WO2017098593A1 - パワーモジュール - Google Patents

パワーモジュール Download PDF

Info

Publication number
WO2017098593A1
WO2017098593A1 PCT/JP2015/084479 JP2015084479W WO2017098593A1 WO 2017098593 A1 WO2017098593 A1 WO 2017098593A1 JP 2015084479 W JP2015084479 W JP 2015084479W WO 2017098593 A1 WO2017098593 A1 WO 2017098593A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
rubber
power module
based material
heat sink
Prior art date
Application number
PCT/JP2015/084479
Other languages
English (en)
French (fr)
Inventor
酒井 康裕
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/084479 priority Critical patent/WO2017098593A1/ja
Publication of WO2017098593A1 publication Critical patent/WO2017098593A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • the technology disclosed in this specification relates to a power module, for example, a power module used for electric railway or wind power generation.
  • a heat sink In a conventional power module, a heat sink, a semiconductor element disposed on the upper surface of the heat sink, a case disposed surrounding the semiconductor element in a plan view, and a case surrounded by the heat sink and the case are filled. And a sealing material. In order to improve the adhesion between the case and the heat sink, an adhesive is applied between them.
  • thermo stress when the adhesive needs to be cured at a temperature higher than the temperature at which the product is actually used, a large stress (thermal stress) may occur on the product.
  • the heat radiating plate is structured to be restrained by the case by an adhesive, the thermal expansion of the heat radiating plate sometimes causes stress (thermal stress) to the product.
  • the technology disclosed in the present specification is for solving the above-described problems, and can improve the productivity of the product and can reduce the stress (thermal stress) that can occur in the product. It is about.
  • a power module includes a heat sink, an insulating substrate positioned on an upper surface of the heat sink, a semiconductor element positioned on the upper surface of the insulating substrate, and the insulating substrate in plan view. And a rubber material sandwiched between the heat radiating plate and the case, and at least one of the heat radiating plate and the case includes: The surface in contact with the rubber material is uneven.
  • a power module includes a heat sink, an insulating substrate positioned on an upper surface of the heat sink, a semiconductor element positioned on the upper surface of the insulating substrate, and the insulating substrate in plan view.
  • a rubber material sandwiched between the heat radiating plate and the case, and at least one of the heat radiating plate and the case includes: The surface in contact with the rubber material is uneven. According to such a configuration, the case and the heat radiating plate are in contact with each other with a rubber-based material that does not require time for curing, and therefore the case and heat dissipation are performed using an adhesive that requires time for curing. Product productivity can be improved as compared with the case of bonding the plate. In addition, when a rubber-based material is used, it is not necessary to cure the product at a temperature higher than the temperature at which the product is actually used, so that no great stress is generated on the product.
  • FIG. 14 is a diagram schematically illustrating a configuration for realizing the power module according to the present embodiment.
  • the power module includes the heat sink 10, the insulating substrate 12 disposed on the upper surface of the heat sink 10 with the solder 11 interposed therebetween, and the upper surface of the insulating substrate 12.
  • a semiconductor element 14 disposed with the solder 13 interposed therebetween, a case 15 disposed so as to surround the insulating substrate 12 in a plan view and bonded to the upper surface of the heat sink 10 via an adhesive 16, the heat sink 10 and And a sealing material 17 filled in the case surrounded by the case 15.
  • the heat sink 10 is made of metal, for example.
  • the case 15 is made of resin, for example.
  • electrode patterns are respectively formed on the upper surface and the lower surface of the insulating substrate 12. Electrode patterns are formed on the upper and lower surfaces of the semiconductor element 14 respectively.
  • the bonding wire 18 includes a bonding wire 18 connected to the main current pattern of the electrode patterns on the upper surface of the insulating substrate 12, and a bonding wire 18 connected to a signal pattern of the electrode patterns on the upper surface of the insulating substrate 12.
  • FIG. 15 is an enlarged view illustrating a portion where the case and the heat sink are bonded in the configuration for realizing the power module according to the present embodiment.
  • the case 15 and the heat radiating plate 10 are bonded via an adhesive 16.
  • a sealing material 17 is filled in the case surrounded by the heat sink 10 and the case 15.
  • FIG. 16 is a plan view schematically illustrating a configuration for realizing the power module according to the present embodiment.
  • a case 15 is put on the heat radiating plate 10.
  • a rubber-based material 20 is sandwiched between the heat radiating plate 10 and the case 15, and the space between the heat radiating plate 10 and the case 15 is fixed by screws inserted into the screwing portions 101.
  • FIG. 17 is an enlarged view illustrating a portion where the case and the heat radiating plate are fixed by screws in the configuration for realizing the power module according to the present embodiment.
  • FIG. 17 corresponds to the B-B ′ cross-sectional view in FIG. 16.
  • the case 15 and the heat radiating plate 10 are in contact with each other with the rubber-based material 20 interposed therebetween, and the screw 100 inserted into the screwing portion 101. Fixed to each other.
  • a sealing material 17 is filled in the case surrounded by the heat sink 10 and the case 15.
  • a resin or the like may be formed so as to cover the inserted screw 100 in the screwing portion 101 into which the screw 100 is inserted.
  • FIG. 1 is an enlarged view illustrating a portion where a case and a heat sink come in contact with each other in a configuration for realizing a power module according to the present embodiment. 1 corresponds to a cross-sectional view taken along the line A-A ′ in FIG.
  • the case 15 and the heat radiating plate 10 are in contact with each other with the rubber-based material 20 interposed therebetween.
  • a sealing material 17 is filled in the case surrounded by the heat sink 10 and the case 15.
  • the case 15 and the heat radiating plate 10 are in contact with each other with the rubber material 20 that does not require time for curing, and therefore an adhesive that requires time for curing is used.
  • the productivity of the product can be improved as compared with the case where the case 15 and the heat sink 10 are bonded.
  • the rubber-based material 20 it is not necessary to cure the product at a temperature higher than the temperature at which the product is actually used, so that a large stress (thermal stress) is not generated on the product.
  • the case 15 and the heat radiating plate 10 slide with each other through the rubber material 20. Therefore, while the case 15 and the heat radiating plate 10 are fixed by the screw 100, the thermal expansion of the heat radiating plate 10 is difficult to be transmitted to the case 15, so that the stress generated in the product can be reduced.
  • FIG. 2 is an enlarged view illustrating a portion where the case and the heat sink come in contact with each other in the configuration for realizing the power module according to the present embodiment. 2 corresponds to a cross-sectional view along AA ′ in FIG.
  • the case 15 and the heat radiating plate 10A are in contact with each other with the rubber-based material 20A interposed therebetween. Then, a sealing material 17 is filled inside the case surrounded by the heat radiating plate 10 ⁇ / b> A and the case 15.
  • a groove 30 is formed at a portion in contact with the case 15 across the rubber-based material 20A.
  • a plurality of grooves 30 may be formed.
  • the rubber-based material 20A is sandwiched between the case 15 and the heat radiating plate 10A while entering the groove 30 of the heat radiating plate 10A. Since it is such a structure, 20 A of rubber-type materials become difficult to shift
  • FIG. 3 is an enlarged view illustrating a portion where the case and the heat sink come in contact with each other in the configuration for realizing the power module according to the modified example of the present embodiment. 3 corresponds to the A-A ′ cross-sectional view in FIG. 16.
  • the case 15 and the heat radiating plate 10B are in contact with each other with the rubber material 20B interposed therebetween.
