の構成を示す。実施例3の構成は、LLC共振コンバータ1の整流器部Rを構成する半導体素子数を半分にした構成である。1次側のLLCトランス3に入力される電圧幅は図1のフルブリッジ型構成の1/2となるが、LLCトランス3の巻き数比にて同様に調整可能である。 FIG. 12 shows the configuration of the power conversion apparatus according to the fourth embodiment. The configuration of the third embodiment is a configuration in which the number of semiconductor elements constituting the rectifier unit R of the LLC resonant converter 1 is halved. The voltage width input to the primary-side LLC transformer 3 is ½ of the full-bridge configuration of FIG. 1, but can be similarly adjusted by the turn ratio of the LLC transformer 3.
 実施例3の制御方法は、LLC共振コンバータ1の制御により行い、デッドタイムを付与したDuty50%の周波数制御である。前述した励磁インダクタンスLm、リーケージインダクタンスLr、共振コンデンサ容量Crの値にて共振周波数は決まり、数十~数百kHzに設定することを想定している。 The control method of Example 3 is a frequency control of Duty 50% performed by controlling the LLC resonant converter 1 and giving a dead time. It is assumed that the resonance frequency is determined by the values of the excitation inductance Lm, the leakage inductance Lr, and the resonance capacitor capacitance Cr, and is set to several tens to several hundreds kHz.
 実施例3においても電圧を変化させた場合の波形は図4、図5、図6と同様であり、負荷を変更してもVToutは矩形波であるため、負荷によらず第2のコンデンサC2の端子電圧Vdcの巻数比で制御用電圧を生成することが可能となる。 Also in the third embodiment, the waveforms when the voltage is changed are the same as those in FIGS. 4, 5, and 6, and even if the load is changed, VTout is a rectangular wave. Therefore, the second capacitor C2 does not depend on the load. The control voltage can be generated with the turn ratio of the terminal voltage Vdc.
 実施例4も、制御回路用トランス1をLLCトランス2の2次側に接続することで、絶縁耐圧低下による小型化、電圧変換駆動制御不要、負荷による電圧変動の抑制、高周波化によるトランス小型化を全て満たすことが可能となり、電源装置全体での小型・軽量化が可能となる。 In the fourth embodiment as well, the control circuit transformer 1 is connected to the secondary side of the LLC transformer 2 to reduce the size due to a decrease in the withstand voltage, no need for voltage conversion drive control, the suppression of voltage fluctuation due to the load, and the downsizing of the transformer due to the higher frequency. It is possible to satisfy all of the above, and the power supply as a whole can be reduced in size and weight.
 図13、図14に実施例5に係る電力変換装置の構成を示す。実施例5の構成においては、1段構成でU、V、W相の三相へ出力連系し、モータやポンプを出力駆動するシステムを想定している。 13 and 14 show the configuration of the power conversion apparatus according to the fifth embodiment. The configuration of the fifth embodiment assumes a system in which output is connected to three phases of U, V, and W phases in a single-stage configuration, and a motor and a pump are driven to output.
 図13において、制御回路用電源トランス3の出力はU、V、W相の三相の駆動に合わせて、半導体素子駆動用に6つ、制御コントローラ用の1つと合計7つの電源回路を想定しているが、同様の機能を有する構成ならば個数にはこだわらない。 In FIG. 13, the output of the power transformer 3 for the control circuit is assumed to be a total of seven power circuits, including six for driving the semiconductor elements and one for the controller in accordance with the three-phase driving of the U, V, and W phases. However, the number is not limited as long as the configuration has the same function.
 図14に制御回路用トランス4の出力数を低下させた構成を示す。半導体素子Q2、Q4、Q6のソース電圧が一致しているため、同じ出力とすることで制御回路用トランス1の出力数を低下可能となる。 FIG. 14 shows a configuration in which the number of outputs of the control circuit transformer 4 is reduced. Since the source voltages of the semiconductor elements Q2, Q4, and Q6 are the same, the number of outputs of the control circuit transformer 1 can be reduced by using the same output.
