WO2017097236A1 - Revêtement absorbant à sélection solaire doté d'une seule cible en aluminium et d'une pulvérisation cathodique magnétron - Google Patents
Revêtement absorbant à sélection solaire doté d'une seule cible en aluminium et d'une pulvérisation cathodique magnétron Download PDFInfo
- Publication number
- WO2017097236A1 WO2017097236A1 PCT/CN2016/109089 CN2016109089W WO2017097236A1 WO 2017097236 A1 WO2017097236 A1 WO 2017097236A1 CN 2016109089 W CN2016109089 W CN 2016109089W WO 2017097236 A1 WO2017097236 A1 WO 2017097236A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum
- nitrogen
- film
- layer
- oxygen
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
- F24S70/225—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0617—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0664—Carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/081—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/548—Controlling the composition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/30—Auxiliary coatings, e.g. anti-reflective coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Definitions
- the present invention relates to a solar selective absorbing coating for use in a solar collector.
- the structure of the film layer is different, resulting in different principles of absorbing solar rays.
- the gradual film is a multi-layer film whose absorption layer is generally 9 layers, which absorbs the solar rays layer by layer, and its absorption of light gradually becomes higher. Due to this gradual structure, the emission ratio increases with temperature.
- the aluminum ions in the absorbing layer are greatly enhanced in activity at high temperatures and drift.
- the internal structure of the film layer is disordered, causing the film layer to age. The diffusion of aluminum at high temperatures affects its reflection properties. When the temperature is high for a long time, the film layer will fall off, which affects the heat collecting efficiency and life of the vacuum heat collecting tube. technical problem
- the composition of the ceramic diffusion barrier film layer is similar to that of the anti-reflection film, the film layer can be made more stable at high temperatures and the heat resistance can be achieved only by changing the process route in the case of manufacturing the vacuum heat collecting tube original tooling equipment. Increased, lower emissivity requirements.
- the present invention is achieved by: a single aluminum target magnetron sputtering solar selective absorbing coating, the solar selective absorbing coating is deposited on the substrate as an underlayer to deposit on aluminum
- the aluminum element ceramic on the reflective film is a diffusion barrier film layer
- the aluminum element cermet composite component deposited on the aluminum element ceramic diffusion barrier film layer is a solar selective absorbing material film layer deposited on the aluminum element cermet composite
- the aluminum element ceramic anti-reflection film on the film of the solar selective absorption material is used as the surface layer, and the solar selective absorption coating is coated by the single aluminum target magnetron sputtering vacuum coater in combination with the reaction gas and the working gas.
- the substrate is a glass tube, non-reactive magnetron sputtering evaporation aluminum reflection in pure argon gas in a single aluminum target magnetron sputtering vacuum coating machine
- the film is on a glass tube, after which oxygen is injected, oxygen reacts with the magnetron-sputtered aluminum atom, and an A1 2 0 3 ceramic film is formed on the aluminum reflective film as a diffusion barrier film layer, followed by injection of argon gas and nitrogen gas (or carbon monoxide).
- nitrogen gas or carbon monoxide
- nitrogen or carbon monoxide
- nitrogen or carbon, oxygen
- the ratio of the number also increases, and the thickness of the corresponding deposited absorbent material increases, forming a layer of aluminum-based cermet composite component solar selective absorbing material, the composition of the absorbing material film layer is gradual, and the absorbing material aluminum _ oxygen_nitrogen (or aluminum _ Carbon_oxygen-nitrogen, and finally a mixture of argon and carbon tetrafluoride is formed on the surface of the aluminum-based cermet composite component solar selective absorbing material to form aluminum.
- _Nitrogen-fluorine (or aluminum-oxygen-fluorine) anti-reflection film as a surface layer.
- the substrate is a glass tube, and non-reactive magnetron sputtering vapor deposition aluminum reflection in pure argon gas in a single aluminum target magnetron sputtering vacuum coating machine
- the film is placed on a glass tube, followed by nitrogen gas, nitrogen reacts with the magnetron-sputtered aluminum atom, and an A1N ceramic film is formed on the aluminum reflective film as a diffusion barrier film layer, followed by a mixed gas of argon gas and nitrogen gas (or carbon monoxide).
- the proportion of nitrogen in the gas is decreased, the ratio of the number of aluminum atoms to nitrogen (or carbon, oxygen) is also increased, and the thickness of the corresponding deposited absorbent material is increased, and then the proportion of nitrogen in the mixed gas of argon and nitrogen (or carbon monoxide) is increased, nitrogen (or carbon, oxygen)
- the ratio of the number of aluminum atoms also increases, and the thickness of the corresponding deposited absorbing material increases, forming a layer of aluminum-based cermet composite component solar selective absorbing material, and the composition of the absorbing material layer is gradual, absorbing material
- Aluminum_nitrogen (or aluminum_carbon_nitrogen) is finally injected with a mixed gas of argon and carbon tetrafluoride to form a solar compound in the aluminum element. It can selectively absorb the surface of the material film to form an aluminum-nitrogen-fluorine anti-reflection film as the surface layer.
- the substrate is a glass tube, and non-reactive magnetron sputtering evaporation aluminum reflection in pure argon gas in a single aluminum target magnetron sputtering vacuum coating machine
- the film is on the glass tube, after which oxygen is injected, and the oxygen reacts with the aluminum atom of the magnetron sputtering to form an A1 2 0 3 ceramic film on the aluminum reflective film.
- the ratio of the number of aluminum atoms to nitrogen (or carbon, oxygen) is also increased, and the thickness of the corresponding deposited absorbent material is increased, along with nitrogen (or carbon monoxide).
- the flow rate is gradually increased, the ratio of nitrogen (or carbon, oxygen) to the number of aluminum atoms is also increased, and the thickness of the corresponding deposited absorbent material is increased to form an aluminum-based cermet composite component solar selective absorbing material film layer, and the composition of the absorbing material film layer is Gradual, absorbing material aluminum _ oxygen _ nitrogen (or aluminum _ carbon _ oxygen _ nitrogen), finally injected with argon and oxygen mixed gas, oxygen and magnetron sputtering aluminum atoms, formed in aluminum cermet composite solar energy On the surface of the selective absorption material film layer, a surface layer of an A1 2 0 3 ceramic anti-reflection film is formed.
- the substrate is a glass tube, and non-reactive magnetron sputtering vapor deposition aluminum reflection in pure argon gas in a single aluminum target magnetron sputtering vacuum coating machine
- the film is placed on a glass tube, followed by nitrogen gas, nitrogen reacts with the magnetron-sputtered aluminum atom, and an A1N ceramic film is formed on the aluminum reflective film as a diffusion barrier film layer, followed by a mixed gas of argon gas and nitrogen gas (or carbon monoxide).
- the proportion of nitrogen in the gas is decreased, the ratio of the number of aluminum atoms to nitrogen (or carbon, oxygen) is also increased, and the thickness of the corresponding deposited absorbent material is increased, and then the proportion of nitrogen in the mixed gas of argon and nitrogen (or carbon monoxide) is increased, nitrogen (or carbon, oxygen)
- the ratio of the number of aluminum atoms also increases, and the thickness of the corresponding deposited absorbing material increases, forming a layer of aluminum-based cermet composite component solar selective absorbing material, and the composition of the absorbing material layer is gradual, absorbing material Aluminum-nitrogen (or aluminum_carbon_nitrogen), finally injecting a mixed gas of argon and nitrogen, and reacting nitrogen with magnetron-sputtered aluminum atoms in aluminum
- the surface of the A1N ceramic film antireflection film is formed on the surface of the elemental cermet composite component solar selective absorbing material film.
- the solar absorption rate of such a selective absorbing coating is significantly higher than that of the above-mentioned coating and its production.
- the film layer has high absorption rate, good thermal stability, and thus excellent heat collecting performance
- the baking temperature can be adjusted to 400_500 ° C, which will reduce the production cycle and production energy consumption.
- FIG. 1 is a schematic structural view of a conventional aluminum-nitrogen-aluminum graded film layer
- FIG. 2 is a graph showing the content distribution of elemental components of aluminum in a conventional aluminum-nitrogen-aluminum graded film layer
- FIG. 3 is a schematic structural view of an aluminum-nitrogen-aluminum graded film layer with a diffusion barrier film according to the present invention
- FIG. 4 is a distribution diagram of the content of elemental components of aluminum in an aluminum-nitrogen-aluminum graded film layer with a diffusion barrier film of the present invention
- a single aluminum target magnetron sputtering solar selective absorbing coating the solar selective absorbing coating is deposited on the substrate as an underlying layer, and deposited on the aluminum reflective layer.
- the aluminum element ceramic on the film is a diffusion barrier film layer
- the aluminum element cermet composite component deposited on the aluminum element ceramic diffusion barrier film layer is a solar selective absorbing material film layer, and is deposited on the aluminum element cermet composite component solar energy selection.
- the aluminum element ceramic anti-reflection film on the film of the absorbing material is used as the surface layer, and the solar selective absorbing coating is coated by the single aluminum target magnetron sputtering vacuum coater in combination with the reaction gas and the working gas.
- a single aluminum target magnetron sputtering solar selective absorption coating wherein one of the structures is: the substrate is a glass tube, and pure argon gas is used in a single aluminum target magnetron sputtering vacuum coating machine.
- the non-reactive magnetron sputtering vapor deposition aluminum reflective film is on the glass tube, and the thickness of the aluminum vapor-deposited aluminum reflective film is not less than 100 nm, and then oxygen is injected, and the oxygen reacts with the magnetron-sputtered aluminum atom to form on the aluminum reflective film.
- the aluminum element cermet composite component solar energy selective absorbing material film layer, the composition of the absorbing material film layer is gradual, and the absorbing material aluminum monooxygen nitrogen (or aluminum carbon monooxygen) has a thickness of 10 0nm-.260nm, finally injecting a mixed gas of argon gas and carbon tetrafluoride, formed on the surface of the aluminum-based cermet composite component solar selective absorbing material film layer to form aluminum_nitrogen-fluorine (or aluminum_oxygen-fluorine) minus
- the reflective film is used as a surface layer, and the thickness of the surface of the anti-reflection film is 30 to 90 nm.
- the second structure is: the substrate is Glass tube, in a single aluminum target magnetron sputtering vacuum coating machine, non-reactive magnetron sputtering in the pure aluminum argon gas vapor deposition aluminum reflective film on the glass tube, the thickness of the aluminum vapor deposited aluminum reflective film is not less than 100nm, then inject nitrogen The nitrogen reacts with the aluminum atom of the magnetron sputtering to form an A1N ceramic film on the aluminum reflective film as a diffusion barrier film layer, the thickness of the aluminum nitride is between 20 nm and 80 nm, and then the argon gas and the nitrogen gas (or carbon monoxide) are injected.
- the proportion of nitrogen in the mixed gas is reduced, the ratio of the number of aluminum atoms to nitrogen (or carbon, oxygen) is also increased, and the thickness of the corresponding deposited absorbent material is increased, and then the proportion of nitrogen in the mixed gas of argon and nitrogen (or carbon monoxide) is increased.
- the ratio of nitrogen (or carbon, oxygen) to the number of aluminum atoms is also increased, and the thickness of the corresponding deposited absorbing material is increased to form a layer of aluminum-based cermet composite component solar selective absorbing material, and the composition of the absorbing material film layer is gradual.
- an aluminum-nitrogen-fluorine anti-reflection film is formed as a surface layer, and the thickness of the surface of the anti-reflection film is 30-90 nm.
- the third structure is: the substrate is a glass tube, pure argon gas in a single aluminum target magnetron sputtering vacuum coating machine
- the non-reactive magnetron sputtering vapor deposition aluminum reflective film is on the glass tube, and the thickness of the aluminum vapor-deposited aluminum reflective film is not less than 100 nm, and then oxygen is injected, and the oxygen reacts with the magnetron-sputtered aluminum atom to form on the aluminum reflective film.
- the thickness of alumina is between 20nm and 80nm, after which a mixture of argon and nitrogen (or carbon monoxide) is injected, and the number of aluminum atoms is nitrogen (or carbon, oxygen).
- the ratio also increases, and the thickness of the corresponding deposited absorbing material increases.
- the flow rate of nitrogen (or carbon monoxide) increases, the ratio of nitrogen (or carbon, oxygen) to the number of aluminum atoms increases, and the thickness of the corresponding deposited absorbing material increases to form aluminum.
- the elemental cermet composite component solar energy selective absorbing material film layer, the composition of the absorbing material film layer is gradual, and the absorbing material aluminum_oxygen-nitrogen (or aluminum-carbon-oxygen-nitrogen) has a thickness of 100 nm-.260 nm.
- a mixed gas of argon and oxygen is injected, and the oxygen reacts with the aluminum atom of the magnetron sputtering to form a surface layer of the aluminum-based cermet composite component solar selective absorbing material to form a surface layer of the A1 2 0 3 ceramic anti-reflection film.
- the thickness of the surface layer of the anti-reflection film is 30 to 90 nm.
- the fourth structure is: the substrate is a glass tube, pure argon gas in a single aluminum target magnetron sputtering vacuum coating machine
- the medium-non-reactive magnetron sputtering vapor deposition aluminum reflective film is on the glass tube, and the thickness of the aluminum vapor-deposited aluminum reflective film is not less than 100 nm, and then nitrogen gas, nitrogen gas is injected.
- the aluminum atomic reaction of magnetron sputtering generates an A1N ceramic film on the aluminum reflective film as a diffusion barrier film layer, and the aluminum nitride has a thickness of between 20 nm and 80 nm, and then is injected into a mixed gas of argon and nitrogen (or carbon monoxide).
- the proportion of nitrogen is reduced, the ratio of the number of aluminum atoms to nitrogen (or carbon, oxygen) is also increased, and the thickness of the corresponding deposited absorbent material is increased, and then the proportion of nitrogen in the mixed gas of argon and nitrogen (or carbon monoxide) is increased, nitrogen ( Or carbon/oxygen) increases the ratio of the number of aluminum atoms, and the thickness of the corresponding deposited absorbing material increases, forming a layer of aluminum-based cermet composite component solar selective absorbing material, the composition of the absorbing material layer is gradual, and the absorbing material aluminum A nitrogen (or aluminum-carbon-nitrogen) thickness of 100nm-.260nm, finally injected with argon and nitrogen mixed gas, nitrogen and magnetron sputtering aluminum atoms, in the aluminum element cermet composite solar energy selective absorption material film On the surface of the layer, an A1N ceramic film antireflection film surface layer is formed, and the thickness of the surface of the antireflection film is 30 to 90 nm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Sustainable Development (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physical Vapour Deposition (AREA)
Abstract
La présente invention concerne un revêtement absorbant à sélection solaire doté d'une pulvérisation cathodique magnétron et d'une seule cible en aluminium. Le revêtement absorbant à sélection solaire possède un film réfléchissant en aluminium (2) déposé sur un substrat sous la forme d'une couche inférieure, des céramiques contenant de l'aluminium déposées sur le film réfléchissant en aluminium (2) sous la forme d'une couche barrière de diffusion, un matériau composite en céramique de métal contenant de l'aluminium déposé sur la couche barrière de diffusion en céramique contenant de l'aluminium sous la forme d'une couche de matériau absorbant à sélection solaire, et un film antireflet en céramique contenant de l'aluminium déposé sur la couche de matériau absorbant à sélection solaire du matériau composite en céramique de métal à sélection solaire du matériau composite en céramique de métal contenant de l'aluminium sous la forme d'une couche de surface. Pour le revêtement absorbant à sélection solaire, le revêtement est réalisé au moyen d'une machine de revêtement sous vide à pulvérisation cathodique magnétron présentant une seule cible en aluminium en combinaison avec un gaz réactif et un gaz de travail. Les couches présentent une capacité d'absorption élevée et une stabilité thermique supérieure, et ont donc une excellente performance de collecte thermique tout en étant faciles à construire. La volatilisation de surface et l'émission de gaz sont inférieures à celles d'un matériau absorbant en métal-carbure. Par conséquent, une température de cuisson peut être réglée à 400-500 °C lors de la production de tubes collecteurs de chaleur, ce qui permet de réduire la durée de fabrication et la consommation d'énergie.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510911144.7 | 2015-12-10 | ||
CN201510911144.7A CN105546858A (zh) | 2015-12-10 | 2015-12-10 | 一种单铝靶磁控溅射太阳能选择性吸收涂层 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017097236A1 true WO2017097236A1 (fr) | 2017-06-15 |
Family
ID=55826236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/109089 WO2017097236A1 (fr) | 2015-12-10 | 2016-12-08 | Revêtement absorbant à sélection solaire doté d'une seule cible en aluminium et d'une pulvérisation cathodique magnétron |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105546858A (fr) |
WO (1) | WO2017097236A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105546858A (zh) * | 2015-12-10 | 2016-05-04 | 淄博环能海臣环保技术服务有限公司 | 一种单铝靶磁控溅射太阳能选择性吸收涂层 |
CN107034468A (zh) * | 2017-05-23 | 2017-08-11 | 上海子创镀膜技术有限公司 | 一种新型太阳能吸热膜的镀膜结构 |
CN108977769A (zh) * | 2017-06-05 | 2018-12-11 | 深圳富泰宏精密工业有限公司 | 壳体及该壳体的制作方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4029853A (en) * | 1975-06-20 | 1977-06-14 | The United States Of America As Represented By The Secretary Of The Navy | PbS-Al selective solar absorber |
GB2079323A (en) * | 1980-06-18 | 1982-01-20 | Bfg Glassgroup | Nitrogen-containing nickel coatings for solar collectors |
CN87210032U (zh) * | 1987-07-17 | 1988-01-27 | 清华大学 | 一种全玻璃真空太阳能集热管 |
CN102278833A (zh) * | 2011-05-16 | 2011-12-14 | 山东桑乐光热设备有限公司 | 一种耐高温的选择性吸收涂层及制造方法 |
CN102433530A (zh) * | 2011-12-16 | 2012-05-02 | 山东桑乐太阳能有限公司 | 一种太阳能选择性吸收涂层及制备方法 |
CN105546858A (zh) * | 2015-12-10 | 2016-05-04 | 淄博环能海臣环保技术服务有限公司 | 一种单铝靶磁控溅射太阳能选择性吸收涂层 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101724812A (zh) * | 2008-10-24 | 2010-06-09 | 山东力诺新材料有限公司 | 一种涂层及其制造方法 |
CN103029374A (zh) * | 2011-09-30 | 2013-04-10 | 中国科学院大连化学物理研究所 | 一种中高温太阳能光热选择性吸收涂层 |
CN102620456B (zh) * | 2012-04-06 | 2013-10-09 | 中国科学院宁波材料技术与工程研究所 | 一种中低温太阳能选择吸收薄膜及其制备方法 |
CN102653151B (zh) * | 2012-05-23 | 2015-02-11 | 皇明太阳能股份有限公司 | 一种太阳能选择性吸收涂层 |
CN103317788A (zh) * | 2012-11-30 | 2013-09-25 | 北京天瑞星光热技术有限公司 | 一种光谱选择性吸收涂层及其制备方法 |
CN103528251B (zh) * | 2013-10-14 | 2015-10-28 | 常州深蓝涂层技术有限公司 | 耐高温金属陶瓷太阳能选择性吸收涂层及制备方法 |
-
2015
- 2015-12-10 CN CN201510911144.7A patent/CN105546858A/zh active Pending
-
2016
- 2016-12-08 WO PCT/CN2016/109089 patent/WO2017097236A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4029853A (en) * | 1975-06-20 | 1977-06-14 | The United States Of America As Represented By The Secretary Of The Navy | PbS-Al selective solar absorber |
GB2079323A (en) * | 1980-06-18 | 1982-01-20 | Bfg Glassgroup | Nitrogen-containing nickel coatings for solar collectors |
CN87210032U (zh) * | 1987-07-17 | 1988-01-27 | 清华大学 | 一种全玻璃真空太阳能集热管 |
CN102278833A (zh) * | 2011-05-16 | 2011-12-14 | 山东桑乐光热设备有限公司 | 一种耐高温的选择性吸收涂层及制造方法 |
CN102433530A (zh) * | 2011-12-16 | 2012-05-02 | 山东桑乐太阳能有限公司 | 一种太阳能选择性吸收涂层及制备方法 |
CN105546858A (zh) * | 2015-12-10 | 2016-05-04 | 淄博环能海臣环保技术服务有限公司 | 一种单铝靶磁控溅射太阳能选择性吸收涂层 |
Also Published As
Publication number | Publication date |
---|---|
CN105546858A (zh) | 2016-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201218622Y (zh) | 一种太阳能选择性吸收涂层 | |
CN102122006B (zh) | 太阳光谱选择性吸收涂层及其制备方法 | |
CN101793437B (zh) | 多用途太阳光谱选择性吸收涂层及其制备方法 | |
CN103162452B (zh) | 抗氧化性太阳光谱选择性吸收涂层及其制备方法 | |
ITRM20110308A1 (it) | Assorbitore solare selettivo a base di materiali cermet del tipo doppio nitruro, e relativo procedimento di fabbricazione | |
WO2017097236A1 (fr) | Revêtement absorbant à sélection solaire doté d'une seule cible en aluminium et d'une pulvérisation cathodique magnétron | |
CN103383155A (zh) | Ti合金氮化物选择性吸收膜系及其制备方法 | |
CN100532997C (zh) | 一种太阳能选择性吸收涂层及其制备方法 | |
JP2013529251A (ja) | 熱吸収材を提供する方法 | |
CN102501459A (zh) | 一种中高温太阳能选择性吸收涂层的制备方法 | |
CN103317792B (zh) | 非真空中高温太阳能选择性吸收周期涂层及其制备方法 | |
CN103808048A (zh) | 一种高温太阳光谱选择性吸收涂层 | |
CN109338297B (zh) | 一种二硼化铪-二硼化锆基高温太阳能吸收涂层及其制备方法 | |
CN104279779A (zh) | 一种金属氮化物太阳光谱选择性吸收涂层 | |
CN103234293A (zh) | 耐高温太阳能选择性吸收镀层及其制备方法 | |
Yang et al. | Stress‐Induced Failure Study on a High‐Temperature Air‐Stable Solar‐Selective Absorber Based on W–SiO2 Ceramic Composite | |
CN109338295B (zh) | 一种二硼化铪-二氧化铪基高温太阳能吸收涂层及其制备方法 | |
CN109338296B (zh) | 一种二硼化锆-氧化锆基高温太阳能吸收涂层及其制备方法 | |
CN109371373B (zh) | 一种二硼化钛-二硼化锆基高温太阳能吸收涂层及其制备方法 | |
CN209484869U (zh) | 双过渡层复合吸收型太阳光谱选择性吸收涂层 | |
CN116123741A (zh) | 一种用于槽式热发电高温真空集热管的太阳光谱选择性吸收涂层及其制备方法 | |
CN202388851U (zh) | 一种太阳能选择性吸收涂层 | |
CN109972111A (zh) | 一种高掺杂MoOx基光热转换涂层及其制备方法 | |
CN106322799A (zh) | 一种中低真空环境使用的太阳光谱选择性吸热涂层 | |
CN1020797C (zh) | 光-热转换吸收薄膜及制备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16872425 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16872425 Country of ref document: EP Kind code of ref document: A1 |