  • a sealing material 17 is filled in the case surrounded by the heat radiating plate 10 ⁇ / b> B and the case 15.
  • a hole 31 is formed at a portion in contact with the case 15 with the rubber-based material 20B interposed therebetween.
  • a plurality of holes 31 may be formed.
  • the rubber-based material 20B is sandwiched between the case 15 and the heat radiating plate 10B while entering the hole 31 of the heat radiating plate 10B. Since it is such a structure, it becomes difficult for the rubber-type material 20B to shift
  • FIG. 4 is an enlarged view illustrating a portion where the case and the heat sink come in contact with each other in the configuration for realizing the power module according to the modification of the present embodiment. 4 corresponds to a cross-sectional view taken along the line A-A ′ in FIG.
  • the case 15A and the radiator plate 10 are in contact with each other with the rubber-based material 20C interposed therebetween.
  • a sealing material 17 is filled in the case surrounded by the heat radiating plate 10 and the case 15A.
  • the case 15A has a groove 32 formed in a portion in contact with the heat sink 10 with the rubber-based material 20C interposed therebetween. Then, the rubber-based material 20C is sandwiched between the case 15A and the heat sink 10 while entering the groove 32 of the case 15A. Because of such a configuration, the rubber-based material 20C is less likely to be displaced from the case 15A, and assembly failure can be suppressed.
  • FIG. 5 is an enlarged view illustrating a portion where the case and the heat sink come in contact with each other in the configuration for realizing the power module according to the modification of the present embodiment. 5 corresponds to a cross-sectional view taken along the line A-A ′ in FIG.
  • the case 15B and the heat radiating plate 10 are in contact with each other with the rubber-based material 20D interposed therebetween.
  • a sealing material 17 is filled in the case surrounded by the heat radiating plate 10 and the case 15B.
  • the case 15B is formed with a plurality of grooves 33 in a portion in contact with the heat sink 10 with the rubber-based material 20D interposed therebetween.
  • the rubber material 20D is sandwiched between the case 15B and the heat sink 10 while entering the plurality of grooves 33 of the case 15B. Since it is such a structure, it becomes difficult for rubber-type material 20D to shift
  • FIG. 6 is an enlarged view illustrating a portion where the case and the heat sink come in contact with each other in the configuration for realizing the power module according to the present embodiment.
  • FIG. 6 corresponds to the AA ′ cross-sectional view in FIG.
  • the case 15C and the heat radiating plate 10 are in contact with each other with the rubber-based material 20E interposed therebetween.
  • a sealing material 17 is filled in the case surrounded by the heat radiating plate 10 and the case 15C.
  • the case 15C has protrusions 34 formed at portions that contact the heat sink 10 with the rubber-based material 20E interposed therebetween.
  • the rubber-based material 20E is sandwiched between the case 15C and the heat radiating plate 10 while receiving a stronger pressure by the protrusion 34 of the case 15C than the portion without the protrusion 34. Since it is such a structure, the pressure which the rubber-type material 20E receives increases, and the adhesiveness between case 15C and the heat sink 10 increases.
  • FIG. 7 is an enlarged view illustrating a portion where the case and the heat sink come in contact with each other in the configuration for realizing the power module according to the modification of the present embodiment. 7 corresponds to a cross-sectional view taken along the line A-A ′ in FIG.
  • the case 15 and the heat sink 10C are in contact with each other with the rubber-based material 20F interposed therebetween. Then, a sealing material 17 is filled in the case surrounded by the heat radiating plate 10 ⁇ / b> C and the case 15.
  • the heat dissipation plate 10C has protrusions 35 formed at portions that contact the case 15 with the rubber-based material 20F interposed therebetween. A plurality of protrusions 35 may be formed.
  • the rubber-based material 20F is sandwiched between the case 15 and the heat radiating plate 10C while receiving a stronger pressure by the protrusion 35 of the heat radiating plate 10C than the portion without the protrusion 35. Since it is such a structure, the pressure which rubber-type material 20F receives increases, and the adhesiveness between case 15 and 10 C of heat sinks increases.
  • the protrusion 35 may be formed at the bottom of the protrusion 35 or at a location where the groove 30 is not formed.
  • FIG. 8 is an enlarged view illustrating a portion where the case and the heat sink come in contact with each other in the configuration for realizing the power module according to the modification of the present embodiment.
  • FIG. 8 corresponds to the A-A ′ cross-sectional view in FIG. 16.
  • the case 15D and the heat radiating plate 10D are in contact with each other with the rubber material 20G interposed therebetween.
  • a sealing material 17 is filled in the case surrounded by the heat radiating plate 10D and the case 15D.
  • the heat dissipation plate 10D has protrusions 36 formed at portions that contact the case 15D with the rubber-based material 20G interposed therebetween.
  • the case 15D has protrusions 37 formed at portions that contact the heat sink 10D with the rubber-based material 20G interposed therebetween.
  • the protrusion 37 is formed at a position corresponding to the protrusion 36.
  • the rubber-based material 20G receives a stronger pressure than the portion without the protrusions 36 due to the protrusions 36 of the heat radiating plate 10D, and receives a stronger pressure than the portion without the protrusions 37 due to the protrusions 37 of the case 15D.
  • the rubber-based material 20G is sandwiched between the case 15D and the heat sink 10D. Since it is such a structure, the pressure which rubber-type material 20G receives increases, and the adhesiveness between case 15D and heat sink 10D increases.
  • FIG. 9 is an enlarged view illustrating a portion where the case and the heat sink come in contact with each other in the configuration for realizing the power module according to the modification of the present embodiment. 9 corresponds to a cross-sectional view taken along the line A-A ′ in FIG.
  • the case 15E and the heat radiating plate 10 are in contact with each other with the rubber material 20H interposed therebetween.
  • a sealing material 17 is filled in the case surrounded by the heat radiating plate 10 and the case 15E.
  • the case 15E is formed with a plurality of protrusions 38 at a portion in contact with the heat sink 10 with the rubber-based material 20H interposed therebetween.
  • the rubber-based material 20H is sandwiched between the case 15E and the heat radiating plate 10 while receiving a stronger pressure than the portion without the protrusions 38 by the plurality of protrusions 38 of the case 15E. Since it is such a structure, the pressure which the rubber-type material 20H receives increases, and the adhesiveness between case 15E and the heat sink 10 increases.
  • FIG. 10 is an enlarged view illustrating a portion where the case and the heat sink come in contact with each other in the configuration for realizing the power module according to the modification of the present embodiment.
  • FIG. 10 corresponds to a cross-sectional view taken along the line A-A ′ in FIG. 16.
  • the case 15F and the heat sink 10E are in contact with each other with the rubber-based material 20I interposed therebetween.
  • a sealing material 17 is filled in the case surrounded by the heat sink 10E and the case 15F.
  • the heat dissipation plate 10E is formed with a groove 39 at a portion in contact with the case 15F across the rubber-based material 20I.
  • the case 15F has protrusions 40 formed at portions that contact the heat radiating plate 10E with the rubber-based material 20I interposed therebetween.
  • the protrusion 40 is formed at a position corresponding to the groove 39.
  • the rubber-based material 20I enters the groove 39 of the heat radiating plate 10E while receiving a stronger pressure by the protrusion 40 of the case 15F than the portion without the protrusion 40.
  • the rubber-based material 20I is sandwiched between the case 15F and the heat radiating plate 10E.
  • FIG. 11 is an enlarged view illustrating a portion where the case and the heat sink come in contact with each other in the configuration for realizing the power module according to the modification of the present embodiment.
  • FIG. 11 corresponds to a cross-sectional view taken along the line A-A ′ in FIG. 16.
  • the case 15G and the heat radiating plate 10 are in contact with each other with the rubber material 20J interposed therebetween.
