JP2008153037A - 電力用開閉器の同期投入方法および同期投入システム - Google Patents

電力用開閉器の同期投入方法および同期投入システム Download PDF

Info

Publication number
JP2008153037A
JP2008153037A JP2006339261A JP2006339261A JP2008153037A JP 2008153037 A JP2008153037 A JP 2008153037A JP 2006339261 A JP2006339261 A JP 2006339261A JP 2006339261 A JP2006339261 A JP 2006339261A JP 2008153037 A JP2008153037 A JP 2008153037A
Authority
JP
Japan
Prior art keywords
power switch
polarity
capacitive load
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006339261A
Other languages
English (en)
Inventor
Kenji Arai
健嗣 新井
Susumu Nishiwaki
進 西脇
Tadashi Koshizuka
正 腰塚
Masayuki Kosakata
昌幸 小坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006339261A priority Critical patent/JP2008153037A/ja
Publication of JP2008153037A publication Critical patent/JP2008153037A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】簡素な制御系で投入サージおよび突入電流を抑制でき、コスト削減と信頼性の向上を図った電力用開閉器の同期投入方法および同期投入システムを提供する。
【解決手段】電力用開閉器2および計器用変流器3には同期投入制御装置5が接続される。同期投入制御装置5を構成する要素の内、遮断電流極性判別部51は、計器用変流器3の測定信号に基づき電力用開閉器2にて容量性負荷4を交流電源1から切り離す際の遮断電流の極性を判別する。残留電圧極性判断部52は、遮断電流極性判別部51にて判別した遮断電流の極性から容量性負荷4に残留する残留電圧の極性を判断する。さらに、閉極位相制御部53は、残留電圧極性判断部52の判断結果に基づいて電力用開閉器2の閉極位相を制御し、投入指令を出力する。
【選択図】図1