 実施例5の制御方法は、LLC共振コンバータ1の制御により行い、デッドタイムを付与したDuty50%の周波数制御である。前述した励磁インダクタンスLm、リーケージインダクタンスLr、共振コンデンサ容量Crの値にて共振周波数は決まり、数十~数百kHzに設定することを想定している。 The control method of Example 5 is frequency control of Duty 50% performed by control of the LLC resonant converter 1 and provided with dead time. It is assumed that the resonance frequency is determined by the values of the excitation inductance Lm, the leakage inductance Lr, and the resonance capacitor capacitance Cr, and is set to several tens to several hundreds kHz.
 実施例5においても電圧を変化させた場合の波形は図4、図5、図6と同様であり、負荷を変更してもVToutは矩形波であるため、負荷によらず第2のコンデンサC2の端子電圧Vdcの巻数比で制御用電圧を生成することが可能となる。 Also in the fifth embodiment, the waveform when the voltage is changed is the same as that of FIGS. 4, 5, and 6. Even if the load is changed, VTout is a rectangular wave, so the second capacitor C2 does not depend on the load. The control voltage can be generated with the turn ratio of the terminal voltage Vdc.
 以上、4つの実施例を挙げて説明したが、用途に応じて実施例に記述した内容を組み合わせて使用してもよいことは言うまでもない。 As described above, the four examples have been described, but it goes without saying that the contents described in the examples may be used in combination depending on the application.
 図15に図1の制御回路用電源トランス4を分割して直列に分散配置した構成を示す。
図1では、一次巻線と二次巻線を1:nに構成していたが、図15では、LLCトランス3の2次側に、制御回路用電源トランス4として、n=5個の制御回路用電源トランス4a、4b、4c、4d、4jを直列に接続したものである。この接続形式は、制御回路用電源トランス4を電源回路17a、17b、17c、17dごとに分割して直列に分散配置したものであり、分散配置での小型化が可能となる場合に適用することを想定している。
FIG. 15 shows a configuration in which the control circuit power transformer 4 of FIG. 1 is divided and distributed in series.
In FIG. 1, the primary winding and the secondary winding are configured to 1: n. However, in FIG. 15, n = 5 controls are provided as the control circuit power transformer 4 on the secondary side of the LLC transformer 3. Circuit power transformers 4a, 4b, 4c, 4d, and 4j are connected in series. This connection form is applied when the control circuit power transformer 4 is divided into power supply circuits 17a, 17b, 17c, 17d and dispersed in series, and can be miniaturized in a distributed arrangement. Is assumed.
1:LLC共振コンバータ,2:単相インバータ,3:LLCトランス,4、4a、4b、4c、4d、4j:制御回路用電源トランス,11:主回路インバータ,12:多重トランス,13:ゲート用電源,14:直流リアクトル,16、16a、16b、16c、16d、16j:単相ブリッジ整流回路,17:電源回路,17a、17b、17c、17d:ゲート用電源回路,17j:制御用電源回路,31:第1のリアクトル,32:一次巻線,33:コンデンサ,34:二次巻線,41:一次巻線,42a、42b、42c、42d、42j:二次巻線,100:主回路,R:整流器部,C1、C2:コンデンサ,In1、In2:インバータ部、Q1、Q2、Q3、Q4:半導体素子,Ti:入力端子,To:出力端子 1: LLC resonant converter, 2: single-phase inverter, 3: LLC transformer, 4, 4a, 4b, 4c, 4d, 4j: power transformer for control circuit, 11: main circuit inverter, 12: multiple transformer, 13: for gate Power supply, 14: DC reactor, 16, 16a, 16b, 16c, 16d, 16j: Single-phase bridge rectifier circuit, 17: Power supply circuit, 17a, 17b, 17c, 17d: Gate power supply circuit, 17j: Control power supply circuit, 31: first reactor, 32: primary winding, 33: capacitor, 34: secondary winding, 41: primary winding, 42a, 42b, 42c, 42d, 42j: secondary winding, 100: main circuit, R: Rectifier part, C1, C2: Capacitor, In1, In2: Inverter part, Q1, Q2, Q3, Q4: Semiconductor element, Ti: Input terminal, To: Output terminal

