WO2017098662A1 - 建築物用の水素エネルギー供給システム、及び建築物用の水素エネルギー供給システムの制御方法 - Google Patents

建築物用の水素エネルギー供給システム、及び建築物用の水素エネルギー供給システムの制御方法 Download PDF

Info

Publication number
WO2017098662A1
WO2017098662A1 PCT/JP2015/084832 JP2015084832W WO2017098662A1 WO 2017098662 A1 WO2017098662 A1 WO 2017098662A1 JP 2015084832 W JP2015084832 W JP 2015084832W WO 2017098662 A1 WO2017098662 A1 WO 2017098662A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
route
building
hydrogen
hydrogen energy
Prior art date
Application number
PCT/JP2015/084832
Other languages
English (en)
French (fr)
Inventor
好一 河村
正洋 辻
大田 裕之
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2015/084832 priority Critical patent/WO2017098662A1/ja
Priority to JP2017554760A priority patent/JP6619446B2/ja
Publication of WO2017098662A1 publication Critical patent/WO2017098662A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • Embodiment of this invention is related with the hydrogen energy supply system for buildings.
  • the current evacuation facilities for community disaster prevention are based on community centers such as public halls and schools, and may not be sufficient to cover the area. For this reason, in order to use buildings, such as condominiums such as condominiums that are private facilities, as evacuation facilities, power is continuously supplied to the buildings even during a power outage of the power system, and surrounding facilities of the buildings, etc. In addition, it is desired that power be supplied from the building equipment.
  • the problem to be solved by the present invention is to provide a hydrogen energy supply system for a building that can supply power to the outside of the building in the event of a power failure.
  • the hydrogen energy supply system for buildings includes a hydrogen energy generation unit that generates electric power using stored hydrogen, and electric power supplied from the hydrogen energy generation unit to the outside of the building.
  • a power supply unit that can be supplied via at least one of a first route that supplies power to the interior of the building and a second route that supplies power to the interior of the building; and the power supply unit Is a control unit for controlling the power supplied by the control, and when the power system for supplying power to the inside of the building fails, the control for starting the power supply through the first route, and A control unit that performs at least one of the controls for increasing the power supply range in the first route.
  • the block diagram which shows the structure of the hydrogen energy supply system for buildings concerning this embodiment.
  • the block diagram which shows the structure of a hydrogen energy production
  • the hydrogen energy supply system for buildings performs control to start power supply via the first route for supplying power to the outside of the building when the power system fails. In the event of a power failure, power can be supplied to the outside of the building.
  • FIG. 1 is a block diagram showing a configuration of a building hydrogen energy supply system 1 according to the present embodiment.
  • the hydrogen energy supply system 1 for a building is a hydrogen energy supply system for a building that can be installed within a building or a site within a predetermined distance from the building, for example, within several tens of meters from the building. That is, the building hydrogen energy supply system 1 includes a renewable energy power generation unit 100, a hydrogen energy generation unit 200, a storage battery 300, a power supply unit 400, and a control unit 500.
  • the building here is a housing complex such as an apartment.
  • the renewable energy power generation unit 100 is a power generation unit that generates power using renewable energy. That is, the renewable energy power generation unit 100 is a solar power generation device using sunlight, for example. Further, the renewable energy power generation unit 100 may be a wind power generator using wind power and a geothermal power generator using geothermal heat, or may be configured by combining these devices.
  • the hydrogen energy generation unit 200 generates electric power using the stored hydrogen. That is, the hydrogen energy generation unit 200 decomposes water into hydrogen using at least one of the electric power supplied from the power system 2, the renewable energy power generation unit 100, and the storage battery 300, and uses the decomposed hydrogen to generate electric power. Generate. In addition, the hydrogen energy generation unit 200 supplies warm water generated when generating electric power from hydrogen to the outside.
  • the power system 2 (commercial power supply) here is a system that supplies power, for example, from an electric power company. Furthermore, the hydrogen energy generation unit 200 decomposes water into hydrogen using power supplied from the renewable energy power generation unit 100 and the storage battery 300 when the power system 2 fails.
  • the storage battery 300 stores at least one of the electric power supplied from the electric power system 2, the renewable energy power generation unit 100, and the hydrogen energy generation unit 200.
  • the storage battery 300 can be, for example, a lithium ion secondary battery.
  • the power supply unit 400 supplies at least one of the power supplied from the renewable energy power generation unit 100, the hydrogen energy generation unit 200, and the storage battery 300 to the outside of the building and the building.
  • the power supply unit 400 includes an inverter, and can supply power by converting direct current into alternating current.
  • the power supply unit 400 has at least one of a first route r1 for supplying power to the outside of the building, a second route r2 for supplying power to the building, and a third route r3.
  • the first route r1 further branches into a plurality of routes. That is, it branches into the eleventh route r11 and the twelfth route r12.
  • the second route r2 is a route for supplying electric power to the electric device E2 in the shared part of the building
  • the third route r3 is an electric device E3 in an individual occupied part different from the shared part of the building. It is a route to supply power to.
  • Each of the first route r1, the second route r2, and the third route r3 is a power line different from a power line that supplies power supplied from the power system 2, that is, a dedicated power line. Note that the power line of the power system 2 may be shared.
  • the eleventh route r11 supplies power to the communication infrastructure device E11.
  • the communication infrastructure device E11 includes a public wireless LAN base station, a Wi-Fi (registered trademark) base station, and the like.
  • the evacuation facility equipment E12 includes information equipment, lighting, signage used for presenting information to the public, and an outlet opened to the public. Further, the lighting may include lighting around the building in addition to the lighting in the evacuation facility.
  • the second route r2 supplies power to the water supply, the elevator, and the common part lighting, for example, the hallway lighting.
  • the third route r3 supplies power to the outlets, information devices, and fluorescent lamps in the individual occupied portions.
  • the elevator here is an elevator of a built-in storage battery, and is driven by using the generated power of the storage battery in the elevator for a sudden power demand.
  • the first route r1 it is possible to supply power to information equipment for the purpose of transmitting information to local residents by supplying power via the first route r1.
  • power is supplied to public facilities such as a simple mobile base station and a disaster prevention radio via the first route r1
  • the power supply via the third route r3 enables the use of emergency lighting and emergency outlets that are installed for emergency use, and charging information devices such as night lights and mobile phones and personal computers in residential areas be able to.
  • hot water is supplied from the hydrogen energy generation unit 200 to the evacuation facility via the water pipe W1 and to the common part via the water pipe W2. This hot water is supplied for applications such as showering.
  • the power supply unit 400 also independently supplies the power supplied from the renewable energy power generation unit 100, the hydrogen energy generation unit 200, and the storage battery 300 to the first route r1, the second route r2, and the third route r3. Can be supplied.
  • the power generated by the renewable energy power generation unit 100 is supplied to each of the first route r1 and the second route r2, and the power generated by the storage battery 300 is supplied only to the second route r2, thereby generating hydrogen energy.
  • the power generated by the unit 200 can be supplied to each of the first route r1, the second route r2, and the third route r3.
  • the controller 500 is configured to control each device constituting the building hydrogen energy supply system 1.
  • the control unit 500 includes an arithmetic unit and a memory (not shown), and the arithmetic unit performs arithmetic processing using a program stored in the memory, thereby controlling each device. That is, when the power system 2 has a power failure, the control unit 500 performs control different from that before the power failure occurs, at least among the renewable energy power generation unit 100, the hydrogen energy generation unit 200, the storage battery 300, and the power supply unit 400. Do for either.
  • the data measured by the measuring device of each device is input to the control unit 500 as a data signal.
  • the amount of power used in the eleventh route r11, the twelfth route r12, the second route r2, and the third route r3 is input to the control unit 500 as a data signal.
  • the control unit 500 stores the amount of power supplied from the power system 2, the amount of power supplied from the renewable energy power generation unit 100, the amount of power output from the hydrogen energy generation unit 200, and the hydrogen energy generation unit 200.
  • Data such as the amount of stored hydrogen and the amount of electricity stored in the storage battery 300 are input as data signals.
  • the control part 500 calculates based on the input data signal, and outputs a control signal to each apparatus of the hydrogen energy supply system 1 for structures. In this manner, the control unit 500 controls each device of the building hydrogen energy supply system 1.
  • the control unit 500 includes, for example, a hydrogen EMS (EMS: “Energy Management Management System”).
  • EMS Electronic Device Management Management System
  • the hydrogen EMS performs appropriate distribution of electric power from the hydrogen energy generation unit 200.
  • the normal state means a state in which power is supplied from the power system 2 to at least the electric devices E2 and E3.
  • the control unit 500 controls the power supply unit 400 to supply power via the second and third routes r2 and r3.
  • hydrogen EMS is used to supply power while maintaining the amount of hydrogen stored necessary in the event of a disaster, and stable power supply using hydrogen is performed in a building, that is, an apartment house.
  • control unit 500 supplies the power supplied from each device based on the amount of power supplied from the renewable energy power generation unit 100, the hydrogen energy generation unit 200, and the storage battery 300, and the like. Supply via routes r2 and r3.
  • the control unit 500 supplies power from the hydrogen energy generation unit 200 via the first route r1 in addition to the second and third routes r2 and r3. To control.
  • the control unit 500 performs capacity limitation on the amount of power supplied via the second route r2.
  • the control unit 500 restricts the route for supplying power from the storage battery 300. For example, by controlling the power supply unit 400 so as to supply power only to the second route r2, it is possible to more efficiently supplement power supply to a water supply pump or the like that consumes more power when driven. It becomes possible.
  • control unit 500 can directly charge the storage battery 300 with the power supplied from the renewable energy power generation unit 100. For example, when the storage amount of the storage battery 300 falls below a predetermined value, power is preferentially supplied to the storage battery 300. Thereby, it is possible to give priority to the power supply to the equipment required for maintaining the lives of residents in the building such as a water supply pump.
  • the control unit 500 can control each device based on the time.
  • capacity limitation of the amount of electric power is performed via the second route r2 during the daytime when the amount of hydrogen used is larger.
  • power supply to a water supply pump etc. can be restrict
  • the storage battery built-in elevator that receives power supply from the second route r2 also charges the storage battery with power at night.
  • the control unit 500 performs scheduling control for limiting the capacity of power supplied from the first, second, and third routes r1, r2, and r3 according to the time zone based on the time.
  • control unit 500 determines the capacity of power supplied from the first, second, and third routes r1, r2, and r3 based on the output amount of power output from the renewable energy power generation unit 100. It is possible to control. For example, when the electric power output from the renewable energy power generation unit 100 exceeds a predetermined value, the weather is fine and there is a margin in electric power. Release the capacity limit of power via r2. In this case, it is possible to supply power to a water supply pump or the like even in the daytime.
  • control unit 500 determines whether it is a normal time or an emergency time. That is, the control unit 500 determines whether it is a normal time or an emergency time by detecting the supply amount of power supplied from the power system 2.
  • FIG. 2 is a block diagram showing a configuration of the hydrogen energy generation unit 200.
  • the hydrogen energy generation unit 200 includes a water electrolysis unit 202, a storage container 204, and a fuel cell 206.
  • the water electrolysis unit 202 produces hydrogen by electrolyzing water using power supplied from at least one of the power system 2, the renewable energy power generation unit 100, and the storage battery 300.
  • the storage container 204 stores the hydrogen produced by the water electrolysis unit 202.
  • the fuel cell 206 generates power using hydrogen stored in the storage container 204.
  • control unit 500 Next, an example of the control operation of the control unit 500 will be described.
  • FIG. 3 is a diagram showing a flowchart of the control operation in the control unit 500.
  • the hydrogen energy supply system 1 for buildings is operated normally (step S302). That is, the control unit 500 causes the hydrogen energy generation unit 200 to generate electricity and hot water, and generate and store hydrogen.
  • the amount of hydrogen exceeding a predetermined amount is stored in the storage container 204 in case of a disaster or the like.
  • the amount of hydrogen more than a predetermined amount is stored in the storage container 204, power is generated using surplus hydrogen, and electric power is supplied via the second route r2. Thereby, electric power is more appropriately distributed, and it is possible to perform peak shift of electric power.
  • the control unit 500 determines whether a power failure has occurred in the power system 2 (step S304). That is, the control unit 500 detects the power of the power system 2 and determines whether or not a power failure has occurred based on the detected power. When a power failure has not occurred (step S304: No), the processing from S302 is repeated to perform normal operation.
  • step S304 when a power failure occurs (step S304: Yes), the supply of power through the first route is started (step S306).
  • power supply via the eleventh route r11 is first started, and information can be provided immediately.
  • a predetermined time for example, 30 minutes elapses
  • power is also supplied to other electrical devices in the twelfth route r12.
  • a predetermined time for example, 30 minutes elapses
  • supply of hot water generated by the hydrogen energy generation unit 200 is started via the water pipes W1 and W2.
  • electric power may be supplied to the lamps in the building site from the normal time through the twelfth route r12.
  • the control unit 500 controls the power supply unit 400 to increase the range in which power is supplied in the first route r1 from the twelfth route r12 to the eleventh route r11.
  • power supply restriction 1 through the second route is performed (step S308). That is, the capacity is limited to supply the amount of power through the second route in the daytime time zone. Further, as the amount of power generated by the renewable energy power generation unit 100 increases, the power supply restriction via the second route may be relaxed. That is, when the amount of sunshine during the day is large, that is, when the amount of power generated by the renewable energy power generation unit 100 exceeds a predetermined value, the capacity limitation of power via the second route may be relaxed. Furthermore, power supply via the third route is started (step S310).
  • the control unit 500 determines whether the hydrogen storage amount of the storage container 204 has become less than the predetermined value Th1 (step S312). That is, the control unit 500 detects the hydrogen amount in the storage container 204, and determines whether the hydrogen storage amount is less than the predetermined value Th1 based on the detected hydrogen amount. When it is not less than Th1 (step S312: No), the processes of steps S306, S308, and S310 are repeated.
  • the predetermined value here has a relationship of Th1> Th2> Th3.
  • step S312 when it becomes less than Th1 (step S312: Yes), control to stop the power supply through the eleventh route r11 is performed (step S314).
  • power supply restriction 2 via the second route is performed (step S316). That is, the power supply via the second route is limited to a limited time zone at night. That is, the supply time of power to the elevator and the water supply pump via the second route is further shortened.
  • power supply is restricted via the third route (step S318). In this case, the control unit 500 performs power supply restriction based on the time. For this reason, when the storage amount of hydrogen is reduced to less than Th1, it is possible to give priority to the power supply to the equipment necessary for maintaining the lives of the residents of the building.
  • control unit 500 determines whether the hydrogen storage amount of the storage container 204 has become less than the predetermined value Th2 (step S320). When it is not less than Th2 (step S320: No), the processes of steps S314, S316, and S318 are repeated.
  • step S320 when it becomes less than Th2 (step S320: Yes), control is also performed to stop the power supply amount via the twelfth route r12 (step S322).
  • step S324 power supply restriction 3 through the second route is performed (step S324). In this case, all power supply to other than the water supply pump is stopped, and control for further reducing the usage time of the water supply pump is performed. Furthermore, the supply of power through the third route is stopped (step S326). For this reason, when the amount of stored hydrogen is reduced to less than Th2, it is possible to further prioritize the power supply to the equipment necessary for maintaining the lives of the residents in the building.
  • control unit 500 determines whether the hydrogen storage amount of the storage container 204 has become less than the predetermined value Th3 (step S328). When it is not less than Th3 (step S328: No), the processes of steps S322, S324, and S326 are repeated. On the other hand, when it becomes less than Th3 (step S328: Yes), the entire control operation is terminated.
  • control unit 500 includes at least one of the control for starting the power supply through the first route and the control for increasing the power supply range in the first route when the power system 2 fails. Do one.
  • the building hydrogen energy supply system 1 supplies power as power used by the residents of the building, and in an emergency, it can also supply power to facilities around the building.
  • control unit 500 performs limited capacity supply to supply the amount of power via the second route when a power failure occurs. Thereby, it is possible to suppress the power consumption of a device having a high power consumption, and the hydrogen stored in the storage container 204 can be used for a longer period of time. Furthermore, the control unit 500 determines the power supply state via the first route, the power supply state via the second route, and the power via the third route according to the hydrogen storage amount. It was decided to change the supply state. Thereby, it is possible to use an apparatus with high importance in maintaining the lives of residents for a longer period.
  • the controller 500 supplies power via the first route, supplies power via the second route, and supplies power via the third route.
  • the control unit 500 performs the time for performing the capacity restriction of the power capacity via the first route, the time for performing the capacity restriction of the power capacity via the second route, and the power capacity via the third route.
  • the time for performing the capacity limitation is limited. This allows the stored hydrogen to be used for a longer period.
  • the hydrogen energy supply system 1 for buildings provides power and hot water to the residents of a building, that is, an apartment house such as a condominium, and neighboring residents in the event of a power outage in a disaster or the like. So that the building can serve as a shelter.
  • control operation has been described, it is presented only as an example, and various other control operations can be performed.
  • the control unit 500 starts power supply via the first route r1.
  • control for increasing the power supply range in the first route r ⁇ b> 1 is performed on the power supply unit 400.
  • the water electrolysis unit 202 generates hydrogen using the power generated by the renewable energy power generation unit 100, and restricts the power supply via the second route r2. As a result, power can be supplied over a longer period.
  • power can be supplied to the outside of the building during a power failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本実施形態に係る建築物用の水素エネルギー供給システムは、貯蔵された水素を用いて電力を生成する水素エネルギー生成部と、前記水素エネルギー生成部から供給される電力を、建築物の外部に対して電力を供給する第1のルート、及び建築物の内部に対して電力を供給する第2のルートのうちの少なくともいずれかを介して供給可能である電力供給部と、電力供給部が供給する電力を制御する制御部であって、電力系統が停電した場合に、第1のルートを介した電力供給を開始させる制御、及び第1のルートにおける電力の供給範囲を増加させる制御のうちの少なくともいずれかを行う制御部と、を備える。

Description

建築物用の水素エネルギー供給システム、及び建築物用の水素エネルギー供給システムの制御方法
 本発明の実施形態は、建築物用の水素エネルギー供給システムに関する。
 現状の地域防災における避難施設には、一般に地域避難所の役割を担う公民館、学校等のコミュニティーセンターが使用されている。コミュニティーセンターの地域避難所で電源を確保するために、工場のような大規模施設と周辺地域とが連携することが検討されている。
特開2013-118722号公報
 現状の地域防災における避難施設は、公民館、学校等のコミュニティーセンターが基本となり、地域をカバーするには十分でない場合がある。このため、建築物、例えば民間設備であるマンション等の集合住宅を避難施設として使用するために、電力系統の停電時にも建築物に電力供給が継続して行われ、且つ建築物の周辺施設などにも建築物の設備から電力が供給されることが望まれている。
 本発明が解決しようとする課題は、停電時に建築物の外部に対して電力供給が可能な建築物用の水素エネルギー供給システムを提供することである。
 本実施形態に係る建築物用の水素エネルギー供給システムは、貯蔵された水素を用いて電力を生成する水素エネルギー生成部と、前記水素エネルギー生成部から供給される電力を、前記建築物の外部に対して電力を供給する第1のルート、及び前記建築物の内部に対して電力を供給する第2のルートのうちの少なくともいずれかを介して供給可能である電力供給部と、前記電力供給部が供給する電力を制御する制御部であって、前記建築物の内部に対して電力を供給する電力系統が停電した場合に、前記第1のルートを介した電力供給を開始させる制御、及び前記第1のルートにおける電力の供給範囲を増加させる制御のうちの少なくともいずれかを行う制御部と、を備える。
本実施形態に係る建築物用の水素エネルギー供給システムの構成を示すブロック図。 水素エネルギー生成部の構成を示すブロック図。 制御部における制御動作のフローチャートを示す図。
  以下、本発明の実施形態を、図面を参照して説明する。
 本実施形態に係る建築物用の水素エネルギー供給システムは、電力系統が停電した場合に、建築物の外部に対して電力を供給する第1のルートを介して電力供給を開始させる制御を行うことで、停電時に建築物の外部に対して電力供給が可能となるようにしたものである。
 図1は、本実施形態に係る建築物用の水素エネルギー供給システム1の構成を示すブロック図である。建築物用の水素エネルギー供給システム1は、建築物、或いは建築物から所定距離内、例えば建築物から数十メートル以内の敷地内に設置可能な建築物用の水素エネルギー供給システムである。すなわち、建築物用の水素エネルギー供給システム1は、再生可能エネルギー発電部100と、水素エネルギー生成部200と、蓄電池300と、電力供給部400と、制御部500とを、備えて構成されている。ここでの建築物は、例えばマンション等の集合住宅である。
 再生可能エネルギー発電部100は、再生可能エネルギーを用いて発電する発電部である。すなわち、この再生可能エネルギー発電部100は、例えば太陽光を用いた太陽光発電装置である。また、再生可能エネルギー発電部100は、風力を用いた風力発電装置、及び地熱を用いた地熱発電装置のいずれかでもよく、或いはこれらの装置を組み合わせて構成してもよい。
 水素エネルギー生成部200は、貯蔵された水素を用いて電力を生成する。すなわち、この水素エネルギー生成部200は、電力系統2、再生可能エネルギー発電部100および蓄電池300から供給される電力の少なくともいずれかを用いて水を水素に分解し、分解した水素を用いて電力を生成する。また、水素エネルギー生成部200は、水素から電力を生成する際に生成される温水を外部に供給する。ここでの電力系統2(商用電源)は、例えば電力会社が電力を供給するシステムである。さらにまた、この水素エネルギー生成部200は、電力系統2が停電した場合には、再生可能エネルギー発電部100および蓄電池300から供給される電力を用いて水を水素に分解する。
 蓄電池300は、電力系統2、再生可能エネルギー発電部100、及び水素エネルギー生成部200から供給される電力の少なくともいずれかを蓄電する。蓄電池300は、例えば、リチウムイオン二次電池とすることができる。
 電力供給部400は、再生可能エネルギー発電部100、水素エネルギー生成部200及び蓄電池300から供給される電力のうちの少なくともいずれかを建築物内および建築物外に供給する。電力供給部400は、インバータを有しており、直流を交流に変換して電力を供給可能である。
 また、電力供給部400は、建築物外に電力を供給する第1のルートr1、建築物内に電力を供給する第2のルートr2及び第3のルートr3のうちの少なくともいずれかのルートを介して電力を供給する。ここで、第1のルートr1はさらに複数のルートに分岐している。すなわち、第11ルートr11と第12ルートr12とに分岐している。また、第2のルートr2は、建築物の共有部分の電気機器E2に電力を供給するルートであり、第3のルートr3は、建築物の共有部分とは異なる個別の占有部分の電気機器E3に電力を供給するルートである。これらの第1のルートr1、第2のルートr2、及び第3のルートr3のそれぞれは、電力系統2から供給される電力を供給する電力線とは異なる電力線、すなわち専用の電力線である。なお、電力系統2の電力線を共用してもよい。
 第11ルートr11は通信インフラ用の機器E11に電力を供給する。通信インフラ用の機器E11には、公共用の無線LAN基地局、及びWi-Fi(登録商標)基地局などが含まれる。また、避難施設用の機器E12には、情報機器、照明、公共に情報を提示するために用いるサイネージ、及び公共に解放したコンセントなどが含まれる。さらに、この照明には、避難施設内の照明の他に建築物周辺の照明灯などを含んでもよい。
 第2のルートr2は、給水器、エレベータ、及び共用部分の照明灯、例えば廊下照明灯に電力を供給する。また、第3のルートr3は、個別の占有部分におけるコンセント、情報機器、及び蛍光灯に電力を供給する。ここでのエレベータは、蓄電池内臓型のエレベータであり、急な電力需要に対してはエレベータ内の蓄電池の生成電力を用いて駆動する。
 これにより、第1のルートr1を介した電力供給により、地域住民への情報発信を目的とした情報機器への電力供給などを行うことが可能である。また、第1のルートr1を介して簡易携帯基地局や防災無線等の公共設備に対して電力供給されるので、災害時も通信インフラを維持することが可能である。第2のルートr2を介した電力供給により、共用部の夜間照明、居住部での水利用、エレベータ駆動を継続的に行うことが可能である。第3のルートr3を介した電力供給により、非常用に設置した非常用照明と非常用コンセントの利用が可能となり、居住部の夜間の明かりや携帯電話、パソコン等の情報機器への充電を行うことができる。また、避難施設には水管W1を介して、共用部には水管W2を介して、水素エネルギー生成部200から温水が供給される。この温水は、例えばシャワー等の用途として供給される。
 また、電力供給部400は、再生可能エネルギー発電部100、水素エネルギー生成部200及び蓄電池300から供給される電力をそれぞれ独立に第1のルートr1、第2のルートr2、及び第3のルートr3に供給可能である。例えば再生可能エネルギー発電部100が生成した電力を第1のルートr1、及び第2のルートr2のそれぞれに供給し、蓄電池300が生成した電力を第2のルートr2のみに供給し、水素エネルギー生成部200が生成した電力を第1のルートr1、第2のルートr2、及び第3のルートr3のそれぞれに供給することができる。
 制御部500は、築物用の水素エネルギー供給システム1を構成する各装置を制御するように構成されている。制御部500は、図示しない演算器およびメモリを含んでおり、メモリが記憶しているプログラムを用いて演算器が演算処理を行うことによって、各装置の制御を行う。すなわち、制御部500は、電力系統2が停電した場合に、停電が生じる前と異なる制御を、再生可能エネルギー発電部100、水素エネルギー生成部200、蓄電池300、及び電力供給部400のうちの少なくともいずれかに対して行う。
 制御部500には、各装置の計測機器により計測されたデータがデータ信号として入力される。また、制御部500には、第11ルートr11、第12ルートr12、第2のルートr2及び第3のルートr3において使用される電力量がデータ信号として入力される。また、制御部500には、電力系統2から供給される電力量、再生可能エネルギー発電部100から供給される電力量、水素エネルギー生成部200から出力される電力量、水素エネルギー生成部200が貯蔵している水素貯蔵量、蓄電池300の蓄電量、などのデータが、データ信号として入力される。そして、制御部500は、入力されたデータ信号に基づいて演算を行い、制御信号を築物用の水素エネルギー供給システム1の各装置に出力する。このようにして、制御部500が築物用の水素エネルギー供給システム1の各装置に対して制御を行う。
 制御部500は、例えば水素EMS(EMS: Energy Management System )を有して構成されている。平常時には、水素EMSは水素エネルギー生成部200からの電力の適切な分配を行う。ここで、平常時とは、電力系統2から少なくとも電気機器E2、E3へ電力が供給されている状態を意味する。例えば、平常時に、制御部500は、電力供給部400に対して第2及び第3のルートr2、r3を介して電力を供給させる制御を行う。この場合、水素EMSにより、災害時に必要な水素貯蔵量を維持しながら電力供給を行い、建築物すなわち集合住宅内などに水素を用いた安定的な電力供給を行う。
 また、平常時には、制御部500は、再生可能エネルギー発電部100、水素エネルギー生成部200および蓄電池300から供給される電力量等に基づいて、各装置から供給される電力を第2及び第3のルートr2、r3を介して供給する。
 一方、災害等によって停電が発生した非常時には、電力系統2から電力が供給されない場合がある。このような非常時には例えば、制御部500は、水素エネルギー生成部200から、第2及び第3のルートr2、r3に加えて第1のルートr1を介して電力を供給するように電力供給部400に対して制御を行う。この場合、制御部500は、第2のルートr2を介して供給される電力量に対して容量制限を行う。これにより、非常時には、建物周辺の施設にも電力供給を行うことが可能であると共に、電力消費量の高い機器の電力消費を抑制可能になる。また、非常時には、制御部500は、蓄電池300から電力を供給するルートを制限する。例えば第2のルートr2のみに電力を供給するように電力供給部400に対して制御を行うことにより、その駆動時に電力消費が多くなる給水ポンプなどへの電力供給をより効率的に補うことが可能になる。
 また、制御部500は、再生可能エネルギー発電部100から供給される電力を蓄電池300に直接充電させることも可能である。例えば蓄電池300の蓄電量が所定値を下回った場合などに優先的に蓄電池300に電力を供給する。これにより、給水ポンプなどのように建築物における住民の生活を維持する上で必要となる機器への電力供給をより優先させることが可能である。
 制御部500は、時刻に基づいて各装置の制御を行うことが可能である。非常時には、例えば水素使用量のより多い昼間の時間帯に第2のルートr2を介した電力量の容量制限を行う。これにより、給水ポンプなどへの電力供給を、水素使用量の少ない夜間の時間帯に制限して行うことができる。この場合、第2のルートr2から電力供給を受ける蓄電池内臓型のエレベータも、夜間にこの蓄電池に電力を充電させる。このように、制御部500は、時刻に基づいて第1、第2及び第3のルートr1、r2、r3それぞれのルートから供給される電力の容量を時間帯に合わせ制限するスケジューリング制御を行う。
 さらに、制御部500は、再生可能エネルギー発電部100から出力される電力の出力量に基づいて第1、第2及び第3のルートr1、r2、r3それぞれのルートから供給される電力の容量を制御することが可能である。例えば、再生可能エネルギー発電部100から出力される電力が所定値を超える場合には、天候が晴れている場合であり電力に余裕が生じるため、昼の時間帯であっても、第2のルートr2を介した電力の容量制限を解除する。この場合、昼間でも給水ポンプなどへの電力供給を行うことが可能である。
 ところで、平常時であるか非常時であるかの判断は、制御部500により行われる。すなわち、制御部500は、電力系統2から供給される電力の供給量を検出することによって、平常時であるか非常時であるかの判断を行う。
 図2は、水素エネルギー生成部200の構成を示すブロック図である。水素エネルギー生成部200は、水電解部202と、貯蔵容器204と、燃料電池206とを備えている。
 水電解部202は、電力系統2、再生可能エネルギー発電部100及び蓄電池300の少なくともいずれかから供給される電力を用いて水を電解することで水素を製造する。貯蔵容器204は、水電解部202が製造した水素を貯蔵する。燃料電池206は、貯蔵容器204に貯蔵される水素を用いて発電する。
 次に制御部500の制御動作の一例を説明する。ここでは、平常時に第2のルートr2を介した電力供給を行っているときに、電力系統2の停電が発生し、貯蔵容器204の水素貯蔵量が次第に減少していく場合における制御動作例を説明する。
 図3は、制御部500における制御動作のフローチャートを示す図である。例えば地震などの災害により電力系統2に停電が生じるまでは、建築物用の水素エネルギー供給システム1は平常運転が行われる(ステップS302)。すなわち、制御部500は、水素エネルギー生成部200に対して電気及び温水の生成と、水素の生成及び貯蔵とを行わせる。この場合、災害時などを想定して、予め定められた以上の水素量を貯蔵容器204に貯蔵させる。一方で、予め定められた以上の水素量が貯蔵容器204に貯蔵されている場合には、余剰の水素を用いて発電を行わせ、第2のルートr2を介して電力を供給させる。これにより、電力がより適正に配分され、電力のピークシフト等を行うことが可能である。
 制御部500は、電力系統2に停電が発生したか判定する(ステップS304)。すなわち、制御部500は、電力系統2の電力を検出しており、検出した電力に基づいて停電が発生したか否かを判定する。停電が発生していない場合(ステップS304:No)、S302からの処理を繰り返し、平常運転を行わせる。
 一方、停電が発生した場合(ステップS304:Yes)、第1ルートを介した電力の供給を開始させる(ステップS306)。この場合、まず第11ルートr11を介した電力の供給が開始され、即時に情報提供が可能になる。続いて、所定時間、例えば30分が経過した後に第12ルートr12の他の電気機器へも電力を供給する。これにより、即時に情報提供が可能になると共に、避難所などへ人が避難してくるタイミングに合わせて電力を供給することが可能となる。続いて、水管W1、W2を介して水素エネルギー生成部200が生成した温水の供給を開始させる。
 また、平常時から第12ルートr12を介して建築物の敷地内の照明灯に電力を供給させていてもよい。この場合、制御部500は、第1のルートr1において電力が供給される範囲を第12ルートr12から第11ルートr11まで増加させる制御を電力供給部400に対して行う。
 また、第2ルートを介した電力の供給制限1を行う(ステップS308)。すなわち、昼間の時間帯における第2ルートを介した電力量の供給に容量制限をかける。また、再生可能エネルギー発電部100の発電量が増加するに従い、第2ルートを介した電力の供給制限を緩和してもよい。すなわち、日中の日照量の多い時間帯、すなわち生可能エネルギー発電部100の発電量が所定値を超える場合には、第2ルートを介した電力の容量制限を緩和してもよい。さらにまた、第3ルートを介した電力の供給を開始する(ステップS310)。
 次に、制御部500は、貯蔵容器204の水素貯蔵量が所定値Th1未満になったか判定する(ステップS312)。すなわち、制御部500は、貯蔵容器204の水素量を検出しており、検出した水素量に基づいて水素貯蔵量が所定値Th1未満になったか判定する。Th1未満になっていない場合(ステップS312:No)、ステップS306、S308、及びS310の処理を繰り返す。ここでの所定値には、Th1>Th2>Th3の関係がある。
 一方、Th1未満になった場合(ステップS312:Yes)、第11ルートr11を介した電力供給を停止させる制御を行う(ステップS314)。また、第2ルートを介した電力の供給制限2を行う(ステップS316)。すなわち、第2ルートを介した電力の供給を夜間の限られた時間帯に制限する。すなわち、第2ルートを介したエレベータ、及び給水ポンプへの電力の供給時間は、更に短縮される。さらにまた、第3ルートを介した電力の供給制限を行う(ステップS318)。この場合、時刻に基づいて制御部500が、電力の供給制限を行う。このため、水素の貯蔵量がTh1未満まで減少した場合には、建築物の住民の生活を維持する上で必要となる機器への電力供給を優先させることが可能である。
 次に、制御部500は、貯蔵容器204の水素貯蔵量が所定値Th2未満になったか判定する(ステップS320)。Th2未満になっていない場合(ステップS320:No)、ステップS314、S316、及びS318の処理を繰り返す。
 一方、Th2未満になった場合(ステップS320:Yes)、第12ルートr12を介した電力供給量も停止させる制御を行う(ステップS322)。また、第2ルートを介した電力の供給制限3を行う(ステップS324)。この場合、給水ポンプ以外への電力供給を全て停止させると共に、給水ポンプの使用時間を更に低減させる制御を行う。さらにまた、第3ルートを介した電力の供給を停止する(ステップS326)。このため、水素の貯蔵量がTh2未満まで減少した場合には、建築物における住民の生活を維持する上で必要となる機器への電力供給を更に優先させることが可能である。
 次に、制御部500は、貯蔵容器204の水素貯蔵量が所定値Th3未満になったか判定する(ステップS328)。Th3未満になっていない場合(ステップS328:No)、ステップS322、S324、及びS326の処理を繰り返す。一方、Th3未満になった場合(ステップS328:Yes)、全体の制御動作を終了する。
 このように、制御部500は、電力系統2が停電した場合に、第1のルートを介した電力供給を開始させる制御、及び第1のルートにおける電力の供給範囲を増加させる制御のうちの少なくともいずれかを行う。これにより、平常時には、建築物の住民が使用する電力として建築物用の水素エネルギー供給システム1は電力供給を行い、非常時には、建物周辺の施設にも電力供給を行うことが可能である。
 また、制御部500は、停電した場合に、第2のルートを介した電力量の供給に容量制限供給を行うこととした。これにより、電力消費量の高い機器の電力消費を抑制可能であり、貯蔵容器204に貯蔵された水素をより長期にわたって使用が可能になる。さらにまた、制御部500は、水素の貯蔵量に応じて、第1のルートを介した電力の供給状態と、第2のルートを介した電力の供給状態と、第3のルートを介した電力の供給状態とを、変更することとした。これにより、住民の生活を維持する上での重要度の高い機器をより長期に使用することが可能である。
 また、制御部500は、時刻に基づいて、第1のルートを介した電力の供給状態と、第2のルートを介した電力の供給状態と、第3のルートを介した電力の供給状態とを、変更することとした。すなわち、制御部500は、第1のルートを介した電力容量の容量制限を行う時間と、第2のルートを介した電力容量の容量制限を行う時間と、第3のルートを介した電力容量の容量制限を行う時間とを制限するのである。これにより、貯蔵された水素をより長期にわたって使用が可能になる。これらのことから分かるように、建築物用の水素エネルギー供給システム1は、災害などでの電力系統の停電時には、建築物すなわちマンションなどの集合住宅の住民、及び近隣住民に電力、温水を提供して、建築物が避難所としての役割を果たすようにするのである。
 なお、制御動作の一例を説明したが、例としてのみ提示したものであり、その他の様々な制御動作を実施することが可能である。
 以上のように、本実施形態に係る建築物用の水素エネルギー供給システム1によれば、電力系統2が停電した場合に、制御部500が第1のルートr1を介した電力供給を開始させる制御、及び第1のルートr1における電力の供給範囲を増加させる制御のうちの少なくともいずれかを電力供給部400に対して行うこととした。これにより、電力系統2の停電時には、建築物の外部のより広い範囲に対して電力供給を行うこができる。さらにまた、電力系統2が停止した場合でも、再生可能エネルギー発電部100が発電した電力を用いて水電解部202が水素を生成すると共に、第2のルートr2を介した電力供給を制限することにより、より長期にわたり電力を供給することができるようになる。
 以上説明した少なくともひとつの実施形態によれば、停電時に建築物の外部に対して電力供給ができる。
 以上、一実施形態を説明したが、この実施形態は、例としてのみ提示したものであり、発明の範囲を限定することを意図したものではない。本明細書で説明した新規なシステムは、その他の様々な形態で実施することができる。また、本明細書で説明したシステムの形態に対し、発明の要旨を逸脱しない範囲内で、種々の省略、置換、変更を行うことができる。添付の特許請求の範囲およびこれに均等な範囲は、発明の範囲や要旨に含まれるこのような形態や変形例を含むように意図されている。

Claims (7)

  1.  貯蔵された水素を用いて電力を生成する水素エネルギー生成部と、
     前記水素エネルギー生成部から供給される電力を、建築物の外部に対して電力を供給する第1のルート、及び前記建築物の内部に対して電力を供給する第2のルートのうちの少なくともいずれかを介して供給可能である電力供給部と、
     前記電力供給部が供給する電力を制御する制御部であって、前記建築物の内部に対して電力を供給する電力系統が停電した場合に、前記第1のルートを介した電力供給を開始させる制御及び前記第1のルートにおける電力の供給範囲を増加させる制御のうちの少なくともいずれかを行う制御部と、
     を備える建築物用の水素エネルギー供給システム。
  2.  前記制御部は、前記停電した場合に、前記第2のルートを介した電力供給を制限する制御を行う請求項1に記載の建築物用の水素エネルギー供給システム。
  3.  前記制御部は、前記水素の貯蔵量及び時刻のうちの少なくともいずれかに応じて、前記第1のルートを介した電力供給および前記第2のルートを介した電力供給のうちの少なくともいずれかを変更する請求項1又は2に記載の建築物用の水素エネルギー供給システム。
  4.  電力供給部は更に、前記第2のルートと異なるルートであって、前記建築物の内部に対して電力を供給する第3のルートを介して電力を供給可能であり、
     前記制御部は、前記停電前の前記第3のルートを介した電力供給を前記停電の前後で電力供給を変更する請求項1乃至3のいずれか一項に記載の建築物用の水素エネルギー供給システム。
  5.  前記第1のルートは、サイネージ、照明灯、コンセント、及び無線LAN基地局のうちの少なくともいずれかに電力供給するルートであり、
     前記第2のルートは、給水器、エレベータ、及び共用部分の照明灯のうちの少なくともいずれかに電力供給するルートであり、
     前記第3のルートは、個別の占有部分におけるコンセント、及び照明灯のうちの少なくともいずれかに電力供給するルートである請求項4に記載の建築物用の水素エネルギー供給システム。
  6.  再生可能エレルギーを用いて発電する再生可能エネルギー発電部を更に備え、
     前記水素エネルギー生成部は、前記建築物内或いは前記建築物から所定距離内に設置可能であって、
     前記電力系統の停電時に前記再生可能エネルギー発電部が発電する電力を用いて水素を生成する水電解部と、前記水素を貯蔵する貯蔵部と、前記貯蔵部に貯蔵された水素で電気を発電する燃料電池と、を有する請求項1乃至5のいずれか一項に記載の建築物用の水素エネルギー供給システム。
  7.  貯蔵された水素を用いて電力を生成する水素エネルギー生成部と、
     前記水素エネルギー生成部から供給される電力を、建築物の外部に対して電力を供給する第1のルート、及び前記建築物の内部に対して電力を供給する第2のルートのうちの少なくともいずれかを介して供給可能である電力供給部と、
     前記電力供給部が供給する電力を制御する制御部を備えた建築物用の水素エネルギー供給システムの制御方法において、
     前記建築物の内部に対して電力を供給する電力系統が停電した場合に、前記第1のルートを介した電力供給を開始させる制御及び前記第1のルートにおける電力の供給範囲を増加させる制御のうちの少なくともいずれかを行う建築物用の水素エネルギー供給システムの制御方法。
PCT/JP2015/084832 2015-12-11 2015-12-11 建築物用の水素エネルギー供給システム、及び建築物用の水素エネルギー供給システムの制御方法 WO2017098662A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/084832 WO2017098662A1 (ja) 2015-12-11 2015-12-11 建築物用の水素エネルギー供給システム、及び建築物用の水素エネルギー供給システムの制御方法
JP2017554760A JP6619446B2 (ja) 2015-12-11 2015-12-11 建築物用の水素エネルギー供給システム、及び建築物用の水素エネルギー供給システムの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084832 WO2017098662A1 (ja) 2015-12-11 2015-12-11 建築物用の水素エネルギー供給システム、及び建築物用の水素エネルギー供給システムの制御方法

Publications (1)

Publication Number Publication Date
WO2017098662A1 true WO2017098662A1 (ja) 2017-06-15

Family

ID=59013932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084832 WO2017098662A1 (ja) 2015-12-11 2015-12-11 建築物用の水素エネルギー供給システム、及び建築物用の水素エネルギー供給システムの制御方法

Country Status (2)

Country Link
JP (1) JP6619446B2 (ja)
WO (1) WO2017098662A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768281A (zh) * 2019-10-31 2020-02-07 中广核研究院有限公司 一种城市分布式能源系统
JP2020058100A (ja) * 2018-09-28 2020-04-09 大和ハウス工業株式会社 電力供給システム
KR102134106B1 (ko) * 2019-11-13 2020-07-14 하재청 엘리베이터의 수소연료전지 전원공급시스템
WO2021177100A1 (ja) * 2020-03-05 2021-09-10 三菱重工業株式会社 制御装置、エネルギー供給システム、制御方法、及び制御プログラム
WO2022091482A1 (ja) * 2020-10-30 2022-05-05 株式会社辰巳菱機 冷却装置
JP7129126B1 (ja) * 2020-10-30 2022-09-01 株式会社辰巳菱機 冷却装置
WO2022209846A1 (ja) * 2021-03-30 2022-10-06 ブラザー工業株式会社 電力供給システム及びコンピュータプログラム
KR20220148894A (ko) 2020-03-04 2022-11-07 가부시키가이샤 랜드 비지니스 광역 전력 공급 시스템
US11735929B1 (en) 2020-10-30 2023-08-22 Tatsumi Ryoki Co., Ltd Power supply station

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506817A (ja) * 2001-10-12 2005-03-03 プロトン エネルギー システムズ,インク. バックアップ電力を最大化するための短時間のブリッジ電力の制御及び回復を行う方法及びシステム
JP2006158084A (ja) * 2004-11-29 2006-06-15 Toyota Motor Corp 停電時電力供給装置及び住宅の配線構造
JP2007165070A (ja) * 2005-12-13 2007-06-28 Idemitsu Kosan Co Ltd 燃料電池起動制御システム、燃料電池起動制御方法及び制御プログラム
JP2013158205A (ja) * 2012-01-31 2013-08-15 New Energy Research Institute 被災・停電対策電源システム
JP2015084625A (ja) * 2013-10-25 2015-04-30 Jx日鉱日石エネルギー株式会社 電力供給システム及び電力供給方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506817A (ja) * 2001-10-12 2005-03-03 プロトン エネルギー システムズ,インク. バックアップ電力を最大化するための短時間のブリッジ電力の制御及び回復を行う方法及びシステム
JP2006158084A (ja) * 2004-11-29 2006-06-15 Toyota Motor Corp 停電時電力供給装置及び住宅の配線構造
JP2007165070A (ja) * 2005-12-13 2007-06-28 Idemitsu Kosan Co Ltd 燃料電池起動制御システム、燃料電池起動制御方法及び制御プログラム
JP2013158205A (ja) * 2012-01-31 2013-08-15 New Energy Research Institute 被災・停電対策電源システム
JP2015084625A (ja) * 2013-10-25 2015-04-30 Jx日鉱日石エネルギー株式会社 電力供給システム及び電力供給方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020058100A (ja) * 2018-09-28 2020-04-09 大和ハウス工業株式会社 電力供給システム
JP7219575B2 (ja) 2018-09-28 2023-02-08 大和ハウス工業株式会社 電力供給システム
CN110768281A (zh) * 2019-10-31 2020-02-07 中广核研究院有限公司 一种城市分布式能源系统
CN110768281B (zh) * 2019-10-31 2021-09-24 中广核研究院有限公司 一种城市分布式能源系统
KR102134106B1 (ko) * 2019-11-13 2020-07-14 하재청 엘리베이터의 수소연료전지 전원공급시스템
KR20220148894A (ko) 2020-03-04 2022-11-07 가부시키가이샤 랜드 비지니스 광역 전력 공급 시스템
WO2021177100A1 (ja) * 2020-03-05 2021-09-10 三菱重工業株式会社 制御装置、エネルギー供給システム、制御方法、及び制御プログラム
WO2022091482A1 (ja) * 2020-10-30 2022-05-05 株式会社辰巳菱機 冷却装置
JP7129126B1 (ja) * 2020-10-30 2022-09-01 株式会社辰巳菱機 冷却装置
US11735929B1 (en) 2020-10-30 2023-08-22 Tatsumi Ryoki Co., Ltd Power supply station
WO2022209846A1 (ja) * 2021-03-30 2022-10-06 ブラザー工業株式会社 電力供給システム及びコンピュータプログラム

Also Published As

Publication number Publication date
JP6619446B2 (ja) 2019-12-11
JPWO2017098662A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6619446B2 (ja) 建築物用の水素エネルギー供給システム、及び建築物用の水素エネルギー供給システムの制御方法
US9651971B2 (en) Control device, power control system, and power control method
WO2017142241A1 (ko) 신재생 에너지 연계형 ess의 전력 관리 방법
CN103047601B (zh) 混合能源供电的应急照明及疏散指引装置
CN102313237B (zh) 一种利用太阳能光伏系统供电的城市照明和应急系统
Boussetta et al. Design and Embedded Implementation of a Power Management Controller for Wind‐PV‐Diesel Microgrid System
JP2013074760A (ja) 集合住宅電力システム及び制御装置
JP2013158205A (ja) 被災・停電対策電源システム
JP2012239260A (ja) 集合住宅用電力供給システム
CN108199469A (zh) 一种结合太阳能光伏发电的可移动充电蓄电池共享系统
JP2005287300A (ja) 電力料金だけでなくco2排出量をも削減することができる、太陽電池及び/又はキュービクルを使用した集合住宅用電力削減システム
JP2008219979A (ja) 電力供給システムおよび電力供給方法
KR20120058794A (ko) 신재생 에너지를 이용한 최적 경관 조명 시스템 및 방법
US20090008998A1 (en) Electrical Power Distribution and Control System
JP2014073065A (ja) 電気自動車充電システム
JP2006230161A (ja) 非常電源制御システム及び非常電源制御方法
Pratheeba et al. A Review of an Off Grid Solar DC System for Rural Houses
JP2016220348A (ja) 街路照明システム
JP2017046428A (ja) 電力融通システム
JP2012110192A (ja) 集合住宅及び集合住宅用電力供給システム
CN103075705B (zh) 混合能源供电的应急照明装置
KR20220109683A (ko) 동일한 용량을 갖는 컨버터 모듈 및 용량 가변이 가능한 하나 이상의 컨버터 모듈 그룹
JP2018038229A (ja) 蓄電システム
JP2016081490A (ja) 災害対応型ゼロエネルギー信号機システム信号機システム
JP3201595U (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910277

Country of ref document: EP

Kind code of ref document: A1