Description

本発明は、電力系統へ容量性負荷を接続する際、電力用開閉器の投入位相を制御するようにした電力用開閉器の同期投入方法および同期投入システムに係り、特に、簡単な構成で容量性負荷の残留電圧の極性を判別可能な電力用開閉器の同期投入方法および同期投入システムに関するものである。
一般に、コンデンサバンクや無負荷送電線路といった容量性負荷を、電源に接続するために負荷開閉器や遮断器などの電力用開閉器を投入するが、このとき、容量性負荷には投入サージや突入電流が発生することが知られている。投入サージとは、投入瞬時の容量性負荷の電圧と電源側の電圧に差がある場合に、負荷側電圧が電源側電圧に追従する際の過渡的な振動として発生するものである。また、突入電流は、投入時の電力用開閉器の接点の損耗を早めると言われており、継電器の誤動作を招くなど悪影響をもたらす要因とされていた。
ここで図12を用いて投入サージについて説明する。図12のグラブにおいて、7が容量性負荷端電圧、8が電源電圧、11が投入サージを示している。投入サージ11は、容量性負荷端電圧7に1puの残留電圧が存在し、電源電圧8が線路残留電圧の逆極性のピークで投入された場合に最大となり、理論的には対地電圧で3puの投入サージ11が発生する。このような高電圧の投入サージ11は変電機器の絶縁を脅かすため、その抑制が望まれている。
そこで従来、投入サージ抑制のために、電力用開閉器の投入時に一定時間抵抗を挿入する投入抵抗方式が提案されている。しかし、この方式では、電力用開閉器に投入抵抗を装備するので、部品点数が大幅に増加し、コストが増大した。しかも、高速動作する電力用開閉器にとって部品点数の増加は重量化をもたらすことになり、機械的信頼性が低下するおそれがあった。
さらに、投入抵抗を装備した電力用開閉器であったとしても、投入位相によっては1.7pu以上の投入サージが比較的高い発生することがある。現行の変電機器や送電線路には、1.7puの投入サージに耐えられるように設計されているものもあるが、投入サージは低く抑えられるのであれば、それに越したことはない。投入サージを少しでも抑制できれば、それに応じて変電機器や送電線路の絶緑レベルを低下させることができるので、電力系統全般のコスト低減に大きく寄与できるからである。
以上のような背景から、投入サージを抑制させる技術として、容量性負荷の投入時に電力用開閉器の投入位相を調節する同期投入システムが注目されている。この電力用開閉器の同期投入システムは、電力用開閉器の接点の機械的接触を表わす閉極タイミングを、商用周波数の電圧波形のどの点に置くかを制御するものであって、電力用開閉器の極間電圧が零の瞬時に容量性負荷への投入を実施すれば、投入サージは発生せず、突入電流も低くなるという原理に基づいている。
ここで、電力用開閉器としてガス遮断器を例に挙げて、同期投入システムの原理について図13〜図16を用いて具体的に説明する。図13の(a)〜(c)はガス遮断器の閉極動作を示した断面図であり、図13中の符号17は固定電極、18は可動電極である。図14はガス遮断器が閉極動作を行っている際の極間絶縁破壊電圧特性9を示すグラフであって、図14の横軸の時間に示したa〜cは図13(a)〜(c)の各タイミングに対応している。
図14のグラフから明らかなように、ガス遮断器を閉極動作させるにつれて、電力用開閉器の極間絶縁破壊電圧特性9は減少していく。極間絶緑破壊電圧が零になる瞬時は、ガス遮断器の固定電極17と可動電極18とが機械的に接触した時点であり、図13(c)に相当する。極間では絶縁破壊が発生するがプレアークで導通する領域では電極間距離は近い。このため、絶縁破壊電圧特性9は直線的に表すことができる。
また、電極間距離が近い場合の商用周波の交流電圧では放電の極性効果は無視できるので、ガス遮断器の極間電圧は正弦波(sinωt)の絶対値波形で評価することができる。図14では、ガス遮断器の極間電圧絶対値10の曲線と、極間絶縁破壊電圧特性9の直線を示している。このとき、極間電圧絶対値10の曲線と極間絶縁破壊電圧特性9の直線との交点における電圧で、極間でのプレアークが発生して導通する。
ここで、図15にて示したように、極間電圧絶対値10の曲線と極間絶縁破壊電圧特性9の直線との交点、つまり導通時の極間電圧は、極間絶縁破壊電圧特性9の直線の系統電圧に対する位相によって変化する(図15では左側から0.8pu、0.5pu、1.0pu、0puと、極間電圧が変化している)。すなわち、閉極位相によって、ガス遮断器がプレアークにより導通し、容量性負荷が電力系統に接続される瞬間に応じて、極間電圧が異なるということにほかならない。
そこで、容量性負荷への投入時、ガス遮断器の極間電圧が零の瞬時に投入を行うことにより、投入サージの発生を抑え、突入電流も低減可能である。以上が同期投入システムの原理であり、このシステムを用いて電力用開閉器の投入位相を制御し、極間電圧が零の瞬時に容量性負荷への投入を行うことにより、投入サージや突入電流の発生防止もしくは低減を実現することができる。
なお、同期投入は、概念的には新しいものではなく以前から知られているが、電力用開閉器において精密な動作性が要求されたことから実用化には至らなかった。ところが近年、電力用開閉器の動作精度がよくなり、特に高電圧遮断器であるガス遮断器の出現によって機械的動作の精度が飛躍的に向上したため、同期投入システムの実現可能性がにわかに議論されている。
具体的な従来例としては、特許文献1などが提案されている。特許文献1記載の遮断器投入制御装置では、開放指令信号が入力された時点の交流電圧の位相角を検出することで、遮断器の投入を制御する技術であって、変圧器の励磁突入電流抑制を図っている。
特開平11−353969号公報
ところで、同期投入システムでは、極間電圧が零の瞬時に容量性負荷への投入を行うようにしているので、電力用開閉器の極間電圧を測定しなくてはならない。しかしながら通常の変電所や開閉閉所における開閉装置では、電力用開閉器の極間電圧は測定していない。容量性負荷に残留電圧が残っていなければ、電源側の電圧がそのまま電力用開閉器の極問電圧となるので、特に問題とならないが、容量性負荷に残留電圧がある場合には、負荷側と電源側の電圧を別々に測定して、両者の差を計算しなくては極問電圧を求めることができない。
しかも、容量性負荷の残留電圧は直流電圧なので、電力用開閉器で通常使われる電圧測定用変成器では直流電圧を測定することはできなかった。したがって、負荷側の残留電圧を測定するには、直流電圧を測定するための特別な機器が別途必要となり、構成部材数が増えてコストが増大していた。
さらに、負荷残留電圧を測定したとしても、その後、これを考慮した上で極間電圧が零となる点で投入すべく、電力用開閉器の投入位相を変化させる必要がある。例えば、図16では、投入目標として、4つの異なる投入瞬時19〜22を示している。投入瞬時19〜22における残留電圧のレベルはそれぞれ、投入瞬時19で1.0pu、投入瞬時20で0.7pu、投入瞬時21で0.3pu、投入瞬時22では残留電圧が無い場合である。このように、極間電圧が零となる瞬時で電力用開閉器を投入するには、負荷側の残留電圧のレベルに応じて投入目標をシフトさせなくてはならなかった。その結果、高度な制御系が要求されており、構成が非常に複雑化していた。
以上のように、従来の同期投入システムでは、負荷残留電圧の測定は難しく、専用の測定機器を追加する必要があった。しかも、位相制御系には高い精度が求められることになり、システムが複雑化し易かった。このため、シンプルな構成で同期投入システムを構築することが望まれていた。また、投入サージの抑制は、変電機器や送電線路の絶縁設計レベルの低下に有効なので、電力系統全般のコストが低減できるといったメリットがある。したがって、この点からも同期投入システムの改善が期待されていた。
本発明は、このような課題を解決するために提案されたものであって、負荷残留電圧の測定という困難を回避し、機器を追加することなく簡素な制御系で投入サージおよび突入電流を抑制でき、引いては変電機器や送電線路の絶縁設計レベルの低減に寄与して、コスト削減と信頼性の向上を図った電力用開閉器の同期投入方法および同期投入システムを提供することを目的としている。
上記目的を達成するために、本発明は、一端を交流電源に接続し、他端を容量性負荷に接続した電力用開閉器を同期投入するための同期投入方法において、前記電力用開閉器にて前記容量性負荷を前記交流電源から切り離す際の遮断電流の位相から前記容量性負荷に残留する残留電圧の極性を判断し、前記電力用開閉器の閉極位相を制御することを特徴としている。
このような本発明では、電力用開閉器にて容量性負荷を交流電源から切り離す際の遮断電流の位相から容量性負荷における残留電圧の極性を判断し、電力用開閉器の閉極位相を制御するので、通常の電力用開閉器に装備される電流測定器を使用するだけで、同期投入に必要な情報を得ることが可能となる。すなわち、付加的な機器を何ら据え付けることなく、負荷側の残留電圧の極性を的確に判断可能であり、構成の簡略化を進めることができる。
本発明によれば、大幅な機器の追加や制御系の複雑化を行うことなく、十分に有効な投入サージおよび突入電流の抑制効果に優れた電力用開閉器の同期投入方法および同期投入システムを構築することが可能であり、変電機器や送電線路の絶縁設計レベル低減に貢献して、コスト削減および信頼性の向上が図れる。
(1)第1の実施形態
[構成]
以下、図面を参照して第1の実施形態について説明する。図1は第1の実施形態のブロック図である。
図1に示すように、第1の実施形態は、電力用開閉器2に用いられる同期投入システムであって、電力用開閉器2には一端には交流電源1が接続され、他端には容量性負荷4が接続されている。また、電力用開閉器2の電源側には隣接して計器用変流器3が装備されている。さらに、電力用開閉器2および計器用変流器3には本実施形態の主要部となる同期投入制御装置5が接続されている。同期投入制御装置5は、遮断電流極性判別部51と、残留電圧極性判断部52と、閉極位相制御部53から構成されている。
遮断電流極性判別部51は、計器用変流器3の測定信号に基づいて電力用開閉器2にて容量性負荷4を交流電源1から切り離す際の遮断電流の極性を判別する部分である。また、残留電圧極性判断部52は、遮断電流極性判別部51にて判別した遮断電流の極性から容量性負荷4に残留する残留電圧の極性を判断するようになっている。さらに、閉極位相制御部53は、残留電圧極性判断部52の判断結果に基づいて電力用開閉器2の閉極位相を制御し、投入指令を出力するように構成されている。
[作用効果]
図2は、容量性負荷4が交流電源1から切り離される時の容量性負荷電流6と、容量性負荷電圧7を示すグラフである。容量性負荷4の電流位相は電圧位相に比べて90°進んでいる。したがって、容量性負荷4の充電電流を遮断した電流における極性と、同極性の電圧が、容量性負荷4に残留することになる。
すなわち、残留電圧極性判断部52は、遮断電流極性判別部51にて判別した遮断電流の極性に関する情報を取り込み、この情報に基づいて、遮断電流の極性と同じ極性の電圧が容量性負荷4に残留していると判断することができる。なお、極性については、計器用変流器3の極性を、どちら側の向きを正とするかによって決まる。
図3は、容量性負荷4に1.0puの残留電圧が存在している場合に、交流電源1の電圧の位相が正反対の時点で閉極した場合の投入サージを表しており、図3の(A)は負荷端電圧7および電源電圧8を示し、図3の(B)は電力用開閉器2の極間電圧絶対値10を示している。この図の実線で表される絶縁破壊電圧特性9に従って電力用開閉器2を投入した場合は、投入サージは1.2puである。これは、後段の閉極時の位相を反対にした場合と比べて、半分のサージレベルであり、高い抑制効果が得られていることが分かる。
一方で、閉極時の位相を反対にした、1点鎖線で表される絶縁破壊特性9に従って電力用開閉器2を投入した場合は、電力用開閉器2の極間耐電圧特性を示す絶縁破壊特性9の直線が極間電圧の高い部分で交差しており、非常に高い電圧でプレアークによる導通が発生していることになり、この場合の投入サージは2.4puとなる。この結果、変電機器や送電線の絶縁を脅かすのみならず、突入電流も過大に発生する。したがって、負荷残留電圧の極性を把握し、それに基づいて閉極時の位相を制御することは、同期投入の効果を得るために非常に重要である。
以上のような第1の実施形態では、既設の計器用変流器3からの信号を使用することで、容量性負荷4に残留する残留電圧の極性について判断し、この判断結果に基づいて電力用開閉器2の閉極位相を制御可能である。したがって、変電機器の主器は何ら特別な装置を加えることなく、同期投入制御装置5の簡略化を進めることができる。その結果、電力用開閉器2に投入抵抗を装備させることなく、閉極位相を調整することにより、低コストで投入サージや突入電流を低減することが可能となる。これにより、変電機器や送電線路の絶緑レベル低下を実現でき、電力系統全般のコスト低減に大きく寄与することができる。
(2)第2の実施形態
[構成]
次に、図4のブロック図を用いて第2の実施形態について説明する。第2の実施形態では、第1の実施形態における同期投入制御装置5に替えて同期投入制御装置5Aを設けた点に特徴がある。
同期投入制御装置5Aは、遮断電流極性判別部51による遮断電流極性判別の結果を用いて電流遮断時点の極性が常に同一となるように遮断器の開極位相を制御して同期遮断を行うための開極位相制御部54を新たに設け、さらに、閉極位相制御部53を、残留電圧極性判断部52を介さずに計器用変流器3で計測された電流信号に基づいて閉極指令を出力するように構成したものである。
[作用効果]
開極位相制御部54では容量性負荷4の充電電流を遮断する際に、常に同一の極性で同期遮断を行う。この結果、容量性負荷4には常に同一極性の電圧が残留するため、容量性負荷4の残留電圧の極性を判別する必要がなく、同期投入のための制御系を簡素化することができる。
このような第2の実施形態によれば、容量性負荷4の遮断の際に、電流の極性を判別し、開極位相制御部54にて開極位相を制御して同期遮断を行うことができ、容量性負荷4の残留電圧の極性を制御することが可能になる。その結果、上記第1の実施形態と同じく、閉極位相を調整することにより、電力用開閉器2に投入抵抗を装備させることなく、低コストで投入サージや突入電流を低減することが可能になるという効果が得られる。
(3)第3の実施形態
[構成]
次に、図5のブロック図を用いて第3の実施形態について説明する。第3の実施形態に係る同期投入制御装置5Bは、電力開閉器2の電源側に電圧計測機器(例えば、VT)30を設置し、この電圧計測機器30の出力を電源電圧計測部55に入力するように構成したものである。しかも、本実施形態の同期投入制御装置5Bは、閉極位相制御部53に残留電圧極性判断部52の判断結果と電源電圧計測部55で計測した電源電圧とを取り込むことにより、残留電圧の値に拘わらず電源電圧が容量性負荷4の残留電圧と同極性から逆極性に反転する時期に、接点が機械的に接触するように電力用開閉器2の閉極位相を制御するようにしたものである。
なお、電圧計測機器30は、本実施形態専用に新たに設ける必要はなく、例えば変電所において母線等に既に設置されているVTから電圧出力を導入するようにしても良く、また、負荷充電電流と電源電圧との位相差の関係が既知であることから、計器用変流器3で計測した電流情報に基づいて電源電圧の極性を推定するようにしても良い。
[作用効果]
第3の実施形態の持つ作用効果について、図6〜図9のグラフを参照して説明する。図6〜図9は、電力用開閉器2の容量性負荷4投入瞬時を示すグラフの一例であり、(A)は負荷端電圧7および電源電圧8を示し、(B)は電力用開閉器の極間電圧を示している。
図6は負荷残留電圧無しの場合、図7〜図9はそれぞれ負荷残留電圧が1.0pu 、0.7pu、0.3puの場合である。ただし、投入サージレベルは電力用開閉器2の絶縁破壊電圧特性9や系統構成に依存する。なお各図において、実線で描かれた電力用開閉器2の極間の絶緑破壊電圧特性9の直線が、第3の実施形態の投入瞬時を表している。また、各図において、12は本実施形態で提案する閉極目標であり、13は極間電圧が零となる瞬時を示している。
図6に示したグラフでは、極間電圧零点で電力用開閉器2が投入するので、投入サージは発生しない。図7に関しては、投入サージを発生させないという観点からは、図中の破線で示すような、極間電圧が零点となる瞬時13での投入が好ましい。しかし、この場合は残留電圧の有無によって投入目標をシフトさせる必要があり、従来技術にて述べたように制御系が非常に複雑になる。その上、直流電圧である容量性負荷4の残留電圧値を測定しなくてはならないという問題も出てくる。
そこで、第3の実施形態では、容量性負荷4の残留電圧の値に拘わらず、単に、交流電源1側の電圧が容量性負荷4の残留電圧と同極性から逆極性に反転する時期に、電力用開閉器2の接点が機械的に接触し電力用開閉器2が閉極するように電力用開閉器2の閉極位相を制御した。
したがって、容量性負荷4の残留電圧が1.0puである場合の、図7の実線で示す電力用開閉器の極間絶緑破壊電圧特性9の直線は、極間電圧がおよそ0.7puでプレアークにより極間が導通することになる。この場合、電源電圧8が零であり、負荷端電圧7は電源電圧8を中心に過渡振動を行う。
図7に示すように、負荷端電圧7はこの投入サージが交流電圧に重畳した波形となるが、電源電圧8の零点から電圧ピークまでの1/4周期の間に投入サージは減衰するので、サージのピーク値はおおよそ1.2puである。電力機器は商用周波の定格電圧はもちろんのこと、雷インパルスに対する耐電圧性能も有しているため、最低でも1.5puのサージにはもともと耐えられる設計となっている。
したがって、容量性負荷4の投入に関しても投入サージを完全に抑える必要はなく、実用上問題がないのであればむしろ制御系の簡素化を優先させる方がシステム全体から見て望ましい。すなわち、1.2pu程度の投入サージを許容することによって、制御系の簡素化を実現でき、これによりコスト削減と信頼性の向上の両立を図ることができる。
さらに、図8、図9はそれぞれ容量性負荷4の残留電圧が0.7pu、0.3puの場合であるが、極間電圧零点で投入しようとすると、図6、図7の場合とはさらに異なる時間で閉極動作を行わなくてはならない。この場合も、容量性負荷4の残留電圧を測定するのではなく、容量性負荷4の残留電圧の極性を判別するだけで止め、電源電圧8が残留電圧と同極性から逆極性に変化する時期に同期投入することによって、変電機器の絶縁上、問題ない範囲の投入サージに抑えることが可能である。
しかも、図8、図9に示した例では、図7に比べて、プレアークが発生する極間電圧はもともと低く、投入サージも小さい。したがって、1.0puの残留電圧がある場合が最過酷条件であって、その場合でも本実施の形態によると投入サージは1.2pu程度に低減することができる。
以上のような第3の実施形態によれば、上記第1および第2の実施形態の持つ作用効果に加えて、次のような独自の利点がある。すなわち、容量性負荷4に残留する直流電圧に関してその絶対値まで測定するのではなく、その極性のみを検知するだけなので、測定装置を簡素化することができる。と同時に、本実施形態では投入サージを完全に抑えることを目指すのではなく、実用上問題のない範囲で投入サージを抑えることを目指しているので、容量性負荷4の残留電圧のレべルにより投入目標をいちいちシフトしなくて済む。このため、複雑な制御系は不要であり、制御系を大幅に簡略化することが可能である。
(4)第4の実施形態
[構成]
第4の実施の形態は、上記第3の実施形態に改良を加えたものであり、電力用開閉器2の閉極位相を、電源電圧8が容量性負荷4の残留電圧と同極性から逆極性に変化する電圧零点から、±0.15周期の誤差を許容したことを特徴としている。
ここで、閉極位相の許容差±0.15周期の根拠について説明する。まず、図10に示す例では、0.15周期の閉極位相のズレがあると、極間電圧の高いところでプレアークが発生し、1.5puの投入サージが発生している。図10において、14は目標に対して0.15周期遅れた閉極瞬時を示している。同期投入は投入サージの抑制を目的としているので、1.5pu以上のサージを許容すると本来の目的を損なう。従って、電源電圧零点から±0.15周期以内に閉極することが必要である。
また、図11に示すように、極間の絶縁破壊電圧特性9に比べて傾きが小さい、すなわち変化率の小さい絶縁破壊電圧特性15を有する開閉器の場合(一般に閉極速度の小さい開閉器)、極間電圧ピーク付近でのプレアークによる導通を避けるために、閉極日標を電源電圧零点から意図的にシフトさせる手段がある。図11において、16はシフトさせた閉極目標を示している。このような場合も、閉極位相に±0.15周期程度の幅を持たせることは有効である。
一方で、電力用開閉器2自体の閉極動作ばらつきが存在する。電源電圧8零点を日標に閉極動作を行う場合、安定動作が期待できるガス遮断器であっても、±0.05周期の閉極時間のばらつきが存在する。この他にも制御系での誤差も生じる。したがって、厳密に電源電圧8零点に閉極動作を完了することは不可能である。この点からも、閉極位相に幅を持たせる必要がある。以上のように、サージ抑制に有効な効果を得る目的と、運用上の動作ばらつき等を考慮して、閉極日標を電源電圧8零点瞬時の±0.15周期とした。
[作用効果]
以上のような第4の実施形態によれば、閉極日標を電源電圧8零点瞬時の±0.15周期とし、電力用開閉器2の閉極位相に許容差を設けるので、動作値に裕度をとることができる。また、容量性負荷4側に残留する残留電圧の絶対値を測定する必要がないので測定装置が簡素になる。
しかも、容量性負荷4の残留電圧レべルによって投入目標をシフトすることも不要なので、簡素な制御系を用いて効果的に容量性負荷4の投入サージを抑制することができる。これにより、変電機器や送電線路の絶縁設計レべルの低減が可能になり、優れた信頼性を確保しつつ、電力系統全体で大幅にコストを削減することができる。
(5)他の実施形態
なお、本発明は、上記の実施形態に限定されるものではなく、各実施形態を適宜組み合わせることも可能である。例えば、上記第2の実施形態と同様に同期遮断を行うことにより、負荷に残留する電圧極性を制御すると同時に、前記第3の実施形態と同じく、電源電圧8が容量性負荷4の残留電圧と同極性から逆極性に変化する時期に同期投入を行うようにしてもよい。
さらに、負荷残留電圧の極性判別装置を付加的に接続した実施形態も包含する。この実施形態では、上記第3の実施形態と同じく、電源電圧8が容量性負荷4の残留電圧と同極性から逆極性に変化する時期に同期投入を行うようにしておく。このような実施形態によっても、簡素な制御系を用いて、十分有効なサージ抑制、突入電流抑制を行うことができ、変電機器などの絶緑設計レべル低下に寄与して、電力系統全体にわたりコストの低減と信頼性の向上という効果が得られる。
本発明に係る第1の実施形態のブロック図。 容量性負荷電流遮断時の電流と負荷電圧を示すグラフ。 閉極位相による投入サージレべルの違いを示すグラフ。 本発明に係る第2の実施形態のブロック図。 本発明に係る第3の実施形態のブロック図。 本発明に係る第3の実施形態を説明するための容量性負荷電流遮断時の電流と負荷電圧を示すグラフであり、負荷残留電圧が零の場合。 第3の実施形態を説明するための容量性負荷電流遮断時の電流と負荷電圧を示すグラフであり、負荷残留電圧が1.0puの場合。 第3の実施形態を説明するための容量性負荷電流遮断時の電流と負荷電圧を示すグラフであり、負荷残留電圧が0.7puの場合。 第3の実施形態を説明するための容量性負荷電流遮断時の電流と負荷電圧を示すグラフであり、負荷残留電圧が0.3puの場合。 本発明に係る第4の実施形態を説明するための容量性負荷電流遮断時の電流と負荷電圧を示すグラフであり、閉極位相に0.15周期の許容値を持たせた場合。 本発明に係る第4の実施形態を説明するための容量性負荷電流遮断時の電流と負荷電圧を示すグラフであり、閉極時間をシフトさせた場合。 同期開閉を行わずに最大投入サージが発生する場合を表すグラフ。 電力用開閉器の一例としてガス遮断器の電極を表した断面図。 ガス遮断器閉極に伴い減少する電極間川絶緑破壊電圧特性を示すグラフ。 電力用開閉器の閉極位相の違いによって、プレアークにより投入が完了する電圧が異なることを示すグラフ。 容量性負荷に残留する残留電圧の絶対値によって投入サージを発生させない投入瞬時が異なることを示すグラフ。
符号の説明
1…交流電源
2…電力用開閉器
3…計器用変流器
4…容量性負荷
5、5A、5B…同期投入制御装置
6…容量性負荷電流
7…容量性負荷端電圧
8…電源電圧
9…電力用開閉器極間絶縁破壊電圧特性
10…電力用開閉器極間電圧絶対値
11…投入サージ
12…本発明で提案する閉極目標
13…極間電圧が零となる瞬時
14…目標に対して0.15サイクル遅れた閉極瞬時
15…変化率の小さい電力用開閉器絶緑破壊電圧特性
16…シフトさせた閉極目標
17…電力用開閉器固定電極
18…電力用開閉器可動電極
19…負荷残留電圧1.0puの場合のサージを発生させない投入瞬時
20…負荷残留電圧0.7puの場合のサージを発生させない投入瞬時
21…負荷残留電圧0.3pu の場合のサージを発生させない投入瞬時
22…負荷残留電圧1.0puの場合のサージを発生させない投入瞬時
30…電圧計測機器
51…遮断電流極性判別部
52…残留電圧極性判断部
53…閉極位相制御部
54…開極位相制御部
55…電源電圧計測部

Claims (10)

  1. 一端を交流電源に接続し、他端を容量性負荷に接続した電力用開閉器を同期投入するための同期投入方法において、
    前記電力用開閉器にて前記容量性負荷を前記交流電源から切り離す際の遮断電流の位相から前記容量性負荷に残留する残留電圧の極性を判断し、前記電力用開閉器の閉極位相を制御することを特徴とする電力用開閉器の同期投入方法。
  2. 一端を交流電源に接続し、他端を容量性負荷に接続した電力用開閉器を同期投入するための同期投入方法において、
    前記電力用開閉器にて前記容量性負荷を前記交流電源から切り離す際に電流の極性を判別して常に同一の極性で電流遮断が完了するように前記電力用開閉器を同期遮断し、前記交流電源側で計測された電流信号に基づいて前記電力用開閉器の閉極位相を制御することを特徴とする電力用開閉器の同期投入方法。
  3. 一端を交流電源に接続し、他端を容量性負荷に接続した電力用開閉器を同期投入するための同期投入方法において、
    前記電力用開閉器にて前記容量性負荷を前記交流電源から切り離す際の遮断電流の位相から前記容量性負荷に残留する残留電圧の極性を判断し、前記電源電圧が当該残留電圧と同極性から逆極性に反転する時期に前記電力用開閉器の閉極位相を制御することを特徴とする電力用開閉器の同期投入方法。
  4. 一端を交流電源に接続し、他端を容量性負荷に接続した電力用開閉器を同期投入するための同期投入方法において、
    前記電力用開閉器にて前記容量性負荷を前記交流電源から切り離す際に電流の極性を判別して常に同一の極性で電流遮断が完了するように前記電力用開閉器を同期遮断し、前記電源電圧が当該残留電圧と同極性から逆極性に反転する時期に前記電力用開閉器の閉極位相を制御することを特徴とする電力用開閉器の同期投入方法。
  5. 一端を交流電源に接続し、他端を容量性負荷に接続した電力用開閉器を同期投入するための同期投入システムにおいて、
    前記電力用開閉器にて前記容量性負荷を前記交流電源から切り離す際に電流計測手段で計測された遮断電流の極性を判別する遮断電流極性判別手段と、
    前記遮断電流極性判別手段にて判別した結果に基づいて前記容量性負荷に残留する残留電圧の極性を判断する残留電圧極性判断手段と、
    前記残留電圧極性判断手段の出力に基づいて前記電力用開閉器の閉極位相を制御する閉極位相制御手段と、
    を備えたことを特徴とする電力用開閉器の同期投入システム。
  6. 一端を交流電源に接続し、他端を容量性負荷に接続した電力用開閉器を同期投入するための同期投入システムにおいて、
    前記電力用開閉器にて前記容量性負荷を前記交流電源から切り離す際に電流計測手段で計測された遮断電流の極性を判別する遮断電流極性判別手段と、
    前記遮断電流極性判別手段にて判別した結果に基づいて電流遮断時点前の極性が常に同一となるように遮断器の開極位相を制御して同期遮断をおこなう開極位相制御手段と、
    前記電流計測手段で計測された電流信号に基づいて前記電力用開閉器の閉極位相を制御する閉極位相制御手段と、
    を備えたことを特徴とする電力用開閉器の同期投入システム。
  7. 一端を交流電源に接続し、他端を容量性負荷に接続した電力用開閉器を同期投入するための同期投入システムにおいて、
    前記電力用開閉器にて前記容量性負荷を前記交流電源から切り離す際に電流計測手段で計測された遮断電流の極性を判別する遮断電流極性判別手段と、
    前記遮断電流極性判別手段にて判別した結果に基づいて前記容量性負荷に残留する残留電圧の極性を判断する残留電圧極性判断手段と、
    前記電源電圧が当該残留電圧と同極性から逆極性に反転する時期に前記電力用開閉器の閉極位相を制御する閉極位相制御手段と、
    を備えたことを特徴とする電力用開閉器の同期投入システム。
  8. 一端を交流電源に接続し、他端を容量性負荷に接続した電力用開閉器を同期投入するための同期投入システムにおいて、
    前記電力用開閉器にて前記容量性負荷を前記交流電源から切り離す際に電流計測手段で計測された遮断電流の極性を判別する遮断電流極性判別手段と、
    前記遮断電流極性判別手段にて判別した結果に基づいて電流遮断時点前の極性が常に同一となるように遮断器の開極位相を制御して同期遮断をおこなう開極位相制御手段と、
    前記電源電圧が当該残留電圧と同極性から逆極性に反転する時期に前記電力用開閉器の閉極位相を制御する閉極位相制御手段と、
    を備えたことを特徴とする電力用開閉器の同期投入システム。
  9. 前記容量性負荷は、前記残留電圧極性判断手段を備えていることを特徴とする請求項5、7、8のいずれか1項に記載の電力用開閉器の同期投入システム。
  10. 前記閉極位相制御手段は、前記交流電源の電圧が前記容量性負荷に残留する残留電圧と同一極性から異なる極性に反転する電圧零点の前後0.15周期以内に前記電力用開閉器が閉極するようにしたことを特徴とする請求項7、8、9のいずれか1項に記載の電力用開閉器の同期投入システム。
JP2006339261A 2006-12-15 2006-12-15 電力用開閉器の同期投入方法および同期投入システム Pending JP2008153037A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339261A JP2008153037A (ja) 2006-12-15 2006-12-15 電力用開閉器の同期投入方法および同期投入システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339261A JP2008153037A (ja) 2006-12-15 2006-12-15 電力用開閉器の同期投入方法および同期投入システム

Publications (1)

Publication Number Publication Date
JP2008153037A true JP2008153037A (ja) 2008-07-03

Family

ID=39655008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339261A Pending JP2008153037A (ja) 2006-12-15 2006-12-15 電力用開閉器の同期投入方法および同期投入システム

Country Status (1)

Country Link
JP (1) JP2008153037A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080371A2 (en) * 2008-12-18 2010-07-15 Caterpillar Inc. System for decoupling a power source from a load
JP4717158B1 (ja) * 2010-07-27 2011-07-06 三菱電機株式会社 位相制御開閉装置
WO2012039373A1 (ja) * 2010-09-22 2012-03-29 株式会社 東芝 突入電流抑制装置
WO2012124474A1 (ja) * 2011-03-17 2012-09-20 株式会社 東芝 突入電流抑制装置
US10490366B2 (en) 2015-12-09 2019-11-26 Mitsubishi Electric Corporation Power switching control device
CN110850198A (zh) * 2019-10-25 2020-02-28 天津航空机电有限公司 一种基于固态功率控制器的容性负载判断电路
JP7235837B1 (ja) 2021-11-09 2023-03-08 東光東芝メーターシステムズ株式会社 電力量計の開閉器の制御方法及び電力量計

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134920A (ja) * 1989-10-20 1991-06-07 Toshiba Corp しゃ断器の制御装置
JP2006324125A (ja) * 2005-05-19 2006-11-30 Mitsubishi Electric Corp 開閉装置の閉極位相制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134920A (ja) * 1989-10-20 1991-06-07 Toshiba Corp しゃ断器の制御装置
JP2006324125A (ja) * 2005-05-19 2006-11-30 Mitsubishi Electric Corp 開閉装置の閉極位相制御装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080371A3 (en) * 2008-12-18 2010-09-16 Caterpillar Inc. System for decoupling a power source from a load
GB2478097A (en) * 2008-12-18 2011-08-24 Caterpillar Inc System for decoupling a power source from a load
WO2010080371A2 (en) * 2008-12-18 2010-07-15 Caterpillar Inc. System for decoupling a power source from a load
CN102959669A (zh) * 2010-07-27 2013-03-06 三菱电机株式会社 相位控制开关装置
JP4717158B1 (ja) * 2010-07-27 2011-07-06 三菱電機株式会社 位相制御開閉装置
WO2012014282A1 (ja) * 2010-07-27 2012-02-02 三菱電機株式会社 位相制御開閉装置
WO2012039373A1 (ja) * 2010-09-22 2012-03-29 株式会社 東芝 突入電流抑制装置
CN102959670B (zh) * 2010-09-22 2015-10-07 株式会社东芝 冲击电流抑制装置及其控制方法
US9515479B2 (en) 2010-09-22 2016-12-06 Kabushiki Kaisha Toshiba Inrush current suppression apparatus
CN102959670A (zh) * 2010-09-22 2013-03-06 株式会社东芝 冲击电流抑制装置
JP2012069351A (ja) * 2010-09-22 2012-04-05 Toshiba Corp 突入電流抑制装置
CN103262197B (zh) * 2011-03-17 2015-10-07 株式会社东芝 冲击电流抑制装置及其控制方法
CN103262197A (zh) * 2011-03-17 2013-08-21 株式会社东芝 冲击电流抑制装置
WO2012124474A1 (ja) * 2011-03-17 2012-09-20 株式会社 東芝 突入電流抑制装置
US9425615B2 (en) 2011-03-17 2016-08-23 Kabushiki Kaisha Toshiba Inrush current suppression apparatus
JP2012195234A (ja) * 2011-03-17 2012-10-11 Toshiba Corp 突入電流抑制装置
US10490366B2 (en) 2015-12-09 2019-11-26 Mitsubishi Electric Corporation Power switching control device
CN110850198A (zh) * 2019-10-25 2020-02-28 天津航空机电有限公司 一种基于固态功率控制器的容性负载判断电路
CN110850198B (zh) * 2019-10-25 2022-07-12 天津航空机电有限公司 一种基于固态功率控制器的容性负载判断电路
JP7235837B1 (ja) 2021-11-09 2023-03-08 東光東芝メーターシステムズ株式会社 電力量計の開閉器の制御方法及び電力量計
JP2023070251A (ja) * 2021-11-09 2023-05-19 東光東芝メーターシステムズ株式会社 電力量計の開閉器の制御方法及び電力量計

Similar Documents

Publication Publication Date Title
JP4799712B1 (ja) 電力開閉制御装置およびその閉極制御方法
JP2892717B2 (ja) 電力開閉制御装置
JP2008153037A (ja) 電力用開閉器の同期投入方法および同期投入システム
JP6727208B2 (ja) 電流遮断装置
JP4549436B1 (ja) 突入電流抑制装置および突入電流抑制方法
WO2016056098A1 (ja) 直流遮断器
US7633725B2 (en) Micro-electromechanical system based soft switching
US20080269952A1 (en) Controlled switching device
JP2020505744A (ja) 高電圧dc遮断装置
US11145470B2 (en) Motor-driven vacuum circuit breaker
US20200328039A1 (en) Synchronized Opening Of Circuit Breaker
EP1433188B1 (en) Three phase system with controlled switching of a load network to a three phase power supply
JP5514051B2 (ja) 電気量波形の立ち上がりタイミング検出方法および遮断器の同期開閉制御装置
JP4717158B1 (ja) 位相制御開閉装置
JP5844015B1 (ja) 電力開閉制御装置
CN101510689B (zh) 同步开关
JP5972507B1 (ja) 電力開閉制御装置
US9490627B2 (en) Magnetizing inrush current suppressing device
JP4666367B2 (ja) 電力用開閉制御装置
US11152173B2 (en) Method for operating the drive of a vacuum interrupter, and vacuum interrupter itself
JPH04117136A (ja) コンデンサバンク開閉用開閉装置
JPH05144352A (ja) 真空遮断器
Rostron et al. Simplified designs for switching reactive power improve power system reliability
JPH03134920A (ja) しゃ断器の制御装置
JPH02168520A (ja) 電力用開閉装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090925

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A02 Decision of refusal

Effective date: 20111108

Free format text: JAPANESE INTERMEDIATE CODE: A02