Claims (11)

  1.  直流入力を得て高周波出力を与える第1のインバータ部と、該第1のインバータ部の高周波出力を電圧変換するLLCトランスと、該LLCトランスの出力を直流変換する整流器部と、該整流器部の直流出力を交流に変換する第2のインバータ部と、前記LLCトランスの二次回路に並列に接続された制御回路用電源トランスから整流回路を介して、前記第2のインバータ部を構成する半導体素子のゲート電力および当該半導体素子のゲート信号を与える制御回路の電力を得る電源回路から成るとともに、前記整流回路の直流電圧を分圧し前記整流器部の直流出力として前記制御回路に導入することを特徴とする電力変換装置。 A first inverter unit that obtains a DC input and gives a high-frequency output; an LLC transformer that converts a voltage of the high-frequency output of the first inverter unit; a rectifier unit that converts the output of the LLC transformer into a DC; A semiconductor element that constitutes the second inverter section through a rectifier circuit from a second inverter section that converts direct current output to alternating current and a control circuit power transformer that is connected in parallel to the secondary circuit of the LLC transformer And a power supply circuit that obtains the gate power of the semiconductor element and the power of the control circuit that supplies the gate signal of the semiconductor element, and the DC voltage of the rectifier circuit is divided and introduced into the control circuit as a DC output of the rectifier unit. Power converter.
  2.  請求項1に記載の電力変換装置であって、
     前記LLCトランスは、その一次回路が第1のリアクトル、一次巻線としての第2のリアクトル、コンデンサを直列配置されていることを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The LLC transformer has a primary circuit in which a first reactor, a second reactor as a primary winding, and a capacitor are arranged in series.
  3.  請求項1または請求項2に記載の電力変換装置であって、
     前記制御回路用電源トランスは、前記LLCトランスの二次回路に並列に接続された1つの一次巻線と、該一次巻線に電磁結合された複数の二次巻線を含み、各二次巻線の出力から前記第2のインバータ部を構成する各半導体素子のゲート電力および当該半導体素子のゲート信号を与える制御回路の電力を得ることを特徴とする電力変換装置。
    The power conversion device according to claim 1 or 2, wherein
    The control circuit power transformer includes one primary winding connected in parallel to the secondary circuit of the LLC transformer, and a plurality of secondary windings electromagnetically coupled to the primary winding. A power conversion apparatus characterized in that a gate power of each semiconductor element constituting the second inverter unit and a power of a control circuit that provides a gate signal of the semiconductor element are obtained from an output of a line.
  4.  請求項1または請求項2に記載の電力変換装置であって、
     前記制御回路用電源トランスは、前記LLCトランスの二次回路に並列に、直列接続された複数の一次巻線と、該それぞれの一次巻線に電磁結合された複数の二次巻線を含み、各二次巻線の出力から前記第2のインバータ部を構成する各半導体素子のゲート電力および当該半導体素子のゲート信号を与える制御回路の電力を得ることを特徴とする電力変換装置。
    The power conversion device according to claim 1 or 2, wherein
    The control circuit power transformer includes a plurality of primary windings connected in series in parallel with the secondary circuit of the LLC transformer, and a plurality of secondary windings electromagnetically coupled to the respective primary windings, A power conversion apparatus characterized in that gate power of each semiconductor element constituting the second inverter unit and power of a control circuit that provides a gate signal of the semiconductor element are obtained from an output of each secondary winding.
  5.  請求項1または請求項2に記載の電力変換装置であって、
     前記制御回路用電源トランスは、前記LLCトランスの二次回路に並列に、並列接続された複数の一次巻線と、該それぞれの一次巻線に電磁結合された複数の二次巻線を含み、各二次巻線の出力から前記第2のインバータ部を構成する各半導体素子のゲート電力および当該半導体素子のゲート信号を与える制御回路の電力を得ることを特徴とする電力変換装置。
    The power conversion device according to claim 1 or 2, wherein
    The control circuit power transformer includes a plurality of primary windings connected in parallel to the secondary circuit of the LLC transformer, and a plurality of secondary windings electromagnetically coupled to the respective primary windings, A power conversion apparatus characterized in that gate power of each semiconductor element constituting the second inverter unit and power of a control circuit that provides a gate signal of the semiconductor element are obtained from an output of each secondary winding.
  6.  請求項1または請求項2に記載の電力変換装置であって、
     前記制御回路用電源トランスは、前記LLCトランスの二次回路に並列に接続された一次巻線と、該一次巻線に電磁結合された複数の二次巻線を含み、各二次巻線の出力から前記第2のインバータ部を構成する各半導体素子のゲート電力を与える第1の制御回路用電源トランスと、前記LLCトランスの二次回路に並列に接続された一次巻線と、該一次巻線に電磁結合された二次巻線を含み、二次巻線の出力から前記半導体素子のゲート信号を与える制御回路の電力を得る第2の制御回路用電源トランスを備えるとともに、
     前記第1の制御回路用電源トランスの前記整流回路の直流電圧を分圧し前記整流器部の直流出力として前記制御回路に導入することを特徴とする電力変換装置。
    The power conversion device according to claim 1 or 2, wherein
    The control circuit power transformer includes a primary winding connected in parallel to the secondary circuit of the LLC transformer, and a plurality of secondary windings electromagnetically coupled to the primary winding. A first control circuit power transformer for providing gate power of each semiconductor element constituting the second inverter unit from an output; a primary winding connected in parallel to a secondary circuit of the LLC transformer; and the primary winding A second control circuit power transformer including a secondary winding electromagnetically coupled to the wire, and obtaining power of the control circuit for providing a gate signal of the semiconductor element from an output of the secondary winding;
    The power converter according to claim 1, wherein a DC voltage of the rectifier circuit of the first control circuit power transformer is divided and introduced into the control circuit as a DC output of the rectifier unit.
  7.  請求項1または請求項2に記載の電力変換装置であって、
     前記制御回路用電源トランスは、前記LLCトランスの二次回路に並列に、直列接続された複数の一次巻線と、該それぞれの一次巻線に電磁結合された複数の二次巻線を含み、各二次巻線の出力から前記第2のインバータ部を構成する各半導体素子のゲート電力および当該半導体素子のゲート信号を与える制御回路の電力を得ることを特徴とする電力変換装置。
    The power conversion device according to claim 1 or 2, wherein
    The control circuit power transformer includes a plurality of primary windings connected in series in parallel with the secondary circuit of the LLC transformer, and a plurality of secondary windings electromagnetically coupled to the respective primary windings, A power conversion apparatus characterized in that gate power of each semiconductor element constituting the second inverter unit and power of a control circuit that provides a gate signal of the semiconductor element are obtained from an output of each secondary winding.
  8.  請求項1から請求項7のいずれか1項に記載の電力変換装置を用いた電源装置であって、
     前記第2のインバータ部の出力回路を相ごとに複数直列接続して、多相の交流出力とすることを特徴とする電源装置。
    A power supply device using the power conversion device according to any one of claims 1 to 7,
    A power supply device comprising: a plurality of output circuits of the second inverter section connected in series for each phase to produce a multiphase AC output.
  9.  請求項1から請求項7のいずれか1項に記載の電力変換装置を用いた電源装置であって、
     前記第2のインバータ部の出力回路は、多相の交流出力を与えるとすることを特徴とする電源装置。
    A power supply device using the power conversion device according to any one of claims 1 to 7,
    The output circuit of the second inverter unit provides a multiphase AC output.
  10.  請求項1から請求項7のいずれか1項に記載の電力変換装置、あるいは請求項8または請求項9に記載の電源装置のための制御方法であって、
     前記LLCトランスにおける共振周波数と、前記第1のインバータ部における駆動周波数について、前記駆動周波数と前記共振周波数が等しい運転態様と、前記駆動周波数が前記共振周波数よりも高い運転態様と、前記駆動周波数が前記共振周波数よりも低い運転態様とを切り替えて、前記第1のインバータ部を制御することを特徴とする制御方法。
    A power conversion device according to any one of claims 1 to 7, or a control method for a power supply device according to claim 8 or claim 9,
    Regarding the resonance frequency in the LLC transformer and the drive frequency in the first inverter unit, an operation mode in which the drive frequency is equal to the resonance frequency, an operation mode in which the drive frequency is higher than the resonance frequency, and the drive frequency is A control method, wherein the first inverter unit is controlled by switching an operation mode lower than the resonance frequency.
  11.  請求項10に記載の制御方法であって、
     前記第1のインバータ部の入力電圧が第1の電圧よりも低い領域では前記駆動周波数が前記共振周波数よりも低い運転態様とし、前記第1のインバータ部の入力電圧が第2の電圧よりも高い領域では前記駆動周波数が前記共振周波数よりも高い運転態様とし、前記第1のインバータ部の入力電圧が前記第1の電圧より高く、前記第2の電圧より低い領域では前記駆動周波数を前記共振周波数と同じにする運転態様に制御することを特徴とする制御方法。
    The control method according to claim 10, comprising:
    In the region where the input voltage of the first inverter unit is lower than the first voltage, the driving frequency is lower than the resonance frequency, and the input voltage of the first inverter unit is higher than the second voltage. In the region, the driving frequency is higher than the resonance frequency, and the input voltage of the first inverter unit is higher than the first voltage and lower than the second voltage, the driving frequency is set to the resonance frequency. The control method characterized by controlling to the driving | operation aspect made the same.
PCT/JP2016/076154 2015-12-10 2016-09-06 Power conversion device, power supply device, and method for controlling same WO2017098762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-240964 2015-12-10
JP2015240964A JP2019041427A (en) 2015-12-10 2015-12-10 Power conversion device, power supply device and control method thereof