  • a sealing material 17 is filled in the case surrounded by the heat radiating plate 10 and the case 15G.
  • a protrusion 41 is formed at a portion in contact with the heat sink 10 with the rubber-based material 20J interposed therebetween.
  • the case 15G has a plurality of grooves 42 formed in other portions that contact the heat sink 10 with the rubber-based material 20J interposed therebetween.
  • the rubber-based material 20J enters the plurality of grooves 42 of the case 15G while receiving a stronger pressure by the protrusion 41 of the case 15G than the portion without the protrusion 41.
  • the rubber-based material 20J is sandwiched between the case 15G and the heat sink 10. Since it is such a structure, the pressure which rubber-type material 20J receives increases, and the adhesiveness between case 15G and the heat sink 10 increases.
  • the heat radiating plate 10 may be, for example, a heat radiating plate 10A in which a groove 30 as illustrated in FIG. 2 is formed.
  • FIG. 12 is an enlarged view illustrating a portion where the case and the heat sink come in contact with each other in the configuration for realizing the power module according to the modification of the present embodiment. Note that FIG. 12 corresponds to the A-A ′ cross-sectional view in FIG. 16.
  • the case 15H and the heat sink 10 are in contact with each other with the rubber material 20K interposed therebetween.
  • a sealing material 17 is filled in the case surrounded by the heat radiating plate 10 and the case 15H.
  • the case 15 ⁇ / b> H has a plurality of protrusions 43 formed on the portion that contacts the heat sink 10 with the rubber-based material 20 ⁇ / b> K interposed therebetween.
  • the case 15H has a groove 44 formed in another portion that contacts the heat sink 10 with the rubber-based material 20K interposed therebetween.
  • the rubber-based material 20K enters the groove 44 of the case 15H while receiving a stronger pressure than the portion without the protrusion 43 by the plurality of protrusions 43 of the case 15H.
  • the rubber-based material 20K is sandwiched between the case 15H and the heat sink 10. Since it is such a structure, the pressure which the rubber-type material 20K receives increases, and the adhesiveness between case 15H and the heat sink 10 increases.
  • the heat radiating plate 10 may be, for example, a heat radiating plate 10A in which a groove 30 as illustrated in FIG. 2 is formed.
  • FIG. 13 is an enlarged view illustrating a portion where the case and the heat sink come in contact with each other in the configuration for realizing the power module according to the modification of the present embodiment. Note that FIG. 13 corresponds to the A-A ′ cross-sectional view in FIG. 16.
  • the case 15I and the heat sink 10F are in contact with each other with the rubber-based material 20L interposed therebetween.
  • a sealing material 17 is filled in the case surrounded by the heat sink 10F and the case 15I.
  • the case 15I is formed with a plurality of protrusions 45 at a portion in contact with the heat sink 10F with the rubber-based material 20L interposed therebetween.
  • the heat radiating plate 10F has a plurality of grooves 46 formed in a portion in contact with the case 15I across the rubber-based material 20L.
  • the groove 46 is formed at a position corresponding to the protrusion 45.
  • the rubber-based material 20L enters the plurality of grooves 46 of the heat radiating plate 10F while receiving a stronger pressure by the plurality of protrusions 45 of the case 15I than the portion without the protrusion 45.
  • the rubber-based material 20L is sandwiched between the case 15I and the heat radiating plate 10F.
  • the power module includes the heat radiating plate 10A, the insulating substrate 12, the semiconductor element 14, the case 15, and the rubber-based material 20A.
  • the insulating substrate 12 is located on the upper surface of the heat sink 10A.
  • the semiconductor element 14 is located on the upper surface of the insulating substrate 12.
  • the case 15 is disposed so as to surround the insulating substrate 12 in plan view, and is located on the upper surface of the heat sink 10A.
  • the rubber-based material 20A is sandwiched between the heat sink 10A and the case 15. At least one of the heat radiating plate 10A and the case 15 has an uneven surface in contact with the rubber-based material 20A.
  • the case 15 and the heat radiating plate 10A are in contact with each other with the rubber-based material 20A that does not require time for curing, and therefore an adhesive that requires time for curing is used.
  • Product productivity can be improved compared with the case where case 15 and heat sink 10A are bonded.
  • the rubber-based material 20A since it is not necessary to cure the product at a temperature higher than the temperature at which the product is actually used, no great stress (thermal stress) is generated on the product. Further, when the rubber-based material 20A is used, the case 15 and the heat sink 10A slide on each other via the rubber-based material 20A.
  • the concave portion is formed on the surface of the heat radiating plate 10A that is in contact with the rubber-based material 20A.
  • the groove 30 corresponds to the recess.
  • a plurality of recesses are formed on the surface of the heat radiating plate 10F that contacts the rubber-based material 20L.
  • the groove 46 corresponds to a plurality of recesses.
  • the rubber-based material 20L enters the plurality of grooves 46 of the heat sink 10F. Then, the rubber-based material 20L is sandwiched between the case 15I and the heat sink 10F. Therefore, the rubber-based material 20L is less likely to be displaced from the heat radiating plate 10F, and assembly failure can be suppressed.
  • the protrusion 35 is formed on the surface of the heat radiating plate 10C that comes into contact with the rubber-based material 20F.
  • the rubber-based material 20F is sandwiched between the case 15 and the heat radiating plate 10C while receiving a stronger pressure than the portion without the protrusion 35 by the protrusion 35 of the heat radiating plate 10C.
  • the pressure which 20F receives increases and the adhesiveness between case 15 and the heat sink 10C increases. Therefore, leakage of the sealing material 17 filled in the case surrounded by the heat sink 10C and the case 15 can be suppressed.
  • the protrusion 34 is formed on the surface of the case 15C that contacts the rubber-based material 20E.
  • the rubber-based material 20E is sandwiched between the case 15C and the radiator plate 10 while receiving a stronger pressure than the portion without the protrusion 34 by the protrusion 34 of the case 15C. Pressure increases, and the adhesion between the case 15C and the heat sink 10 increases. Therefore, it is possible to suppress leakage of the sealing material 17 filled in the case surrounded by the heat radiating plate 10 and the case 15C.
  • the plurality of protrusions 38 are formed on the surface of the case 15E that contacts the rubber-based material 20H.
  • the rubber-based material 20H is sandwiched between the case 15E and the heat radiating plate 10 while receiving a stronger pressure than the portion without the protrusion 38 by the plurality of protrusions 38 of the case 15E.
  • the pressure received by the material 20H increases, and the adhesion between the case 15E and the heat sink 10 increases. Therefore, it can suppress that the sealing material 17 with which the inside of the case enclosed by the heat sink 10 and case 15E is filled leaks.
  • the concave portion is formed on the surface of the case 15A that contacts the rubber-based material 20C.
  • corresponds to a recessed part. According to such a configuration, since the rubber-based material 20C enters the groove 32 of the case 15A and is sandwiched between the case 15A and the heat radiating plate 10, the rubber-based material 20C is not easily displaced from the case 15A. , Assembly failure can be suppressed.
  • a plurality of recesses are formed on the surface of the case 15B that contacts the rubber-based material 20D.
  • the groove 33 corresponds to a plurality of recesses.
  • each component is a conceptual unit, and one component consists of a plurality of structures, one component corresponds to a part of the structure, and a plurality of components. And the case where the component is provided in one structure.
  • Each component includes a structure having another structure or shape as long as the same function is exhibited.
  • the material includes other additives, for example, an alloy or the like, unless there is a contradiction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本明細書に開示される技術は、製品の生産性を向上させつつ、製品に生じ得るストレス(熱応力)を軽減させることができるパワーモジュールに関するものである。本技術に関するパワーモジュールは、放熱板10Aと、放熱板10Aの上面に位置する絶縁基板12と、絶縁基板12の上面に位置する半導体素子14と、絶縁基板12を平面視において囲んで配置され、かつ、放熱板10Aの上面に位置するケース15と、放熱板10Aとケース15とに挟まれるゴム系材料20Aとを備え、放熱板10Aおよびケース15のうちの少なくとも一方は、ゴム系材料20Aと接触する面が凸凹形状である。

Description

パワーモジュール
 本明細書に開示される技術は、パワーモジュールに関し、たとえば、電鉄または風力発電などに用いられるパワーモジュールに関するものである。
 従来のパワーモジュールにおいては、放熱板と、放熱板の上面において配置される半導体素子と、半導体素子を平面視において囲んで配置されるケースと、放熱板およびケースに囲まれるケース内部に充填される封止材とが備えられる。ケースと放熱板との間の密着性を高めるために、両者の間に接着剤を塗布される。
特開2013-251429号公報
 しかしながら、接着剤は、硬化するための時間を必要とするため、製品の生産性が阻害される場合があった。
 また、接着剤を、製品が実際に使用される温度以上の温度で硬化させる必要がある場合には、製品へ大きなストレス(熱応力)が発生する場合があった。
 さらに、放熱板が接着剤によってケースに拘束される構造であるため、放熱板の熱膨張が製品にストレス(熱応力)を生じさせる場合があった。
 本明細書に開示される技術は、上記のような問題を解決するためのものであり、製品の生産性を向上させつつ、製品に生じ得るストレス(熱応力)を軽減させることができるパワーモジュールに関するものである。
 本明細書に開示される技術の一態様に関するパワーモジュールは、放熱板と、前記放熱板の上面に位置する絶縁基板と、前記絶縁基板の上面に位置する半導体素子と、前記絶縁基板を平面視において囲んで配置され、かつ、前記放熱板の上面に位置するケースと、前記放熱板と前記ケースとに挟まれるゴム系材料とを備え、前記放熱板および前記ケースのうちの少なくとも一方は、前記ゴム系材料と接触する面が凸凹形状である。
 本明細書に開示される技術の一態様に関するパワーモジュールは、放熱板と、前記放熱板の上面に位置する絶縁基板と、前記絶縁基板の上面に位置する半導体素子と、前記絶縁基板を平面視において囲んで配置され、かつ、前記放熱板の上面に位置するケースと、前記放熱板と前記ケースとに挟まれるゴム系材料とを備え、前記放熱板および前記ケースのうちの少なくとも一方は、前記ゴム系材料と接触する面が凸凹形状である。このような構成によれば、ケースと放熱板とが硬化するための時間を必要としないゴム系材料を挟んで接触するため、硬化するための時間を必要とする接着剤を用いてケースと放熱板とを接着する場合に比べて、製品の生産性を向上させることができる。また、ゴム系材料を用いた場合には、製品が実際に使用される温度以上の温度で硬化させる必要がないため、製品へ大きなストレスが発生することがない。
 本明細書に開示される技術に関する目的と、特徴と、局面と、利点とは、以下に示される詳細な説明と添付図面とによって、より明白となる。
実施の形態に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態の変形例に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態の変形例に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態の変形例に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態の変形例に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態の変形例に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態の変形例に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態の変形例に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態の変形例に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態の変形例に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態の変形例に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態に関する、パワーモジュールを実現するための構成を概略的に例示する図である。 実施の形態に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。 実施の形態に関する、パワーモジュールを実現するための構成を概略的に例示する平面図である。 実施の形態に関する、パワーモジュールを実現するための構成のうち、ケースと放熱板とがネジによって固定される箇所を拡大して例示する図である。
 以下、添付される図面を参照しながら実施の形態について説明する。なお、図面は概略的に示されるものであり、異なる図面にそれぞれ示される画像の大きさと位置との相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。したがって、それらについての詳細な説明を省略する場合がある。
 また、以下に示される説明において、「上」、「下」、「側」、「底」、「表」または「裏」などの特定の位置と方向とを意味する用語が用いられる場合があっても、これらの用語は、実施の形態の内容を理解することを容易にするために便宜上用いられるものであり、実際に実施される際の方向とは関係しない。
 <第1の実施の形態>
 以下、本実施の形態に関するパワーモジュールについて説明する。説明の便宜上、まず、パワーモジュールの全体構造について説明する。
 <パワーモジュールの構成について>
 図14は、本実施の形態に関するパワーモジュールを実現するための構成を概略的に例示する図である。
 図14に例示されるように、本実施の形態に関するパワーモジュールは、放熱板10と、放熱板10の上面において、はんだ11を挟んで配置される絶縁基板12と、絶縁基板12の上面において、はんだ13を挟んで配置される半導体素子14と、絶縁基板12を平面視において囲んで配置され、かつ、放熱板10の上面と接着剤16を介して接着されるケース15と、放熱板10およびケース15に囲まれるケース内部に充填される封止材17とを備える。放熱板10は、たとえば金属で構成される。また、ケース15は、たとえば樹脂で構成される。
 ここで、絶縁基板12の上面および下面には、それぞれ電極パターンが形成される。また、半導体素子14の上面および下面には、それぞれ電極パターンが形成される。
 また、半導体素子14の上面にはボンディングワイヤー18が複数取り付けられる。ボンディングワイヤー18には、絶縁基板12の上面における電極パターンのうちの主電流パターンと接続されるボンディングワイヤー18と、絶縁基板12の上面における電極パターンのうちの信号パターンと接続されるボンディングワイヤー18とがある。
 図15は、本実施の形態に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接着される箇所を拡大して例示する図である。
 図15に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15と放熱板10とが、接着剤16を介して接着される。そして、放熱板10およびケース15に囲まれるケース内部には、封止材17が充填される。
 図16は、本実施の形態に関するパワーモジュールを実現するための構成を概略的に例示する平面図である。
 図16に例示されるように、本実施の形態に関するパワーモジュールでは、放熱板10にケース15が被せられる。放熱板10とケース15との間にはゴム系材料20が挟まれ、放熱板10とケース15との間は、ネジ止め部101に挿入されるネジによって固定される。
 図17は、本実施の形態に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とがネジによって固定される箇所を拡大して例示する図である。なお、図17は、図16におけるB-B’断面図に対応する。
 図17に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15と放熱板10とが、ゴム系材料20を挟んで接触し、かつ、ネジ止め部101に挿入されるネジ100によって互いに固定される。そして、放熱板10およびケース15に囲まれるケース内部には、封止材17が充填される。なお、図17に例示されるように、ネジ100が挿入されたネジ止め部101において、挿入されたネジ100を覆うように樹脂などが形成されてもよい。
 図1は、本実施の形態に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図1は、図16におけるA-A’断面図に対応する。
 図1に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15と放熱板10とが、ゴム系材料20を挟んで接触する。そして、放熱板10およびケース15に囲まれるケース内部には、封止材17が充填される。
 図1に例示される構成では、ケース15と放熱板10とが硬化するための時間を必要としないゴム系材料20を挟んで接触するため、硬化するための時間を必要とする接着剤を用いてケース15と放熱板10とを接着する場合に比べて、製品の生産性を向上させることができる。また、ゴム系材料20を用いた場合には、製品が実際に使用される温度以上の温度で硬化させる必要がないため、製品へ大きなストレス(熱応力)が発生することがない。
 また、ゴム系材料20を用いた場合には、ケース15と放熱板10とがゴム系材料20を介して互いに滑り合う。そのため、ケース15と放熱板10とがネジ100によって固定されつつも放熱板10の熱膨張がケース15に伝わりにくくなるため、製品に生じさせるストレスを軽減することができる。
 <第2の実施の形態>
 本実施の形態に関するパワーモジュールについて説明する。以下では、上記の実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略する。
 <パワーモジュールの構成について>
 図2は、本実施の形態に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図2は、図16におけるA-A’断面図に対応する。
 図2に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15と放熱板10Aとが、ゴム系材料20Aを挟んで接触する。そして、放熱板10Aおよびケース15に囲まれるケース内部には、封止材17が充填される。
 放熱板10Aは、ゴム系材料20Aを挟んでケース15と接触する部分に溝30が形成される。なお、溝30は複数形成されてもよい。そして、ゴム系材料20Aは、放熱板10Aの溝30に入り込みつつ、ケース15と放熱板10Aとの間に挟まれる。このような構成であるため、ゴム系材料20Aが放熱板10Aとの間でずれにくくなり、アセンブリ不良を抑制することができる。
 図3は、本実施の形態の変形例に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図3は、図16におけるA-A’断面図に対応する。
 図3に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15と放熱板10Bとが、ゴム系材料20Bを挟んで接触する。そして、放熱板10Bおよびケース15に囲まれるケース内部には、封止材17が充填される。
 放熱板10Bは、ゴム系材料20Bを挟んでケース15と接触する部分に穴31が形成される。なお、穴31は複数形成されてもよい。そして、ゴム系材料20Bは、放熱板10Bの穴31に入り込みつつ、ケース15と放熱板10Bとの間に挟まれる。このような構成であるため、ゴム系材料20Bが放熱板10Bとの間でずれにくくなり、アセンブリ不良を抑制することができる。
 図4は、本実施の形態の変形例に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図4は、図16におけるA-A’断面図に対応する。
 図4に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15Aと放熱板10とが、ゴム系材料20Cを挟んで接触する。そして、放熱板10およびケース15Aに囲まれるケース内部には、封止材17が充填される。
 ケース15Aは、ゴム系材料20Cを挟んで放熱板10と接触する部分に溝32が形成される。そして、ゴム系材料20Cは、ケース15Aの溝32に入り込みつつ、ケース15Aと放熱板10との間に挟まれる。このような構成であるため、ゴム系材料20Cがケース15Aとの間でずれにくくなり、アセンブリ不良を抑制することができる。
 図5は、本実施の形態の変形例に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図5は、図16におけるA-A’断面図に対応する。
 図5に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15Bと放熱板10とが、ゴム系材料20Dを挟んで接触する。そして、放熱板10およびケース15Bに囲まれるケース内部には、封止材17が充填される。
 ケース15Bは、ゴム系材料20Dを挟んで放熱板10と接触する部分に複数の溝33が形成される。そして、ゴム系材料20Dは、ケース15Bの複数の溝33に入り込みつつ、ケース15Bと放熱板10との間に挟まれる。このような構成であるため、ゴム系材料20Dがケース15Bとの間でずれにくくなり、アセンブリ不良を抑制することができる。
 <第3の実施の形態>
 本実施の形態に関するパワーモジュールについて説明する。以下では、上記の実施の形態で説明された構成と同様の構成については同じ符号を付して図示し、その詳細な説明については適宜省略する。
 <パワーモジュールの構成について>
 図6は、本実施の形態に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図6は、図16におけるA-A’断面図に対応する。
 図6に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15Cと放熱板10とが、ゴム系材料20Eを挟んで接触する。そして、放熱板10およびケース15Cに囲まれるケース内部には、封止材17が充填される。
 ケース15Cは、ゴム系材料20Eを挟んで放熱板10と接触する部分に突起34が形成される。そして、ゴム系材料20Eは、ケース15Cの突起34によって突起34がない部分よりも強い圧力を受けつつ、ケース15Cと放熱板10との間に挟まれる。このような構成であるため、ゴム系材料20Eが受ける圧力が高まり、ケース15Cと放熱板10との間の密着性が高まる。
 図7は、本実施の形態の変形例に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図7は、図16におけるA-A’断面図に対応する。
 図7に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15と放熱板10Cとが、ゴム系材料20Fを挟んで接触する。そして、放熱板10Cおよびケース15に囲まれるケース内部には、封止材17が充填される。
