WO2012014282A1 - 位相制御開閉装置 - Google Patents

位相制御開閉装置 Download PDF

Info

Publication number
WO2012014282A1
WO2012014282A1 PCT/JP2010/062609 JP2010062609W WO2012014282A1 WO 2012014282 A1 WO2012014282 A1 WO 2012014282A1 JP 2010062609 W JP2010062609 W JP 2010062609W WO 2012014282 A1 WO2012014282 A1 WO 2012014282A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
polarity
power supply
side voltage
Prior art date
Application number
PCT/JP2010/062609
Other languages
English (en)
French (fr)
Inventor
翔 常世田
定之 木下
森 智仁
健次 亀井
伊藤 弘基
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CA2806254A priority Critical patent/CA2806254C/en
Priority to CN201080067252.6A priority patent/CN102959669B/zh
Priority to PCT/JP2010/062609 priority patent/WO2012014282A1/ja
Priority to JP2010547772A priority patent/JP4717158B1/ja
Publication of WO2012014282A1 publication Critical patent/WO2012014282A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/593Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for ensuring operation of the switch at a predetermined point of the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H9/563Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle for multipolar switches, e.g. different timing for different phases, selecting phase with first zero-crossing

Definitions

  • the present invention relates to a phase control switching device that controls switching timing of a circuit breaker.
  • phased load circuit such as a capacitor bank with a neutral point grounded or an unloaded transmission line
  • the power supply voltage of each phase is measured and the power supply voltage zero point for each phase is determined.
  • phase control switchgear that suppresses the generation of transient voltage and current by detecting and individually turning on the breakers of each phase near the power supply voltage zero point (for example, Patent Document 1). ).
  • the present invention has been made in view of the above, and an object of the present invention is to provide a phase control switching device capable of suppressing the generation of transient voltage and current associated with the closing operation of the phase-advancing load circuit. .
  • a phase control switchgear is a phase control switchgear that controls a closing phase of a three-phase switchgear connected between a power source and a phase-advancing load.
  • a power supply side voltage detection unit for detecting each phase power supply side voltage on the power supply side, a load side voltage detection unit for detecting each phase load side voltage on the progressive load side, and a zero point of each phase load side voltage
  • the polarity of the time differential value of each phase load side voltage at the zero point of each phase load side voltage detected last time is A residual voltage polarity estimator that estimates the polarity of each phase residual voltage on the phase-advancing load side, and the period of each phase power supply side voltage is detected, and each phase power supply side voltage is calculated based on the polarity of each phase residual voltage.
  • a closing phase control unit which controls the closing phase of the switchgear, characterized in that it comprises a.
  • FIG. 1 is a diagram of a configuration example of the phase control switching device according to the first embodiment.
  • FIG. 2 is a waveform diagram for explaining a method for estimating the polarity of the residual voltage remaining in the phase advance load after the circuit breaker is opened.
  • FIG. 3 is a diagram for explaining a method of controlling the closing phase of the circuit breaker based on the estimated polarity of the residual voltage.
  • phase control switch according to an embodiment of the present invention will be described with reference to the accompanying drawings.
  • this invention is not limited by embodiment shown below.
  • the phase control switchgear according to the present embodiment has a function capable of suppressing a transient voltage and current due to insertion of a circuit breaker to a phase-advancing load.
  • the dielectric strength between the electrodes decreases as the distance between the contacts decreases, but this dielectric strength depends on the system voltage applied between the contacts.
  • the electric field value becomes lower than the electric field value, a leading arc is generated due to a dielectric breakdown between the contact poles and is electrically charged. Since the change in contact distance between contacts is determined by the switching pole operating time of the circuit breaker, it can be evaluated by a mechanical property test.
  • the dielectric strength between contact contacts is the voltage applied between contact contacts.
  • FIG. 1 is a diagram of a configuration example of the phase control switching device according to the first embodiment.
  • a circuit breaker 50 which is a three-phase switchgear, includes a power supply side circuit composed of an R phase, an S phase, and a T phase shown on the right side of the figure, and a phase-advancing load shown on the left side of the figure.
  • a capacitor bank with a neutral point grounded or an unloaded transmission line or the like corresponds
  • 10a, 10b, 10c for example, a capacitor bank with a neutral point grounded or an unloaded transmission line or the like corresponds
  • the circuit breaker 50 includes arc extinguishing chambers 52a, 52b, and 52c, and independent operation units so that the respective contacts in the arc extinguishing chambers 52a, 52b, and 52c can be opened and closed independently.
  • 74a, 74b, and 74c are provided.
  • each load side voltage measurement part 73a, 73b, 73c which measures each phase load side voltage is provided in the phase advance load side of the circuit breaker 50. As shown in FIG.
  • the phase control switching device 80 is configured by, for example, a computer and the like, and a power supply side voltage detection unit that detects each phase power supply side voltage based on signals from the power supply side voltage measurement units 72a, 72b, and 72c. 82, a load side voltage detector 83 for detecting each phase load side voltage based on signals from the load side voltage measuring units 73a, 73b, 73c, and a signal from each current measuring unit 74a, 74b, 74c.
  • the current detection unit 84 that detects each phase current and the control unit 81 are configured.
  • the control unit 81 outputs each output from each detection unit (the power supply side voltage detection unit 82, the load side voltage detection unit 83, and the current detection unit 84) and the switching pole command 31 input to the phase control switching device 80.
  • a residual voltage polarity estimation unit 81a and a closing phase control unit 81b that operate based on the configuration are provided.
  • the residual voltage polarity estimator 81a starts operating when the opening command for the circuit breaker 50 is input, continuously detects the zero point of each phase load side voltage, and time at the zero point of each phase load side voltage. The differential value is obtained, and when the zero point of the next phase load side voltage cannot be detected within the predetermined period from the previous detection time of the zero point of each phase load side voltage, at the zero point of the last detected phase load side voltage. The polarity of the time differential value of each phase load side voltage is estimated as the polarity of each phase residual voltage after the circuit breaker 50 is opened.
  • the residual voltage polarity estimation unit 81a when the zero point of each phase load side voltage cannot be detected periodically, the time differential value of each phase load side voltage at the zero point of each phase load side voltage detected last. Is estimated as the polarity of each phase residual voltage after the circuit breaker 50 is opened.
  • the closing phase control unit 81b detects the period of each phase power supply side voltage, and closes at a point where each phase power supply side voltage changes from the polarity of each phase residual voltage estimated by the residual voltage polarity estimation unit 81a to the opposite polarity.
  • the circuit breaker 50 is controlled so as to be polarized.
  • FIG. 2 is a waveform diagram for explaining a method for estimating the polarity of the residual voltage remaining in the phase advance load after the circuit breaker is opened.
  • FIG. 2 (a) to 2 (e) are diagrams showing examples of waveforms when each contact of the circuit breaker 50 is electrically disconnected at each phase interruption point shown in FIG. More specifically, FIG. 2A shows a voltage waveform on each phase power supply side, and FIG. 2B shows each phase current flowing from the power supply to the phase advance loads 10a, 10b, and 10c via the circuit breaker 50.
  • 2 (c) shows the waveform of each phase load side voltage
  • FIG. 2 (d) shows the waveform of the slope of each phase load side voltage, which is the time differential value of each phase load side voltage
  • FIG.2 (e) has shown the voltage waveform between circuit breaker poles obtained by subtracting each phase load side voltage from each phase power supply side voltage.
  • Each phase current waveform (FIG. 2B) flowing from the power source to the phase-advancing loads 10a, 10b, and 10c is 1 ⁇ 4 cycle at the power source frequency with respect to each phase power source side voltage waveform (FIG. 2A).
  • the waveform is advanced.
  • the opening phase is controlled so that the circuit breaker 50 is electrically interrupted at the zero point of each phase current.
  • the break point of each phase is near the local maximum value or the local minimum value of each phase power supply side voltage
  • each phase load side voltage waveform (FIG. 2 (c)) has a positive electrode after each phase interrupt point.
  • a negative or negative direct current residual voltage is generated.
  • the polarity of each residual voltage at this time coincides with the polarity of the slope (time differential value) of each phase load side voltage at the zero point of each phase load side voltage immediately before each phase cutoff point (FIG. 2 (d)). .
  • the polarity of the slope of the R phase load side voltage at the zero point of the time A immediately before the interruption of the R phase coincides with the polarity of the R phase residual voltage and is negative.
  • the polarity of the slope of the T phase load side voltage at the zero point at time B immediately before the T phase cutoff coincides with the polarity of the T phase residual voltage, and is positive.
  • the polarity of the slope of the S-phase load side voltage at the zero point at time C immediately before the S-phase cutoff coincides with the polarity of the S-phase residual voltage and has a negative polarity.
  • the zero point of the last detected phase load side voltage is It can be determined as the zero point of each phase load side voltage immediately before the phase cutoff, and the polarity of each phase load side voltage at that zero point (time differential value) is the polarity of each phase residual voltage after each phase cutoff point Can be estimated.
  • the predetermined period described above in order to determine whether or not the zero point of each phase load side voltage that periodically visits every 1/2 cycle of the power supply frequency before each phase is interrupted, 1 / of the power supply frequency is determined. Any predetermined period longer than two cycles may be used.
  • the time for determining the polarity of the residual voltage is delayed. For example, it may be set to about 12 ms when the power frequency is 50 Hz, and about 10 ms when the power frequency is 60 Hz.
  • FIG. 3 is a diagram for explaining a method of controlling the closing phase of the circuit breaker based on the estimated polarity of the residual voltage.
  • FIG. 3A shows an example of each R phase waveform diagram after each phase cutoff point
  • FIG. 3B shows an example of each T phase waveform diagram after each phase cutoff point
  • the zero point of each phase power supply side voltage includes a zero point (T1 point in FIG. 3A, T1 ′ point in FIG. 3B) that reverses from negative polarity to positive polarity, and positive polarity.
  • T1 point in FIG. 3A T1 ′ point in FIG. 3B
  • T2 point in FIG. 3 (a) T2 ′ point in FIG. 3 (b)
  • the circuit breaker 50 is controlled so that the straight lines extending from the zero point of the two R-phase power supply side voltages at the points T1 and T2 to the upper left are respectively closed at the points T1 and T2.
  • the dielectric strength change rate characteristic line between the circuit breaker poles in the circuit breaker closing process is shown.
  • FIG. 3B the straight lines extending to the upper left from the zeros of the two T-phase power supply side voltages at the points T1 ′ and T2 ′ are closed at the points T1 ′ and T2 ′, respectively.
  • the dielectric strength change rate characteristic line between the circuit breaker poles in the circuit breaker closing process when the circuit breaker 50 is controlled is shown.
  • the intersection of the dielectric strength change rate characteristic line and the absolute value of the voltage between the circuit breakers becomes the electrical input point.
  • the circuit breaker 50 in the R phase, when the circuit breaker 50 is controlled so as to be closed at the point T1, the circuit breaker is set so that the point A becomes an electrical input point and is closed at the point T2.
  • point B becomes the electrical input point.
  • the circuit breaker 50 In the T phase, when the circuit breaker 50 is controlled so as to be closed at the point T1 ′, the circuit breaker 50 is closed so that the point A ′ becomes an electrical input point and is closed at the point T2 ′. In the case of control, the point B ′ becomes the electrical input point.
  • the position on the horizontal axis of this electrical input point is the input phase, and the position on the vertical axis is the magnitude of the applied voltage between the electrodes when the insulation between the electrodes is broken. Since the magnitude of this inter-electrode applied voltage is the initial value of a transient phenomenon that starts when the circuit breaker 50 is turned on, the larger this inter-electrode applied voltage, the more affected the transmission / transformer equipment connected to the power system. growing. Therefore, it is necessary to control the circuit breaker 50 so as to be closed at the zero point of each phase power supply side voltage so that the applied voltage between the electrodes becomes smaller.
  • the circuit breaker 50 in the R phase, is controlled so as to be closed at the zero point of the R phase power supply side voltage that changes from the negative polarity that is the polarity of the R phase residual voltage to the positive polarity, that is, the T2 point.
  • the circuit breaker electrode voltage is electrically turned on at a point B at which the absolute value of the interelectrode voltage becomes a lower voltage, and the electrode application voltage becomes smaller.
  • the circuit breaker 50 when the circuit breaker 50 is controlled so as to be closed at the zero point of the T phase power supply side voltage that changes from the positive polarity that is the polarity of the T phase residual voltage to the negative polarity, that is, the T1 'point, The voltage between the electrodes is electrically supplied at the point A ′ where the absolute value of the interelectrode voltage becomes a lower voltage, and the applied voltage between the electrodes becomes smaller.
  • the timing at which the absolute value of the circuit breaker pole voltage becomes lower by controlling the circuit breaker 50 so as to be closed at the zero point of each phase power supply side voltage that changes from the polarity of each phase residual voltage to the opposite polarity.
  • the voltage applied between the electrodes can be further reduced.
  • the closing phase control unit 81b may control the circuit breaker 50 so as to be closed at the zero point of any power supply side voltage in the accident phase.
  • the residual voltage polarity estimation unit 81a has at least one or more each within a period of less than 1 ⁇ 2 cycle period of the power supply frequency from the previous detection time of the zero point of each phase load side voltage.
  • the phase in which the zero point of the phase load side voltage is detected may be determined as the accident phase, and the magnitude of each phase current input from the current detection unit 84 before the circuit breaker 50 is interrupted is a predetermined current threshold (for example, A phase that is at least twice the rated current) may be determined as an accident phase. Or it is also possible to judge an accident phase using these methods together. Even if such control is performed, it is possible to solve the problem of the present invention of suppressing transient voltage and current when the circuit breaker is turned on.
  • a predetermined current threshold for example, A phase that is at least twice the rated current
  • the phase control switching device of the first embodiment when the next zero point of each phase load side voltage cannot be detected within a predetermined period from the previous zero point of each phase load side voltage, finally, The detected zero point of each phase load side voltage is determined as the zero point of each phase load side voltage immediately before each phase shutoff, and the polarity of the time differential value of the load side voltage at the zero point of each phase load side voltage just before each phase shutoff Is estimated as the polarity of the residual voltage of each phase after the circuit breaker is opened, and the power supply side voltage of each phase is closed at the point where the polarity of the residual voltage of each phase after the circuit breaker opens changes to the opposite polarity.
  • the circuit breaker Since the circuit breaker is controlled at the same time, the circuit breaker can be electrically turned on when the voltage across the circuit breaker becomes low, and the generation of transient voltage and current accompanying the closing operation of the advanced load circuit. The effect that can be suppressed It is.
  • Embodiment 2 the method of estimating the polarity of the time differential value of the load-side voltage at the zero point of each phase load-side voltage immediately before breaking each phase as the polarity of each phase residual voltage after opening the circuit breaker has been described.
  • the second embodiment a method for estimating the instantaneous polarity or the reverse polarity of the inter-phase circuit breaker pole voltage after each phase interruption as the polarity of each phase residual voltage after circuit breaker opening will be described.
  • the configuration of the phase control switching device according to the second embodiment is the same as the configuration shown in the first embodiment except for the remaining voltage polarity estimation unit, and a detailed description thereof will be omitted.
  • Residual voltage polarity estimation unit 81a in the second embodiment starts operation when an opening command for circuit breaker 50 is input, and subtracts each phase load side voltage from each phase power supply side voltage to each phase circuit breaker pole.
  • a predetermined voltage threshold that is, the voltage between each phase circuit breaker is greater than a predetermined positive voltage threshold or a predetermined negative voltage threshold.
  • the reverse polarity of the instantaneous value of the inter-phase circuit breaker voltage at the time of the following is estimated as the polarity of each phase residual voltage after the circuit breaker 50 is opened.
  • the voltage waveform between the circuit breakers shown in FIG. 2 (e) is changed from each phase power supply side voltage shown in FIG. 2 (a) to each phase load side shown in FIG. 2 (c). It is a waveform obtained by subtracting the voltage.
  • the opening phase is controlled so that the circuit breaker 50 is electrically interrupted at the zero point of each phase current. For this reason, it interrupts
  • the voltage between the breaker poles is opposite to the polarity of the residual voltage, and when each phase breakpoint is near the maximum value of each phase power supply side voltage, it is approximately zero to the minimum value of each phase power supply side voltage.
  • each phase breakpoint is near the maximum value of each phase power supply side voltage, it is approximately zero to the minimum value of each phase power supply side voltage.
  • the waveform changes in synchronization with each phase power supply side voltage (FIG. 2 (e)).
  • the R-phase circuit breaker pole voltage after the R-phase cutoff is a positive polarity having a polarity opposite to the polarity of the R-phase residual voltage, and is approximately twice the maximum value of the R-phase power supply side voltage from zero. Within the range up to the voltage value of R, it changes in synchronization with the R-phase power supply side voltage.
  • the T-phase circuit breaker inter-pole voltage after the T-phase cutoff is a negative polarity opposite to the polarity of the T-phase residual voltage, and the minimum value of the T-phase power supply side voltage from zero Within the range up to about twice the voltage value, it changes in synchronization with the T-phase power supply side voltage.
  • the voltage between the S phase circuit breakers after the S phase is interrupted has a positive polarity opposite to the polarity of the S phase residual voltage, and the maximum of the S phase power supply side voltage from zero. It changes in synchronization with the S-phase power supply side voltage within a range up to about twice the voltage value.
  • the reverse polarity of the instantaneous value of the inter-phase circuit breaker voltage at the time of detection can be estimated as the polarity of the residual voltage of each phase.
  • the positive voltage threshold described above may be set to, for example, about 1/4 of the maximum value that can be taken as the breaker pole voltage value (that is, twice the maximum value of each phase power supply side voltage).
  • the negative voltage threshold value may be set to about 1 ⁇ 4 of the minimum value that can be taken as the voltage value between the breaker poles (that is, twice the minimum value of each phase power supply side voltage).
  • the residual voltage polarity estimation unit 81a in the second embodiment before and after the time when each inter-phase circuit breaker pole voltage becomes equal to or higher than a predetermined positive voltage threshold or lower than a predetermined negative voltage threshold. It is also possible to estimate the reverse polarity of the integrated value of the inter-phase circuit breaker pole voltage as the polarity of each phase residual voltage after the circuit breaker 50 is opened. With such an operation mode, for example, even when transient vibration occurs in the circuit breaker pole voltage after the circuit breaker 50 is opened, the polarity of each phase residual voltage can be accurately estimated.
  • the integration period of the inter-phase circuit breaker voltage is an arbitrary predetermined period centered around the time when the inter-phase circuit breaker voltage is equal to or higher than a predetermined positive voltage threshold or lower than a predetermined negative voltage threshold.
  • a half cycle period of the power supply frequency about 10 ms when the power supply frequency is 50 Hz and about when the power supply frequency is 60 Hz, about About 8.33 ms.
  • each phase breaker pole voltage obtained by subtracting each phase load side voltage from each phase power supply side voltage is greater than or equal to a predetermined positive voltage threshold value.
  • the reverse polarity of the instantaneous value of the inter-phase circuit breaker voltage when the voltage becomes less than or equal to the predetermined negative voltage threshold, or the inter-phase circuit breaker inter-electrode voltage is greater than or equal to the predetermined positive voltage threshold or the predetermined negative voltage Estimate the reverse polarity of the integrated value of the inter-phase circuit breaker voltage before and after the time when the voltage falls below the threshold as the polarity of the residual voltage of each phase after the circuit breaker is opened.
  • the circuit breaker Since the circuit breaker is controlled so as to be closed at the point where the polarity of the residual voltage of each phase later changes to the opposite polarity, the timing at which the voltage across the circuit breaker is lowered is the same as in the first embodiment. It is possible to make it electrically charged with Transient voltage due to closing operation of the compatible load circuit, there is an advantage that it is possible to suppress the generation of current.
  • each phase load side voltage is subtracted from each phase power supply side voltage to obtain each phase breaker inter-pole voltage.
  • each phase power supply side voltage is obtained from each phase load side voltage. You may make it obtain the voltage between each phase circuit breaker poles by subtracting.
  • the polarity of the instantaneous value or the integral value of the inter-phase circuit breaker pole voltage may be estimated as the polarity of each phase residual voltage after the circuit breaker is opened.
  • Embodiment 3 In the first embodiment, a method for estimating the polarity of the time differential value of the load-side voltage at the zero point of each phase load-side voltage immediately before breaking each phase as the polarity of each phase residual voltage after opening the breaker, In Embodiment 2, the method of estimating the polarity of the instantaneous value or integrated value of each phase circuit breaker pole voltage after each phase interruption as the polarity of each phase residual voltage after circuit breaker opening has been described. In the third embodiment, a method for estimating the polarity of the integral value of each phase load side voltage after breaking each phase as the polarity of each phase residual voltage after opening the circuit breaker will be described.
  • the configuration of the phase control switching device according to the third embodiment is the same as the configuration shown in the first and second embodiments except for the remaining voltage polarity estimation unit, and thus detailed description thereof is omitted. .
  • Residual voltage polarity estimation unit 81a in the third embodiment starts operation at the time when the opening command for breaker 50 is input, continuously detects the zero point of each phase load side voltage, and each previous phase load When the zero point of the next phase load side voltage cannot be detected within the predetermined period from the detection time of the zero point of the side voltage, the cycle of the power supply frequency from the last detected zero point of the phase load side voltage is 1 ⁇ 4 cycle
  • the later time is estimated as each phase cutoff time, the integral value of each phase load side voltage after each phase cutoff time is obtained, and the polarity of the integrated value is the polarity of each phase residual voltage after the circuit breaker 50 is opened. presume.
  • the residual voltage polarity estimation unit 81a supplies power from the detection time of the zero point of each phase load side voltage detected last when the zero point of each phase load side voltage cannot be detected periodically.
  • the time after 1/4 cycle of the frequency is estimated as each phase cutoff time, and the polarity of the integral value of each phase load side voltage after each phase cutoff time is defined as the polarity of each phase residual voltage after opening of the circuit breaker 50 presume.
  • each phase current waveform (FIG. 2B) flowing from the power source to the phase-advancing loads 10a, 10b, and 10c corresponds to each phase power source side voltage waveform (FIG. 2A).
  • each of the waveforms has a phase advanced by 1/4 cycle of the power supply frequency. For this reason, the zero point comes at a time when each phase current waveform and each phase power supply side voltage waveform are shifted from each other by 1 ⁇ 4 cycle.
  • the opening phase is controlled so that the circuit breaker is electrically interrupted at the zero point of each phase current. It is near the value or the lowest value. Therefore, the time of the zero point of each phase load side voltage waveform (FIG.
  • each phase cutoff time is a time after a quarter cycle period of the power supply frequency from the time of the zero point of each phase load side voltage immediately before each phase cutoff.
  • the R phase cutoff time is a time after a 1 ⁇ 4 cycle period from the time A of the zero point of the R phase load side voltage immediately before the R phase cutoff.
  • the T phase cutoff time is a time after a 1 ⁇ 4 cycle period from the time B of the zero point of the T phase load side voltage immediately before the T phase cutoff.
  • the S phase cutoff time is a time after a 1 ⁇ 4 cycle period from the time C of the zero point of the S phase load side voltage immediately before the S phase cutoff.
  • each phase shutoff time the time after 1 ⁇ 4 cycle period of the power supply frequency from that zero point is estimated as each phase shutoff time.
  • the polarity of the integral value of each phase load side voltage after each phase cutoff time can be estimated as the polarity of each phase residual voltage after the circuit breaker 50 is opened.
  • the integration period of each phase load side voltage can be any predetermined period from each phase cutoff time, but for example, 1/4 of the power supply frequency so as not to delay the time for determining the polarity of the residual voltage. It may be a cycle period.
  • the phase control switching device when the next zero point of each phase load side voltage cannot be detected within a predetermined period from the previous zero point of each phase load side voltage,
  • the time after 1 ⁇ 4 cycle period of the power supply frequency from the detection time of the zero point of each phase load side voltage detected at the time is estimated as each phase cutoff time, and the integrated value of each phase load side voltage after each phase cutoff time is
  • the polarity of the integrated value is estimated as the polarity of each phase residual voltage after the circuit breaker is opened, and the voltage on each phase power supply side changes from the polarity of each phase residual voltage after the circuit breaker opens to its opposite polarity Since the circuit breaker is controlled so as to be closed at the same time as in the first and second embodiments, it can be electrically turned on at the timing when the voltage between the circuit breaker electrodes becomes low, and the phase advanceability Transient power associated with the closing operation of the load circuit , It is an effect that it is possible to suppress the generation of current is obtained.
  • the configuration shown in the above embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part thereof is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.
  • phase control switchgear according to the present invention is useful as an invention capable of suppressing the generation of transient voltage and current accompanying the closing operation of the phase-advancing load circuit.
  • 10a, 10b, 10c Phase advance load 31 Open / close pole command 50 Circuit breaker 52a, 52b, 52c Arc extinguishing chamber 54a, 54b, 54c Operation unit 72a, 72b, 72c Power supply side voltage measurement unit 73a, 73b, 73c Load side voltage measurement unit 74a, 74b, 74c Current measurement unit 80 Phase control switching device 81 Control unit 81a Residual voltage polarity estimation unit 81b Closed phase control unit 82 Power supply side voltage detection unit 83 Load side voltage detection unit 84 Current detection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Keying Circuit Devices (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