Publications (1)

Publication Number Publication Date
WO2017098762A1 true WO2017098762A1 (en) 2017-06-15

Family

ID=59012986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076154 WO2017098762A1 (en) 2015-12-10 2016-09-06 Power conversion device, power supply device, and method for controlling same

Country Status (2)

Country Link
JP (1) JP2019041427A (en)
WO (1) WO2017098762A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021527386A (en) * 2018-06-15 2021-10-11 ルノー エス.ア.エス.Renault S.A.S. A method for controlling the input voltage frequency of a DC / DC converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102349935B1 (en) * 2020-11-27 2022-01-12 주식회사 팩테크 Apparatus and Method for Supplying Power to Semiconductor Transformer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151224A (en) * 2005-11-24 2007-06-14 Shindengen Electric Mfg Co Ltd Inverter power unit
JP2013172466A (en) * 2012-02-17 2013-09-02 Fuji Electric Co Ltd Power conversion device and system interconnection system using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151224A (en) * 2005-11-24 2007-06-14 Shindengen Electric Mfg Co Ltd Inverter power unit
JP2013172466A (en) * 2012-02-17 2013-09-02 Fuji Electric Co Ltd Power conversion device and system interconnection system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021527386A (en) * 2018-06-15 2021-10-11 ルノー エス.ア.エス.Renault S.A.S. A method for controlling the input voltage frequency of a DC / DC converter
JP7258054B2 (en) 2018-06-15 2023-04-14 ルノー エス.ア.エス. Method for controlling input voltage frequency of DC/DC converter

Also Published As

Publication number Publication date
JP2019041427A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US20170093299A1 (en) Power Supply Device
US9887638B2 (en) Power conversion apparatus with frequency operation change based on input voltage
JP6172277B2 (en) Bidirectional DC / DC converter
US7333348B2 (en) DC-DC converter
JP4995277B2 (en) Bidirectional DC / DC converter
JP6488194B2 (en) Power supply
KR101811153B1 (en) Dc power supply device and refrigeration cycle device
JP5575235B2 (en) Power converter
JP6496608B2 (en) Power conversion apparatus and power conversion control means thereof
JP6289618B2 (en) Power converter
US20070069581A1 (en) AC to DC converter circuit
US10193464B2 (en) DC-DC converter
JP2017028873A (en) Power conversion device
JP2017147812A (en) Electric power supply and initial charge control method
JP7121971B2 (en) Three-phase AC-DC converter
WO2017098763A1 (en) Power supply device and method for controlling initial charging thereof
WO2017098762A1 (en) Power conversion device, power supply device, and method for controlling same
WO2010098486A1 (en) Dc-dc converter
KR20170064076A (en) Shared flux type of power supply device
JP3934654B2 (en) DC-DC converter
JP2005304289A (en) Dc-dc converter
JP2015226356A (en) Power converter
Alshammari et al. Optimization of the Operating Frequency of a Bidirectional Synchronous H6 Inverter
JP4811786B2 (en) Power conversion device for distributed power supply
SANTHOSH et al. Three-Phase Dual Active Bridge (DAB) DC–DC Converter for Railway Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP