WO2017096945A1 - 含硼有机硅化合物、太阳能电池组件用密封剂以及太阳能电池组件 - Google Patents

含硼有机硅化合物、太阳能电池组件用密封剂以及太阳能电池组件 Download PDF

Info

Publication number
WO2017096945A1
WO2017096945A1 PCT/CN2016/095850 CN2016095850W WO2017096945A1 WO 2017096945 A1 WO2017096945 A1 WO 2017096945A1 CN 2016095850 W CN2016095850 W CN 2016095850W WO 2017096945 A1 WO2017096945 A1 WO 2017096945A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solar cell
boron
formula
organosilicon compound
Prior art date
Application number
PCT/CN2016/095850
Other languages
English (en)
French (fr)
Inventor
李振忠
马静
邓祚主
Original Assignee
北京康美特科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510888485.7A external-priority patent/CN106831845B/zh
Priority claimed from CN201510892174.8A external-priority patent/CN106854451B/zh
Application filed by 北京康美特科技股份有限公司 filed Critical 北京康美特科技股份有限公司
Publication of WO2017096945A1 publication Critical patent/WO2017096945A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/55Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic

Definitions

  • the present invention relates to a boron-containing organosilicon compound, a sealing agent for a solar cell module, and a solar cell module, and belongs to the field of solar cells.
  • the addition-curable organopolysiloxane composition is widely used in large-scale integrated circuits, LEDs, solar cells, and the like because of its advantages of no by-products, low shrinkage, and deep curing in the curing process.
  • the cured product contains a large amount of non-polar organic groups, the surface energy of the molecule is low, and thus the adhesion to a substrate such as glass or resin is poor. Therefore, how to improve the adhesion of the cured composition of the addition-curable organopolysiloxane composition to the substrate has been a research hotspot in the field.
  • tackifier to the addition-curable organopolysiloxane composition is one of the effective means for improving the adhesion of the cured product to the substrate.
  • a large number of tackifiers are currently available.
  • silicone-based tackifiers are widely used because of their chemical structures and similar or similar to those of polysiloxanes, which have good compatibility.
  • solar cells using solar radiation as an energy source are receiving increasing attention.
  • a plurality of electrically connected solar cells are usually sealed between the light-receiving surface protective layer and the backlight surface protective layer by using a sealant to form a solar cell module.
  • the sealing agent for the solar cell module exhibits good adhesion to the solar cell unit, the light-receiving surface protective layer, and the backlight surface protective layer, otherwise the solar cell unit may be exposed to the environment due to insufficient adhesiveness of the sealant. Affect the service life of solar modules.
  • sealants for solar cell modules are mainly EVA type sealants and silicone type sealants.
  • the silicone type sealant has a problem that the electrode of the solar cell is corroded due to the fact that the EVA type sealant generates acetic acid in a hot and humid environment, and thus it is in the field of solar cell sealing. To a wider range of applications.
  • CN102892837A, CN103154144A, CN104395406A, CN104870568A respectively disclose a cyclic or linear oligosiloxane as a tackifier having a trialkoxysiloxy group and a methylhydrosilyloxy group.
  • CN102276989A discloses cyclic olitic siloxanes as tackifiers which contain an epoxy group and a methylhydrosilyloxy group. These tackifiers contain an alkoxy group or an epoxy group as a tackifying group, and also contain a silicon hydrogen bond (Si-H) capable of providing a hydrosilylation reaction, since the silicon hydrogen bond is easily generated during storage. Hydrogen causes safety hazards in the use of these tackifiers.
  • Si-H silicon hydrogen bond
  • CN102892837A, JP2010248410A respectively disclose tackifiers having isocyanurate groups, allyl groups and epoxy groups and/or alkoxysilyl groups. These tackifiers use an allyl group instead of a silicon hydrogen bond to provide hydrosilylation reactivity, which avoids the safety problem caused by hydrogen easily generated by silicon hydrogen bonding, but the nitrogen atom in the isocyanurate group easily leads to platinum. The catalyst is poisoned, thereby limiting its use in addition curable organopolysiloxane compositions.
  • JP2012149131A, CN101443400A, CN102732040A, CN102977604A respectively disclose an organopolysiloxane tackifier containing an alkenyl group, a phenyl group, an epoxy group and an alkoxy group, which is composed of an alkenyl group-containing alkoxysilane monomer and a benzene group.
  • the base alkoxysilane monomer and the epoxy group-containing alkoxysilane monomer are produced by a condensation reaction.
  • These tackifiers do not contain nitrogen atoms, which can avoid the problem of catalyst poisoning. However, they are prepared by a condensation reaction process, and a large proportion of trifunctional alkoxysilane monomers are used, which makes it difficult to effectively control the chemical structure. And there are many by-products, which affect the quality and performance of its products.
  • CN103739848A, CN103589164A respectively disclose a boronic acid ester group-containing organopolyborosiloxane as a tackifier, wherein the borate ester group is formed by condensation reaction of boric acid or boric acid triester, respectively, and the boron atom passes only A boron-oxygen bond (BO) is bonded to the polymer chain.
  • these organopolyborosiloxanes also have disadvantages such as difficulty in effective control of chemical structures and numerous by-products.
  • the borate ester group on the organopolyborosiloxane molecule is easily hydrolyzed and peeled off, and it is impossible to provide a sufficient and long-term stable viscosity in a high-temperature and high-humidity environment. Synergy.
  • JP2000169482A discloses a phenolic hydroxyl group-containing organosilicon compound as a tackifier, which is hydrosilylation of an organosilicon compound containing an alkenyl group and a silicon hydrogen bond (Si-H) and an alkenyl group-containing phenol compound. production.
  • the ultraviolet resistance of the organosilicon compound is not satisfactory, and thus when used as a tackifier for addition-curable organopolysiloxane, the organic Silicon compounds do not provide sufficient and long-term stable adhesion to their cured products in an ultraviolet environment, so the tackifiers are not suitable for applications requiring long-term exposure to ultraviolet light, such as solar cells.
  • CN1816916A discloses a liquid silicone sealant for solar cell module sealing comprising: a liquid polysiloxane having at least two silicon-bonded alkenyl groups per molecule, each molecule having at least A polysiloxane resin having two alkenyl groups bonded to a silicon atom, a polysiloxane having at least two hydrogen atoms bonded to a silicon atom and a hydrosilylation reaction catalyst per molecule as a crosslinking agent.
  • the cured layer of the sealant contains a large amount of non-polar organic groups, the surface energy of the molecule is low, and the adhesion to the solar cell unit, the light-receiving surface protective layer, and the backlight surface protective layer is poor, and thus the sealing is performed. It is necessary to previously surface-treat each bonding surface with a silane coupling agent, otherwise it is difficult to obtain desired adhesion.
  • CN103525094A, CN104419335A, CN102276989A, CN102892837A respectively disclose a curable polyorganosiloxane composition for use as a solar cell module encapsulant comprising a tackifier having a specific chemical structure.
  • the tackifier contains a tackifying group such as an epoxy group or an alkoxy group, and a hydrogen atom or an alkenyl group-containing organic group bonded to a silicon atom.
  • the silicone-based encapsulant containing the tackifier exhibits good adhesion to the solar cell module to some extent.
  • a silicone-based tackifier is a silicone-based tackifier capable of providing sufficient and long-term stable adhesion to an addition-curable organopolysiloxane composition in a high-temperature, high-humidity, and ultraviolet environment.
  • the cured layer of the sealant for a solar cell module can maintain sufficient and long-term stable adhesion to the solar cell module in a high-temperature, high-humidity, and ultraviolet environment.
  • An object of the present invention is to provide a boron-containing organosilicon compound which is used as a tackifier for an addition-curable organopolysiloxane composition, which is capable of providing sufficient and long-term stability to a cured product thereof in a high-temperature, high-humidity and ultraviolet environment. Adhesion. Further, a method for producing the boron-containing organosilicon compound is provided, which is capable of obtaining a boron-containing organosilicon compound which is chemically controllable, substantially free of by-products, and stable in quality and performance. Further, the use of the boron-containing organosilicon compound is provided as a tackifier for an addition-curable organopolysiloxane composition.
  • Another object of the present invention is to provide a sealant for a solar cell module in which a cured layer can maintain sufficient and long-term stable adhesion to a solar cell module in a high-temperature, high-humidity, and ultraviolet-ray environment. Further, a solar cell module comprising a cured layer formed by curing the solar cell module with a sealant is provided. Further, a method of sealing a solar cell module with the sealant for the solar cell module is provided.
  • the present invention provides a boron-containing organosilicon compound having the chemical structure represented by the formula (I):
  • B is a boron atom
  • Q is a substituted or unsubstituted cycloalkenyl group having 3 to 20 carbon atoms.
  • L is a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.
  • Two of R 1 in two OR 1 linked to B are each a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, or two R 1 of two OR 1 linked to B are bonded to each other to form a carbon atom.
  • a boron-containing organosilicon compound according to the invention wherein the Q is selected from a substituted or unsubstituted cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, a cyclooctenyl group, a cyclodecenyl group , cyclodecenyl, cyclododecenyl or norbornene.
  • the boron-containing organosilicon compound according to the present invention wherein the Q is selected from a substituted or unsubstituted cyclohexenyl group or a norbornene group.
  • the boron-containing organosilicon compound according to the present invention wherein the L is selected from a substituted or unsubstituted cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, a cyclodecyl group, a cyclodecyl group, a ring. Dodecyl or norbornyl.
  • a boron-containing organosilicon compound according to the invention wherein the L is selected from a substituted or unsubstituted cyclohexyl group.
  • the present invention also provides a process for the preparation of a boron-containing organosilicon compound according to the present invention, comprising: hydrosilylation of:
  • L' is selected from a substituted or unsubstituted cycloalkenyl group having 3 to 20 carbon atoms.
  • R 1 is the same as defined in the formula (I) of the present invention.
  • a method of producing a boron-containing organosilicon compound according to the present invention wherein the L' is selected from a substituted or unsubstituted cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, a cyclooctenyl group, Cyclodecenyl, cyclodecenyl, cyclododecenyl or norbornene.
  • the invention also provides the use of a boron-containing organosilicon compound according to the invention or a boron-containing organosilicon compound prepared by the process of the invention as a tackifier for addition-curable organopolysiloxane compositions.
  • the invention also provides a sealant for a solar cell module, comprising:
  • a solar cell module according to the present invention which comprises a cured layer formed by curing a sealing agent for a solar cell module of the present invention.
  • the present invention also provides a method of sealing a solar cell module, comprising: applying a solar cell module of the present invention to a solar cell module and curing it.
  • the boron-containing organosilicon compound of the present invention has a molecular skeleton composed of a cycloalkenyl group, a silicon-oxygen bond (Si-O) and a cycloalkyl group, and contains three boronic acids or boric acid bonded via a cycloalkyl group. Ester group.
  • the boron-containing organosilicon compound of the present invention is used as a tackifier for an addition-curable organopolysiloxane composition, and is capable of providing a sufficient and long-term stable viscosity to a cured product thereof in a high-temperature, high-humidity, and ultraviolet environment. Synergy.
  • the present invention prepares a boron-containing organosilicon compound by hydrosilylation reaction, and the method of the present invention can obtain a boron-containing organosilicon with controllable chemical structure, substantially no by-products, and stable quality and performance, compared with a condensation reaction process.
  • Compound
  • the sealing agent for a solar cell module according to the present invention comprises a boron-containing organosilicon compound whose molecular skeleton is composed of a cycloalkenyl group, a silicon-oxygen bond (Si-O) and a cycloalkyl group, and contains three groups via a cycloalkyl group. Bonded boric acid or borate groups.
  • the sealing agent for a solar cell module according to the present invention which contains the boron-containing organosilicon compound, has a cured layer capable of maintaining sufficient and long-term stable adhesion to the solar cell module in a high-temperature, high-humidity, and ultraviolet-ray environment.
  • FIG. 1 is a schematic view of a solar cell module of the present invention.
  • Fig. 1 is a light-receiving surface protective layer
  • 2 is a solar cell unit
  • 3 is a backlight surface protective layer
  • 4 is a sealant cured layer
  • 5 is a wire.
  • substitution means that a hydrogen atom in a group or a compound is substituted with a substituent.
  • substituent includes, but is not limited to, an alkyl group, an aryl group, an alkenyl group, an alkynyl group, a halogen atom, an alkoxy group, a hydroxyl group, an epoxy group, an amine group, a decyl group, a nitro group, a carboxylic acid group, a sulfonic acid group. , an ester group, an amide group or a heterocyclic group.
  • halogen atom as used in the present invention means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • viscosity means, unless otherwise specified, the dynamic viscosity measured by a rotational viscometer at 23 ° C, and the unit is mPa ⁇ s.
  • Vi as used in the present invention means a vinyl group
  • Me means a methyl group
  • the “solar cell module” described in the present invention also referred to as “photovoltaic module”, is composed of a plurality of solar cell units electrically connected by wires.
  • the boron-containing organosilicon compound of the present invention has a molecular skeleton composed of a cycloalkenyl group, a silicon-oxygen bond (Si-O) and a cycloalkyl group, and contains three boronic acids or boric acid bonded via a cycloalkyl group. Ester group.
  • the boron-containing organosilicon compound of the present invention is used as a tackifier for an addition-curable organopolysiloxane composition, and is capable of providing sufficient and long-term stable adhesion to a cured product thereof in a high-temperature, high-humidity, and ultraviolet environment. .