 進相性負荷回路の閉極動作に伴う過渡的な電圧、電流の発生を抑制することができる位相制御開閉装置を得ること。前回の各相負荷側電圧の零点から所定期間内に次回の各相負荷側電圧の零点を検出できない場合に、最後に検出された各相負荷側電圧の零点を各相遮断直前における各相負荷側電圧の零点と判断し、その各相遮断直前の各相負荷側電圧の零点における負荷側電圧の時間微分値の極性を、遮断器50の開極後における各相残留電圧の極性として推定する残留電圧極性推定部81aと、遮断器50の開極後における各相残留電圧の極性からその逆極性に反転する各相電源側電圧の零点で閉極されるように遮断器50を制御する閉極位相制御部81bと、を備える。

Description

位相制御開閉装置
 本発明は、遮断器の開閉タイミングを制御する位相制御開閉装置に関する。
 従来、中性点が接地されたコンデンサバンクもしくは無負荷の送電線などの進相性負荷回路に電源を投入する際には、各相の電源電圧を計測して、各相毎の電源電圧零点を検出し、その電源電圧零点近傍にて各相の遮断器を個別に投入させることにより、過渡的な電圧、電流の発生を抑制するようにした位相制御開閉装置があった(例えば、特許文献1)。
国際公開第00/04564号
 一般に、進相性負荷回路の遮断時において、コンデンサや送電線路上に残る残留電荷による直流性の電圧(以下、「残留電圧」という)を測定することは、困難であるため、従来の位相制御開閉装置では、この進相性負荷回路に電源を投入する際、各相の電源電圧のみに着目して遮断器の投入位相を制御している。しかしながら、遮断時にコンデンサや送電線路上に残留電圧が生じている場合、遮断器極間には、電源電圧に加えて、残留電荷による直流電圧が重畳される。このため、遮断器閉極過程における遮断器極間の絶縁耐力を考慮すると、たとえ電源電圧の零点で遮断器を閉極させても、遮断器を閉極させる電源電圧零点の極性によっては、極間電圧の高い位相で遮断器が電気的に投入され、過電圧、過電流が十分に抑制できない場合がある、という問題があった。
 本発明は、上記に鑑みてなされたものであって、進相性負荷回路の閉極動作に伴う過渡的な電圧、電流の発生を抑制可能とする位相制御開閉装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明にかかる位相制御開閉装置は、電源と進相性負荷との間に接続された三相開閉装置の閉極位相を制御する位相制御開閉装置において、前記電源側の各相電源側電圧を検出する電源側電圧検出部と、前記進相性負荷側の各相負荷側電圧を検出する負荷側電圧検出部と、前記各相負荷側電圧の零点が周期的に検出できなくなった時点で、最後に検出された前記各相負荷側電圧の零点における前記各相負荷側電圧の時間微分値の極性を、前記三相開閉装置の開極後における前記進相性負荷側の各相残留電圧の極性として推定する残留電圧極性推定部と、前記各相電源側電圧の周期を検出して、前記各相電源側電圧が前記各相残留電圧の極性からその逆極性に転ずる点で閉極されるように前記三相開閉装置の閉極位相を制御する閉極位相制御部と、を備えることを特徴とする。
 本発明によれば、進相性負荷回路の閉極動作に伴う過渡的な電圧、電流の発生を抑制することができる、という効果を奏する。
図1は、実施の形態1にかかる位相制御開閉装置の一構成例を示す図である。 図2は、遮断器開極後において進相性負荷に残る残留電圧の極性を推定する手法を説明するための波形図である。 図3は、推定した残留電圧の極性に基づいて遮断器の閉極位相を制御する手法を説明するための図である。
 以下に添付図面を参照し、本発明の実施の形態にかかる位相制御開閉装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
(本実施の形態の要部)
 本実施の形態にかかる位相制御開閉装置は、進相性負荷への遮断器投入による過渡的な電圧、電流を抑制可能とする機能を有する。位相制御開閉装置を用いた遮断器の閉極過程では、接触子の極間距離の減少に伴い極間の絶縁耐力が低下するが、この絶縁耐力が、接触子の極間に加わる系統電圧による電界値以下になった時点で、接触子の極間の絶縁破壊に伴う先行アークが発生して電気的に投入される。接触子の極間距離の変化は、遮断器の開閉極動作時間で決まるので、機械的特性試験で評価することができ、接触子の極間の絶縁耐力は、接触子の極間に加わる電圧および接触子の極間距離で決まるので、電気的特性試験で評価することができる。よって、これらの機械的特性試験および電気的特性試験から、遮断器の閉極過程における遮断器極間の絶縁耐力変化率特性線(RDDS:Rate of Decrease of Dielectric Strength)が得られる。但し、遮断器開極後の進相性負荷に残留電圧が生じている場合には、遮断器極間電圧は、電源電圧に加えて、残留電圧が重畳された電圧となる。そこで、本実施の形態の位相制御開閉装置では、遮断器開極後の残留電圧を推定し、遮断器の閉極過程における遮断器極間の絶縁耐力変化率特性線を考慮して、遮断器極間電圧の低くなるタイミングでの遮断器投入を可能とする機能を付加するものである。
実施の形態1.
 図1は、実施の形態1にかかる位相制御開閉装置の一構成例を示す図である。図1において、三相開閉装置である遮断器50は、同図右方側に示されるR相、S相、およびT相からなる電源側回路と、同図左方側に示される進相性負荷(例えば、中性点が接地されたコンデンサバンクもしくは無負荷の送電線等が相当する)10a,10b,10cとの間に接続されている。この遮断器50は、消弧室52a,52b,52cを具備すると共に、消弧室52a,52b,52c内の各接触子が独立して開閉動作することができるように、それぞれ独立の操作部54a,54b,54cを具備している。遮断器50の電源側には、各相電源側電圧を計測する各電源側電圧計測部72a,72b,72cと、電源側回路から進相性負荷側に流れる各相電流を計測する各電流計測部74a,74b,74cとが設けられている。一方、遮断器50の進相性負荷側には、各相負荷側電圧を計測する各負荷側電圧計測部73a,73b,73cが設けられている。
 実施の形態1にかかる位相制御開閉装置80は、例えばコンピュータ等により構成され、各電源側電圧計測部72a,72b,72cからの信号に基づいて各相電源側電圧を検出する電源側電圧検出部82と、各負荷側電圧計測部73a,73b,73cからの信号に基づいて各相負荷側電圧を検出する負荷側電圧検出部83と、各電流計測部74a,74b,74cからの信号に基づいて各相電流を検出する電流検出部84と、制御部81と、を備えて構成される。制御部81は、各検出部(電源側電圧検出部82、負荷側電圧検出部83、および電流検出部84)からの各出力および位相制御開閉装置80に対して入力される開閉極指令31に基づいて動作する残留電圧極性推定部81aと閉極位相制御部81bとを備えて構成される。
 残留電圧極性推定部81aは、遮断器50の開極指令が入力された時点で動作を開始し、各相負荷側電圧の零点を継続して検出すると共に、各相負荷側電圧の零点における時間微分値を求め、前回の各相負荷側電圧の零点の検出時刻から所定期間内に次回の各相負荷側電圧の零点を検出できない場合に、最後に検出された各相負荷側電圧の零点における各相負荷側電圧の時間微分値の極性を、遮断器50の開極後における各相残留電圧の極性として推定する。
 つまり、残留電圧極性推定部81aは、各相負荷側電圧の零点が周期的に検出できなくなった時点で、最後に検出された各相負荷側電圧の零点における各相負荷側電圧の時間微分値の極性を、遮断器50の開極後における各相残留電圧の極性として推定する。
 閉極位相制御部81bは、各相電源側電圧の周期を検出すると共に、各相電源側電圧が、残留電圧極性推定部81aで推定した各相残留電圧の極性から逆極性に転ずる点で閉極されるように遮断器50を制御する。
 つぎに、遮断器50の開極後に進相性負荷10a,10b,10cに残る残留電圧の極性を推定する手法について、図2を参照して説明する。図2は、遮断器開極後において進相性負荷に残る残留電圧の極性を推定する手法を説明するための波形図である。
 図2(a)~(e)は、遮断器50の各接触子を図2中に示した各相遮断点において電気的に遮断させたときの各波形の一例を示す図である。より詳細に説明すると、図2(a)は、各相電源側電圧波形を示し、図2(b)は、遮断器50を介して電源から進相性負荷10a,10b,10cへ流れる各相電流波形を示し、図2(c)は、各相負荷側電圧波形を示し、図2(d)は、各相負荷側電圧の時間微分値である各相負荷側電圧の傾きの波形を示し、図2(e)は、各相電源側電圧から各相負荷側電圧を差し引いて得られる遮断器極間電圧波形を示している。
 電源から進相性負荷10a,10b,10cへ流れる各相電流波形(図2(b))は、各相電源側電圧波形(図2(a))に対して、それぞれ電源周波数において1/4サイクル進んだ波形となる。また、一般に遮断器50を開極する際には、各相電流の零点で電気的に遮断されるように開極位相が制御される。このため、各相の遮断点は、各相電源側電圧の極大値付近あるいは極小値付近にあり、各相負荷側電圧波形(図2(c))には、各相遮断点以降において、正極性あるいは負極性の直流性の残留電圧が生じることとなる。なお、このときの各残留電圧の極性は、各相遮断点直前の各相負荷側電圧の零点における各相負荷側電圧の傾き(時間微分値)の極性と一致する(図2(d))。
 例えばR相に着目すると、R相遮断直前の時刻Aの零点におけるR相負荷側電圧の傾きの極性は、R相残留電圧の極性と一致し、負極性となっている。同様に、例えばT相に着目すると、T相遮断直前の時刻Bの零点におけるT相負荷側電圧の傾きの極性は、T相残留電圧の極性と一致し、正極性となっている。また、同様に、例えばS相に着目すると、S相遮断直前の時刻Cの零点におけるS相負荷側電圧の傾きの極性は、S相残留電圧の極性と一致し、負極性となっている。
 つまり、前回の各相負荷側電圧の零点を検出してから所定期間内に次回の各相負荷側電圧の零点を検出できない場合に、最後に検出された各相負荷側電圧の零点を、各相遮断直前における各相負荷側電圧の零点と判定することができ、その零点における各相負荷側電圧の傾き(時間微分値)の極性を、各相遮断点以降における各相残留電圧の極性として推定することができる。なお、上述した所定期間としては、各相遮断前において電源周波数の1/2サイクル毎に周期的に訪れる各相負荷側電圧の零点を検出したか否かを判定するため、電源周波数の1/2サイクルよりも長い任意の所定期間とすればよい。但し、この所定期間が長くなると、残留電圧の極性を確定する時間が遅くなるので、あまり長くすることは好ましくない。例えば、電源周波数が50Hzの場合は約12ms程度、電源周波数が60Hzの場合は約10ms程度に設定すればよい。
 つぎに、推定した残留電圧の極性に基づいて遮断器50の閉極位相を制御する手法について、図3を参照して説明する。図3は、推定した残留電圧の極性に基づいて遮断器の閉極位相を制御する手法を説明するための図である。
 図3(a)では、各相遮断点以降のR相の各波形図を一例として示し、図3(b)では、各相遮断点以降のT相の各波形図を一例として示している。図3に示すように、各相電源側電圧の零点には、負極性から正極性に反転する零点(図3(a)のT1点、図3(b)のT1’点)と、正極性から負極性に反転する零点(図3(a)のT2点、図3(b)のT2’点)との2種類の零点が存在する。
 図3(a)において、T1点およびT2点の2つのR相電源側電圧の零点からそれぞれ左上方に伸びる直線は、それぞれT1点およびT2点で閉極されるように遮断器50を制御した場合の遮断器閉極過程における遮断器極間の絶縁耐力変化率特性線を示している。また、図3(b)において、T1’点およびT2’点の2つのT相電源側電圧の零点からそれぞれ左上方に伸びる直線は、それぞれT1’点およびT2’点で閉極されるように遮断器50を制御した場合の遮断器閉極過程における遮断器極間の絶縁耐力変化率特性線を示している。
 遮断器閉極過程において、絶縁耐力変化率特性線と遮断器極間電圧の絶対値との交点が電気的投入点となる。図3に示す例では、R相では、T1点で閉極されるように遮断器50を制御した場合には、A点が電気的投入点となり、T2点で閉極されるように遮断器50を制御した場合には、B点が電気的投入点となる。また、T相では、T1’点で閉極されるように遮断器50を制御した場合には、A’点が電気的投入点となり、T2’点で閉極されるように遮断器50を制御した場合には、B’点が電気的投入点となる。この電気的投入点の横軸上の位置が投入位相となり、縦軸上の位置が極間絶縁が破れるときの極間印加電圧の大きさとなる。この極間印加電圧の大きさは、遮断器50の投入によって開始される過渡現象の初期値となるため、この極間印加電圧が大きいほど電力系統に接続された送変電機器等への影響が大きくなる。したがって、この極間印加電圧がより小さくなるような各相電源側電圧の零点で閉極されるように遮断器50を制御する必要がある。
 図3に示す例では、R相では、R相残留電圧の極性である負極性から正極性に転ずるR相電源側電圧の零点、すなわちT2点で閉極されるように遮断器50を制御した場合に、遮断器極間電圧の絶対値がより低い電圧となるB点で電気的に投入され、極間印加電圧がより小さくなる。また、T相では、T相残留電圧の極性である正極性から負極性に転ずるT相電源側電圧の零点、すなわちT1’点で閉極されるように遮断器50を制御した場合に、遮断器極間電圧の絶対値がより低い電圧となるA’点で電気的に投入され、極間印加電圧がより小さくなる。
 つまり、各相残留電圧の極性からその逆極性に転ずる各相電源側電圧の零点で閉極されるように遮断器50を制御することにより、遮断器極間電圧の絶対値がより低くなるタイミングで電気的に投入させることができ、極間印加電圧をより小さくできる。
 なお、遮断器50を開極する際、いずれか一相あるいは複数相において地絡あるいは短絡等の事故が発生している場合には、遮断器50の開極後の残留電圧が零となる場合がある。このような場合は、事故相の任意の電源側電圧の零点で閉極されるように閉極位相制御部81bが遮断器50を制御するようにすればよい。事故相を判定する手法としては、例えば、残留電圧極性推定部81aが前回の各相負荷側電圧の零点の検出時刻から電源周波数の1/2サイクル期間未満の期間内に少なくとも1つ以上の各相負荷側電圧の零点を検出した相を事故相と判定してもよいし、遮断器50の遮断前において電流検出部84から入力される各相電流の大きさが所定の電流閾値(例えば、定格電流の2倍程度)以上である相を事故相と判定してもよい。あるいは、これらの手法を併用して事故相を判定することも可能である。このような制御を行ったとしても、遮断器投入時の過渡的な電圧、電流を抑制するという本願発明の課題を解決することが可能である。
 以上説明したように、実施の形態1の位相制御開閉装置によれば、前回の各相負荷側電圧の零点から所定期間内に次回の各相負荷側電圧の零点を検出できない場合に、最後に検出された各相負荷側電圧の零点を各相遮断直前における各相負荷側電圧の零点と判定し、その各相遮断直前の各相負荷側電圧の零点における負荷側電圧の時間微分値の極性を、遮断器開極後における各相残留電圧の極性として推定し、各相電源側電圧が、遮断器開極後における各相残留電圧の極性からその逆極性に転ずる点で閉極されるように遮断器を制御するようにしているので、遮断器極間電圧の低くなるタイミングで電気的に投入させることが可能となり、進相性負荷回路の閉極動作に伴う過渡的な電圧、電流の発生を抑制することができるという効果が得られる。
実施の形態2.
 実施の形態1では、各相遮断直前の各相負荷側電圧の零点における負荷側電圧の時間微分値の極性を、遮断器開極後における各相残留電圧の極性として推定する手法について説明したが、実施の形態2では、各相遮断後の各相遮断器極間電圧の瞬時値あるいは積分値の逆極性を、遮断器開極後における各相残留電圧の極性として推定する手法について説明する。なお、実施の形態2にかかる位相制御開閉装置の構成は、残留電圧極性推定部以外の構成部は実施の形態1で示した構成と同一であるので、それらの詳細な説明は省略する。
 実施の形態2における残留電圧極性推定部81aは、遮断器50の開極指令が入力された時点で動作を開始し、各相電源側電圧から各相負荷側電圧を差し引いて各相遮断器極間電圧を求め、各相遮断器極間電圧の絶対値が所定の電圧閾値以上となったとき、すなわち、各相遮断器極間電圧が所定の正の電圧閾値以上あるいは所定の負の電圧閾値以下となった時点における各相遮断器極間電圧の瞬時値の逆極性を、遮断器50の開極後における各相残留電圧の極性として推定する。
 つぎに、実施の形態2における各相残留電圧の極性の推定手法について、図2を参照して説明する。
 実施の形態1において説明したように、図2(e)に示した遮断器極間電圧波形は、図2(a)に示す各相電源側電圧から図2(c)に示す各相負荷側電圧を差し引いて得られる波形である。一般に遮断器50を開極する際には、各相電流の零点で電気的に遮断されるように開極位相が制御される。このため、各相電源側電圧の極大値付近あるいは極小値付近で遮断され、各相遮断点以降において、正極性あるいは負極性の遮断器極間電圧が生じることとなる。この遮断器極間電圧は、残留電圧の極性とは逆極性となり、各相遮断点が各相電源側電圧の極大値付近にある場合には、零から各相電源側電圧の極小値の約2倍の電圧値までの範囲内で、各相電源側電圧に同期して変化し、各相遮断点が各相電源側電圧の極小値付近にある場合には、零から各相電源側電圧の極大値の約2倍の電圧値までの範囲内で、各相電源側電圧に同期して変化する波形となる(図2(e))。
 例えばR相に着目すると、R相遮断後におけるR相遮断器極間電圧は、R相残留電圧の極性とは逆極性の正極性となり、零からR相電源側電圧の極大値の約2倍の電圧値までの範囲内で、R相電源側電圧に同期して変化している。同様に、例えばT相に着目すると、T相遮断後におけるT相遮断器極間電圧は、T相残留電圧の極性とは逆極性の負極性となり、零からT相電源側電圧の極小値の約2倍の電圧値までの範囲内で、T相電源側電圧に同期して変化している。また、同様に、例えばS相に着目すると、S相遮断後におけるS相遮断器極間電圧は、S相残留電圧の極性とは逆極性の正極性となり、零からS相電源側電圧の極大値の約2倍の電圧値までの範囲内で、S相電源側電圧に同期して変化している。
 つまり、各相遮断器極間電圧が各相遮断直後から所定の正の電圧閾値以上あるいは負の電圧閾値以下となったことを検出することにより、各相遮断点以降となったことを検出でき、その検出時点における各相遮断器極間電圧の瞬時値の逆極性を、各相残留電圧の極性として推定することができる。なお、上述した正の電圧閾値としては、例えば、遮断器極間電圧値としてとり得る最大値(つまり、各相電源側電圧の極大値の2倍)の約1/4程度に設定すればよい。同様に、負の電圧閾値としては、例えば、遮断器極間電圧値としてとり得る最小値(つまり、各相電源側電圧の極小値の2倍)の約1/4程度に設定すればよい。このように設定すれば、遮断器50の開極後から各相電流が電気的に遮断される各相遮断点までの期間に発生するアーク電圧のピーク値を遮断器極間電圧として誤検出するのを防ぐことができる。
 また、実施の形態2における残留電圧極性推定部81aの別の動作態様としては、各相遮断器極間電圧が所定の正の電圧閾値以上あるいは所定の負の電圧閾値以下となった時点前後における各相遮断器極間電圧の積分値の逆極性を、遮断器50の開極後における各相残留電圧の極性として推定することも可能である。このような動作態様とすれば、例えば遮断器50の開極後において遮断器極間電圧に過渡振動が生じた場合でも、各相残留電圧の極性を正確に推定することができる。
 なお、各相遮断器極間電圧の積分期間としては、各相遮断器極間電圧が所定の正の電圧閾値以上あるいは所定の負の電圧閾値以下となった時点を中心とする任意の所定期間とすることができるが、残留電圧の極性を確定する時間が遅くならないように、例えば電源周波数の1/2サイクル期間(電源周波数が50Hzの場合は約10ms程度、電源周波数が60Hzの場合は約8.33ms程度)とすればよい。
 以上説明したように、実施の形態2の位相制御開閉装置によれば、各相電源側電圧から各相負荷側電圧を差し引いて得られる各相遮断器極間電圧が所定の正の電圧閾値以上あるいは所定の負の電圧閾値以下となった時点における各相遮断器極間電圧の瞬時値の逆極性、あるいは、各相遮断器極間電圧が所定の正の電圧閾値以上あるいは所定の負の電圧閾値以下となった時点前後における各相遮断器極間電圧の積分値の逆極性を、遮断器開極後における各相残留電圧の極性として推定し、各相電源側電圧が、遮断器開極後における各相残留電圧の極性からその逆極性に転ずる点で閉極されるように遮断器を制御するようにしているので、実施の形態1と同様に、遮断器極間電圧の低くなるタイミングで電気的に投入させることが可能となり、進相性負荷回路の閉極動作に伴う過渡的な電圧、電流の発生を抑制することができるという効果が得られる。
 なお、上記実施の形態2では、各相電源側電圧から各相負荷側電圧を差し引いて各相遮断器極間電圧を得るようにしているが、各相負荷側電圧から各相電源側電圧を差し引いて各相遮断器極間電圧を得るようにしてもよい。この場合は、各相遮断器極間電圧の瞬時値の極性あるいは積分値の極性を、遮断器開極後における各相残留電圧の極性として推定すればよい。
実施の形態3.
 実施の形態1では、各相遮断直前の各相負荷側電圧の零点における負荷側電圧の時間微分値の極性を、遮断器開極後における各相残留電圧の極性として推定する手法について説明し、実施の形態2では、各相遮断後の各相遮断器極間電圧の瞬時値あるいは積分値の逆極性を、遮断器開極後における各相残留電圧の極性として推定する手法について説明したが、実施の形態3では、各相遮断後の各相負荷側電圧の積分値の極性を、遮断器開極後における各相残留電圧の極性として推定する手法について説明する。なお、実施の形態3にかかる位相制御開閉装置の構成は、残留電圧極性推定部以外の構成部は実施の形態1,2で示した構成と同一であるので、それらの詳細な説明は省略する。
 実施の形態3における残留電圧極性推定部81aは、遮断器50の開極指令が入力された時点で動作を開始し、各相負荷側電圧の零点を継続して検出し、前回の各相負荷側電圧の零点の検出時刻から所定期間内に次回の各相負荷側電圧の零点を検出できない場合に、最後に検出された各相負荷側電圧の零点の検出時刻から電源周波数の1/4サイクル後の時刻を各相遮断時刻と推定し、各相遮断時刻以降における各相負荷側電圧の積分値を求め、その積分値の極性を遮断器50の開極後における各相残留電圧の極性として推定する。
 つまり、実施の形態3における残留電圧極性推定部81aは、各相負荷側電圧の零点が周期的に検出できなくなった時点で、最後に検出された各相負荷側電圧の零点の検出時刻から電源周波数の1/4サイクル後の時刻を各相遮断時刻と推定し、各相遮断時刻以降における各相負荷側電圧の積分値の極性を遮断器50の開極後における各相残留電圧の極性として推定する。
 つぎに、実施の形態3における各相残留電圧の極性の推定手法について、図2を参照して説明する。
 実施の形態1において説明したように、電源から進相性負荷10a,10b,10cへ流れる各相電流波形(図2(b))は、各相電源側電圧波形(図2(a))に対して、それぞれ電源周波数の1/4サイクル分だけ位相が進んだ波形となる。このため、各相電流波形と各相電源側電圧波形とは、互いに1/4サイクルずつずれた時刻に零点が訪れる。一方、一般に遮断器50を開極する際には、各相電流の零点で電気的に遮断されるように開極位相が制御されるため、各相遮断点は、各相電源側電圧の最大値あるいは最低値付近にある。したがって、各相遮断直前における各相負荷側電圧波形(図2(c))の零点の時刻は、各相遮断時刻よりも1/4サイクル期間前の時刻となる。つまり、各相遮断時刻は、各相遮断直前における各相負荷側電圧の零点の時刻から電源周波数の1/4サイクル期間後の時刻となる。
 例えばR相に着目すると、R相遮断時刻は、R相遮断直前におけるR相負荷側電圧の零点の時刻Aから1/4サイクル期間後の時刻となる。同様に、例えばT相に着目すると、T相遮断時刻は、T相遮断直前におけるT相負荷側電圧の零点の時刻Bから1/4サイクル期間後の時刻となる。また、同様に、例えばS相に着目すると、S相遮断時刻は、S相遮断直前におけるS相負荷側電圧の零点の時刻Cから1/4サイクル期間後の時刻となる。
 つまり、実施の形態1と同様にして各相遮断直前における各相負荷側電圧の零点を検出することにより、その零点から電源周波数の1/4サイクル期間後の時刻を各相遮断時刻と推定することができ、その各相遮断時刻以降における各相負荷側電圧の積分値の極性を、遮断器50の開極後における各相残留電圧の極性として推定することができる。なお、各相負荷側電圧の積分期間としては、各相遮断時刻から任意の所定期間とすることができるが、残留電圧の極性を確定する時間が遅くならないように、例えば電源周波数の1/4サイクル期間とすればよい。
 以上説明したように、実施の形態3にかかる位相制御開閉装置によれば、前回の各相負荷側電圧の零点から所定期間内に次回の各相負荷側電圧の零点を検出できない場合に、最後に検出された各相負荷側電圧の零点の検出時刻から電源周波数の1/4サイクル期間後の時刻を各相遮断時刻と推定し、各相遮断時刻以降における各相負荷側電圧の積分値を求め、その積分値の極性を遮断器開極後における各相残留電圧の極性として推定し、各相電源側電圧が、遮断器開極後における各相残留電圧の極性からその逆極性に転ずる点で閉極されるように遮断器を制御するようにしているので、実施の形態1,2と同様に、遮断器極間電圧の低くなるタイミングで電気的に投入させることが可能となり、進相性負荷回路の閉極動作に伴う過渡的な電圧、電流の発生を抑制することができるという効果が得られる。
 なお、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 以上のように、本発明にかかる位相制御開閉装置は、進相性負荷回路の閉極動作に伴う過渡的な電圧、電流の発生を抑制することができる発明として有用である。
 10a,10b,10c 進相性負荷
 31 開閉極指令
 50 遮断器
 52a,52b,52c 消弧室
 54a,54b,54c 操作部
 72a,72b,72c 電源側電圧計測部
 73a,73b,73c 負荷側電圧計測部
 74a,74b,74c 電流計測部
 80 位相制御開閉装置
 81 制御部
 81a 残留電圧極性推定部
 81b 閉極位相制御部
 82 電源側電圧検出部
 83 負荷側電圧検出部
 84 電流検出部

Claims (11)

  1.  電源と進相性負荷との間に接続された三相開閉装置の閉極位相を制御する位相制御開閉装置において、
     前記電源側の各相電源側電圧を検出する電源側電圧検出部と、
     前記進相性負荷側の各相負荷側電圧を検出する負荷側電圧検出部と、
     前記各相負荷側電圧の零点が周期的に検出できなくなった時点で、最後に検出された前記各相負荷側電圧の零点における前記各相負荷側電圧の時間微分値の極性を、前記三相開閉装置の開極後における前記進相性負荷側の各相残留電圧の極性として推定する残留電圧極性推定部と、
     前記各相電源側電圧の周期を検出して、前記各相電源側電圧が前記各相残留電圧の極性からその逆極性に転ずる点で閉極されるように前記三相開閉装置の閉極位相を制御する閉極位相制御部と、
     を備えることを特徴とする位相制御開閉装置。
  2.  電源と進相性負荷との間に接続された三相開閉装置の閉極位相を制御する位相制御開閉装置において、
     前記電源側の各相電源側電圧を検出する電源側電圧検出部と、
     前記進相性負荷側の各相負荷側電圧を検出する負荷側電圧検出部と、
     前記各相電源側電圧および前記各相負荷側電圧に基づいて各相遮断器極間電圧を求め、前記各相遮断器極間電圧が所定の正の電圧閾値以上あるいは所定の負の電圧閾値以下となった時点における前記各相遮断器極間電圧の瞬時値の極性に基づいて、前記三相開閉装置の開極後における前記進相性負荷側の各相残留電圧の極性を推定する残留電圧極性推定部と、
     前記各相電源側電圧の周期を検出して、前記各相電源側電圧が前記各相残留電圧の極性からその逆極性に転ずる点で閉極されるように前記三相開閉装置の閉極位相を制御する閉極位相制御部と、
     を備えることを特徴とする位相制御開閉装置。
  3.  前記各相遮断器極間電圧は、前記電源側電圧から前記負荷側電圧を差し引いて得られる値であり、
     前記残留電圧極性推定部は、前記瞬時値の逆極性を前記各相残留電圧の極性として推定することを特徴とする請求項2に記載の位相制御開閉装置。
  4.  前記各相遮断器極間電圧は、前記負荷側電圧から前記電源側電圧を差し引いて得られる値であり、
     前記残留電圧極性推定部は、前記瞬時値の極性を前記各相残留電圧の極性として推定することを特徴とする請求項2に記載の位相制御開閉装置。
  5.  電源と進相性負荷との間に接続された三相開閉装置の閉極位相を制御する位相制御開閉装置において、
     前記電源側の各相電源側電圧を検出する電源側電圧検出部と、
     前記進相性負荷側の各相負荷側電圧を検出する負荷側電圧検出部と、
     前記各相電源側電圧および前記各相負荷側電圧に基づいて各相遮断器極間電圧を求め、前記各相遮断器極間電圧が所定の正の電圧閾値以上あるいは所定の負の電圧閾値以下となった時点前後における前記各相遮断器極間電圧の積分値の極性に基づいて、前記三相開閉装置の開極後における前記進相性負荷側の各相残留電圧の極性を推定する残留電圧極性推定部と、
     前記各相電源側電圧の周期を検出して、前記各相電源側電圧が前記各相残留電圧の極性からその逆極性に転ずる点で閉極されるように前記三相開閉装置の閉極位相を制御する閉極位相制御部と、
     を備えることを特徴とする位相制御開閉装置。
  6.  前記各相遮断器極間電圧は、前記電源側電圧から前記負荷側電圧を差し引いて得られる値であり、
     前記残留電圧極性推定部は、前記積分値の逆極性を前記各相残留電圧の極性として推定することを特徴とする請求項5に記載の位相制御開閉装置。
  7.  前記各相遮断器極間電圧は、前記負荷側電圧から前記電源側電圧を差し引いて得られる値であり、
     前記残留電圧極性推定部は、前記積分値の極性を前記各相残留電圧の極性として推定することを特徴とする請求項5に記載の位相制御開閉装置。
  8.  電源と進相性負荷との間に接続された三相開閉装置の閉極位相を制御する位相制御開閉装置において、
     前記電源側の各相電源側電圧を検出する電源側電圧検出部と、
     前記進相性負荷側の各相負荷側電圧を検出する負荷側電圧検出部と、
     前記各相負荷側電圧の零点が周期的に検出できなくなった時点で、最後に検出された前記各相負荷側電圧の零点の検出時刻に基づいて各相遮断時刻を推定し、前記各相遮断時刻以降における前記各相負荷側電圧の積分値の極性を、前記三相開閉装置の開極後における前記進相性負荷側の各相残留電圧の極性として推定する残留電圧極性推定部と、
     前記各相電源側電圧の周期を検出して、前記各相電源側電圧が前記各相残留電圧の極性からその逆極性に転ずる点で閉極されるように前記三相開閉装置の閉極位相を制御する閉極位相制御部と、
     を備えることを特徴とする位相制御開閉装置。
  9.  前記残留電圧極性推定部は、前回の前記各相負荷側電圧の零点の検出時刻から電源周波数の1/2サイクル期間未満の期間内に少なくとも1つ以上の前記各相負荷側電圧の零点を検出した相を事故相と判定し、
     前記閉極位相制御部は、前記事故相の任意の前記電源側電圧の零点で閉極されるように前記三相開閉装置の閉極位相を制御することを特徴とする請求項1~8のいずれか一項に記載の位相制御開閉装置。
  10.  前記電源から前記進相性負荷に流れる各相電流を検出する電流検出部をさらに備え、
     前記残留電圧極性推定部は、前記各相電流の大きさが所定の電流閾値以上である相を前記事故相と判定し、
     前記閉極位相制御部は、前記事故相の任意の前記電源側電圧の零点で閉極されるように前記三相開閉装置の閉極位相を制御することを特徴とする請求項1~8のいずれか一項に記載の位相制御開閉装置。
  11.  前記電源から前記進相性負荷に流れる各相電流を検出する電流検出部をさらに備え、
     前記残留電圧極性推定部は、前回の前記各相負荷側電圧の零点の検出時刻から電源周波数の1/2サイクル期間未満の期間内に少なくとも1つ以上の前記各相負荷側電圧の零点を検出した相、および、前記各相電流の大きさが所定の電流閾値以上である相を前記事故相と判定し、
     前記閉極位相制御部は、前記事故相の任意の前記電源側電圧の零点で閉極されるように前記三相開閉装置の閉極位相を制御することを特徴とする請求項1~8のいずれか一項に記載の位相制御開閉装置。
PCT/JP2010/062609 2010-07-27 2010-07-27 位相制御開閉装置 WO2012014282A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2806254A CA2806254C (en) 2010-07-27 2010-07-27 Phase control switching device
CN201080067252.6A CN102959669B (zh) 2010-07-27 2010-07-27 相位控制开关装置
PCT/JP2010/062609 WO2012014282A1 (ja) 2010-07-27 2010-07-27 位相制御開閉装置
JP2010547772A JP4717158B1 (ja) 2010-07-27 2010-07-27 位相制御開閉装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/062609 WO2012014282A1 (ja) 2010-07-27 2010-07-27 位相制御開閉装置

Publications (1)

Publication Number Publication Date
WO2012014282A1 true WO2012014282A1 (ja) 2012-02-02

Family

ID=44350483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062609 WO2012014282A1 (ja) 2010-07-27 2010-07-27 位相制御開閉装置

Country Status (4)

Country Link
JP (1) JP4717158B1 (ja)
CN (1) CN102959669B (ja)
CA (1) CA2806254C (ja)
WO (1) WO2012014282A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105788915A (zh) * 2015-01-08 2016-07-20 Abb技术有限公司 用于控制开关装置的方法和控制系统
EP3399533A4 (en) * 2015-12-30 2019-09-18 Hyosung Heavy Industries Corporation METHOD AND DEVICE FOR OPENING / CLOSING A CIRCUIT BREAKER
US11437205B2 (en) * 2018-12-27 2022-09-06 Hitachi Energy Switzerland Ag Method and device for monitoring operation of a switching device for controlled switching applications

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062973B (zh) * 2021-10-21 2024-01-23 南京瀚元科技有限公司 就地型馈线自动化反向闭锁应用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324125A (ja) * 2005-05-19 2006-11-30 Mitsubishi Electric Corp 開閉装置の閉極位相制御装置
JP2007305491A (ja) * 2006-05-12 2007-11-22 Mitsubishi Electric Corp 位相制御開閉装置
JP2008153037A (ja) * 2006-12-15 2008-07-03 Toshiba Corp 電力用開閉器の同期投入方法および同期投入システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2670907C (en) * 2006-11-29 2012-10-30 Kabushiki Kaisha Toshiba Magnetizing inrush current suppression device and method for transformer
CN101601111B (zh) * 2007-02-15 2012-07-04 三菱电机株式会社 相位控制开关装置
JP5208593B2 (ja) * 2008-06-20 2013-06-12 株式会社東芝 変圧器の励磁突入電流抑制装置及びその制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324125A (ja) * 2005-05-19 2006-11-30 Mitsubishi Electric Corp 開閉装置の閉極位相制御装置
JP2007305491A (ja) * 2006-05-12 2007-11-22 Mitsubishi Electric Corp 位相制御開閉装置
JP2008153037A (ja) * 2006-12-15 2008-07-03 Toshiba Corp 電力用開閉器の同期投入方法および同期投入システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105788915A (zh) * 2015-01-08 2016-07-20 Abb技术有限公司 用于控制开关装置的方法和控制系统
CN105788915B (zh) * 2015-01-08 2019-05-07 Abb瑞士股份有限公司 用于控制开关装置的方法和控制系统
EP3399533A4 (en) * 2015-12-30 2019-09-18 Hyosung Heavy Industries Corporation METHOD AND DEVICE FOR OPENING / CLOSING A CIRCUIT BREAKER
US11437205B2 (en) * 2018-12-27 2022-09-06 Hitachi Energy Switzerland Ag Method and device for monitoring operation of a switching device for controlled switching applications

Also Published As

Publication number Publication date
JPWO2012014282A1 (ja) 2013-09-09
CN102959669A (zh) 2013-03-06
JP4717158B1 (ja) 2011-07-06
CA2806254A1 (en) 2012-02-02
CN102959669B (zh) 2015-12-16
CA2806254C (en) 2016-01-26

Similar Documents

Publication Publication Date Title
CA2326091C (en) Phase control switch apparatus
JP4508759B2 (ja) 位相制御開閉装置
JP4799712B1 (ja) 電力開閉制御装置およびその閉極制御方法
JP2000188044A (ja) 位相制御開閉装置
JP4549436B1 (ja) 突入電流抑制装置および突入電流抑制方法
US7936093B2 (en) Phase control switching device
JP4772169B1 (ja) 位相制御開閉装置および閉極位相制御方法
JP4717158B1 (ja) 位相制御開閉装置
JP4495030B2 (ja) 開閉装置の閉極位相制御装置
WO2012124474A1 (ja) 突入電流抑制装置
US20140192443A1 (en) Magnetizing inrush current suppression device
JP2008153037A (ja) 電力用開閉器の同期投入方法および同期投入システム
WO2012039373A1 (ja) 突入電流抑制装置
JP5858943B2 (ja) 電流遮断装置
JP2013235694A (ja) 励磁突入電流抑制装置
JP4818488B1 (ja) 電力開閉制御装置およびその閉極制御方法
US9490627B2 (en) Magnetizing inrush current suppressing device
JP2014143049A (ja) 励磁突入電流抑制装置
US9042063B2 (en) Switching arrangement
JP2010020985A (ja) 位相制御開閉装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067252.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010547772

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2806254

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855292

Country of ref document: EP

Kind code of ref document: A1