 放熱板10Cは、ゴム系材料20Fを挟んでケース15と接触する部分に突起35が形成される。なお、突起35は複数形成されてもよい。そして、ゴム系材料20Fは、放熱板10Cの突起35によって突起35がない部分よりも強い圧力を受けつつ、ケース15と放熱板10Cとの間に挟まれる。このような構成であるため、ゴム系材料20Fが受ける圧力が高まり、ケース15と放熱板10Cとの間の密着性が高まる。なお、突起35は、たとえば、図2に例示されるような溝30が形成される場合に、その底部または溝30が形成されない箇所に形成されてもよい。
 図8は、本実施の形態の変形例に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図8は、図16におけるA-A’断面図に対応する。
 図8に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15Dと放熱板10Dとが、ゴム系材料20Gを挟んで接触する。そして、放熱板10Dおよびケース15Dに囲まれるケース内部には、封止材17が充填される。
 放熱板10Dは、ゴム系材料20Gを挟んでケース15Dと接触する部分に突起36が形成される。また、ケース15Dは、ゴム系材料20Gを挟んで放熱板10Dと接触する部分に突起37が形成される。ここで、突起37は、突起36に対応する位置に形成される。ゴム系材料20Gは、放熱板10Dの突起36によって突起36がない部分よりも強い圧力を受けつつ、ケース15Dの突起37によって突起37がない部分よりも強い圧力を受ける。そして、ゴム系材料20Gは、ケース15Dと放熱板10Dとの間に挟まれる。このような構成であるため、ゴム系材料20Gが受ける圧力が高まり、ケース15Dと放熱板10Dとの間の密着性が高まる。
 図9は、本実施の形態の変形例に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図9は、図16におけるA-A’断面図に対応する。
 図9に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15Eと放熱板10とが、ゴム系材料20Hを挟んで接触する。そして、放熱板10およびケース15Eに囲まれるケース内部には、封止材17が充填される。
 ケース15Eは、ゴム系材料20Hを挟んで放熱板10と接触する部分に複数の突起38が形成される。そして、ゴム系材料20Hは、ケース15Eの複数の突起38によって突起38がない部分よりも強い圧力を受けつつ、ケース15Eと放熱板10との間に挟まれる。このような構成であるため、ゴム系材料20Hが受ける圧力が高まり、ケース15Eと放熱板10との間の密着性が高まる。
 図10は、本実施の形態の変形例に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図10は、図16におけるA-A’断面図に対応する。
 図10に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15Fと放熱板10Eとが、ゴム系材料20Iを挟んで接触する。そして、放熱板10Eおよびケース15Fに囲まれるケース内部には、封止材17が充填される。
 放熱板10Eは、ゴム系材料20Iを挟んでケース15Fと接触する部分に溝39が形成される。また、ケース15Fは、ゴム系材料20Iを挟んで放熱板10Eと接触する部分に突起40が形成される。ここで、突起40は、溝39に対応する位置に形成される。ゴム系材料20Iは、ケース15Fの突起40によって突起40がない部分よりも強い圧力を受けつつ、放熱板10Eの溝39に入り込む。そして、ゴム系材料20Iは、ケース15Fと放熱板10Eとの間に挟まれる。このような構成であるため、ゴム系材料20Iが受ける圧力が高まり、ケース15Fと放熱板10Eとの間の密着性が高まる。また、ゴム系材料20Iが放熱板10Eとの間でずれにくくなり、アセンブリ不良を抑制することができる。
 図11は、本実施の形態の変形例に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図11は、図16におけるA-A’断面図に対応する。
 図11に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15Gと放熱板10とが、ゴム系材料20Jを挟んで接触する。そして、放熱板10およびケース15Gに囲まれるケース内部には、封止材17が充填される。
 ケース15Gは、ゴム系材料20Jを挟んで放熱板10と接触する部分に突起41が形成される。また、ケース15Gは、ゴム系材料20Jを挟んで放熱板10と接触する他の部分に複数の溝42が形成される。ゴム系材料20Jは、ケース15Gの突起41によって突起41がない部分よりも強い圧力を受けつつ、ケース15Gの複数の溝42に入り込む。そして、ゴム系材料20Jは、ケース15Gと放熱板10との間に挟まれる。このような構成であるため、ゴム系材料20Jが受ける圧力が高まり、ケース15Gと放熱板10との間の密着性が高まる。また、ゴム系材料20Jがケース15Gとの間でずれにくくなり、アセンブリ不良を抑制することができる。なお、放熱板10は、たとえば、図2に例示されるような溝30が形成される放熱板10Aであってもよい。
 図12は、本実施の形態の変形例に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図12は、図16におけるA-A’断面図に対応する。
 図12に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15Hと放熱板10とが、ゴム系材料20Kを挟んで接触する。そして、放熱板10およびケース15Hに囲まれるケース内部には、封止材17が充填される。
 ケース15Hは、ゴム系材料20Kを挟んで放熱板10と接触する部分に複数の突起43が形成される。また、ケース15Hは、ゴム系材料20Kを挟んで放熱板10と接触する他の部分に溝44が形成される。ゴム系材料20Kは、ケース15Hの複数の突起43によって突起43がない部分よりも強い圧力を受けつつ、ケース15Hの溝44に入り込む。そして、ゴム系材料20Kは、ケース15Hと放熱板10との間に挟まれる。このような構成であるため、ゴム系材料20Kが受ける圧力が高まり、ケース15Hと放熱板10との間の密着性が高まる。また、ゴム系材料20Kがケース15Hとの間でずれにくくなり、アセンブリ不良を抑制することができる。なお、放熱板10は、たとえば、図2に例示されるような溝30が形成される放熱板10Aであってもよい。
 図13は、本実施の形態の変形例に関するパワーモジュールを実現するための構成のうち、ケースと放熱板とが接触する箇所を拡大して例示する図である。なお、図13は、図16におけるA-A’断面図に対応する。
 図13に例示されるように、本実施の形態に関するパワーモジュールでは、ケース15Iと放熱板10Fとが、ゴム系材料20Lを挟んで接触する。そして、放熱板10Fおよびケース15Iに囲まれるケース内部には、封止材17が充填される。
 ケース15Iは、ゴム系材料20Lを挟んで放熱板10Fと接触する部分に複数の突起45が形成される。また、放熱板10Fは、ゴム系材料20Lを挟んでケース15Iと接触する部分に複数の溝46が形成される。ここで、溝46は、突起45に対応する位置に形成される。ゴム系材料20Lは、ケース15Iの複数の突起45によって突起45がない部分よりも強い圧力を受けつつ、放熱板10Fの複数の溝46に入り込む。そして、ゴム系材料20Lは、ケース15Iと放熱板10Fとの間に挟まれる。このような構成であるため、ゴム系材料20Lが受ける圧力が高まり、ケース15Iと放熱板10Fとの間の密着性が高まる。また、ゴム系材料20Lが放熱板10Fとの間でずれにくくなり、アセンブリ不良を抑制することができる。
 <上記の実施の形態による効果について>
 以下に、上記の実施の形態による効果を例示する。なお、以下では、上記の実施の形態に例示された具体的な構成に基づく効果が記載されるが、同様の効果が生じる範囲で、本明細書に例示される他の具体的な構成と置き換えられてもよい。また、当該置き換えは、複数の実施の形態に跨ってなされてもよい。すなわち、異なる実施の形態において例示された各構成が組み合わされて、同様の効果が生じる場合であってもよい。
 上記の実施の形態によれば、パワーモジュールが、放熱板10Aと、絶縁基板12と、半導体素子14と、ケース15と、ゴム系材料20Aとを備える。絶縁基板12は、放熱板10Aの上面に位置する。半導体素子14は、絶縁基板12の上面に位置する。ケース15は、絶縁基板12を平面視において囲んで配置され、かつ、放熱板10Aの上面に位置する。ゴム系材料20Aは、放熱板10Aとケース15とに挟まれる。放熱板10Aおよびケース15のうちの少なくとも一方は、ゴム系材料20Aと接触する面が凸凹形状である。
 このような構成によれば、ケース15と放熱板10Aとが硬化するための時間を必要としないゴム系材料20Aを挟んで接触するため、硬化するための時間を必要とする接着剤を用いてケース15と放熱板10Aとを接着する場合に比べて、製品の生産性を向上させることができる。また、ゴム系材料20Aを用いた場合には、製品が実際に使用される温度以上の温度で硬化させる必要がないため、製品へ大きなストレス(熱応力)が発生することがない。また、ゴム系材料20Aを用いた場合には、ケース15と放熱板10Aとがゴム系材料20Aを介して互いに滑り合う。そのため、ケース15と放熱板10Aとがネジ100によって固定されつつも放熱板10Aの熱膨張がケース15に伝わりにくくなるため、製品に生じさせるストレスを軽減することができる。
 なお、これらの構成以外の本明細書に例示される他の構成については適宜省略することができる。すなわち、これらの構成のみで、上記の効果を生じさせることができる。しかしながら、本明細書に例示される他の構成のうちの少なくとも1つを上記の構成に適宜追加した場合、すなわち、上記の構成としては記載されなかった本明細書に例示される他の構成を上記の構成に追加した場合でも、同様に上記の効果を生じさせることができる。
 また、上記の実施の形態によれば、放熱板10Aのゴム系材料20Aと接触する面において、凹部が形成される。ここで、溝30は、凹部に対応するものである。このような構成によれば、ゴム系材料20Aが放熱板10Aの溝30に入り込みつつ、ケース15と放熱板10Aとの間に挟まれるため、ゴム系材料20Aが放熱板10Aとの間でずれにくくなり、アセンブリ不良を抑制することができる。
 また、上記の実施の形態によれば、放熱板10Fのゴム系材料20Lと接触する面において、複数の凹部が形成される。ここで、溝46は、複数の凹部に対応するものである。このような構成によれば、ゴム系材料20Lが放熱板10Fの複数の溝46に入り込む。そして、ゴム系材料20Lが、ケース15Iと放熱板10Fとの間に挟まれる。そのため、ゴム系材料20Lが放熱板10Fとの間でずれにくくなり、アセンブリ不良を抑制することができる。
 また、上記の実施の形態によれば、放熱板10Cのゴム系材料20Fと接触する面において、突起35が形成される。このような構成によれば、ゴム系材料20Fが放熱板10Cの突起35によって突起35がない部分よりも強い圧力を受けつつ、ケース15と放熱板10Cとの間に挟まれるため、ゴム系材料20Fが受ける圧力が高まり、ケース15と放熱板10Cとの間の密着性が高まる。そのため、放熱板10Cおよびケース15に囲まれるケース内部に充填される封止材17が漏れることを抑制することができる。
 また、上記の実施の形態によれば、ケース15Cのゴム系材料20Eと接触する面において、突起34が形成される。このような構成によれば、ゴム系材料20Eがケース15Cの突起34によって突起34がない部分よりも強い圧力を受けつつ、ケース15Cと放熱板10との間に挟まれるため、ゴム系材料20Eが受ける圧力が高まり、ケース15Cと放熱板10との間の密着性が高まる。そのため、放熱板10およびケース15Cに囲まれるケース内部に充填される封止材17が漏れることを抑制することができる。
 また、上記の実施の形態によれば、ケース15Eのゴム系材料20Hと接触する面において、複数の突起38が形成される。このような構成によれば、ゴム系材料20Hがケース15Eの複数の突起38によって突起38がない部分よりも強い圧力を受けつつ、ケース15Eと放熱板10との間に挟まれるため、ゴム系材料20Hが受ける圧力が高まり、ケース15Eと放熱板10との間の密着性が高まる。そのため、放熱板10およびケース15Eに囲まれるケース内部に充填される封止材17が漏れることを抑制することができる。
 また、上記の実施の形態によれば、ケース15Aのゴム系材料20Cと接触する面において、凹部が形成される。ここで、溝32は、凹部に対応するものである。このような構成によれば、ゴム系材料20Cがケース15Aの溝32に入り込みつつ、ケース15Aと放熱板10との間に挟まれるため、ゴム系材料20Cがケース15Aとの間でずれにくくなり、アセンブリ不良を抑制することができる。
 また、上記の実施の形態によれば、ケース15Bのゴム系材料20Dと接触する面において、複数の凹部が形成される。ここで、溝33は、複数の凹部に対応するものである。このような構成によれば、ゴム系材料20Dがケース15Bの複数の溝33に入り込みつつ、ケース15Bと放熱板10との間に挟まれるため、ゴム系材料20Dがケース15Bとの間でずれにくくなり、アセンブリ不良を抑制することができる。
 <上記の実施の形態における変形例について>
 上記の実施の形態では、各構成要素の材質、材料、寸法、形状、相対的配置関係または実施の条件などについても記載する場合があるが、これらはすべての局面において例示であって、本明細書に記載されたものに限られることはない。したがって、例示されていない無数の変形例が、本明細書に開示される技術の範囲内において想定される。たとえば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの実施の形態における少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれる。
 また、矛盾が生じない限り、上記の実施の形態において「1つ」備えられるものとして記載された構成要素は、「1つ以上」備えられていてもよい。さらに、各構成要素は概念的な単位であって、1つの構成要素が複数の構造物から成る場合と、1つの構成要素がある構造物の一部に対応する場合と、さらには、複数の構成要素が1つの構造物に備えられる場合とを含む。また、各構成要素には、同一の機能を発揮する限り、他の構造または形状を有する構造物が含まれる。
 また、本明細書における説明は、本技術に関するすべての目的のために参照され、いずれも、従来技術であると認めるものではない。
 また、上記の実施の形態において、特に指定されずに材料名などが記載された場合は、矛盾が生じない限り、当該材料に他の添加物が含まれた、たとえば、合金などが含まれるものとする。
 10,10A,10B,10C,10D,10E,10F 放熱板、11,13 はんだ、12 絶縁基板、14 半導体素子、15,15A,15B,15C,15D,15E,15F,15G,15H,15I ケース、16 接着剤、17 封止材、18 ボンディングワイヤー、20,20A,20B,20C,20D,20E,20F,20G,20H,20I,20J,20K,20L ゴム系材料、30,32,33,39,42,44,46 溝、31 穴、34,35,36,37,38,40,41,43,45 突起、100 ネジ、101 ネジ止め部。

Claims (8)

  1.  放熱板(10、10A、10B、10C、10D、10E、10F)と、
     前記放熱板(10、10A、10B、10C、10D、10E、10F)の上面に位置する絶縁基板(12)と、
     前記絶縁基板(12)の上面に位置する半導体素子(14)と、
     前記絶縁基板(12)を平面視において囲んで配置され、かつ、前記放熱板(10、10A、10B、10C、10D、10E、10F)の上面に位置するケース(15、15A、15B、15C、15D、15E、15F、15G、15H、15I)と、
     前記放熱板(10、10A、10B、10C、10D、10E、10F)と前記ケース(15、15A、15B、15C、15D、15E、15F、15G、15H、15I)とに挟まれるゴム系材料(20A、20B、20C、20D、20E、20F、20G、20H、20I、20J、20K、20L)とを備え、
     前記放熱板(10、10A、10B、10C、10D、10E、10F)および前記ケース(15、15A、15B、15C、15D、15E、15F、15G、15H、15I)のうちの少なくとも一方は、前記ゴム系材料(20A、20B、20C、20D、20E、20F、20G、20H、20I、20J、20K、20L)と接触する面が凸凹形状である、
     パワーモジュール。
  2.  前記放熱板(10A、10B、10E、10F)の前記ゴム系材料(20A、20B、20I、20L)と接触する面において、凹部(30、31、39、46)が形成される、
     請求項1に記載のパワーモジュール。
  3.  前記放熱板(10F)の前記ゴム系材料(20L)と接触する面において、複数の前記凹部(46)が形成される、
     請求項2に記載のパワーモジュール。
  4.  前記放熱板(10C、10D)の前記ゴム系材料(20F、20G)と接触する面において、突起(35、36)が形成される、
     請求項1から請求項3のうちのいずれか1項に記載のパワーモジュール。
  5.  前記ケース(15C、15D、15E、15F、15G、15H、15I)の前記ゴム系材料(20E、20G、20H、20I、20J、20K、20L)と接触する面において、突起(34、37、38、40、41、43、45)が形成される、
     請求項1から請求項3のうちのいずれか1項に記載のパワーモジュール。
  6.  前記ケース(15E、15H、15I)の前記ゴム系材料(20H、20K、20L)と接触する面において、複数の前記突起(38、43、45)が形成される、
     請求項5に記載のパワーモジュール。
  7.  前記ケース(15A、15B、15G、15H)の前記ゴム系材料(20C、20D、20J、20K)と接触する面において、凹部(32、33、42、44)が形成される、
     請求項1から請求項3のうちのいずれか1項に記載のパワーモジュール。
  8.  前記ケース(15B、15G)の前記ゴム系材料(20D、20J)と接触する面において、複数の前記凹部(33、42)が形成される、
     請求項7に記載のパワーモジュール。
PCT/JP2015/084479 2015-12-09 2015-12-09 パワーモジュール WO2017098593A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084479 WO2017098593A1 (ja) 2015-12-09 2015-12-09 パワーモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084479 WO2017098593A1 (ja) 2015-12-09 2015-12-09 パワーモジュール

Publications (1)

Publication Number Publication Date
WO2017098593A1 true WO2017098593A1 (ja) 2017-06-15

Family

ID=59013619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084479 WO2017098593A1 (ja) 2015-12-09 2015-12-09 パワーモジュール

Country Status (1)

Country Link
WO (1) WO2017098593A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106114A1 (ja) * 2019-11-27 2021-06-03 三菱電機株式会社 半導体モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139048A (ja) * 1984-12-11 1986-06-26 Toshiba Corp 半導体装置
JPS6417455A (en) * 1987-07-10 1989-01-20 Mitsubishi Electric Corp Semiconductor device
JPH09107009A (ja) * 1995-10-12 1997-04-22 Toshiba Corp パワーモジュール装置及びその製造方法
JP2004103846A (ja) * 2002-09-10 2004-04-02 Mitsubishi Electric Corp 電力用半導体装置
JP2012015349A (ja) * 2010-07-01 2012-01-19 Fuji Electric Co Ltd 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139048A (ja) * 1984-12-11 1986-06-26 Toshiba Corp 半導体装置
JPS6417455A (en) * 1987-07-10 1989-01-20 Mitsubishi Electric Corp Semiconductor device
JPH09107009A (ja) * 1995-10-12 1997-04-22 Toshiba Corp パワーモジュール装置及びその製造方法
JP2004103846A (ja) * 2002-09-10 2004-04-02 Mitsubishi Electric Corp 電力用半導体装置
JP2012015349A (ja) * 2010-07-01 2012-01-19 Fuji Electric Co Ltd 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106114A1 (ja) * 2019-11-27 2021-06-03 三菱電機株式会社 半導体モジュール
JPWO2021106114A1 (ja) * 2019-11-27 2021-06-03
JP7173375B2 (ja) 2019-11-27 2022-11-16 三菱電機株式会社 半導体モジュール

Similar Documents

Publication Publication Date Title
JP2001127238A (ja) 半導体モジュール及び半導体モジュール用絶縁基板
JP6432918B1 (ja) 回路基板収納筐体
US9653369B2 (en) Power semiconductor module comprising a case, base plate, and spacer
WO2016098332A1 (ja) 電子装置
US10269755B2 (en) Power electronic switching device, arrangement herewith and methods for producing the switching device
WO2014155977A1 (ja) 放熱シートおよびこれを用いた放熱構造体
JPWO2015111202A1 (ja) 半導体モジュール
WO2016088684A1 (ja) 回路構成体及び放熱体付き回路構成体
WO2013121521A1 (ja) 半導体装置
JP2016115782A (ja) 半導体モジュール
WO2013118275A1 (ja) 半導体装置
JP2014013878A (ja) 電子装置
WO2017130370A1 (ja) 半導体装置
WO2017098593A1 (ja) パワーモジュール
JP5899680B2 (ja) パワー半導体モジュール
JP2005322784A (ja) 電力用半導体装置
JP2017108002A (ja) 半導体モジュール
JP5318304B1 (ja) 半導体モジュールおよび半導体装置
JP2020047763A (ja) 半導体装置及び半導体装置の製造方法
WO2013145532A1 (ja) 樹脂パッケージ
JP4482824B2 (ja) 両面冷却型半導体装置
JP2014033119A (ja) 半導体装置
JP2014007267A (ja) 半導体モジュール
US10170383B2 (en) Semiconductor device
CN107507814B (zh) 包括开关器件的功率半导体模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP