WO2017098594A1 - 電力開閉制御装置 - Google Patents

電力開閉制御装置 Download PDF

Info

Publication number
WO2017098594A1
WO2017098594A1 PCT/JP2015/084481 JP2015084481W WO2017098594A1 WO 2017098594 A1 WO2017098594 A1 WO 2017098594A1 JP 2015084481 W JP2015084481 W JP 2015084481W WO 2017098594 A1 WO2017098594 A1 WO 2017098594A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
voltage
circuit breaker
inter
phase
Prior art date
Application number
PCT/JP2015/084481
Other languages
English (en)
French (fr)
Inventor
森 智仁
綾 山本
吉田 大輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CA3007185A priority Critical patent/CA3007185C/en
Priority to JP2016523352A priority patent/JP5972507B1/ja
Priority to US15/778,957 priority patent/US10490366B2/en
Priority to PCT/JP2015/084481 priority patent/WO2017098594A1/ja
Publication of WO2017098594A1 publication Critical patent/WO2017098594A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H9/563Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle for multipolar switches, e.g. different timing for different phases, selecting phase with first zero-crossing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/593Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for ensuring operation of the switch at a predetermined point of the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/16Impedances connected with contacts

Definitions

  • the present invention relates to a power switching control device that controls switching of a circuit breaker that is a power switching device.
  • a capacitor or reactor as a phase adjuster is connected to the system via a circuit breaker, and is used to adjust the phase of the system voltage.
  • phase adjuster when a phase adjuster is inserted into a system via a circuit breaker, a surge voltage or an inrush current may be generated in the phase adjuster depending on the timing when the circuit breaker is turned on.
  • the circuit breaker is a circuit breaker with a so-called resistance.
  • a circuit breaker with a closing resistor described in FIG. 10 of Patent Document 1 includes a resistor connected in parallel to the circuit breaker, and a switch connected in series to the resistor and in parallel to the circuit breaker. Prepare.
  • the present invention has been made in view of the above, and an object thereof is to provide a power switching control device capable of further suppressing a surge voltage or an inrush current.
  • the power switching control device includes a blocking unit, a resistor connected in parallel to the blocking unit, a resistor connected in parallel to the blocking unit, and the resistance.
  • a circuit breaker having a switch connected in series to the body and being turned on prior to the blocking unit, one end of the blocking unit being connected to an AC power source, and the other end of the blocking unit being connected to a phase adjuster
  • a power switching control device for controlling the switching of the voltage a voltage measuring unit for measuring a power supply side voltage of the circuit breaker, a measured value of the power supply side voltage, a resistance value of the resistor, and an impedance of the phase adjuster The current flowing through the resistor is calculated after the switch is turned on and before the breaking unit is turned on, and the current and the resistance value are used after the switch is turned on and before the breaking unit is turned on.
  • the target closing of the interrupting unit that provides the target input phase of the interrupting unit set according to the phase adjuster
  • a target closing time determination unit that determines a pole time
  • a closing control unit that outputs a control signal to the circuit breaker so that the breaking unit is closed at the target closing time.
  • FIG. 1 The figure which shows the structure of the electric power switching control apparatus which concerns on Embodiment 1.
  • FIG. Sectional drawing which shows the internal structure of the circuit breaker in Embodiment 1.
  • the block diagram which showed the hardware constitutions of the electric power switching control apparatus which concerns on Embodiment 1.
  • FIG. 1 The figure which shows the structure of the electric power switching control apparatus which concerns on Embodiment 1.
  • FIG. 1 is a diagram illustrating a configuration of a power switching control device 1 according to the present embodiment.
  • the power switching control device 1 is connected to a circuit breaker 2 that is a power switching device and controls the switching of the circuit breaker 2.
  • a circuit breaker 2 that is a power switching device and controls the switching of the circuit breaker 2.
  • FIG. 1 only the function regarding the closing of the circuit breaker 2 is shown among the functions of the electric power switching control apparatus 1, and the function regarding opening is abbreviate
  • the circuit breaker 2 is a so-called gas circuit breaker with a charging resistance. That is, the circuit breaker 2 includes a circuit breaker 3, a resistor 4 that is an input resistor connected in parallel to the circuit breaker 3, and a switch 5 that is connected in parallel to the circuit breaker 3 and in series with the resistor 4. Prepare.
  • the resistance value of the resistor 4 is generally 500 ⁇ to 1000 ⁇ .
  • FIG. 2 is a cross-sectional view showing the internal configuration of the circuit breaker 2.
  • the circuit breaker 2 is in an open state.
  • the interrupter 3 includes a movable main contact 3a, a fixed main contact 3b facing the movable main contact 3a, a movable arc contact 3c interlocking with the movable main contact 3a, and a fixed arc contact 3d facing the movable arc contact 3c.
  • the movable main contact 3a, the fixed main contact 3b, the movable arc contact 3c, and the fixed arc contact 3d are disposed in the arc extinguishing chamber 20.
  • the switch 5 includes a movable resistance contact 5a that works in conjunction with the movable main contact 3a, and a fixed resistance contact 5b that faces the movable resistance contact 5a.
  • the movable resistance contact 5 a and the fixed resistance contact 5 b are disposed outside the arc extinguishing chamber 20 and inside the metal container 21. Insulating gas is sealed in the metal container 21.
  • the circuit breaker 2 includes an operation mechanism 22 in the metal container 21 for reciprocating the movable main contact 3a, the movable arc contact 3c, and the movable resistance contact 5a.
  • the movable resistance contact 5a is mechanically connected to the movable main contact 3a and the movable arc contact 3c via the operation mechanism 22.
  • the switch 5 is turned on prior to the circuit breaker 3.
  • the movable main contact 3a comes into contact with the fixed main contact 3b after a predetermined time has elapsed since the movable resistance contact 5a came into contact with the fixed resistance contact 5b.
  • the fixed time is, for example, 10 ms.
  • FIG. 3 is a view showing the contact state of the circuit breaker 2 during the closing operation.
  • the upper part of FIG. 3 shows on / off of the breaker 3, the middle part of FIG. 3 shows on / off of the switch 5, and the lower part of FIG. 3 shows the control signal output from the power switching control device 1 to the breaker 2.
  • the control contents are shown.
  • the switch 5 When a closing control command is output from the power switching control device 1, the switch 5 is first switched from the OFF state to the ON state, and after a predetermined time has elapsed, the blocking unit 3 is switched from the OFF state to the ON state.
  • the switch 5 opens before the circuit breaker 3.
  • the circuit breaker 2 is connected to a power source 8 that is an AC power source via a bus 7. Specifically, one end of the blocking unit 3 is connected to the power source 8.
  • the circuit breaker 2 is connected to a capacitor 10 that is a phase adjuster. Specifically, the other end of the blocking unit 3 is connected to the capacitor 10. One end of the capacitor 10 is connected to the blocking unit 3, and the other end of the capacitor 10 is grounded.
  • the power supply 8 is connected to the power transmission line 25.
  • the power switching control device 1 includes a voltage measurement unit 11, an interelectrode voltage calculation unit 12, a target closing time determination unit 13, a current measurement unit 14, a closing time detection unit 15, a closing time prediction unit 16, and a closing control unit 17. Is provided.
  • the voltage measuring unit 11 measures a power supply side voltage that is a voltage between the power supply 8 and the circuit breaker 2. Specifically, the voltage measurement unit 11 measures the power supply side voltage via the instrument transformer 18 attached to the bus 7. The voltage measurement unit 11 outputs the measured value of the power supply side voltage to the interelectrode voltage calculation unit 12.
  • the interelectrode voltage calculation unit 12 uses the measured value of the power supply side voltage, the resistance value of the resistor 4, and the impedance of the capacitor 10, so that the current flowing through the resistor 4 after the switch 5 is turned on and before the cutoff unit 3 is turned on. Ic is calculated.
  • the power supply side voltage that is, the voltage of the power supply 8 is the voltage V
  • the resistance value of the resistor 4 is R
  • the impedance of the capacitor 10 is Z
  • the interelectrode voltage calculator 12 calculates the voltage V and the resistance of the resistor 4.
  • the current Ic is calculated by the following equation using the value R and the impedance Z of the capacitor 10.
  • the information regarding the capacitance C is given to the interelectrode voltage calculation unit 12 in advance.
  • the information regarding the frequency ⁇ is given to the interelectrode voltage calculation unit 12 in advance when it is known from the system condition, but can also be obtained from the measured value of the power supply side voltage.
  • the voltage V is obtained from the maximum and minimum values of the measured value of the power supply side voltage for the amplitude, from the zero cross point of the measured value of the power supply side voltage for the phase, and from the interval between the zero cross points of the power supply side voltage for the frequency ⁇ . be able to.
  • the inter-electrode voltage calculation unit 12 calculates the inter-electrode voltage ⁇ V of the cutoff unit 3 after the resistor 4 is turned on and before the cutoff unit 3 is turned on, using the current Ic and the resistance value R of the resistor 4. .
  • the interelectrode voltage calculation unit 12 outputs the interelectrode voltage ⁇ V to the target closing time determination unit 13.
  • the target closing time determination unit 13 uses the inter-electrode voltage ⁇ V and the inter-electrode dielectric strength reduction rate (RDDS) of the interrupting unit 3 to input the interrupting unit 3 at the target phase. Determine the target closing time.
  • the inter-layer dielectric strength of the breaker 3 decreases as the distance between the poles of the breaker 3 decreases in the closing process of the breaker 2.
  • the inter-electrode dielectric strength reduction rate gives the reduction rate of the inter-electrode dielectric strength. Information on the inter-electrode dielectric strength reduction rate is given to the target closing time determination unit 13 in advance.
  • the target phase is a target phase when the blocking unit 3 is electrically turned on.
  • the target closing time is the time when the blocking unit 3 is mechanically turned on.
  • the state in which the interrupting unit 3 is electrically turned on is a state in which a leading arc is generated between the poles and the poles are mechanically non-contact, but are electrically conductive.
  • the state where the blocking portion 3 is mechanically inserted means a state where the electrodes are in mechanical contact, that is, a state where the movable main contact 3a and the fixed main contact 3b are in contact and the closing operation is finished.
  • the simple input means electrical input, and the simple closing means mechanical input.
  • the current measuring unit 14 measures a power source side current that is a current flowing between the power source 8 and the circuit breaker 2. Specifically, the current measuring unit 14 measures the power source side current via the instrument current transformer 19 attached to the bus 7. The current measurement unit 14 outputs the measured value of the power supply side current to the turn-on time detection unit 15.
  • the on time detection unit 15 detects the on time from the measured value of the power source side current.
  • the closing time is the time when the blocking unit 3 is electrically turned on.
  • the closing time detection unit 15 outputs the closing time to the closing time prediction unit 16.
  • the closing time prediction unit 16 predicts the closing time according to the operating conditions of the circuit breaker 2.
  • the operating conditions of the circuit breaker 2 are the environmental temperature, the control voltage, and the operating pressure of the circuit breaker 2.
  • the closing time is the time from when the circuit breaker 2 starts operating until the circuit breaker 2 is closed, that is, until it is mechanically turned on.
  • the closing time prediction unit 16 is given in advance information related to the reference value of the operating condition and the reference value of the closing time corresponding to the reference value of the operating condition. Then, when an actual operating condition is input from the outside of the power switching control device 1, the closing time prediction unit 16 compares the actual operating condition value with the operating condition reference value, and determines the operating condition reference. A correction amount from the reference value of the closing time is calculated according to a change in the actual operating condition from the value, and a time obtained by adding the correction amount to the reference value of the closing time is set as a predicted value of the closing time.
  • the closing time prediction unit 16 corrects the predicted value of the closing time according to the operation history. Specifically, the closing time prediction unit 16 calculates an error between a target closing time (to be described later) and an actual closing time, and corrects the predicted value of the closing time so as to eliminate this error. For example, the error of the past multiple times is obtained, the weight given to the recent error is increased, the weighted average of the errors of the past several times is obtained, and the closing time of the closing time is eliminated so that the weighted average of the error is eliminated. The predicted value can be corrected.
  • the target closing time is output from the target closing time determination unit 13 to the closing time prediction unit 16.
  • the closing time prediction unit 16 outputs a predicted value of the closing time to the closing control unit 17.
  • the closing control unit 17 When the closing control unit 17 receives a closing command for the circuit breaker 2 from the outside of the power switching control device 1, the closing control unit 17 outputs a control signal to the circuit breaker 2 so that the breaking unit 3 is closed at the target closing time. That is, the closing control unit 17 outputs a closing control command to the circuit breaker 2 at a time before the target closing time by a predicted value of the closing time.
  • FIG. 4 is a block diagram showing a hardware configuration of the power switching control device 1.
  • the power switching control device 1 includes a CPU 30a, a memory 30b, and an input / output interface 30c.
  • the voltage measuring unit 11 in FIG. 1 includes a CPU 30a, a memory 30b, and an input / output interface 30c.
  • the interelectrode voltage calculator 12 in FIG. 1 includes a CPU 30a and a memory 30b.
  • the target closing time determination unit 13 in FIG. 1 includes a CPU 30a and a memory 30b.
  • the current measuring unit 14 in FIG. 1 includes a CPU 30a, a memory 30b, and an input / output interface 30c. 1 is composed of a CPU 30a and a memory 30b.
  • the closing time prediction unit 16 in FIG. 1 includes a CPU 30a and a memory 30b.
  • the closing control unit 17 in FIG. 1 includes a CPU 30a, a memory 30b, and an input / output interface 30c.
  • 5 to 7 are schematic diagrams of the contacts during the closing operation of the circuit breaker 2. 5 to 7, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals.
  • FIG. 5 is a diagram in which both the blocking unit 3 and the switch 5 are in an open state.
  • the movable main contact 3a is not in contact with the fixed main contact 3b, and the distance between the two contacts is g1.
  • the movable resistance contact 5a is not in contact with the fixed resistance contact 5b, and the distance between the two contacts is g2.
  • the distance g1 is larger than the distance g2.
  • a coil spring 9 is provided between the fixed resistance contact 5 b and the resistor 4.
  • FIG. 6 is a diagram in which the switch 5 is in a closed state and the blocking unit 3 is in an open state.
  • the movable main contact 3a is not in contact with the fixed main contact 3b, but the movable resistance contact 5a is in contact with the fixed resistance contact 5b.
  • the switch 5 is turned on prior to the blocking unit 3.
  • FIG. 7 is a diagram in which both the blocking unit 3 and the switch 5 are in a closed state. As the coil spring 9 contracts, the movable main contact 3a is in contact with the fixed main contact 3b, and the movable resistance contact 5a is in contact with the fixed resistance contact 5b.
  • FIGS. 8 to 10 are circuit diagrams showing energization states during the closing operation of the circuit breaker 2.
  • FIG. FIG. 8 is a circuit diagram when both the blocking unit 3 and the switch 5 are in an open circuit state
  • FIG. 9 is a circuit diagram when the switch 5 is in a closed circuit state
  • the blocking unit 3 is in an open circuit state
  • FIG. FIG. 4 is a circuit diagram when both the blocking unit 3 and the switch 5 are in a closed state. 8 to 10, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals.
  • the interruption part 3 is turned on in a state where the inter-electrode voltage ⁇ V is generated, there is a possibility that a surge voltage or an inrush current corresponding to the inter-electrode voltage ⁇ V is generated in the interruption part 3.
  • the operation of the target closing time determination unit 13, that is, the process for determining the target closing time will be described.
  • the dielectric strength between the electrodes decreases as the distance between the electrodes decreases, and when this dielectric strength falls below the voltage between the electrodes, a leading arc occurs due to the dielectric breakdown between the electrodes. Then, the circuit breaker is electrically turned on.
  • the electrical input point of the circuit breaker is given by the intersection of the absolute value waveform of the circuit voltage of the circuit breaker and the characteristic line indicating the inter-layer dielectric strength reduction rate (RDDS) of the circuit breaker.
  • FIG. 11 is a diagram for explaining the target closing time of the blocking unit 3.
  • the horizontal axis is time (ms), and the vertical axis is voltage (PU).
  • ms indicates milliseconds and PU indicates a voltage based on the rated voltage.
  • the voltage V indicates the absolute value waveform of the voltage of the power supply 8.
  • the inter-electrode voltage ⁇ V indicates an absolute value waveform of the inter-electrode voltage ⁇ V.
  • a characteristic line Lr indicates the inter-dielectric strength reduction rate (RDDS) of the switch 5.
  • a characteristic line Lm indicates an inter-electrode dielectric strength reduction rate (RDDS) of the blocking portion 3.
  • intersection P1 between the characteristic line Lr and the voltage V is an electrical input point of the switch 5.
  • the inter-electrode voltage ⁇ V is generated in the blocking part 3.
  • An intersection point P2 between the characteristic line Lr and the horizontal axis is a closing point of the switch 5, which is a mechanical input point of the switch 5.
  • intersection point Q1 between the characteristic line Lm and the interelectrode voltage ⁇ V is an electrical input point of the blocking part 3.
  • the time of the intersection point Q1 gives the target closing time of the blocking unit 3
  • the phase of the intersection point Q1 gives the target closing phase of the blocking unit 3.
  • An intersection point Q2 between the characteristic line Lm and the horizontal axis is a closing point of the blocking unit 3 that is a mechanical charging point of the blocking unit 3.
  • the time at the intersection Q2 gives the target closing time.
  • the difference between the time of the intersection point Q2 and the time of the intersection point P2 is the time from the closing of the switch 5 to the closing of the breaking unit 3, and is the above-described fixed time determined by the breaker 2.
  • this fixed time is 10 ms.
  • the phase adjuster is the capacitor 10
  • the surge voltage or inrush current at the interrupting unit 3 is suppressed as the absolute value of the input voltage of the interrupting unit 3 is smaller.
  • the input voltage is an inter-electrode voltage ⁇ V when the blocking unit 3 is electrically turned on. Therefore, the target closing phase is preferably a phase that minimizes the absolute value of the closing voltage. In other words, when the target input phase is set arbitrarily, it is difficult to suppress the surge voltage or the inrush current.
  • Such a target input phase can be determined by obtaining the voltage at the intersection Q1 while translating the characteristic line Lm in the time direction.
  • the target closing phase is determined, the target closing time can be determined as the intersection point Q2 corresponding to the intersection point Q1 in this case.
  • the inter-layer dielectric strength reduction rate (RDDS) of the breaker 3 is actually an average. It fluctuates around the value. Assuming that the variation of the inter-layer dielectric strength reduction rate (RDDS) of the blocking portion 3 follows a normal distribution, and assuming that the standard deviation of the variation of the inter-layer dielectric strength reduction rate (RDDS) of the blocking portion 3 is ⁇ , the characteristic line Lm The fluctuation range can be defined by the characteristic lines Lm1 and Lm2.
  • the characteristic line Lm1 is a characteristic line obtained by translating the characteristic line Lm by ⁇ 3 ⁇ in the time direction
  • the characteristic line Lm2 is a characteristic line obtained by translating the characteristic line Lm by + 3 ⁇ in the time direction.
  • the characteristic line Lm represents an average.
  • the fluctuation range is defined as ⁇ 3 ⁇ with the average as the center, it may be defined other than this.
  • FIG. 12 is another diagram for explaining the target closing time of the blocking unit 3.
  • a characteristic line Lm1 and a characteristic line Lm2 are shown. Further, the intersection of the characteristic line Lm1 and the interelectrode voltage ⁇ V is indicated by R1, and the intersection of the characteristic line Lm2 and the interelectrode voltage ⁇ V is indicated by R2.
  • the target input phase when the phase adjuster is the capacitor 10 can be determined as follows. . That is, the target applied voltage that minimizes the absolute value of the applied voltage is given as a phase that minimizes the maximum applied voltage value within the fluctuation range of the characteristic line Lm.
  • the maximum applied voltage value is the voltage value at the intersection R1. Then, by examining how the maximum applied voltage value changes while translating the characteristic line Lm in the time direction, the characteristic line Lm that minimizes the maximum applied voltage value can be obtained.
  • the phase of the intersection point Q1 between the characteristic line Lm and the interelectrode voltage ⁇ V is a phase that minimizes the maximum applied voltage value.
  • the voltage measurement unit 11 measures the power supply side voltage of the circuit breaker 2 and outputs the measured value of the power supply side voltage to the interelectrode voltage calculation unit 12.
  • the interelectrode voltage calculation unit 12 uses the measured value of the power supply side voltage, the resistance value R of the resistor 4, and the impedance Z of the capacitor 10, after the switch 5 is turned on and before the shut-off unit 3 is turned on.
  • the flowing current Ic is calculated, and using the current Ic and the resistance value R, the inter-electrode voltage ⁇ V of the cutoff part 3 after the switch 5 is turned on and before the cutoff part 3 is turned on is calculated.
  • the interelectrode voltage calculation unit 12 outputs the interelectrode voltage ⁇ V to the target closing time determination unit 13.
  • the target closing time determination unit 13 uses the inter-electrode dielectric strength reduction rate (RDDS) of the interrupting unit 3 and the inter-electrode voltage ⁇ V to set the target closing phase of the interrupting unit 3 set according to the capacitor 10.
  • the target closing time that gives is determined.
  • the target input phase is given by a phase that minimizes the absolute value of the target input voltage. If the target closing phase is determined, the target closing time is determined by the voltage zero point of the characteristic line Lm passing through the target closing phase.
  • the target closing time determination unit 13 outputs the target closing time to the closing control unit 17.
  • the closing control unit 17 acquires a predicted value of the closing time from the closing time prediction unit 16. And the closing control part 17 will output a control signal to the circuit breaker 2 so that the interruption
  • the breaking unit 3 since the breaking unit 3 is turned on at an arbitrary turning-on phase, it is difficult to suppress a surge voltage or an inrush current depending on the magnitude of the absolute value of the interelectrode voltage ⁇ V even in a breaker with a turning-on resistor. It was.
  • the inter-electrode voltage ⁇ V of the cutoff unit 3 after the switch 5 is turned on and before the cutoff unit 3 is turned on is predicted, and the target closing phase of the cutoff unit 3 set according to the capacitor 10 is given. Since the target closing time is determined, it is possible to further suppress the surge voltage or the inrush current when the interrupting unit 3 is turned on.
  • Embodiment 2 Although the case where the phase adjuster is the capacitor 10 has been described in the first embodiment, the case where the phase adjuster is a reactor will be described in the present embodiment. Hereinafter, only differences from the first embodiment will be mainly described.
  • FIG. 13 is a diagram illustrating a configuration of the power switching control device 1 according to the present embodiment
  • FIG. 14 is a circuit diagram when both the blocking unit 3 and the switch 5 are in an open state.
  • FIG. 13 and FIG. 14 the same components as those shown in FIG.
  • the circuit breaker 2 is connected to a reactor 35 that is a phase adjuster. Specifically, one end of the reactor 35 is connected to the blocking unit 3 and the other end of the reactor 35 is grounded.
  • the configuration of the power switching control device 1 is the same as that of the first embodiment.
  • the interelectrode voltage calculation unit 12 uses the measured value of the power supply side voltage, the resistance value of the resistor 4, and the impedance of the reactor 35, after the switch 5 is turned on and The current Ic flowing through the resistor 4 is calculated before being turned on.
  • the power supply side voltage that is, the voltage of the power supply 8 is the voltage V
  • the resistance value of the resistor 4 is R
  • the impedance of the reactor 35 is Z
  • the current Ic is given by the above equation (1).
  • the impedance Z of the reactor 35 is given by the following equation.
  • Z j ⁇ L (4)
  • L is an inductance value of the reactor 35.
  • Information regarding the inductance value L is given to the interelectrode voltage calculator 12 in advance.
  • the inter-electrode voltage calculation unit 12 uses the current Ic and the resistance value R of the resistor 4 according to the above equation (3), and after the resistor 4 is turned on, The inter-electrode voltage ⁇ V of the interrupting unit 3 before charging is calculated.
  • FIG. 15 is a diagram for explaining the target closing time of the blocking unit 3.
  • the voltage V indicates the absolute value waveform of the voltage of the power supply 8
  • the interelectrode voltage ⁇ V indicates the absolute value waveform
  • the characteristic line Lr indicates the rate of decrease in interelectrode dielectric strength of the switch 5 ( RDDS)
  • the characteristic line Lm indicates the inter-electrode dielectric strength reduction rate (RDDS) of the blocking portion 3.
  • RDDS inter-electrode dielectric strength reduction rate
  • the target closing phase in this case is preferably a phase that maximizes the absolute value of the closing voltage. In other words, when the target input phase is set arbitrarily, it is difficult to suppress the surge voltage or the inrush current.
  • Such a target input phase can be determined by obtaining the voltage at the intersection Q1 while translating the characteristic line Lm in the time direction.
  • the target closing phase can be determined as the intersection point Q2 corresponding to the intersection point Q1 in this case.
  • the intersection point Q1 is set to a point where the voltage value is closer to the maximum value of the absolute value of the interelectrode voltage ⁇ V compared to the intersection point Q1 shown in FIG.
  • a target throwing phase can be determined.
  • the phase adjuster is the reactor 35, the target applied voltage that maximizes the absolute value of the applied voltage is given as a phase that maximizes the minimum applied voltage value within the fluctuation range of the characteristic line Lm.
  • the fluctuation range is specifically determined when the average characteristic line Lm is given, it is possible to specifically determine how the input voltage fluctuates within the fluctuation range. Then, by examining how the minimum applied voltage value changes while translating the characteristic line Lm in the time direction, the characteristic line Lm that maximizes the minimum applied voltage value can be obtained.
  • the phase of the intersection point Q1 between the characteristic line Lm and the interelectrode voltage ⁇ V is a phase that maximizes the minimum applied voltage value.
  • the inter-electrode voltage ⁇ V of the shut-off unit 3 after the switch 5 is turned on and before the shut-off unit 3 is turned on is predicted, and a target input phase of the shut-off unit 3 set according to the reactor 35 is given. Since the target closing time is determined, it is possible to further suppress the surge voltage or the inrush current when the interrupting unit 3 is turned on.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 power switching control device 2 breaker, 3 breaker, 3a movable main contact, 3b fixed main contact, 3c movable arc contact, 3d fixed arc contact, 4 resistor, 5 switch, 5a movable resistance contact, 5b fixed resistance contact , 7 busbars, 8 power supplies, 9 coil springs, 10 capacitors, 11 voltage measurement unit, 12 interelectrode voltage calculation unit, 13 target closing time determination unit, 14 current measurement unit, 15 input time detection unit, 16 closing time prediction Unit, 17 closing control unit, 18 instrument transformer, 19 instrument current transformer, 20 arc extinguishing chamber, 21 metal container, 22 operation mechanism, 25 power transmission line, 30a CPU, 30b memory, 30c input / output interface, 35 Reactor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Keying Circuit Devices (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

遮断器2は、遮断部3と、遮断部3に並列に接続された抵抗体4と、遮断部3に並列にかつ抵抗体4に直列に接続され、遮断部3に先行して投入されるスイッチ5とを備える。電力開閉制御装置1は、遮断器2の電源側電圧を計測する電圧計測部11と、電源側電圧の計測値と抵抗体4の抵抗値とコンデンサ10のインピーダンスとを用いて、スイッチ5の投入後かつ遮断部3の投入前に抵抗体4に流れる電流を算出し、この電流と抵抗値とを用いて、スイッチ5の投入後かつ遮断部3の投入前における遮断部3の極間電圧を算出する極間電圧算出部12と、遮断部3の極間絶縁耐力減少率と極間電圧とを用いて、コンデンサ10に応じて設定された遮断部3の目標投入位相を与える遮断部3の目標閉極時刻を決定する目標閉極時刻決定部13と、目標閉極時刻に遮断部3が閉極するように遮断器2に制御信号を出力する閉極制御部17と、を備える。

Description

電力開閉制御装置
 本発明は、電力開閉装置である遮断器を開閉制御する電力開閉制御装置に関する。
 調相器としてのコンデンサまたはリアクトルは、遮断器を介して系統に接続され、系統電圧の位相の調整に用いられる。
 一般に、遮断器を介して調相器を系統に投入する際に、遮断器の投入タイミングによっては調相器にサージ電圧または突入電流が発生する可能性がある。
 このようなサージ電圧または突入電流を抑制する方法として、遮断器をいわゆる投入抵抗付の遮断器とする方法が知られている。
 例えば、特許文献1の図10に記載された投入抵抗付の遮断器は、遮断器に並列に接続された抵抗体と、この抵抗体に直列にかつ遮断器に並列に接続されたスイッチとを備える。
 このような従来の投入抵抗付の遮断器において、調相器としてのコンデンサを投入する場合、まずスイッチが投入され、コンデンサに電源電圧が印加される。この抵抗投入時の過渡的なサージ電圧により発生する電流は、抵抗体により急激に減衰する。従って、コンデンサには、電源電圧と同じ周波数で電源電圧よりも振幅が小さい電圧が印加される。この後、遮断器の主接点が投入されると、コンデンサには、電源電圧よりも振幅が小さい電圧が既に抵抗体を介して印加されているため、コンデンサへの突入電流が抑制される。
国際公開第2000/004564号
 しかしながら、従来の投入抵抗付の遮断器では、抵抗体を投入するためのスイッチの投入後、遮断器の主接点が投入されるまでの間に、抵抗体の抵抗値と調相器のインピーダンスとで決まる電流が抵抗体に流れるため、抵抗体と並列な遮断器の極間には電位差が生ずる。従って、この電位差のため、遮断器を投入する際に依然としてサージ電圧または突入電流が発生する可能性がある。
 本発明は、上記に鑑みてなされたものであって、サージ電圧または突入電流のさらなる抑制が可能な電力開閉制御装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る電力開閉制御装置は、遮断部と、前記遮断部に並列に接続された抵抗体と、前記遮断部に並列にかつ前記抵抗体に直列に接続され、前記遮断部に先行して投入されるスイッチとを備え、前記遮断部の一端が交流電源に接続され、前記遮断部の他端が調相器に接続された遮断器の開閉を制御する電力開閉制御装置であって、前記遮断器の電源側電圧を計測する電圧計測部と、前記電源側電圧の計測値と前記抵抗体の抵抗値と前記調相器のインピーダンスとを用いて、前記スイッチの投入後かつ前記遮断部の投入前に前記抵抗体に流れる電流を算出し、前記電流と前記抵抗値とを用いて、前記スイッチの投入後かつ前記遮断部の投入前における前記遮断部の極間電圧を算出する極間電圧算出部と、前記遮断部の極間絶縁耐力減少率と前記極間電圧とを用いて、前記調相器に応じて設定された前記遮断部の目標投入位相を与える前記遮断部の目標閉極時刻を決定する目標閉極時刻決定部と、前記目標閉極時刻に前記遮断部が閉極するように前記遮断器に制御信号を出力する閉極制御部と、を備えることを特徴とする。
 本発明によれば、サージ電圧または突入電流のさらなる抑制が可能になる、という効果を奏する。
実施の形態1に係る電力開閉制御装置の構成を示す図 実施の形態1における遮断器の内部構成を示す断面図 実施の形態1において閉極動作時における遮断器の接点の入切状態を示す図 実施の形態1に係る電力開閉制御装置のハードウェア構成を示したブロック図 実施の形態1において遮断部およびスイッチの双方が開路状態にあるときの接点の模式図 実施の形態1においてスイッチが閉路状態に遮断部が開路状態にあるときの接点の模式図 実施の形態1において遮断部およびスイッチの双方が閉路状態にあるときの接点の模式図 実施の形態1において遮断器の閉極動作時における通電状態を示す第1の回路図 実施の形態1において遮断器の閉極動作時における通電状態を示す第2の回路図 実施の形態1において遮断器の閉極動作時における通電状態を示す第3の回路図 実施の形態1において遮断部の目標閉極時刻を説明するための図 実施の形態1において遮断部の目標閉極時刻を説明するための別の図 実施の形態2に係る電力開閉制御装置の構成を示す図 実施の形態2において遮断部およびスイッチの双方が開路状態にあるときの回路図 実施の形態2において遮断部の目標閉極時刻を説明するための図
 以下に、本発明の実施の形態に係る電力開閉制御装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本実施の形態に係る電力開閉制御装置1の構成を示す図である。電力開閉制御装置1は、電力開閉装置である遮断器2に接続され、遮断器2の開閉を制御する。なお、図1では、電力開閉制御装置1の機能のうち遮断器2の閉極に関する機能のみを示し、開極に関する機能は省略している。
 遮断器2は、いわゆる投入抵抗付のガス遮断器である。すなわち、遮断器2は、遮断部3と、遮断部3に並列に接続された投入抵抗である抵抗体4と、遮断部3に並列にかつ抵抗体4に直列に接続されたスイッチ5とを備える。抵抗体4の抵抗値は、500Ωから1000Ωが一般的である。
 図2は、遮断器2の内部構成を示す断面図である。図2では、遮断器2は開極状態にある。遮断部3は、可動主接点3aと、可動主接点3aと対向する固定主接点3bと、可動主接点3aと連動する可動アーク接点3cと、可動アーク接点3cと対向する固定アーク接点3dとを備える。ここで、可動主接点3a、固定主接点3b、可動アーク接点3cおよび固定アーク接点3dは、消弧室20内に配置される。スイッチ5は、可動主接点3aと連動する可動抵抗接点5aと、可動抵抗接点5aと対向する固定抵抗接点5bとを備える。ここで、可動抵抗接点5aおよび固定抵抗接点5bは、消弧室20外でかつ金属容器21内に配置される。なお、金属容器21内には絶縁ガスが密封されている。また、遮断器2は、可動主接点3a、可動アーク接点3cおよび可動抵抗接点5aを往復動作させるための操作機構22を金属容器21内に備える。
 可動抵抗接点5aは、操作機構22を介して、可動主接点3aおよび可動アーク接点3cと機械的に連結されている。この連結構造により、遮断器2の閉極に際しては、スイッチ5は遮断部3に先行して投入される。詳細には、可動抵抗接点5aが固定抵抗接点5bと接触した時から一定時間経過した後に、可動主接点3aが固定主接点3bと接触する。一定時間は例えば10msである。
 図3は、閉極動作時における遮断器2の接点の入切状態を示す図である。図3の上段は、遮断部3の入切を示し、図3の中段はスイッチ5の入切を示し、図3の下段は、電力開閉制御装置1から遮断器2に出力される制御信号の制御内容を示している。電力開閉制御装置1から閉極制御指令が出力されると、まずスイッチ5が切状態から入状態となり、さらに一定時間を経過した後、遮断部3が切状態から入状態となる。なお、詳細は省略するが、遮断器2の開極に際しては、スイッチ5は遮断部3に先行して開極する。
 図1に示すように、遮断器2は、母線7を介して交流電源である電源8に接続される。具体的には、遮断部3の一端が電源8に接続される。また、遮断器2は、調相器であるコンデンサ10に接続される。具体的には、遮断部3の他端がコンデンサ10に接続される。コンデンサ10の一端は遮断部3に接続され、コンデンサ10の他端は接地される。図示例では、電源8は、送電線25に接続されている。
 なお、図1では、簡単のため単相の場合を示しているが、相分の構成を設けることで他相の場合にも容易に拡張できる。
 次に、電力開閉制御装置1の機能構成について説明する。電力開閉制御装置1は、電圧計測部11、極間電圧算出部12、目標閉極時刻決定部13、電流計測部14、投入時刻検出部15、閉極時間予測部16および閉極制御部17を備える。
 電圧計測部11は、電源8と遮断器2との間の電圧である電源側電圧を計測する。具体的には、電圧計測部11は、母線7に取り付けられた計器用変圧器18を介して電源側電圧を計測する。電圧計測部11は、電源側電圧の計測値を極間電圧算出部12に出力する。
 極間電圧算出部12は、電源側電圧の計測値と抵抗体4の抵抗値とコンデンサ10のインピーダンスとを用いて、スイッチ5の投入後かつ遮断部3の投入前に抵抗体4に流れる電流Icを算出する。ここで、電源側電圧、すなわち電源8の電圧を電圧V、抵抗体4の抵抗値をR、コンデンサ10のインピーダンスをZとすると、極間電圧算出部12は、電圧Vと抵抗体4の抵抗値Rとコンデンサ10のインピーダンスZとを用いて、電流Icを次式により算出する。
   Ic=V/(R+Z)・・・(1)
 ここで、電源8の周波数をω、コンデンサ10の容量をC、虚数単位をjとすると、コンデンサ10のインピーダンスZは次式で与えられる。
   Z=1/(jωC)・・・(2)
 なお、容量Cに関する情報は、予め極間電圧算出部12に付与される。周波数ωに関する情報は、系統条件から既知である場合には予め極間電圧算出部12に付与されるが、電源側電圧の計測値から求めることもできる。電圧Vは、振幅については電源側電圧の計測値の極大値および極小値から、位相については電源側電圧の計測値のゼロクロス点から、周波数ωについては電源側電圧のゼロクロス点間の間隔から求めることができる。
 さらに、極間電圧算出部12は、電流Icと抵抗体4の抵抗値Rとを用いて、抵抗体4の投入後かつ遮断部3の投入前における遮断部3の極間電圧ΔVを算出する。極間電圧算出部12は、極間電圧ΔVを次式により算出する。
   ΔV=Ic×R・・・(3)
 極間電圧算出部12は、極間電圧ΔVを目標閉極時刻決定部13に出力する。
 目標閉極時刻決定部13は、極間電圧ΔVと遮断部3の極間絶縁耐力減少率(RDDS:Rate of Decrease of Dielectric Strength)とを用いて、遮断部3を目標位相で投入するための目標閉極時刻を決定する。遮断部3の極間絶縁耐力は、遮断器2の閉極過程において遮断部3の極間距離が減少するに伴って減少する。極間絶縁耐力減少率はこの極間の絶縁耐力の減少率を与える。極間絶縁耐力減少率に関する情報は予め目標閉極時刻決定部13に付与される。
 なお、目標位相は遮断部3が電気的に投入される時の目標位相である。目標閉極時刻は、遮断部3が機械的に投入される時刻である。ここで、遮断部3が電気的に投入された状態とは、極間に先行アークが発生し、極間が機械的には非接触の状態にあるが、電気的には導通している状態をいう。また、遮断部3が機械的に投入された状態とは、極間が機械的に接触した状態、すなわち、可動主接点3aと固定主接点3bとが接触し、投入動作を終えた状態をいう。なお、以下では、単に投入というときは電気的な投入を、単に閉極というときには機械的な投入を意味するものとする。
 電流計測部14は、電源8と遮断器2との間に流れる電流である電源側電流を計測する。具体的には、電流計測部14は、母線7に取り付けられた計器用変流器19を介して電源側電流を計測する。電流計測部14は、電源側電流の計測値を投入時刻検出部15に出力する。
 投入時刻検出部15は、電源側電流の計測値から投入時刻を検出する。投入時刻は、遮断部3が電気的に投入される時刻である。投入時刻検出部15は、投入時刻を閉極時間予測部16に出力する。
 閉極時間予測部16は、遮断器2の動作条件に応じて閉極時間を予測する。ここで、遮断器2の動作条件は、遮断器2の環境温度、制御電圧および操作圧力である。閉極時間は、遮断器2が動作を開始してから遮断器2が閉極するまで、すなわち機械的に投入されるまでの時間である。
 具体的には、閉極時間予測部16には、動作条件の基準値と動作条件の基準値に対応する閉極時間の基準値とに関する情報が予め与えられている。そして、閉極時間予測部16は、電力開閉性制御装置1の外部から実際の動作条件が入力されると、実際の動作条件の値と動作条件の基準値とを比較し、動作条件の基準値からの実際の動作条件の変動に応じて閉極時間の基準値からの補正分を算出し、閉極時間の基準値に当該補正分を加えた時間を閉極時間の予測値とする。
 なお、閉極時間は、遮断器2の接点摩耗および経時変化を含む遮断器2の個別の動作履歴によっても変動する。そのため、閉極時間予測部16は、動作履歴に応じて閉極時間の予測値を補正する。詳細には、閉極時間予測部16は、後述する目標投入時刻と実際の投入時刻との誤差を算出し、この誤差を解消するように閉極時間の予測値を補正する。例えば、過去複数回の誤差を求め、より近時の誤差に付与する重みをより大きくして過去複数回の誤差の加重平均を求め、この誤差の加重平均が解消されるように閉極時間の予測値を補正することができる。
 目標投入時刻は目標閉極時刻決定部13から閉極時間予測部16に出力される。閉極時間予測部16は、閉極時間の予測値を閉極制御部17に出力する。
 閉極制御部17は、電力開閉制御装置1の外部から遮断器2の閉極指令を受けると、遮断部3が目標閉極時刻に閉極するように遮断器2に制御信号を出力する。すなわち、閉極制御部17は、目標閉極時刻から閉極時間の予測値だけ前の時刻に、遮断器2に閉極制御指令を出力する。
 図4は、電力開閉制御装置1のハードウェア構成を示したブロック図である。図4に示すように、電力開閉制御装置1は、CPU30a、メモリ30bおよび入出力インタフェース30cを備える。図1の電圧計測部11はCPU30a、メモリ30bおよび入出力インタフェース30cから構成される。図1の極間電圧算出部12はCPU30aおよびメモリ30bから構成される。図1の目標閉極時刻決定部13は、CPU30aおよびメモリ30bから構成される。図1の電流計測部14は、CPU30a、メモリ30bおよび入出力インタフェース30cから構成される。図1の投入時刻検出部15は、CPU30aおよびメモリ30bから構成される。図1の閉極時間予測部16は、CPU30aおよびメモリ30bから構成される。図1の閉極制御部17は、CPU30a、メモリ30bおよび入出力インタフェース30cから構成される。
 次に、本実施の形態の動作について説明する。まず、遮断器2の閉極動作について説明する。図5から図7は、遮断器2の閉極動作時の接点の模式図である。なお、図5から図7では、図1および図2と同一の構成要素には同一の符号を付している。
 図5は、遮断部3およびスイッチ5の双方が開路状態にある図である。可動主接点3aは固定主接点3bと非接触の状態にあり、両接点間の距離はg1である。また、可動抵抗接点5aは固定抵抗接点5bと非接触の状態にあり、両接点間の距離はg2である。ここで、距離g1は距離g2よりも大きい。なお、固定抵抗接点5bと抵抗体4との間にはコイルばね9が設けられている。
 図6は、スイッチ5が閉路状態にあり、遮断部3が開路状態にある図である。可動主接点3aは固定主接点3bと非接触の状態にあるが、可動抵抗接点5aは固定抵抗接点5bと接触した状態にある。このように、スイッチ5は遮断部3に先行して投入される。
 図7は、遮断部3およびスイッチ5の双方が閉路状態にある図である。コイルばね9が縮むことで、可動主接点3aは固定主接点3bと接触した状態にあり、可動抵抗接点5aは固定抵抗接点5bと接触した状態にある。
 図8から図10は、遮断器2の閉極動作時の通電状態を示す回路図である。図8は、遮断部3およびスイッチ5の双方が開路状態にあるときの回路図、図9は、スイッチ5が閉路状態にあり、遮断部3が開路状態にあるときの回路図、図10は、遮断部3およびスイッチ5の双方が閉路状態にあるときの回路図である。なお、図8から図10では、図1および図2と同一の構成要素には同一の符号を付している。
 遮断器2に閉極制御指令が入力されると、遮断器2は図8に示す状態から図9に示す状態に移行し、スイッチ5が遮断部3に先行して投入される。この際に、抵抗体4には電流Icが流れる。電流Icは、上記した(1)式および(2)式で求められる。抵抗体4に電流Icが流れることにより、抵抗体4に並列な遮断部3の極間には、極間電圧ΔVが発生する。極間電圧ΔVは、上記した(3)式で求められる。図10に示すように、遮断部3はスイッチ5の投入後に投入され、遮断部3には電流Iが流れる。
 このように、遮断部3は極間電圧ΔVが発生した状態で投入されるので、遮断部3には極間電圧ΔVに応じたサージ電圧または突入電流が発生する可能性がある。
 次に、目標閉極時刻決定部13の動作、すなわち目標閉極時刻を決定するための処理について説明する。
 一般に、遮断器の閉極過程では、極間距離の減少に伴い極間の絶縁耐力が低下し、この絶縁耐力が極間電圧以下になった時点で極間の絶縁破壊に伴う先行アークが発生し、遮断器が電気的に投入される。遮断器の電気的な投入点は、遮断器の極間電圧の絶対値波形と遮断器の極間絶縁耐力減少率(RDDS)を示す特性線との交点で与えられる。また、遮断器の機械的な投入点である閉極点は、この特性線と電圧=0を示す直線との交点で与えられる。
 図11は、遮断部3の目標閉極時刻を説明するための図である。横軸は時間(ms)、縦軸は電圧(PU)である。ここでmsはミリ秒、PUは定格電圧を基準にした電圧を示す。電圧Vは、電源8の電圧の絶対値波形を示している。極間電圧ΔVは、極間電圧ΔVの絶対値波形を示している。特性線Lrは、スイッチ5の極間絶縁耐力減少率(RDDS)を示している。特性線Lmは、遮断部3の極間絶縁耐力減少率(RDDS)を示している。
 特性線Lrと電圧Vとの交点P1は、スイッチ5の電気的な投入点である。交点P1以降の時刻では、遮断部3に極間電圧ΔVが発生する。特性線Lrと横軸との交点P2は、スイッチ5の機械的な投入点であるスイッチ5の閉極点である。なお、横軸は電圧=0を示す直線でもある。
 特性線Lmと極間電圧ΔVとの交点Q1は、遮断部3の電気的な投入点である。交点Q1の時刻が遮断部3の目標投入時刻を与え、交点Q1の位相が遮断部3の目標投入位相を与える。特性線Lmと横軸との交点Q2は、遮断部3の機械的な投入点である遮断部3の閉極点である。交点Q2の時刻が目標閉極時刻を与える。
 なお、交点Q2の時刻と交点P2の時刻との差は、スイッチ5の閉極から遮断部3の閉極までの時間であり、遮断器2によって決まる上記した一定時間である。図示例では、この一定時間は10msである。
 調相器がコンデンサ10の場合には、遮断部3でのサージ電圧または突入電流は、遮断部3の投入電圧の絶対値が小さいほど抑制される。ここで、投入電圧は、遮断部3の電気的な投入時における極間電圧ΔVである。従って、目標投入位相は、投入電圧の絶対値を極小とする位相が望ましい。換言すれば、目標投入位相が任意に設定された場合には、サージ電圧または突入電流の抑制が困難となる。
 このような目標投入位相は、特性線Lmを時間方向に平行移動させながら交点Q1の電圧を求めることで決定することができる。目標投入位相が決定されると、この場合の交点Q1に対応する交点Q2として目標閉極時刻を決定することができる。
 しかしながら、遮断器2の閉極時間のばらつきに加えて遮断部3でのアークの発生が確率的な事象であることから、遮断部3の極間絶縁耐力減少率(RDDS)は実際には平均値を中心に変動する。遮断部3の極間絶縁耐力減少率(RDDS)の変動が正規分布に従うと仮定し、遮断部3の極間絶縁耐力減少率(RDDS)の変動の標準偏差をσとすると、特性線Lmの変動範囲は特性線Lm1,Lm2により規定することができる。ここで、特性線Lm1は特性線Lmを時間方向に-3σ平行移動した特性線であり、特性線Lm2は特性線Lmを時間方向に+3σ平行移動した特性線である。この場合、特性線Lmは平均を表す。なお、変動範囲は平均を中心に±3σであると定義しているが、これ以外で定義してもよい。
 図12は、遮断部3の目標閉極時刻を説明するための別の図である。図12では、図11の記載内容に加えて、特性線Lm1および特性線Lm2を示している。また、特性線Lm1と極間電圧ΔVとの交点をR1で示し、特性線Lm2と極間電圧ΔVとの交点をR2で示している。
 図12に示すように、特性線Lmの変動範囲が特性線Lm1,Lm2により規定される場合において、調相器をコンデンサ10としたときの目標投入位相は、以下のようにして決めることができる。すなわち、投入電圧の絶対値を極小とする目標投入電圧は、特性線Lmの変動範囲内における最大投入電圧値を極小とする位相として与えられる。
 詳細には、平均としての特性線Lmが与えられると変動範囲が具体的に定まるので、変動範囲内で投入電圧がどのように変動するのかを具体的に求めることができる。図示例では、最大投入電圧値は交点R1の電圧値となる。そして、特性線Lmを時間方向に平行移動させつつ最大投入電圧値がどのように変化するのかを調べることで、最大投入電圧値が極小化される特性線Lmを求めることができる。このような特性線Lmと極間電圧ΔVとの交点Q1の位相が最大投入電圧値を極小とする位相である。
 次に、電力開閉制御装置1の閉極制御動作について説明する。まず、電圧計測部11は遮断器2の電源側電圧を計測し、電源側電圧の計測値を極間電圧算出部12に出力する。極間電圧算出部12は、電源側電圧の計測値と抵抗体4の抵抗値Rとコンデンサ10のインピーダンスZとを用いて、スイッチ5の投入後かつ遮断部3の投入前に抵抗体4に流れる電流Icを算出し、電流Icと抵抗値Rとを用いて、スイッチ5の投入後かつ遮断部3の投入前における遮断部3の極間電圧ΔVを算出する。極間電圧算出部12は、極間電圧ΔVを目標閉極時刻決定部13に出力する。
 続いて、目標閉極時刻決定部13は、遮断部3の極間絶縁耐力減少率(RDDS)と極間電圧ΔVとを用いて、コンデンサ10に応じて設定された遮断部3の目標投入位相を与える目標閉極時刻を決定する。上記したように、目標投入位相は、目標投入電圧の絶対値を極小とする位相で与えられる。目標閉極位相が決まれば、目標閉極時刻は目標閉極位相を通る特性線Lmの電圧零点で決まる。目標閉極時刻決定部13は、目標閉極時刻を閉極制御部17に出力する。
 閉極制御部17は、閉極時間予測部16から閉極時間の予測値を取得する。そして、閉極制御部17は、電力開閉制御装置1の外部から遮断器2の閉極指令を受けると、遮断部3が目標閉極時刻に閉極するように遮断器2に制御信号を出力する。すなわち、閉極制御部17は、目標閉極時刻から閉極時間の予測値だけ前の時刻に、遮断器2に閉極制御指令を出力する。
 従来、遮断部3は任意の投入位相で投入されていたので、投入抵抗付の遮断器であっても、極間電圧ΔVの絶対値の大きさによってはサージ電圧または突入電流の抑制が困難となっていた。
 本実施の形態によれば、スイッチ5の投入後かつ遮断部3の投入前における遮断部3の極間電圧ΔVを予測し、コンデンサ10に応じて設定された遮断部3の目標投入位相を与える目標閉極時刻を決定するようにしたので、遮断部3の投入の際のサージ電圧または突入電流のさらなる抑制が可能になる。
実施の形態2.
 実施の形態1では、調相器がコンデンサ10の場合について説明したが、本実施の形態では、調相器がリアクトルの場合について説明する。なお、以下では、主に実施の形態1との相違点についてのみ説明する。
 図13は、本実施の形態に係る電力開閉制御装置1の構成を示す図、図14は、遮断部3およびスイッチ5の双方が開路状態にあるときの回路図である。図13および図14では、図1に示す構成要素と同一の構成要素には同一の符号を付している。
 図13および図14に示すように、遮断器2は、調相器であるリアクトル35に接続される。具体的には、リアクトル35の一端は遮断部3に接続され、リアクトル35の他端は接地される。電力開閉制御装置1の構成は実施の形態1のものと同じである。
 調相器がリアクトル35の場合、極間電圧算出部12は、電源側電圧の計測値と抵抗体4の抵抗値とリアクトル35のインピーダンスとを用いて、スイッチ5の投入後かつ遮断部3の投入前に抵抗体4に流れる電流Icを算出する。ここで、電源側電圧、すなわち電源8の電圧を電圧V、抵抗体4の抵抗値をR、リアクトル35のインピーダンスをZとすると、電流Icは上記した(1)式で与えられる。
 ただし、リアクトル35のインピーダンスZは次式で与えられる。
   Z=jωL・・・(4)
 ここで、Lはリアクトル35のインダクタンス値である。なお、インダクタンス値Lに関する情報は、予め極間電圧算出部12に付与される。
 極間電圧算出部12は、実施の形態1と同様に、電流Icと抵抗体4の抵抗値Rとを用いて、上記した(3)式に従って、抵抗体4の投入後かつ遮断部3の投入前における遮断部3の極間電圧ΔVを算出する。
 図15は、遮断部3の目標閉極時刻を説明するための図である。図15では、図11と同様に、電圧Vが電源8の電圧の絶対値波形を示し、極間電圧ΔVがその絶対値波形を示し、特性線Lrがスイッチ5の極間絶縁耐力減少率(RDDS)を示し、特性線Lmが遮断部3の極間絶縁耐力減少率(RDDS)を示している。交点Q1が遮断部3の電気的な投入点を与え、交点Q2が遮断部3の閉極点を与える点も同様である。
 調相器がリアクトル35の場合には、リアクトル35は誘導性負荷であるため、遮断部3でのサージ電圧または突入電流は、遮断部3の投入電圧の絶対値が大きいほど抑制される。従って、この場合の目標投入位相は、投入電圧の絶対値を極大とする位相が望ましい。換言すれば、目標投入位相が任意に設定された場合には、サージ電圧または突入電流の抑制が困難となる。
 このような目標投入位相は、特性線Lmを時間方向に平行移動させながら交点Q1の電圧を求めることで決定することができる。目標投入位相が決定されると、この場合の交点Q1に対応する交点Q2として目標閉極時刻を決定することができる。図15では、交点Q1は、図11に示す交点Q1と比較して、電圧値が極間電圧ΔVの絶対値の極大値により近い点に設定されている。
 なお、遮断部3の極間絶縁耐力減少率(RDDS)の変動を考慮した場合も、実施の形態1と同様に、目標投入位相を決定することができる。調相器がリアクトル35の場合には、投入電圧の絶対値を極大とする目標投入電圧は、特性線Lmの変動範囲内における最小投入電圧値を極大とする位相として与えられる。
 詳細には、平均としての特性線Lmが与えられると変動範囲が具体的に定まるので、変動範囲内で投入電圧がどのように変動するのかを具体的に求めることができる。そして、特性線Lmを時間方向に平行移動させつつ最小投入電圧値がどのように変化するのかを調べることで、最小投入電圧値が極大化される特性線Lmを求めることができる。このような特性線Lmと極間電圧ΔVとの交点Q1の位相が最小投入電圧値を極大とする位相である。
 本実施の形態のその他の構成および動作は実施の形態1と同様である。本実施の形態によれば、スイッチ5の投入後かつ遮断部3の投入前における遮断部3の極間電圧ΔVを予測し、リアクトル35に応じて設定された遮断部3の目標投入位相を与える目標閉極時刻を決定するようにしたので、遮断部3の投入の際のサージ電圧または突入電流のさらなる抑制が可能になる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 電力開閉制御装置、2 遮断器、3 遮断部、3a 可動主接点、3b 固定主接点、3c 可動アーク接点、3d 固定アーク接点、4 抵抗体、5 スイッチ、5a 可動抵抗接点、5b 固定抵抗接点、7 母線、8 電源、9 コイルばね、10 コンデンサ、11 電圧計測部、12 極間電圧算出部、13 目標閉極時刻決定部、14 電流計測部、15 投入時刻検出部、16 閉極時間予測部、17 閉極制御部、18 計器用変圧器、19 計器用変流器、20 消弧室、21 金属容器、22 操作機構、25 送電線、30a CPU、30b メモリ、30c 入出力インタフェース、35 リアクトル。

Claims (3)

  1.  遮断部と、前記遮断部に並列に接続された抵抗体と、前記遮断部に並列にかつ前記抵抗体に直列に接続され、前記遮断部に先行して投入されるスイッチとを備え、前記遮断部の一端が交流電源に接続され、前記遮断部の他端が調相器に接続された遮断器の開閉を制御する電力開閉制御装置であって、
     前記遮断器の電源側電圧を計測する電圧計測部と、
     前記電源側電圧の計測値と前記抵抗体の抵抗値と前記調相器のインピーダンスとを用いて、前記スイッチの投入後かつ前記遮断部の投入前に前記抵抗体に流れる電流を算出し、前記電流と前記抵抗値とを用いて、前記スイッチの投入後かつ前記遮断部の投入前における前記遮断部の極間電圧を算出する極間電圧算出部と、
     前記遮断部の極間絶縁耐力減少率と前記極間電圧とを用いて、前記調相器に応じて設定された前記遮断部の目標投入位相を与える前記遮断部の目標閉極時刻を決定する目標閉極時刻決定部と、
     前記目標閉極時刻に前記遮断部が閉極するように前記遮断器に制御信号を出力する閉極制御部と、
     を備えることを特徴とする電力開閉制御装置。
  2.  前記調相器は、コンデンサであり、
     前記目標投入位相は、前記遮断部の電気的な投入時における前記極間電圧の絶対値を極小とする位相であることを特徴とする請求項1に記載の電力開閉制御装置。
  3.  前記調相器は、リアクトルであり、
     前記目標投入位相は、前記遮断部の電気的な投入時における前記極間電圧の絶対値を極大とする位相であることを特徴とする請求項1に記載の電力開閉制御装置。
PCT/JP2015/084481 2015-12-09 2015-12-09 電力開閉制御装置 WO2017098594A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3007185A CA3007185C (en) 2015-12-09 2015-12-09 Power switching control device
JP2016523352A JP5972507B1 (ja) 2015-12-09 2015-12-09 電力開閉制御装置
US15/778,957 US10490366B2 (en) 2015-12-09 2015-12-09 Power switching control device
PCT/JP2015/084481 WO2017098594A1 (ja) 2015-12-09 2015-12-09 電力開閉制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084481 WO2017098594A1 (ja) 2015-12-09 2015-12-09 電力開閉制御装置

Publications (1)

Publication Number Publication Date
WO2017098594A1 true WO2017098594A1 (ja) 2017-06-15

Family

ID=56701705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084481 WO2017098594A1 (ja) 2015-12-09 2015-12-09 電力開閉制御装置

Country Status (4)

Country Link
US (1) US10490366B2 (ja)
JP (1) JP5972507B1 (ja)
CA (1) CA3007185C (ja)
WO (1) WO2017098594A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535642B (zh) * 2018-06-22 2023-06-27 杭州之江开关股份有限公司 一种断路器单相大电流检测装置及其操作方法
CN113376515A (zh) * 2020-03-09 2021-09-10 西门子股份公司 确定断路器的关合时间的方法及装置、计算机可读介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564319A (en) * 1978-11-07 1980-05-15 Tokyo Shibaura Electric Co High pressure breaker
WO2012095958A1 (ja) * 2011-01-12 2012-07-19 三菱電機株式会社 電力開閉制御装置およびその閉極制御方法
WO2015019418A1 (ja) * 2013-08-06 2015-02-12 三菱電機株式会社 位相制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19882678B4 (de) 1998-07-16 2010-09-16 Mitsubishi Denki K.K. Anordnung zur Bestimmung des Schließzeitpunkts für eine Schalteinrichtung eines Mehrphasensystems
JP3716691B2 (ja) 1999-11-04 2005-11-16 三菱電機株式会社 電力開閉装置
US20040212353A1 (en) * 2003-04-25 2004-10-28 Siemens Westinghouse Power Corporation Use of a closing impedance to minimize the adverse impact of out-of-phase generator synchronization
JP2008153037A (ja) 2006-12-15 2008-07-03 Toshiba Corp 電力用開閉器の同期投入方法および同期投入システム
JP5472912B2 (ja) * 2010-02-19 2014-04-16 株式会社東芝 過電圧抑制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564319A (en) * 1978-11-07 1980-05-15 Tokyo Shibaura Electric Co High pressure breaker
WO2012095958A1 (ja) * 2011-01-12 2012-07-19 三菱電機株式会社 電力開閉制御装置およびその閉極制御方法
WO2015019418A1 (ja) * 2013-08-06 2015-02-12 三菱電機株式会社 位相制御装置

Also Published As

Publication number Publication date
CA3007185A1 (en) 2017-06-15
JP5972507B1 (ja) 2016-08-17
JPWO2017098594A1 (ja) 2017-12-07
CA3007185C (en) 2020-09-08
US20180358189A1 (en) 2018-12-13
US10490366B2 (en) 2019-11-26

Similar Documents

Publication Publication Date Title
US10403449B2 (en) Direct-current circuit breaker
JP4799712B1 (ja) 電力開閉制御装置およびその閉極制御方法
JP6727208B2 (ja) 電流遮断装置
JP4549436B1 (ja) 突入電流抑制装置および突入電流抑制方法
JP2020505744A (ja) 高電圧dc遮断装置
JP2022515500A (ja) 動的発振回路を有する高電圧直流電流用の電流遮断装置および制御方法
JP5972507B1 (ja) 電力開閉制御装置
CN108431921B (zh) 监视电气开关设备的方法和包括电气开关装置的电气安装
CN103180926A (zh) 浪涌电流抑制装置
JP2008153037A (ja) 電力用開閉器の同期投入方法および同期投入システム
Razi-Kazemi et al. A new realistic transient model for restrike/prestrike phenomena in vacuum circuit breaker
KR20110071075A (ko) 가스 절연 개폐 장치
JP5844015B1 (ja) 電力開閉制御装置
JP4717158B1 (ja) 位相制御開閉装置
WO2012045360A1 (en) Direct current circuit breaker
US10396689B2 (en) PCB-based motor starter
US7904266B2 (en) Method and apparatus for calculating the separation time of arcing contacts of a high-volume switchgear
US20110148222A1 (en) Method for determining a switching time of an electrical switching device
JP4811331B2 (ja) 開閉装置
US11152173B2 (en) Method for operating the drive of a vacuum interrupter, and vacuum interrupter itself
Ciulica Optimizing the switching time for 400 kV SF6 circuit breakers
JP5084645B2 (ja) 位相制御開閉装置
JP2012075233A (ja) 事故点標定装置および事故点標定方法
US9042063B2 (en) Switching arrangement
Kulas et al. Switching on Short Circuit Current in an Electric Circuit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016523352

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3007185

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910210

Country of ref document: EP

Kind code of ref document: A1