  • the boron-containing organosilicon compound of the present invention having the chemical structure represented by the formula (I):
  • B is a boron atom
  • Q is a substituted or unsubstituted cycloalkenyl group having 3 to 20 carbon atoms.
  • L is a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.
  • Two of R 1 in two OR 1 linked to B are each a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, or two R 1 of two OR 1 linked to B are bonded to each other to form a carbon atom.
  • the Q is preferably a cycloalkenyl group having 4 to 15 carbon atoms, and more preferably a cycloalkenyl group having 5 to 8 carbon atoms.
  • the Q examples include, but are not limited to, substituted or unsubstituted cyclopropenyl, cyclobutenyl, cyclopentane Alkenyl, cyclohexenyl, cyclooctenyl, cyclodecenyl, cyclodecenyl, cyclododecenyl or norbornene. According to a preferred embodiment of the invention, the Q is selected from substituted or unsubstituted cyclohexenyl or norbornene.
  • the L is preferably a cycloalkyl group having 4 to 15 carbon atoms, and more preferably a cycloalkyl group having 5 to 8 carbon atoms.
  • L examples include, but are not limited to, substituted or unsubstituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, cyclodecyl, cyclodecyl, cyclododecyl or norbornane base. According to a preferred embodiment of the invention, the L is selected from a substituted or unsubstituted cyclohexyl group.
  • R 1 when R 1 is an alkyl group, it is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • R 1 is an alkyl group
  • examples of the case where R 1 is an alkyl group include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, decyl, decyl, undecyl, twelve. Alkyl or an isomer thereof.
  • R 1 is methyl, ethyl, propyl, butyl or an isomer thereof.
  • R 1 when R 1 is an alkylene group, it is preferably an alkylene group having 2 to 15 carbon atoms, and more preferably an alkylene group having 2 to 10 carbon atoms.
  • R 1 is an alkylene group
  • examples of the case where R 1 is an alkylene group include, but are not limited to, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, fluorenylene, fluorenylene, arylene Undecyl, dodecylene, fluorenylene or an isomer thereof.
  • the R 1 is ethylene, propylene, 2,3-dimethylbutylene or a fluorenylene.
  • the boron-containing organosilicon compound preferably has a chemical structure represented by the following formula (I-1) to formula (I-16):
  • the boron-containing organosilicon compound of the present invention has a chemical structure represented by the above formula (I-7) or formula (I-15).
  • the present invention produces the boron-containing organosilicon compound by hydrosilylation.
  • a boron-containing organosilicon compound which is chemically controllable, substantially free of by-products, and stable in quality and performance.
  • the method of the present invention comprises: hydrosilylation of:
  • L' is selected from a substituted or unsubstituted cycloalkenyl group having 3 to 20 carbon atoms.
  • R 1 is the same as defined in the formula (I).
  • the L' is preferably a cycloalkenyl group having 4 to 15 carbon atoms, more preferably a carbon atom. A number of 5-8 cycloalkenyl groups.
  • L' examples include, but are not limited to, a substituted or unsubstituted cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, a cyclooctenyl group, a cyclodecenyl group, a cyclodecenyl group, and a ring. Dodecenyl or norbornene. According to a preferred embodiment of the invention, the L' is selected from substituted or unsubstituted cyclohexenyl.
  • the siloxane compound (a) is produced by hydrolysis-condensation of the following monomer (a1) and monomer (a2):
  • Q is the same as defined in the formula (I), and R 2 is a hydroxyl group or a hydrolyzable group;
  • R 2 is the same as defined in the formula (IV).
  • examples of the hydrolyzable group include, but are not limited to, a halogen atom, an alkoxy group having 1 to 10 carbon atoms or an acyloxy group having 2 to 10 carbon atoms.
  • the hydrolyzable group is selected from a chlorine atom, a methoxy group, an ethoxy group, an isopropoxy group or an acetoxy group.
  • Examples of the monomer (a1) include, but are not limited to:
  • Trihydroxysilane monomer such as cyclopropyl silanol, cyclobutenyl silanol, cyclopentenyl silanol, cyclohexenyl silanol, cycloheptenyl silanol, cyclooctenyl silanol, cyclic oxime Alkenyl silanol, cyclodecyl silanol, cyclododecylsilanol or norbornene-based silanol;
  • Trihalosilane monomer such as cyclopropenyltrichlorosilane, cyclobutenyltrichlorosilane, cyclopentenyltrichlorosilane, cyclohexenyltrichlorosilane, cycloheptenyltrichlorosilane, cyclooctene Trichlorosilane, cyclodecenyltrichlorosilane, cyclodecyltrichlorosilane, cyclododecyltrichlorosilane or norbornene-trichlorosilane;
  • a trialkoxysilane monomer such as cyclopropenyltrimethoxysilane, cyclopropenyltriethoxysilane, Cyclopropenyltriisopropoxysilane, cyclobutenyltrimethoxysilane, cyclobutenyltriethoxysilane, cyclobutenyltriisopropoxysilane,cyclopentenyltrimethoxysilane, ring Pentenyl triethoxysilane, cyclopentenyl triisopropoxysilane, cyclohexenyltrimethoxysilane, cyclohexenyltriethoxysilane, cyclohexenyltriisopropoxysilane, Cycloheptenyltrimethoxysilane, cycloheptenyltriethoxysilane, cycloheptenyltriisopropoxysilane, cyclooctenyltrimethoxy
  • Triacyloxysilane monomer such as cyclopropenyltriacetoxysilane, cyclobutenyltriacetoxysilane, cyclopentenyltriacetoxysilane, cyclohexenyltriacetoxysilane, cycloheptane Alkenyl triacetoxysilane, cyclooctenyl triacetoxysilane, cyclodecenyl triacetoxysilane, cyclodecyltriacetoxysilane, cyclododecyltriacetoxysilane or norbornene Alkenyl triacetoxysilane.
  • the monomer (a1) is selected from the group consisting of cyclohexenyltrichlorosilane, norbornene-based trichlorosilane, cyclohexenyltrimethoxysilane, cyclohexenyltriethoxysilane, cyclohexene Triisopropoxysilane, norbornene trimethoxysilane, norbornene triethoxysilane, norbornene triisopropoxysilane, cyclohexenyl triacetoxysilane or norbornene Alkenyl triacetoxysilane.
  • Examples of the monomer (a2) include, but are not limited to, dimethylmethoxysilane, dimethylethoxysilane, dimethylchlorosilane or 1,1,3,3-tetramethyldisiloxane alkyl.
  • the monomer (a2) is 1,1,3,3-tetramethyldisiloxane.
  • the process for preparing the siloxane compound (a) by the hydrolysis condensation reaction of the monomer (a1) with the monomer (a2) is not particularly limited, and a hydrolysis condensation process well known in the art can be employed. For example, correlations disclosed by JP2000169482A, EP1055674A1, US5614640A can be employed. Process.
  • the siloxane compound (a) has a chemical structure represented by the formula (II-1) or the formula (II-2):
  • examples of the boric acid or borate compound (b) include, but are not limited to:
  • Substituted or unsubstituted cycloalkenylboronic acid such as substituted or unsubstituted cyclopropenylboronic acid, cyclobutenylboronic acid, cyclopentenylboronic acid, cyclohexenylboronic acid, cyclooctenylboronic acid,cyclodecenylboronic acid , cyclodecenylboronic acid, cyclododecenylboronic acid or norborneneboronic acid;
  • a substituted or unsubstituted dialkyl cycloalkenylborate such as a substituted or unsubstituted dimethyl cyclopropenylborate, diethyl cyclopropenylborate, diisopropylcyclopropaneborate, cyclopropenylboronic acid Butyl ester, dimethyl cyclobutenylborate, diethyl cyclobutenylborate, diisopropyl cyclobutenylborate, dibutyl cyclobutenylborate, dimethyl cyclopentenylborate, ring Dipentylboronic acid diethyl ester, cyclopentenylboronic acid diisopropyl ester, cyclopentenylboronic acid dibutyl ester, cyclohexenylboronic acid dimethyl ester, cyclohexenylboronic acid diethyl ester, cyclohexenylboronic acid
  • Substituted or unsubstituted alkylene dialkyl cycloalkanate such as ethylene glycol cyclopropenyl borate, propylene glycol cyclopropenyl borate, pinacol cyclopropenyl boronate, decyl glycol cyclopropenyl borate , cyclobutenyl boronic acid ethylene glycol ester, cyclobutenyl boronic acid propylene glycol ester, cyclobutenyl boronic acid pinacol ester, cyclobutenyl boronic acid decyl glycol ester, cyclopentenyl boronic acid ethylene glycol ester, Propylene glycol cyclopentenylborate, pinacol ester of cyclopentenylboronic acid, decanediol cyclopentenylborate, ethylene glycol cyclohexenylborate, propylene glycol cyclohexenylborate
  • the boric acid or borate compound (b) is selected from the group consisting of substituted or unsubstituted cycloalkenylboronic acid, dicyclohexylboronic acid dialkyl ester or cyclohexenylboronic acid alkylene diester. .
  • the reaction ratio of the siloxane compound (a) to the boric acid or borate compound (b) is such that the siloxane compound (a) is bonded to a silicon atom.
  • the molar ratio of the hydrogen atom to the alkenyl group in the boric acid or borate compound (b) is at least 0.8, preferably from 0.80 to 1.0, more preferably from 0.80 to 0.95.
  • the hydrosilylation reaction between the siloxane compound (a) and the boric acid or borate compound (b) is preferably carried out in the presence of a platinum-based catalyst.
  • the platinum-based catalyst include, but are not limited to, platinum black, platinum chloride, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a reaction of chloroplatinic acid with an alcohol, a reaction of chloroplatinic acid with an olefin compound, chloroplatinum Acid and vinyl-containing siloxane a complex of a reactant, a platinum-olefin complex or a platinum-vinyl containing siloxane.
  • the platinum-based catalyst is selected from the group consisting of platinum-vinyl-containing siloxane complexes such as platinum (0)-1,3-divinyl-1,1,3,3-tetramethyl Silicone complex.
  • the platinum olefin catalyst is usually used in an amount of from 0.05 to 10,000 ppm, preferably from 0.1 to 8,000 ppm, more preferably 0.5%, based on the total weight of the siloxane compound (a) and the boric acid or borate compound (b). 5000ppm.
  • the hydrosilylation reaction may be carried out in the absence of a solvent or in a solvent.
  • the solvent include, but are not limited to, aliphatic hydrocarbon solvents such as hexane, decane, dodecane, etc.; aromatic hydrocarbon solvents such as benzene, toluene, xylene Etc.
  • Halogenated hydrocarbon solvents such as carbon tetrachloride, chloroform, dichloromethane, methyl chloride, etc.; alcohol solvents such as methanol, ethanol, isopropanol, n-butanol, etc.; ether solvents, such as Tetrahydrofuran, diethyl ether, dibutyl ether, etc.; ketone solvents such as acetone, methyl ethyl ketone, etc.; ester solvents such as ethyl acetate, butyl acetate; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • the amount of the solvent to be used is not particularly limited, and may be specifically selected depending on the actual situation.
  • the temperature of the hydrosilylation reaction is usually from 50 to 150 ° C, preferably from 60 to 100 ° C.
  • the time of the hydrosilylation reaction is not particularly limited.
  • the reaction endpoint is determined by Fourier transform infrared spectroscopy (FT-IR) of the reaction mixture. Specifically, when FT-IR shows that the signal peak of the hydrogen atom bonded to the silicon atom in the reaction mixture disappears, it is determined as the end point of the reaction.
  • FT-IR Fourier transform infrared spectroscopy
  • the reaction mixture is preferably subjected to vacuum distillation.
  • the effect of the vacuum distillation is to remove unreacted boric acid or borate compound (b), organic solvent (if present), and other low boilers.
  • the boron-containing organosilicon compound according to the present invention has use as a tackifier for an addition-curable organopolysiloxane composition.
  • the boron-containing organosilicon compound of the present invention is used as an addition curing organic When the tackifier of the silicone composition is used, it can provide sufficient and long-term stable adhesion to the cured product thereof in a high-temperature, high-humidity, and ultraviolet environment.
  • the addition-curable organopolysiloxane composition generally comprises at least one organopolysiloxane containing an alkenyl group bonded to a silicon atom, at least one containing a silicon atom An organohydrogenpolysiloxane bonded to a hydrogen atom and a hydrosilylation reaction catalyst.
  • the type of the organopolysiloxane, the organohydrogenpolysiloxane, and the hydrosilylation catalyst and the amount thereof are not particularly limited, and types and amounts well known in the art can be employed.
  • addition-curable organopolysiloxane composition examples include, but are not limited to, an addition-curable organopolysiloxane combination disclosed by CN102892837A, CN104395406A, CN104870568A, CN103154144A, CN101443400A, CN102977604A, CN102276989A, CN104204100A, CN102686598B. Things.
  • an organopolysiloxane containing an alkenyl group bonded to a silicon atom and an organic atom having a hydrogen atom bonded to a silicon atom are added to the addition-curable organopolysiloxane composition.
  • the total amount of the hydrogen polysiloxane is 100 parts by weight, and the boron-containing organosilicon compound as a tackifier is preferably used in an amount of from 0.5 to 20 parts by weight, more preferably from 1 to 10 parts by weight.
  • the sealing agent for a solar cell module according to the present invention comprises:
  • B is a boron atom
  • Q is a substituted or unsubstituted cycloalkenyl group having 3 to 20 carbon atoms.
  • L is a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.
  • Two of R 1 in two OR 1 linked to B are each a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, or two R 1 of two OR 1 linked to B are bonded to each other to form a carbon atom. a number of 2-20 alkylene groups;
  • the sealing agent for a solar cell module according to the present invention contains an organopolysiloxane (A) having at least two silicon-bonded alkenyl groups per molecule.
  • the organopolysiloxane (A) is used as a substrate of the sealing agent for a solar cell module according to the present invention.
  • the type of the organopolysiloxane (A) is not particularly limited as long as it contains at least two alkenyl groups bonded to a silicon atom per molecule.
  • the organopolysiloxane (A) may be:
  • R a is independently an alkenyl group having 2 to 6 carbon atoms or an alkyl group having 1 to 6 carbon atoms, provided that at least two R a are alkenyl groups having 2 to 6 carbon atoms.
  • n is a number such that the linear organopolysiloxane (A-1) has a viscosity at 23 ° C of 100 to 500,000 mPa ⁇ s;
  • R a is the same as defined in the formula (VI),
  • the alkenyl group having 2 to 6 carbon atoms is preferably a vinyl group, an allyl group, a propenyl group, a butenyl group or a cyclohexenyl group, more preferably a vinyl group or an alkene group.
  • the propyl group is most preferably a vinyl group.
  • the alkyl group having 1 to 6 carbon atoms is preferably a methyl group, an ethyl group, a propyl group or a butyl group, more preferably a methyl group or an ethyl group, and most preferably a methyl group.
  • n is such that the viscosity of the linear organopolysiloxane (A-1) at 23 ° C is preferably from 500 to 200,000 mPa ⁇ s, more preferably from 1,000 to 100,000 mPa ⁇ s.
  • a/b is preferably from 0.6 to 1.3, more preferably from 0.8 to 1.1.
  • linear organopolysiloxane (A-1) examples include, but are not limited to, polydimethylsiloxane terminated at both ends by a Me 2 ViSiO 1/2 unit; the main chain is composed of MeViSiO 2/2 unit a methylvinylpolysiloxane composed of Me 2 SiO 2/2 units and terminated with Me 2 ViSiO 1/2 units at both ends; or, the main chain consists of MeViSiO 2/2 units and Me 2 SiO 2/2 units A methylvinylpolysiloxane consisting of both ends terminated by a Me 3 SiO 1/2 unit.
  • Examples of the branched organopolysiloxane (A-2) include, but are not limited to, an MQ resin composed of Me 2 ViSiO 1/2 unit and SiO 4/2 unit or a Me 2 ViSiO 1/2 unit, MQ resin composed of Me 3 SiO 1/2 unit and SiO 4/2 unit.
  • the linear organopolysiloxane (A-1) When used in combination with the branched organopolysiloxane (A-2), the linear organopolysiloxane (A-1)
  • the mixing ratio with the branched organopolysiloxane (A-2) is preferably 60:40 to 100:0, more preferably 70:30 to 90:10 by weight.
  • the sealant for a solar cell module according to the present invention contains an organohydrogenpolysiloxane (B) containing at least two hydrogen atoms bonded to a silicon atom per molecule.
  • the organohydrogenpolysiloxane (B) is used as a crosslinking agent for a sealing agent for a solar cell module according to the present invention.
  • the organohydrogenpolysiloxane (B) generally has an average composition formula represented by the formula (VIII):
  • R b is independently an alkyl group having 1 to 6 carbon atoms.
  • c is a number from 0.7 to 2
  • d is a number from 0.01 to 2
  • c + d is from 0.8 to 3.
  • R b is preferably a methyl group, an ethyl group, a propyl group or a butyl group, more preferably a methyl group or an ethyl group, and most preferably a methyl group.
  • c is preferably from 0.8 to 2
  • d is preferably from 0.05 to 1
  • c + d is preferably from 1.0 to 2.7.
  • the molecular structure of the organohydrogenpolysiloxane (B) is not particularly limited and may be any structure including a linear chain, a branch, a ring or a mesh.
  • the number of hydrogen atoms bonded to the silicon atom in the organohydrogenpolysiloxane (B) is usually 3 or more, and preferably 3 to 200.
  • organohydrogenpolysiloxane (B) examples include, but are not limited to, 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane , tris(dimethylhydrosilyloxy)methylsilane, polydimethylsiloxane terminated at both ends by Me 2 HSiO 1/2 unit, methyl hydrogen terminated at both ends by Me 3 SiO 1/2 unit Polysiloxane, a main chain consisting of MeHSiO 2/2 units and Me 2 SiO 2/2 units, and methyl hydrogen polysiloxane terminated at both ends by a Me 3 SiO 1/2 unit, the main chain is composed of MeHSiO 2/ 2- unit and Me 2 SiO 2/2 unit, and methylhydropolysiloxane terminated at both ends by Me 2 HSiO 1/2 unit, cyclic methyl hydrogen polysiloxane composed of MeHSiO 2/2 unit a cyclic methylhydrogenpoly
  • the viscosity of the organohydrogenpolysiloxane (B) is not particularly limited.
  • the organohydrogenpolysiloxane (B) may have a viscosity at 23 ° C of from 1 to 1000 mPa ⁇ s, preferably from 10 to 5000 mPa ⁇ s.
  • the organohydrogenpolysiloxane (B) is used in an amount such that a hydrogen atom bonded to a silicon atom in the organohydrogenpolysiloxane (B) and the organopolysiloxane (A)
  • the molar ratio (SiH/SiVi) of the alkenyl group bonded to the silicon atom is usually from 0.5 to 3, preferably from 0.7 to 2.5.
  • the sealing agent for a solar cell module according to the present invention comprises a boron-containing organosilicon compound (C) having a molecular skeleton composed of a cycloalkenyl group, a silicon-oxygen bond (Si-O) and a cycloalkyl group, and having three mesogenic rings.
  • the alkyl group is bonded to a boronic acid or borate ester group. Since the boron-containing organosilicon compound (C) is used as a tackifier, the sealing agent for a solar cell module according to the present invention can maintain a sufficient and long-term stability of the solar cell module in a high-temperature, high-humidity, and ultraviolet environment. Adhesion.
  • the boron-containing organosilicon compound (C) has a chemical structure represented by the formula (I):
  • B is a boron atom
  • Q is a substituted or unsubstituted cycloalkenyl group having 3 to 20 carbon atoms.
  • L is a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.
  • Two of R 1 in two OR 1 linked to B are each a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, or two R 1 of two OR 1 linked to B are bonded to each other to form a carbon atom.
  • the Q is preferably a 4- to 15-cycloalkenyl group, and more preferably a cycloalkenyl group having 5 to 8 carbon atoms.
  • the Q include, but are not limited to, substituted or unsubstituted cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl, cyclodecenyl, cyclodecenyl, cyclodecene Dienyl or ice Alkenyl.
  • the Q is a substituted or unsubstituted cyclohexenyl or norbornene group.
  • the L is preferably a cycloalkyl group having 4 to 15 carbon atoms, and more preferably a cycloalkyl group having 5 to 8 carbon atoms.
  • examples of such L include, but are not limited to, substituted or unsubstituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl, cyclodecyl, cyclodecyl, cyclododecyl or norbornane base.
  • the L is selected from a substituted or unsubstituted cyclohexyl group.
  • R 1 when R 1 is an alkyl group, it is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • R 1 is an alkyl group include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, decyl, decyl, undecyl, twelve.
  • R 1 is methyl, ethyl, propyl, butyl or an isomer thereof.
  • R 1 when R 1 is an alkylene group, it is preferably an alkylene group having 2 to 15 carbon atoms, and more preferably an alkylene group having 2 to 10 carbon atoms.
  • R 1 is an alkylene group include, but are not limited to, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, fluorenylene, fluorenylene, arylene Undecyl, dodecylene, fluorenylene or an isomer thereof.
  • the R 1 is ethylene, propylene, 2,3-dimethylbutylene or a fluorenylene.
  • the boron-containing organosilicon compound (C) preferably has a chemical structure represented by the following formula (I-1) to formula (I-16):
  • the boron-containing organosilicon compound (C) has a chemical structure represented by the above formula (I-7) or formula (I-15).
  • the boron-containing organosilicon compound (C) can be obtained by a hydrosilylation reaction between:
  • L' is selected from a substituted or unsubstituted cycloalkenyl group having 3 to 20 carbon atoms.
  • R 1 is the same as defined in the formula (I).
  • the L' is preferably a cycloalkenyl group having 4 to 15 carbon atoms, more preferably 5 to 8 carbon atoms.
  • the L' include, but are not limited to, a substituted or unsubstituted cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, a cyclooctenyl group, a cyclodecenyl group, a cyclodecenyl group, and a ring.
  • Dodecenyl or norbornene According to a preferred embodiment of the invention, the L' is selected from substituted or unsubstituted cyclohexenyl.
  • the siloxane compound (a) is obtained by hydrolysis-condensation reaction of the following monomer (a1) and monomer (a2):
  • Q is the same as defined in the formula (I), and R 2 is a hydroxyl group or a hydrolyzable group;
  • R 2 is the same as defined in the formula (IV).
  • examples of the hydrolyzable group include, but are not limited to, a halogen atom, an alkoxy group having 1 to 10 carbon atoms or an acyloxy group having 2 to 10 carbon atoms.
  • the hydrolyzable group is selected from a chlorine atom, a methoxy group, an ethoxy group, an isopropoxy group or an acetoxy group.
  • Examples of the monomer (a1) include, but are not limited to:
  • Trihydroxysilane monomer such as cyclopropyl silanol, cyclobutenyl silanol, cyclopentenyl silanol, cyclohexenyl silanol, cycloheptenyl silanol, cyclooctenyl silanol, cyclic oxime Alkenyl silanol, cyclodecyl silanol, cyclododecylsilanol or norbornene-based silanol;
  • Trihalosilane monomer such as cyclopropenyltrichlorosilane, cyclobutenyltrichlorosilane, cyclopentenyltrichlorosilane, cyclohexenyltrichlorosilane, cycloheptenyltrichlorosilane, cyclooctene Trichlorosilane, cyclodecenyltrichlorosilane, cyclodecyltrichlorosilane, cyclododecyltrichlorosilane or norbornene-trichlorosilane;
  • a trialkoxysilane monomer such as cyclopropenyltrimethoxysilane, cyclopropenyltriethoxysilane, cyclopropenyltriisopropoxysilane, cyclobutenyltrimethoxysilane, cyclobutenyl Ethoxysilane, cyclobutenyltriisopropoxysilane, cyclopentenyltrimethoxysilane, cyclopentenyltriethoxysilane, cyclopentenyltriisopropoxysilane, cyclohexenyl Trimethoxysilane, cyclohexenyltriethoxysilane, cyclohexenyltriisopropoxysilane, cycloheptenyltrimethoxysilane, cycloheptenyltriethoxysilane, cycloheptenyl Isopropoxysilane, cyclooctenyltrime
  • Triacyloxysilane monomer such as cyclopropenyltriacetoxysilane, cyclobutenyltriacetoxysilane, cyclopentenyltriacetoxysilane, cyclohexenyltriacetoxysilane, cycloheptane Alkenyl triacetoxysilane, cyclooctenyl triacetoxysilane, cyclodecenyl triacetoxysilane, cyclodecyl Triacetoxysilane, cyclododecyltriacetoxysilane or norbornene triacetoxysilane.
  • the monomer (a1) is selected from the group consisting of cyclohexenyltrichlorosilane, norbornene-based trichlorosilane, cyclohexenyltrimethoxysilane, cyclohexenyltriethoxysilane, cyclohexene Triisopropoxysilane, norbornene trimethoxysilane, norbornene triethoxysilane, norbornene triisopropoxysilane, cyclohexenyl triacetoxysilane or norbornene Alkenyl triacetoxysilane.
  • Examples of the monomer (a2) include, but are not limited to, dimethylmethoxysilane, dimethylethoxysilane, dimethylchlorosilane or 1,1,3,3-tetramethyldisiloxane alkyl.
  • the monomer (a2) is 1,1,3,3-tetramethyldisiloxane.
  • the process for preparing the siloxane compound (a) by the hydrolysis condensation reaction of the monomer (a1) with the monomer (a2) is not particularly limited, and a process known in the art can be employed.
  • a related process disclosed in JP2000169482A, EP1055674A1, US5614640A can be employed.
  • the siloxane compound (a) has a chemical structure represented by the formula (II-1) or the formula (II-2):
  • boric acid or borate compound (b) examples include, but are not limited to:
  • Substituted or unsubstituted cycloalkenylboronic acid such as substituted or unsubstituted cyclopropenylboronic acid, cyclobutenylboronic acid, cyclopentenylboronic acid, cyclohexenylboronic acid, cyclooctenylboronic acid,cyclodecenylboronic acid , cyclodecenylboronic acid, cyclododecenylboronic acid or norborneneboronic acid;
  • a substituted or unsubstituted cycloalkylenicallyl dialkyl ester such as a substituted or unsubstituted cyclopropenylboronic acid Dimethyl ester, diethyl cyclopropenylborate, diisopropyl cyclopropenylborate, dibutyl cyclopropenylborate, dimethyl cyclobutenylborate, diethyl cyclobutenylborate, cyclobutene Diisopropyl borate, dibutyl cyclobutenylborate, dimethyl cyclopentenylborate, diethyl cyclopentenylborate, diisopropylcyclopentanylborate, cyclopentenylborate Butyl ester, dimethyl cyclohexenylborate, diethyl cyclohexenylborate, diisopropyl cyclohexenylborate, dibutyl
  • Substituted or unsubstituted alkylene dialkyl cycloalkanate such as ethylene glycol cyclopropenyl borate, propylene glycol cyclopropenyl borate, pinacol cyclopropenyl boronate, decyl glycol cyclopropenyl borate , cyclobutenyl boronic acid ethylene glycol ester, cyclobutenyl boronic acid propylene glycol ester, cyclobutenyl boronic acid pinacol ester, cyclobutenyl boronic acid decyl glycol ester, cyclopentenyl boronic acid ethylene glycol ester, Propylene glycol cyclopentenylborate, pinacol ester of cyclopentenylboronic acid, decanediol cyclopentenylborate, ethylene glycol cyclohexenylborate, propylene glycol cyclohexenylborate
  • the boric acid or borate compound (b) is selected from the group consisting of substituted or unsubstituted cycloalkenylboronic acids, dicyclohexylboronic acid dialkyl esters or cyclohexenylboronic acid alkylene diesters.
  • the molar ratio of the alkenyl group in the acid ester compound (b) is at least 0.8, preferably from 0.80 to 1.0, more preferably from 0.80 to 0.95.
  • the hydrosilylation reaction between the siloxane compound (a) and the boric acid or borate compound (b) is preferably carried out in the presence of a platinum-based catalyst.
  • the platinum-based catalyst include, but are not limited to, platinum black, platinum chloride, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a reaction of chloroplatinic acid with an alcohol, a reaction of chloroplatinic acid with an olefin compound, chloroplatinum A complex of an acid with a vinyl-containing siloxane, a platinum-olefin complex or a platinum-vinyl-containing siloxane.
  • the platinum-based catalyst is selected from the group consisting of platinum-vinyl-containing siloxane complexes such as platinum (0)-1,3-divinyl-1,1,3,3-tetramethyl Silicone complex.
  • the platinum olefin catalyst is preferably used in an amount of from 0.05 to 10,000 ppm, more preferably from 0.1 to 8,000 ppm, most preferably 0.5, based on the total weight of the siloxane compound (a) and the boric acid or borate compound (b). -5000ppm.
  • the temperature of the hydrosilylation reaction is usually from 50 to 150 ° C, preferably from 60 to 100 ° C.
  • the hydrosilylation reaction can be carried out in the absence of a solvent or in a solvent.
  • a solvent examples include, but are not limited to, aliphatic hydrocarbon solvents such as hexane, decane, dodecane, etc.; aromatic hydrocarbon solvents such as benzene, toluene, xylene Etc.
  • Halogenated hydrocarbon solvents such as carbon tetrachloride, chloroform, dichloromethane, methyl chloride, etc.; alcohol solvents such as methanol, ethanol, isopropanol, n-butanol, etc.; ether solvents, such as Tetrahydrofuran, diethyl ether, dibutyl ether, etc.; ketone solvents such as acetone, methyl ethyl ketone, etc.; ester solvents such as ethyl acetate, butyl acetate; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • the amount of the solvent to be used is not particularly limited, and may be specifically selected depending on the actual situation.
  • the reaction mixture is preferably subjected to distillation under reduced pressure.
  • the effect of the vacuum distillation is to remove unreacted boric acid or borate compound (b), organic solvent (such as If it exists, as well as other low boilers.
  • the boron-containing organosilicon compound (C) is preferably used in an amount of 100 parts by weight based on 100 parts by weight of the total amount of the organopolysiloxane (A) and the organohydrogenpolysiloxane (B). It is 0.5-20 parts by weight, more preferably 1-10 parts by weight.
  • the sealing agent for a solar cell module according to the present invention contains a hydrosilylation reaction catalyst (D).
  • the hydrosilylation reaction catalyst (D) functions to catalyze a hydrogen atom bonded to a silicon atom in the organopolysiloxane (A), and a silicon atom in the organohydrogen polysiloxane (B) The alkenyl group and the hydrosilation reaction between the cycloalkenyl groups in the boron-containing organosilicon compound (C).
  • the hydrosilylation reaction catalyst (D) is usually a compound containing a platinum group metal element such as platinum, rhodium, palladium or the like.
  • platinum group metal element-containing compound include, but are not limited to, a platinum-containing compound such as chloroplatinic acid, a reaction product of chloroplatinic acid and an alcohol, a platinum-olefin complex, a platinum-vinylsilane complex, A platinum-ketone complex, a platinum-phosphine complex; a ruthenium-containing compound such as a ruthenium-phosphine complex, a ruthenium-sulfur compound complex; a palladium-containing compound such as a palladium-phosphine complex.
  • the hydrosilylation reaction catalyst (D) may also be a platinum-based catalyst used in the preparation of the boron-containing organosilicon compound (C).
  • the hydrosilylation catalyst (D) is a reaction product of chloroplatinic acid and an alcohol or a platinum-vinylsiloxane complex.
  • the hydrosilylation reaction catalyst (D) is converted in terms of the weight of the platinum group metal element, based on the total amount of the organopolysiloxane (A) and the organohydrogenpolysiloxane (B).
  • the amount is from 0.1 to 1000 ppm, preferably from 0.5 to 500 ppm.
  • the sealing agent for a solar cell module according to the present invention may further contain other components as long as the other components and the amount thereof do not significantly impair the adhesion of the sealing agent for a solar cell module of the present invention.
  • Light transmission and mechanical properties can be.
  • such other components include, but are not limited to, hydrosilylation inhibitors such as 1-ethynylcyclohexanol, 3,5-dimethyl-1-hexyn-3-ol, 3-methyl Butynyl alcohol or dimethyl maleate; fillers such as titanium dioxide, zinc oxide, aluminum oxide, iron oxide, aerosol silica, zirconium silicate, powdered quartz, diatomaceous earth or chalk; heat stabilizer; plasticizing Agent; coloring agent, etc.
  • hydrosilylation inhibitors such as 1-ethynylcyclohexanol, 3,5-dimethyl-1-hexyn-3-ol, 3-methyl Butynyl alcohol or dimethyl maleate
  • fillers such as titanium dioxide, zinc oxide, aluminum oxide, iron
  • the preparation process of the sealant for a solar cell module according to the present invention is not particularly limited as long as the organopolysiloxane (A), the organohydrogenpolysiloxane (B), and the boron-containing organosilicon compound (C) can be made.
  • the hydrosilylation catalyst (D) and optional other components may be uniformly mixed. Generally, it can be formulated by uniformly mixing the components in a mixing device. Examples of the mixing device include, but are not limited to, a spatula, a drum roller, a mechanical agitator, a three-roll mill, a rake paddle mixer, a dough mixer, a planetary mixer, a screw, a dissolver, a butterfly mixer. , squeeze mixer or vacuum mixer.
  • the sealant for a solar cell module may be formulated and packaged in a one-component form, or may be formulated and packaged in a two-component form.
  • the oxane (B) is separated from the hydrosilylation catalyst (D).
  • the structure and type of the solar cell module according to the present invention are not particularly limited as long as they contain a cured layer formed of the sealant for a solar cell module according to the present invention.
  • Fig. 1 shows a typical structure of a solar cell module of the present invention, which includes:
  • the light-receiving surface protection layer 1 is located on the incident side of the sunlight.
  • a backlight surface protection layer 3 located on the opposite side of the incident direction of sunlight
  • Solar cell units 2 electrically connected to each other by wires 5 and between the light-receiving surface protective layer 1 and the backlight surface protective layer 3, and
  • the sealant cured layer 4 is formed by curing the solar cell module sealant of the present invention on the surface of the solar cell unit 2.
  • the light-receiving surface protective layer 1 may be composed of glass or synthetic resin.
  • the glass is preferably float glass, colorless glass or tempered glass;
  • the synthetic resin is preferably an acrylic resin, a polycarbonate (PC) resin, a polyethylene terephthalate (PET) resin or Epoxy resin.
  • the thickness of the light-receiving surface protective layer 1 is usually from 0.1 to 10 mm, preferably from 0.3 to 5 mm.
  • the backlight surface protective layer 3 may be composed of glass, metal, synthetic resin or a laminate thereof.
  • the glass may be of a type used to form the above-mentioned light-receiving surface protective layer 1;
  • the metal is preferably copper, iron or aluminum;
  • the synthetic resin is preferably polyethylene terephthalate resin or fluorine-containing polyolefin Resin.
  • the thickness of the backlight surface protective layer 3 is usually from 0.1 to 10 mm, preferably from 0.3 to 5 mm.
  • the solar cell unit 2 generally uses a crystal type solar cell or a thin film type solar cell.
  • the crystalline solar cell may be a single crystal silicon or a polycrystalline silicon solar cell; and the thin film solar cell may be a thin film silicon type solar cell, a thin film amorphous silicon type solar cell or a copper indium selenide (CIS) type solar cell.
  • CIS copper indium selenide
  • the thickness of the sealant cured layer 4 is usually from 10 to 2000 ⁇ m, preferably 100-1000 ⁇ m.
  • a method of sealing a solar cell module according to the present invention comprising: applying the above-described solar cell module sealing agent to a solar cell module and curing it.
  • the manner of applying the sealant for the solar cell module is not particularly limited, and spray coating, flow coating, dip coating, blade coating, curtain coating or transfer coating may be employed.
  • the curing temperature and the curing time are not particularly limited.
  • the curing temperature may be from 50 to 150 ° C, preferably from 60 to 120 ° C; and the curing time may be from 5 minutes to 3 hours, preferably from 5 minutes to 1 hour.
  • a 1 L four-necked flask equipped with a stirrer, a thermometer, a condenser and a dropping funnel was placed in an ice bath, and 107.46 g (0.80 mol) of 1,1,3,3-tetramethyl group was sequentially added to the flask under stirring.
  • Disiloxane 100 g of deionized water and 10 g of concentrated hydrochloric acid having a concentration of 37.5 wt%.
  • 107.79 g (0.5 mol) of 3-cyclohexenyltrichlorosilane was slowly added dropwise to the flask. After the completion of the dropwise addition, the reaction was continued for 1 hour under stirring.
  • the reaction product was allowed to stand for stratification, and the aqueous phase was separated.
  • the collected organic phase was washed 3 times, then washed with water at a concentration of 5 wt% aqueous sodium hydrogencarbonate for 3 times, and then washed 3 times with water. Drying was carried out by adding sodium sulfate to the organic phase after washing with water, and after drying, sodium sulfate was filtered off.
  • 0.4 g of p-hydroxyanisole was added to the dried organic phase, and 137.24 g of a reaction product was obtained by distillation under reduced pressure.
  • reaction product had the chemical structure represented by the formula (II-1) (hereinafter referred to as the siloxane compound 1). ).
  • the purity of the reaction product was determined to be 99.3% by high performance liquid chromatography (HPLC) analysis.
  • a 1 L four-necked flask equipped with a stirrer, a thermometer, a condenser and a dropping funnel was placed in an ice bath, and 107.46 g (0.80 mol) of 1,1,3,3-tetramethyl group was sequentially added to the flask under stirring.
  • Disiloxane 100 g of deionized water and 10 g of concentrated hydrochloric acid having a concentration of 37.5 wt%.
  • 113.80 g (0.5 mol) of 5-norbornenetrichlorosilane was slowly added dropwise to the flask. After the completion of the dropwise addition, the reaction was continued for 1 hour under stirring.
  • the reaction product was allowed to stand for stratification, and the aqueous phase was separated.
  • the collected organic phase was washed 3 times, then washed with water at a concentration of 5 wt% aqueous sodium hydrogencarbonate for 3 times, and then washed 3 times with water. Drying was carried out by adding sodium sulfate to the organic phase after washing with water, and after drying, sodium sulfate was filtered off.
  • 0.4 g of p-hydroxyanisole was added to the dried organic phase, and 136.95 g of a reaction product was obtained by distillation under reduced pressure.
  • reaction product had the chemical structure represented by the formula (II-2) (hereinafter referred to as the siloxane compound 2). ).
  • the purity of the reaction product was determined to be 99.1% by high performance liquid chromatography (HPLC) analysis.
  • reaction mixture was subjected to distillation under reduced pressure to remove unreacted cyclohexen-1-ylboronic acid pinacol ester and other low-boiling substances to obtain 38.23 g of a reaction product. It was confirmed by carbon nuclear resonance spectroscopy ( 13 C-NMR) and silicon nuclear resonance spectroscopy ( 29 Si-NMR) that the reaction product had the chemical structure represented by the formula (I-7) (hereinafter referred to as boron-containing organosilicon compound 1). . The purity of the reaction product was determined to be 96.5% by high performance liquid chromatography (HPLC) analysis.
  • HPLC high performance liquid chromatography
  • reaction mixture was subjected to distillation under reduced pressure to remove unreacted cyclohexen-1-ylboronic acid pinacol ester and other low-boiling substances to obtain 38.23 g of a reaction product. It was confirmed by carbon nuclear resonance spectroscopy ( 13 C-NMR) and silicon nuclear resonance spectroscopy ( 29 Si-NMR) that the reaction product had the chemical structure represented by the formula (I-15) (hereinafter referred to as boron-containing organosilicon compound 2). . The purity of the reaction product was determined to be 95.7% by high performance liquid chromatography (HPLC) analysis.
  • HPLC high performance liquid chromatography
  • the addition-curable organopolysiloxane composition of Application Example 1 of the present invention was prepared by mixing the following components:
  • MQ resin having a molar ratio (M/Q) of 1.0, wherein a vinyl content bonded to a silicon atom is 5.4% by weight;
  • a methylhydrogenpolysiloxane consisting of a MeHSiO 2/2 unit and a Me 2 SiO 2/2 unit and having a terminal end blocked by a Me 3 SiO 1/2 unit, the viscosity at 23 ° C is 30mPa ⁇ s, wherein the content of hydrogen atoms bonded to the silicon atom is 1.45 wt%;
  • the cured product thereof is high temperature, high humidity and ultraviolet
  • the adhesion strength and cohesive failure rate to the glass plate after exposure for 0 hours and 1000 hours in the line environment were evaluated for adhesion, and the relevant evaluation results are recorded in Table 1 below.
  • the method for measuring the adhesive strength and the cohesive failure rate is as follows: the addition-curable organopolysiloxane composition is sandwiched between two glass plates each having a width of 25 mm at a bonding area of 12.5 mm ⁇ 25 mm.
  • the sample was prepared by heating and curing at a pressure of 0.3 kg/cm 2 and a temperature of 120 ° C for 1 hour.
  • the sample was exposed to an environment exposed to a temperature of 85 ° C, a relative humidity of 100%, and a fluorescent ultraviolet lamp (340 nm) for 0 hours and 1000 hours, respectively, and then the ends of the sample were stretched in the opposite direction by a tensile tester.
  • the tensile strength at the time of the fracture (unit: MPa) was measured, whereby the adhesive strength was evaluated.
  • the fracture surface of the sample was evaluated, and the ratio (percentage) of the area of the fracture (internal failure) of the cured product itself to the total area of the fracture surface (percentage) was measured. That is, the cohesive failure rate (%).
  • the addition-curable organopolysiloxane composition of Application Example 1-2 is respectively contained in the boron-containing organic compound of Example 1-2 of the present invention.
  • the silicon compound can maintain a bond strength of at least 5.6 MPa and at least 90% after 1000 hours of exposure in an environment exposed to a temperature of 85 ° C, a relative humidity of 100%, and a fluorescent ultraviolet lamp (340 nm).
  • the cohesive failure rate that is, the boron-containing organosilicon compound of the present invention can provide a sufficient and long-term stable viscosity for the cured product of the addition-curable organopolysiloxane composition in a high-temperature, high-humidity, and ultraviolet environment.
  • the present invention prepares a boron-containing organosilicon compound by hydrosilylation reaction, and can obtain a boron-containing organosilicon compound which is chemically controllable, substantially free of by-products, and stable in quality and performance.
  • organopolysiloxane (A) As the organopolysiloxane (A), the following components A-1 and A-2 were used:
  • A-1 Polydimethylsiloxane terminated at both ends by Me 2 ViSiO 1/2 unit, which has a viscosity of 5000 mPa ⁇ s at 23 ° C, wherein the vinyl content bonded to the silicon atom is 0.12 wt % ;
  • A-2 composed of Me 3 SiO 1/2 unit, Me 2 ViSiO 1/2 unit, and SiO 4/2 unit, and Me 3 SiO 1/2 unit and Me 2 ViSiO 1/2 unit and SiO 4/2 unit
  • the MQ resin having a molar ratio (M/Q) of 1.0, wherein the vinyl content bonded to the silicon atom is 5.4% by weight;
  • organohydrogenpolysiloxane (B) As the organohydrogenpolysiloxane (B), the following component B was used:
  • a methylhydrogenpolysiloxane whose main chain is composed of MeHSiO 2/2 unit and Me 2 SiO 2/2 unit and terminated at both ends by Me 3 SiO 1/2 unit, and has a viscosity of 30 mPa at 23 ° C S, wherein the content of hydrogen atoms bonded to the silicon atom is 1.45 wt%;
  • hydrosilylation reaction catalyst (D) As the hydrosilylation reaction catalyst (D), the following component D was used:
  • the solar cell unit, the light-receiving surface protective layer, and the backlight surface protective layer in the solar cell module were simulated with a glass plate and a PET plate, respectively.
  • the adhesion strength of the cured layer of the solar cell module sealant of Examples 3-8 and Comparative Examples 1-4 to the glass plate or the PET plate after exposure to the high temperature, high humidity and ultraviolet environment for 0 hours and 1000 hours.
  • the cohesive failure rate the adhesion of the cured layer of the solar cell module of the inventive examples 3-8 and 1-4 to the solar cell module was simulated and evaluated.
  • Table 2 The relevant evaluation results are recorded in Table 2 below.
  • the method for measuring the adhesive strength and the cohesive failure rate of the sealant for a solar cell module is the same as the method for measuring the adhesive strength and the cohesive failure rate of the addition-curable organopolysiloxane composition.
  • the solar cell module of Application Examples 3-8 and Comparative Application Examples 5-8 of the present invention has a structure as shown in FIG. Wherein, the light-receiving surface protection layer 1 and the backlight surface protection layer 3 each adopt a colorless tempered glass plate with a thickness of 3 mm; the solar battery unit 2 adopts a monocrystalline silicon solar battery group, and is electrically connected through the wires 4 and is in a 2 ⁇ 2 array form. Make settings.
  • the solar cell modules of Application Examples 3-8 and Comparative Application Examples 5-8 of the present invention were exposed to an environment exposed to a temperature of 85 ° C, a relative humidity of 100%, and a fluorescent ultraviolet lamp (340 nm) for 1000 hours. Observe the appearance as follows: i) If the sealant cured layer and the solar cell unit, the light-receiving surface protective layer, and the backlight surface protective layer are sealed without gaps, the cured layer of the sealant is adhered to the solar cell module.
  • the sealants for solar cell modules of Examples 3-8 of the present invention respectively contain the boron-containing organosilicon compound prepared by the examples 1-2.
  • the cured layer can still maintain at least 5.2 MPa for the glass and PET sheets after exposure for 1000 hours in an environment exposed to a temperature of 85 ° C, a relative humidity of 100%, and a fluorescent ultraviolet lamp (340 nm).
  • the solar cell module of Examples 3-8 was cured with a sealant to form a sealant cured layer which was exposed to an environment exposed to a temperature of 85 ° C, a relative humidity of 100%, and a fluorescent ultraviolet lamp (340 nm) for 1000 hours.
  • the gap-free sealing between the cured layer of the sealant and the solar cell unit, the light-receiving surface protective layer or the backlight surface protective layer can be maintained.
  • the sealing agent for a solar cell module according to the present invention has a cured layer capable of maintaining sufficient and long-term stable adhesion to the solar cell module in a high-temperature, high-humidity and ultraviolet environment due to the inclusion of the boron-containing organosilicon compound. Sex.
  • the boron-containing organosilicon compound, the solar cell module sealing agent, and the solar cell module provided according to the embodiments of the present invention can be applied to the field of solar cells.
  • the boron-containing organosilicon compound is used as a tackifier for an addition-curable organopolysiloxane composition, and is capable of providing sufficient and long-term stable adhesion to a cured product thereof in a high-temperature, high-humidity, and ultraviolet environment. It can be used to prepare a sealant for a solar cell module, thereby preparing a solar cell module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Sealing Material Composition (AREA)

Abstract

提供了含硼有机硅化合物、太阳能电池组件用密封剂以及太阳能电池组件。所述的含硼有机硅化合物其分子骨架由环烯基、硅氧键(Si-O)和环烷基构成,并含有三个介由环烷基进行键合的硼酸或硼酸酯基团。所述的含硼有机硅化合物用作加成固化型有机聚硅氧烷组合物的增粘剂,能够在高温高湿和紫外线环境中为其固化物提供充分且长期稳定的粘合性。此外,通过硅氢化反应制备含硼有机硅化合物,能够获得化学结构可控,基本上没有副产物,品质和性能稳定的含硼有机硅化合物。

Description

含硼有机硅化合物、太阳能电池组件用密封剂以及太阳能电池组件 技术领域
本发明涉及一种含硼有机硅化合物、太阳能电池组件用密封剂以及太阳能电池组件,属于太阳能电池领域。
背景技术
加成固化型有机聚硅氧烷组合物因其固化过程无副产物、收缩率小、能深层固化等优点,在大规模集成电路、LED、太阳能电池等领域得到广泛应用。然而,由于其固化物含有大量的非极性有机基团,分子表面能低,因而对玻璃、树脂等基材的粘合性很差。因此,如何提高加成固化型有机聚硅氧烷组合物固化物对基材的粘合性,一直是该领域的研究热点。
在加成固化型有机聚硅氧烷组合物中添加增粘剂,是提高其固化物对基材粘合性的有效手段之一。目前,已经公开了大量可用的增粘剂。在这些增粘剂中,有机硅类增粘剂因其化学结构与聚硅氧烷相同或相近,二者具有良好的相容性,因而得到广泛使用。
目前,以太阳辐射为能量来源的太阳能电池日益受到关注。为产生较高电压且免受外部环境的影响,通常采用密封剂将电连接的多片太阳能电池密封在受光面保护层与背光面保护层之间以制成太阳能电池组件。太阳能电池组件用密封剂应对太阳能电池单元、受光面保护层以及背光面保护层均显示出良好的粘合性,否则会因密封剂粘合性不足而增加太阳能电池单元暴露于环境的机会,进而影响太阳能电池组件的使用寿命。
常用的太阳能电池组件用密封剂主要为EVA类密封剂和有机硅类密封剂两种。其中,有机硅类密封剂因其不会出现EVA类密封剂在湿热环境中产生乙酸而导致太阳能电池电极腐蚀的问题,因而在太阳能电池密封领域得 到了更为广泛的应用。
CN102892837A、CN103154144A、CN104395406A、CN104870568A分别公开了作为增粘剂的环状或直链低聚硅氧烷,其具有三烷氧基硅氧基和甲基氢硅氧基。CN102276989A公开了作为增粘剂的环状低聚硅氧烷,其含有环氧基和甲基氢硅氧基。这些增粘剂在含有作为增粘性基团的烷氧基或环氧基的同时,还含有能够提供氢化硅烷化反应活性的硅氢键(Si-H),由于硅氢键在储存期间易产生氢气,导致这些增粘剂的使用存在安全隐患。
CN102892837A、JP2010248410A分别公开了具有异氰尿酸酯基、烯丙基以及环氧基和/或烷氧基甲硅烷基的增粘剂。这些增粘剂用烯丙基代替硅氢键以提供氢化硅烷化反应活性,可以避免因硅氢键易产生氢气而引发的安全问题,但异氰尿酸酯基中的氮原子容易导致铂系催化剂中毒,从而限制了其在加成固化型有机聚硅氧烷组合物中的使用。
JP2012149131A、CN101443400A、CN102732040A、CN102977604A分别公开了含有烯基、苯基、环氧基和烷氧基的有机聚硅氧烷增粘剂,其是由含烯基的烷氧基硅烷单体、含苯基的烷氧基硅烷单体、含环氧基的烷氧基硅烷单体经缩合反应制成。这些增粘剂不含有氮原子,可以避免出现催化剂中毒的问题,但其制备均采用缩合反应工艺,并且使用了较大比例的三官能烷氧基硅烷单体,导致其化学结构难以得到有效控制,且存在较多副产物,从而影响了其产品的品质和性能。
CN103739848A、CN103589164A分别公开了作为增粘剂的含硼酸酯基团的有机聚硼硅氧烷,其中的硼酸酯基团分别是由硼酸或硼酸三酯经缩合反应形成,且硼原子仅通过硼氧键(B-O)键合至聚合物链。基于前面提及的原因,这些有机聚硼硅氧烷同样存在化学结构难以有效控制,副产物多等缺点。而且,由于硼氧键遇水或潮气容易水解,所述有机聚硼硅氧烷分子上的硼酸酯基团容易水解脱落,无法在高温高湿环境中提供充分且长期稳定的粘 合性。
JP2000169482A公开了作为增粘剂的含酚羟基的有机硅化合物,其是由含烯基和硅氢键(Si-H)的有机硅化合物与含烯基的苯酚类化合物进行硅氢化反应(hydrosilylation)制成。由于酚羟基对紫外线(UV)具有较强的吸收作用,所述有机硅化合物的耐紫外性能并不理想,因而当用作加成固化型有机聚硅氧烷的增粘剂时,所述有机硅化合物无法在紫外线环境中为其固化物提供充分且长期稳定的粘合性,故所述增粘剂不适用于需要长期暴露于紫外线环境的应用领域,如太阳能电池。
CN1816916A公开了一种用于太阳能电池组件密封的液体聚硅氧烷密封剂,其包含:每一分子具有至少两个与硅原子键合的烯基的液体聚硅氧烷、每一分子具有至少两个与硅原子键合的烯基的聚硅氧烷树脂、作为交联剂的每一分子具有至少两个与硅原子键合的氢原子的聚硅氧烷和硅氢化反应催化剂。然而,由于所述密封剂的固化层含有大量的非极性有机基团,分子表面能低,对太阳能电池单元、受光面保护层以及背光面保护层的粘合性均较差,因而在密封前需要使用硅烷偶联剂预先对各粘合表面进行表面处理,否则难以获得理想的粘合性。
CN103525094A、CN104419335A、CN102276989A、CN102892837A分别公开了用作太阳能电池模块密封剂的可固化聚有机硅氧烷组合物,其包含具有特定化学结构的增粘剂。所述增粘剂含有诸如环氧基或烷氧基之类的增粘性基团,以及与硅原子键合的氢原子或含烯基的有机基团。含有所述增粘剂的有机硅类密封剂,其固化层在一定程度上显示出对太阳能电池模块良好的粘合性。但是,上述文献并未提及其密封剂固化层在高温高湿和紫外线环境中的粘合性情况,因而无法得知在长期暴露于高温高湿和紫外线环境后,其密封剂固化层能否仍然保持良好的粘合性。
因此,目前急需一种有机硅类增粘剂和太阳能电池组件用密封剂,所述 有机硅类增粘剂能够在高温高湿和紫外线环境中为加成固化型有机聚硅氧烷组合物提供充分且长期稳定的粘合性的有机硅类增粘剂。而太阳能电池组件用密封剂的固化层在高温高湿和紫外线环境中能够对太阳能电池组件保持充分且长期稳定的粘合性。
发明内容
技术问题
本发明的目的在于提供含硼有机硅化合物,其用作加成固化型有机聚硅氧烷组合物的增粘剂,能够在高温高湿和紫外线环境中为其固化物提供充分且长期稳定的粘合性。进一步地,提供所述含硼有机硅化合物的制备方法,其能够获得化学结构可控,基本上没有副产物,品质和性能稳定的含硼有机硅化合物。进一步地,提供所述含硼有机硅化合物的用途,其用作加成固化型有机聚硅氧烷组合物的增粘剂。
本发明的另一目的在于提供太阳能电池组件用密封剂,其固化层在高温高湿和紫外线环境中能够对太阳能电池组件保持充分且长期稳定的粘合性。进一步地,提供太阳能电池组件,其包含由所述太阳能电池组件用密封剂固化所形成的固化层。进一步地,提供利用所述太阳能电池组件用密封剂密封太阳能电池组件的方法。
解决方案
本发明提供一种含硼有机硅化合物,其具有式(I)所示的化学结构:
Figure PCTCN2016095850-appb-000001
式(I)中:
B为硼原子,
Q为取代或未取代的碳原子数3-20的环烯基,
L为取代或未取代的碳原子数3-20的环烷基,
与B相连的两个OR1中的两个R1各自为氢原子或碳原子数1-20的烷基,或者,与B相连的两个OR1中的两个R1相互连接形成碳原子数2-20的亚烷基。
根据本发明的含硼有机硅化合物,其中,所述Q选自取代或未取代的环丙烯基、环丁烯基、环戊烯基、环己烯基、环辛烯基、环壬烯基、环癸烯基、环十二烯基或降冰片烯基。
根据本发明的含硼有机硅化合物,其中,所述Q选自取代或未取代的环己烯基或降冰片烯基。
根据本发明的含硼有机硅化合物,其中,所述L选自取代或未取代的环丙基、环丁基、环戊基、环己基、环辛基、环壬基、环癸基、环十二烷基或降冰片烷基。
根据本发明的含硼有机硅化合物,其中,所述L选自取代或未取代的环己基。
本发明还提供一种制备根据本发明的含硼有机硅化合物的方法,包括:使以下物质发生硅氢化反应:
(a)式(II)所示的硅氧烷化合物:
Figure PCTCN2016095850-appb-000002
式(II)中,Q与本发明式(I)中所定义的相同,
(b)式(III)所示的硼酸或硼酸酯化合物:
Figure PCTCN2016095850-appb-000003
式(III)中:
L′选自取代或未取代的碳原子数3-20的环烯基,
R1与本发明式(I)中所定义的相同。
根据本发明的制备含硼有机硅化合物的方法,其中,所述L′选自取代或未取代的环丙烯基、环丁烯基、环戊烯基、环己烯基、环辛烯基、环壬烯基、环癸烯基、环十二烯基或降冰片烯基。
根据本发明的制备含硼有机硅化合物的方法,其中,所述L′选自取代或未取代的环己烯基。
本发明还提供一种根据本发明的含硼有机硅化合物或者由本发明的方法制备的含硼有机硅化合物的用途,其用作加成固化型有机聚硅氧烷组合物的增粘剂。
本发明还提供一种太阳能电池组件用密封剂,其中,包含:
(A)每分子中含有至少两个与硅原子键合的烯基的有机聚硅氧烷,
(B)每分子中含有至少两个与硅原子键合的氢原子的有机氢聚硅氧烷,
(C)本发明的含硼有机硅化合物,
(D)硅氢化反应催化剂。
根据本发明的太阳能电池组件,其中,包含本发明的太阳能电池组件用密封剂固化所形成的固化层。
本发明还提供一种密封太阳能电池组件的方法,其中,包括:将本发明的太阳能电池组件用密封剂施加在太阳能电池组件上,并使其固化。
有益效果
本发明所述的含硼有机硅化合物,其分子骨架由环烯基、硅氧键(Si-O)和环烷基构成,并含有三个介由环烷基进行键合的硼酸或硼酸酯基团。根据 本发明所述的含硼有机硅化合物,其用作加成固化型有机聚硅氧烷组合物的增粘剂,能够在高温高湿和紫外线环境中为其固化物提供充分且长期稳定的粘合性。此外,本发明通过硅氢化反应制备含硼有机硅化合物,与缩合反应工艺相比,本发明所述的方法能够获得化学结构可控,基本上没有副产物,品质和性能稳定的含硼有机硅化合物。
本发明所述的太阳能电池组件用密封剂包含含硼有机硅化合物,其分子骨架由环烯基、硅氧键(Si-O)和环烷基构成,并含有三个介由环烷基进行键合的硼酸或硼酸酯基团。由于含有所述含硼有机硅化合物,本发明所述的太阳能电池组件用密封剂,其固化层在高温高湿和紫外线环境中能够对太阳能电池组件保持充分且长期稳定的粘合性。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本发明的示例性实施例、特征和方面,并且用于解释本发明的原理。
图1为本发明的太阳能电池组件的示意图。
图1中:1为受光面保护层,2为太阳能电池单元,3为背光面保护层,4为密封剂固化层,5为导线。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明,但本发明的保护范围并不限于此。
本发明中所述的“取代”是指基团或化合物中的氢原子被取代基所取代。其中,所述取代基包括但不限于烷基、芳基、烯基、炔基、卤素原子、烷氧基、羟基、环氧基、胺基、巯基、硝基、羧酸基、磺酸基、酯基、酰胺基或杂环基。
本发明中所述的“卤素原子”是指氟原子、氯原子、溴原子或碘原子。
本发明中所述的“粘度”,在没有特别说明的情况下,均是指在23℃时由旋转粘度计测定的动力学粘度,其单位为mPa·s。
本发明中所述的“Vi”表示乙烯基,所述的“Me”表示甲基。
本发明中所述的“太阳能电池组件”,又称为“光伏组件”,其是由通过导线电连接的多个太阳能电池单元所构成。
<含硼有机硅化合物>
本发明所述的含硼有机硅化合物,其分子骨架由环烯基、硅氧键(Si-O)和环烷基构成,并含有三个介由环烷基进行键合的硼酸或硼酸酯基团。本发明所述的含硼有机硅化合物用作加成固化型有机聚硅氧烷组合物的增粘剂,能够在高温高湿和紫外线环境中为其固化物提供充分且长期稳定的粘合性。
本发明所述的含硼有机硅化合物,其具有式(I)所示的化学结构:
式(I)中:
B为硼原子,
Q为取代或未取代的碳原子数3-20的环烯基,
L为取代或未取代的碳原子数3-20的环烷基,
与B相连的两个OR1中的两个R1各自为氢原子或碳原子数1-20的烷基,或者,与B相连的两个OR1中的两个R1相互连接形成碳原子数2-20的亚烷基。
式(I)中,所述Q优选为碳原子数4-15的环烯基,更优选为碳原子数5-8的环烯基。
所述Q的实例包括但不限于取代或未取代的环丙烯基、环丁烯基、环戊 烯基、环己烯基、环辛烯基、环壬烯基、环癸烯基、环十二烯基或降冰片烯基。根据本发明优选的实施方式,所述Q选自取代或未取代的环己烯基或降冰片烯基。
式(I)中,所述L优选为碳原子数4-15的环烷基,更优选为碳原子数5-8的环烷基。
所述L的实例包括但不限于取代或未取代的环丙基、环丁基、环戊基、环己基、环辛基、环壬基、环癸基、环十二烷基或降冰片烷基。根据本发明优选的实施方式,所述L选自取代或未取代的环己基。
式(I)中,当所述R1为烷基时,其优选为碳原子数1-10的烷基,更优选为碳原子数1-4的烷基。
所述R1为烷基时的实例包括但不限于甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基或其异构体。优选地,所述R1为甲基、乙基、丙基、丁基或其异构体。
式(I)中,当所述R1为亚烷基时,其优选为碳原子数2-15的亚烷基,更优选为碳原子数2-10的亚烷基。
所述R1为亚烷基时的实例包括但不限于亚乙基、亚丙基、亚丁基、亚戊基、亚己基、亚庚基、亚辛基、亚壬基、亚癸基、亚十一烷基、亚十二烷基、亚蒎烷基或其异构体。优选地,所述R1为亚乙基、亚丙基、2,3-二甲基亚丁基或亚蒎烷基。
在本发明中,所述含硼有机硅化合物优选具有下述式(I-1)至式(I-16)所示的化学结构:
Figure PCTCN2016095850-appb-000005
Figure PCTCN2016095850-appb-000006
Figure PCTCN2016095850-appb-000007
Figure PCTCN2016095850-appb-000008
根据本发明优选的实施方式,本发明所述的含硼有机硅化合物具有上述式(I-7)或式(I-15)所示的化学结构。
<制备含硼有机硅化合物的方法>
本发明通过硅氢化反应制备所述含硼有机硅化合物。采用本发明所述的方法,能够获得化学结构可控,基本上没有副产物,品质和性能稳定的含硼有机硅化合物。
本发明所述的方法,包括:使以下物质发生硅氢化反应:
(a)式(II)所示的硅氧烷化合物:
Figure PCTCN2016095850-appb-000009
式(II)中,Q与式(I)中所定义的相同,
(b)式(III)所示的硼酸或硼酸酯化合物:
Figure PCTCN2016095850-appb-000010
式(III)中:
L′选自取代或未取代的碳原子数3-20的环烯基,
R1与式(I)中所定义的相同。
式(III)中,所述L′优选为碳原子数4-15的环烯基,更优选为碳原子 数5-8的环烯基。
所述L′的实例包括但不限于取代或未取代的环丙烯基、环丁烯基、环戊烯基、环己烯基、环辛烯基、环壬烯基、环癸烯基、环十二烯基或降冰片烯基。根据本发明优选的实施方式,所述L′选自取代或未取代的环己烯基。
在本发明所述的方法中,所述硅氧烷化合物(a)是由以下单体(a1)与单体(a2)经水解缩合反应制成:
(a1):式(IV)所示的三官能单体:
QSi(R2)3  (IV)
式(IV)中,Q与式(I)中所定义的相同,R2为羟基或可水解基团;
(a2):式(V)所示的单官能单体或1,1,3,3-四甲基二硅氧烷:
H(CH3)2SiR2  (V)
式(V)中,R2与式(IV)中所定义的相同。
式(IV)和式(V)中,所述可水解基团的实例包括但不限于卤素原子、碳原子数1-10的烷氧基或碳原子数2-10的酰氧基。优选地,所述可水解基团选自氯原子、甲氧基、乙氧基、异丙氧基或乙酰氧基。
所述单体(a1)的实例包括但不限于:
三羟基硅烷单体,如环丙烯基硅醇、环丁烯基硅醇、环戊烯基硅醇、环己烯基硅醇、环庚烯基硅醇、环辛烯基硅醇、环壬烯基硅醇、环癸基硅醇、环十二烯基硅醇或降冰片烯基硅醇;
三卤代硅烷单体,如环丙烯基三氯硅烷、环丁烯基三氯硅烷、环戊烯基三氯硅烷、环己烯基三氯硅烷、环庚烯基三氯硅烷、环辛烯基三氯硅烷、环壬烯基三氯硅烷、环癸基三氯硅烷、环十二烯基三氯硅烷或降冰片烯基三氯硅烷;
三烷氧基硅烷单体,如环丙烯基三甲氧基硅烷、环丙烯基三乙氧基硅烷、 环丙烯基三异丙氧基硅烷、环丁烯基三甲氧基硅烷、环丁烯基三乙氧基硅烷、环丁烯基三异丙氧基硅烷、环戊烯基三甲氧基硅烷、环戊烯基三乙氧基硅烷、环戊烯基三异丙氧基硅烷、环己烯基三甲氧基硅烷、环己烯基三乙氧基硅烷、环己烯基三异丙氧基硅烷、环庚烯基三甲氧基硅烷、环庚烯基三乙氧基硅烷、环庚烯基三异丙氧基硅烷、环辛烯基三甲氧基硅烷、环辛烯基三乙氧基硅烷、环辛烯基三异丙氧基硅烷、环壬烯基三甲氧基硅烷、环壬烯基三乙氧基硅烷、环壬烯基三异丙氧基硅烷、环癸烯基三甲氧基硅烷、环癸烯基三乙氧基硅烷、环癸烯基三异丙氧基硅烷、环十二烯基三甲氧基硅烷、环十二烯基三乙氧基硅烷、环十二烯基三异丙氧基硅烷、降冰片烯基三甲氧基硅烷、降冰片烯基三乙氧基硅烷或降冰片烯基三异丙氧基硅烷;
三酰氧基硅烷单体,如环丙烯基三乙酰氧基硅烷、环丁烯基三乙酰氧基硅烷、环戊烯基三乙酰氧基硅烷、环己烯基三乙酰氧基硅烷、环庚烯基三乙酰氧基硅烷、环辛烯基三乙酰氧基硅烷、环壬烯基三乙酰氧基硅烷、环癸基三乙酰氧基硅烷、环十二烯基三乙酰氧基硅烷或降冰片烯基三乙酰氧基硅烷。
优选地,所述单体(a1)选自环己烯基三氯硅烷、降冰片烯基三氯硅烷、环己烯基三甲氧基硅烷、环己烯基三乙氧基硅烷、环己烯基三异丙氧基硅烷、降冰片烯基三甲氧基硅烷、降冰片烯基三乙氧基硅烷、降冰片烯基三异丙氧基硅烷、环己烯基三乙酰氧基硅烷或降冰片烯基三乙酰氧基硅烷。
所述单体(a2)的实例包括但不限于:二甲基甲氧基硅烷、二甲基乙氧基硅烷、二甲基氯硅烷或1,1,3,3-四甲基二硅氧烷。优选地,所述单体(a2)为1,1,3,3-四甲基二硅氧烷。
由所述单体(a1)与所述单体(a2)经水解缩合反应制备所述硅氧烷化合物(a)的工艺没有特别的限制,可采用本领域公知的水解缩合工艺。例如,可采用由JP2000169482A、EP1055674A1、US5614640A所公开的相关 工艺。
根据本发明优选的实施方式,所述硅氧烷化合物(a)具有式(II-1)或式(II-2)所示的化学结构:
Figure PCTCN2016095850-appb-000011
在本发明所述的方法中,所述硼酸或硼酸酯化合物(b)的实例包括但不限于:
取代或未取代的环烯基硼酸,如取代或未取代的环丙烯基硼酸、环丁烯基硼酸、环戊烯基硼酸、环己烯基硼酸、环辛烯基硼酸、环壬烯基硼酸、环癸烯基硼酸、环十二烯基硼酸或降冰片烯基硼酸;
取代或未取代的环烯基硼酸二烷基酯,如取代或未取代的环丙烯基硼酸二甲酯、环丙烯基硼酸二乙酯、环丙烯基硼酸二异丙酯、环丙烯基硼酸二丁酯、环丁烯基硼酸二甲酯、环丁烯基硼酸二乙酯、环丁烯基硼酸二异丙酯、环丁烯基硼酸二丁酯、环戊烯基硼酸二甲酯、环戊烯基硼酸二乙酯、环戊烯基硼酸二异丙酯、环戊烯基硼酸二丁酯、环己烯基硼酸二甲酯、环己烯基硼酸二乙酯、环己烯基硼酸二异丙酯、环己烯基硼酸二丁酯、环辛烯基硼酸二甲酯、环辛烯基硼酸二乙酯、环辛烯基硼酸二异丙酯、环辛烯基硼酸二丁酯、环壬烯基硼酸二甲酯、环壬烯基硼酸二乙酯、环壬烯基硼酸二异丙酯、环壬烯基硼酸二丁酯、环癸烯基硼酸二甲酯、环癸烯基硼酸二乙酯、环癸烯基硼酸二异丙酯、环癸烯基硼酸二丁酯、环十二烯基硼酸二甲酯、环十二烯基硼酸二乙酯、环十二烯基硼酸二异丙酯、环十二烯基硼酸二丁酯、降冰片烯基 硼酸二甲酯、降冰片烯基硼酸二乙酯、降冰片烯基硼酸二异丙酯或降冰片烯基硼酸二丁酯;
取代或未取代的环烯基硼酸亚烷基二酯,如环丙烯基硼酸乙二醇酯、环丙烯基硼酸丙二醇酯、环丙烯基硼酸频哪醇酯、环丙烯基硼酸蒎烷二醇酯、环丁烯基硼酸乙二醇酯、环丁烯基硼酸丙二醇酯、环丁烯基硼酸频哪醇酯、环丁烯基硼酸蒎烷二醇酯、环戊烯基硼酸乙二醇酯、环戊烯基硼酸丙二醇酯、环戊烯基硼酸频哪醇酯、环戊烯基硼酸蒎烷二醇酯、环己烯基硼酸乙二醇酯、环己烯基硼酸丙二醇酯、环己烯基硼酸频哪醇酯、环己烯基硼酸蒎烷二醇酯、环辛烯基硼酸乙二醇酯、环辛烯基硼酸丙二醇酯、环辛烯基硼酸频哪醇酯、环辛烯基硼酸蒎烷二醇酯、环壬烯基硼酸乙二醇酯、环壬烯基硼酸丙二醇酯、环壬烯基硼酸频哪醇酯、环壬烯基硼酸蒎烷二醇酯、环癸烯基硼酸乙二醇酯、环癸烯基硼酸丙二醇酯、环癸烯基硼酸频哪醇酯、环癸烯基硼酸蒎烷二醇酯、环十二烯基硼酸乙二醇酯、环十二烯基硼酸丙二醇酯、环十二烯基硼酸频哪醇酯、环十二烯基硼酸蒎烷二醇酯、降冰片烯基硼酸乙二醇酯、降冰片烯基硼酸丙二醇酯、降冰片烯基硼酸频哪醇酯或降冰片烯基硼酸蒎烷二醇酯。
根据本发明优选的实施方式,所述硼酸或硼酸酯化合物(b)选自取代或未取代的环烯基硼酸、环己烯硼酸二烷基酯或环己烯基硼酸亚烷基二酯。
在本发明所述的方法中,所述硅氧烷化合物(a)与所述硼酸或硼酸酯化合物(b)的反应配比使得所述硅氧烷化合物(a)中与硅原子键合的氢原子和所述硼酸或硼酸酯化合物(b)中的烯基的摩尔比至少为0.8,优选为0.80-1.0,更优选为0.80-0.95。
在本发明所述的方法中,所述硅氧烷化合物(a)与所述硼酸或硼酸酯化合物(b)之间的硅氢化反应优选在铂系催化剂存在下进行。所述铂系催化剂的实例包括但不限于铂黑、氯化铂、氯铂酸、氯铂酸的醇溶液、氯铂酸与醇的反应物、氯铂酸与烯烃化合物的反应物、氯铂酸与含乙烯基的硅氧烷 的反应物、铂-烯烃络合物或铂-含乙烯基的硅氧烷的络合物。优选地,所述铂系催化剂选自铂-含乙烯基的硅氧烷的络合物,如铂(0)-1,3-二乙烯基-1,1,3,3-四甲基二硅氧烷络合物。所述铂烯催化剂的用量相对于所述硅氧烷化合物(a)和所述硼酸或硼酸酯化合物(b)的总重量通常为0.05-10000ppm,优选为0.1-8000ppm,更优选为0.5-5000ppm。
在本发明所述的方法中,所述硅氢化反应可以在无溶剂条件下进行,也可以在溶剂中进行。当所述硅氢化反应在溶剂中进行时,所述溶剂的实例包括但不限于:脂肪烃类溶剂,如己烷、癸烷、十二烷等;芳烃类溶剂,如苯、甲苯、二甲苯等;卤代烃类溶剂,如四氯化碳、三氯甲烷、二氯甲烷、一氯甲烷等;醇类溶剂,如甲醇、乙醇、异丙醇、正丁醇等;醚类溶剂,如四氢呋喃、二乙醚、二丁醚等;酮类溶剂,如丙酮、甲乙酮等;酯类溶剂,如乙酸乙酯、乙酸丁酯;酰胺类溶剂,如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺等。所述溶剂的用量没有特别的限制,可根据实际情况进行具体选择。
在本发明所述的方法中,所述硅氢化反应的温度通常为50-150℃,优选为60-100℃。
在本发明所述的方法中,所述硅氢化反应的时间没有特别的限制。通常,通过对反应混合物进行傅里叶变换红外光谱分析(FT-IR)来确定反应终点。具体而言,当FT-IR显示反应混合物中与硅原子键合的氢原子的信号峰消失时,确定为反应终点。
在本发明所述的方法中,在所述硅氢化反应结束之后,优选对反应混合物进行减压蒸馏。所述减压蒸馏的作用在于脱除未反应的硼酸或硼酸酯化合物(b)、有机溶剂(如果存在的话)以及其他低沸物。
<含硼有机硅化合物的用途>
本发明所述的含硼有机硅化合物具有作为加成固化型有机聚硅氧烷组合物的增粘剂的用途。本发明所述的含硼有机硅化合物用作加成固化型有机 聚硅氧烷组合物的增粘剂时,能够在高温高湿和紫外线环境中为其固化物提供充分且长期稳定的粘合性。
在本发明所述的用途中,所述加成固化型有机聚硅氧烷组合物通常包含至少一种含有与硅原子键合的烯基的有机聚硅氧烷、至少一种含有与硅原子键合的氢原子的有机氢聚硅氧烷和硅氢化反应催化剂。对于有机聚硅氧烷、所述有机氢聚硅氧烷和所述硅氢化反应催化剂的类型及其用量没有特别的限制,可采用本领域公知的类型和用量。
所述加成固化型有机聚硅氧烷组合物的实例包括但不限于由CN102892837A、CN104395406A、CN104870568A、CN103154144A、CN101443400A、CN102977604A、CN102276989A、CN104204100A、CN102686598B所公开的加成固化型有机聚硅氧烷组合物。
在本发明所述的用途中,相对于加成固化型有机聚硅氧烷组合物中含有与硅原子键合的烯基的有机聚硅氧烷和含有与硅原子键合的氢原子的有机氢聚硅氧烷的合计用量100重量份,作为增粘剂的所述含硼有机硅化合物的用量优选为0.5-20重量份,更优选为1-10重量份。
<太阳能电池组件用密封剂>
本发明所述的太阳能电池组件用密封剂,包含:
(A)每分子中含有至少两个与硅原子键合的烯基的有机聚硅氧烷,
(B)每分子中含有至少两个与硅原子键合的氢原子的有机氢聚硅氧烷,
(C)式(I)所示的含硼有机硅化合物:
Figure PCTCN2016095850-appb-000012
式(I)中:
B为硼原子,
Q为取代或未取代的碳原子数3-20的环烯基,
L为取代或未取代的碳原子数3-20的环烷基,
与B相连的两个OR1中的两个R1各自为氢原子或碳原子数1-20的烷基,或者,与B相连的两个OR1中的两个R1相互连接形成碳原子数2-20的亚烷基;
(D)硅氢化反应催化剂。
以下对本发明所述的太阳能电池组件用密封剂中的各组分及其配制进行详细说明。
有机聚硅氧烷(A)
本发明所述的太阳能电池组件用密封剂包含每分子中含有至少两个与硅原子键合的烯基的有机聚硅氧烷(A)。在本发明中,所述有机聚硅氧烷(A)用作本发明所述的太阳能电池组件用密封剂的基体。
在本发明中,所述有机聚硅氧烷(A)的类型没有特别的限制,只要其每分子中含有至少两个与硅原子键合的烯基即可。优选地,所述有机聚硅氧烷(A)可以为:
下述式(VI)所示的直链型有机聚硅氧烷(A-1):
[Ra 3SiO1/2][Ra 2SiO2/2]n[Ra 3SiO1/2]  (VI)
式(VI)中:
Ra独立地为碳原子数2-6的烯基或碳原子数1-6的烷基,条件是,至少两个Ra为碳原子数2-6的烯基,
n为使得所述直链型有机聚硅氧烷(A-1)在23℃时的粘度为100-500000mPa·s的数;
或者,
上述直链型有机聚硅氧烷(A-1)与下述式(VII)所示的支链型有机聚硅氧烷(A-2)的组合:
[Ra 3SiO1/2]a[SiO4/2]b   (VII)
式(VII)中:
Ra与式(VI)中所定义的相同,
a和b为满足以下条件的正数:a+b=1,且a/b为0.25-1.5。
式(VI)和式(VII)中,所述碳原子数2-6的烯基优选为乙烯基、烯丙基、丙烯基、丁烯基或环己烯基,更优选为乙烯基或烯丙基,最优选为乙烯基。
式(VI)和式(VII)中,所述碳原子数1-6的烷基优选为甲基、乙基、丙基或丁基,更优选为甲基或乙基,最优选为甲基。
式(VI)中,n为使得所述直链型有机聚硅氧烷(A-1)在23℃时的粘度优选为500-200000mPa·s,更优选为1000-100000mPa·s的数。
式(VII)中,a/b优选为0.6-1.3,更优选为0.8-1.1。
所述直链型有机聚硅氧烷(A-1)的实例包括但不限于:两末端由Me2ViSiO1/2单元封端的聚二甲基硅氧烷;主链由MeViSiO2/2单元和Me2SiO2/2单元组成,且两末端由Me2ViSiO1/2单元封端的甲基乙烯基聚硅氧烷;或者,主链由MeViSiO2/2单元和Me2SiO2/2单元组成,且两末端由Me3SiO1/2单元封端的甲基乙烯基聚硅氧烷。
所述支链型有机聚硅氧烷(A-2)的实例包括但不限于:由Me2ViSiO1/2单元和SiO4/2单元组成的MQ树脂或由Me2ViSiO1/2单元、Me3SiO1/2单元和SiO4/2单元组成的MQ树脂。
当所述直链型有机聚硅氧烷(A-1)与所述支链型有机聚硅氧烷(A-2)组合使用时,所述直链型有机聚硅氧烷(A-1)与所述支链型有机聚硅氧烷(A-2)的混合比例,以重量比计,优选为60:40至100:0,更优选为70:30至90:10。
有机氢聚硅氧烷(B)
本发明所述的太阳能电池组件用密封剂包含每分子中含有至少两个与硅原子键合的氢原子的有机氢聚硅氧烷(B)。在本发明中,所述有机氢聚硅氧烷(B)用作本发明所述的太阳能电池组件用密封剂的交联剂。
在本发明中,所述有机氢聚硅氧烷(B)通常具有式(VIII)所示的平均组成式:
Rb cHdSiO(4-c-d)/2   (VIII)
式(VIII)中:
Rb独立地为碳原子数1-6的烷基,
c为0.7-2的数,d为0.01-2的数,并且c+d为0.8-3。
式(VIII)中,Rb优选为甲基、乙基、丙基或丁基,更优选为甲基或乙基,最优选为甲基。
式(VIII)中,c优选为0.8-2,d优选为0.05-1,并且c+d优选为1.0-2.7。
在本发明中,所述有机氢聚硅氧烷(B)的分子结构没有特别的限制,可以是包括直链、支链、环状或网状在内的任何结构。所述有机氢聚硅氧烷(B)中与硅原子键合的氢原子的个数通常为3个以上,优选为3-200个。
所述有机氢聚硅氧烷(B)的实例包括但不限于:1,1,3,3-四甲基二硅氧烷、1,3,5,7-四甲基环四硅氧烷、三(二甲基氢硅氧基)甲基硅烷、两末端由Me2HSiO1/2单元封端的聚二甲基硅氧烷、两末端由Me3SiO1/2单元封端的甲基氢聚硅氧烷、主链由MeHSiO2/2单元和Me2SiO2/2单元组成,且两末端由Me3SiO1/2单元封端的甲基氢聚硅氧烷、主链由MeHSiO2/2单元和Me2SiO2/2单元组成,且两末端由Me2HSiO1/2单元封端的甲基氢聚硅氧烷、由MeHSiO2/2单元组成的环状甲基氢聚硅氧烷、由MeHSiO2/2单元和Me2SiO2/2单元组成的环状甲基氢聚硅氧烷、由Me2HSiO1/2单元和SiO4/2单元组成的甲基氢聚硅氧烷或由Me2HSiO1/2单元、MeSiO3/2单元和SiO4/2单元组成的甲基氢聚硅氧烷。
在本发明中,所述有机氢聚硅氧烷(B)的粘度没有特别地限制。通常, 所述有机氢聚硅氧烷(B)在23℃时的粘度可以为1-10000mPa·s,优选为10-5000mPa·s。
在本发明中,所述有机氢聚硅氧烷(B)的用量使得所述有机氢聚硅氧烷(B)中与硅原子键合的氢原子与所述有机聚硅氧烷(A)中与硅原子键合的烯基的摩尔比(SiH/SiVi)通常为0.5-3,优选为0.7-2.5。
含硼有机硅化合物(C)
本发明所述的太阳能电池组件用密封剂包含含硼有机硅化合物(C),其分子骨架由环烯基、硅氧键(Si-O)和环烷基构成,并含有三个介由环烷基进行键合的硼酸或硼酸酯基团。由于使用所述含硼有机硅化合物(C)作为增粘剂,本发明所述的太阳能电池组件用密封剂,其固化层在高温高湿和紫外线环境中能够对太阳能电池组件保持充分且长期稳定的粘合性。
在本发明中,所述含硼有机硅化合物(C)具有式(I)所示的化学结构:
Figure PCTCN2016095850-appb-000013
式(I)中:
B为硼原子,
Q为取代或未取代的碳原子数3-20的环烯基,
L为取代或未取代的碳原子数3-20的环烷基,
与B相连的两个OR1中的两个R1各自为氢原子或碳原子数1-20的烷基,或者,与B相连的两个OR1中的两个R1相互连接形成碳原子数2-20的亚烷基。
式(I)中,所述Q优选为碳原子数4-15环烯基,更优选为碳原子数5-8的环烯基。所述Q的实例包括但不限于取代或未取代的环丙烯基、环丁烯基、环戊烯基、环己烯基、环辛烯基、环壬烯基、环癸烯基、环十二烯基或降冰 片烯基。根据本发明优选的实施方式,所述Q为取代或未取代的环己烯基或降冰片烯基。
式(I)中,所述L优选为碳原子数4-15的环烷基,更优选为碳原子数5-8的环烷基。所述L的实例包括但不限于取代或未取代的环丙基、环丁基、环戊基、环己基、环辛基、环壬基、环癸基、环十二烷基或降冰片烷基。根据本发明优选的实施方式,所述L选自取代或未取代的环己基。
式(I)中,当所述R1为烷基时,其优选为碳原子数1-10的烷基,更优选为碳原子数1-4的烷基。所述R1为烷基时的实例包括但不限于甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基或其异构体。优选地,所述R1为甲基、乙基、丙基、丁基或其异构体。
式(I)中,当所述R1为亚烷基时,其优选为碳原子数2-15的亚烷基,更优选为碳原子数2-10的亚烷基。所述R1为亚烷基时的实例包括但不限于亚乙基、亚丙基、亚丁基、亚戊基、亚己基、亚庚基、亚辛基、亚壬基、亚癸基、亚十一烷基、亚十二烷基、亚蒎烷基或其异构体。优选地,所述R1为亚乙基、亚丙基、2,3-二甲基亚丁基或亚蒎烷基。
在本发明中,所述含硼有机硅化合物(C)优选具有下述式(I-1)至式(I-16)所示的化学结构:
Figure PCTCN2016095850-appb-000014
Figure PCTCN2016095850-appb-000015
Figure PCTCN2016095850-appb-000016
根据本发明优选的实施方式,所述含硼有机硅化合物(C)具有上述式(I-7)或式(I-15)所示的化学结构。
在本发明中,所述含硼有机硅化合物(C)可由以下物质之间的硅氢化反应制得:
(a)式(II)所示的硅氧烷化合物:
Figure PCTCN2016095850-appb-000017
式(II)中,Q与式(I)中所定义的相同,
(b)式(III)所示的硼酸或硼酸酯化合物:
Figure PCTCN2016095850-appb-000018
式(III)中:
L′选自取代或未取代的碳原子数3-20的环烯基,
R1与式(I)中所定义的相同。
式(III)中,所述L′优选为碳原子数4-15,更优选为碳原子数5-8的环烯基。所述L′的实例包括但不限于取代或未取代的环丙烯基、环丁烯基、环戊烯基、环己烯基、环辛烯基、环壬烯基、环癸烯基、环十二烯基或降冰片烯基。根据本发明优选的实施方式,所述L′选自取代或未取代的环己烯基。
所述硅氧烷化合物(a)是由以下单体(a1)与单体(a2)经水解缩合反应制得:
(a1):式(IV)所示的三官能单体:
QSi(R2)3  (IV)
式(IV)中,Q与式(I)中所定义的相同,R2为羟基或可水解基团;
(a2):式(V)所示的单官能单体或1,1,3,3-四甲基二硅氧烷:
H(CH3)2SiR2  (V)
式(V)中,R2与式(IV)中所定义的相同。
式(IV)和式(V)中,所述可水解基团的实例包括但不限于卤素原子、碳原子数1-10的烷氧基或碳原子数2-10的酰氧基。优选地,所述可水解基团选自氯原子、甲氧基、乙氧基、异丙氧基或乙酰氧基。
所述单体(a1)的实例包括但不限于:
三羟基硅烷单体,如环丙烯基硅醇、环丁烯基硅醇、环戊烯基硅醇、环己烯基硅醇、环庚烯基硅醇、环辛烯基硅醇、环壬烯基硅醇、环癸基硅醇、环十二烯基硅醇或降冰片烯基硅醇;
三卤代硅烷单体,如环丙烯基三氯硅烷、环丁烯基三氯硅烷、环戊烯基三氯硅烷、环己烯基三氯硅烷、环庚烯基三氯硅烷、环辛烯基三氯硅烷、环壬烯基三氯硅烷、环癸基三氯硅烷、环十二烯基三氯硅烷或降冰片烯基三氯硅烷;
三烷氧基硅烷单体,如环丙烯基三甲氧基硅烷、环丙烯基三乙氧基硅烷、环丙烯基三异丙氧基硅烷、环丁烯基三甲氧基硅烷、环丁烯基三乙氧基硅烷、环丁烯基三异丙氧基硅烷、环戊烯基三甲氧基硅烷、环戊烯基三乙氧基硅烷、环戊烯基三异丙氧基硅烷、环己烯基三甲氧基硅烷、环己烯基三乙氧基硅烷、环己烯基三异丙氧基硅烷、环庚烯基三甲氧基硅烷、环庚烯基三乙氧基硅烷、环庚烯基三异丙氧基硅烷、环辛烯基三甲氧基硅烷、环辛烯基三乙氧基硅烷、环辛烯基三异丙氧基硅烷、环壬烯基三甲氧基硅烷、环壬烯基三乙氧基硅烷、环壬烯基三异丙氧基硅烷、环癸烯基三甲氧基硅烷、环癸烯基三乙氧基硅烷、环癸烯基三异丙氧基硅烷、环十二烯基三甲氧基硅烷、环十二烯基三乙氧基硅烷、环十二烯基三异丙氧基硅烷、降冰片烯基三甲氧基硅烷、降冰片烯基三乙氧基硅烷或降冰片烯基三异丙氧基硅烷;
三酰氧基硅烷单体,如环丙烯基三乙酰氧基硅烷、环丁烯基三乙酰氧基硅烷、环戊烯基三乙酰氧基硅烷、环己烯基三乙酰氧基硅烷、环庚烯基三乙酰氧基硅烷、环辛烯基三乙酰氧基硅烷、环壬烯基三乙酰氧基硅烷、环癸基 三乙酰氧基硅烷、环十二烯基三乙酰氧基硅烷或降冰片烯基三乙酰氧基硅烷。
优选地,所述单体(a1)选自环己烯基三氯硅烷、降冰片烯基三氯硅烷、环己烯基三甲氧基硅烷、环己烯基三乙氧基硅烷、环己烯基三异丙氧基硅烷、降冰片烯基三甲氧基硅烷、降冰片烯基三乙氧基硅烷、降冰片烯基三异丙氧基硅烷、环己烯基三乙酰氧基硅烷或降冰片烯基三乙酰氧基硅烷。
所述单体(a2)的实例包括但不限于:二甲基甲氧基硅烷、二甲基乙氧基硅烷、二甲基氯硅烷或1,1,3,3-四甲基二硅氧烷。优选地,所述单体(a2)为1,1,3,3-四甲基二硅氧烷。
由所述单体(a1)与所述单体(a2)经水解缩合反应制备所述硅氧烷化合物(a)的工艺没有特别的限制,可采用本领域公知的工艺。例如,可采用由JP2000169482A、EP1055674A1、US5614640A所公开的相关工艺。
优选地,所述硅氧烷化合物(a)具有式(II-1)或式(II-2)所示的化学结构:
Figure PCTCN2016095850-appb-000019
所述硼酸或硼酸酯化合物(b)的实例包括但不限于:
取代或未取代的环烯基硼酸,如取代或未取代的环丙烯基硼酸、环丁烯基硼酸、环戊烯基硼酸、环己烯基硼酸、环辛烯基硼酸、环壬烯基硼酸、环癸烯基硼酸、环十二烯基硼酸或降冰片烯基硼酸;
取代或未取代的环烯基硼酸二烷基酯,如取代或未取代的环丙烯基硼酸 二甲酯、环丙烯基硼酸二乙酯、环丙烯基硼酸二异丙酯、环丙烯基硼酸二丁酯、环丁烯基硼酸二甲酯、环丁烯基硼酸二乙酯、环丁烯基硼酸二异丙酯、环丁烯基硼酸二丁酯、环戊烯基硼酸二甲酯、环戊烯基硼酸二乙酯、环戊烯基硼酸二异丙酯、环戊烯基硼酸二丁酯、环己烯基硼酸二甲酯、环己烯基硼酸二乙酯、环己烯基硼酸二异丙酯、环己烯基硼酸二丁酯、环辛烯基硼酸二甲酯、环辛烯基硼酸二乙酯、环辛烯基硼酸二异丙酯、环辛烯基硼酸二丁酯、环壬烯基硼酸二甲酯、环壬烯基硼酸二乙酯、环壬烯基硼酸二异丙酯、环壬烯基硼酸二丁酯环癸烯基硼酸二甲酯、环癸烯基硼酸二乙酯、环癸烯基硼酸二异丙酯、环癸烯基硼酸二丁酯、环十二烯基硼酸二甲酯、环十二烯基硼酸二乙酯、环十二烯基硼酸二异丙酯、环十二烯基硼酸二丁酯、降冰片烯基硼酸二甲酯、降冰片烯基硼酸二乙酯、降冰片烯基硼酸二异丙酯或降冰片烯基硼酸二丁酯;
取代或未取代的环烯基硼酸亚烷基二酯,如环丙烯基硼酸乙二醇酯、环丙烯基硼酸丙二醇酯、环丙烯基硼酸频哪醇酯、环丙烯基硼酸蒎烷二醇酯、环丁烯基硼酸乙二醇酯、环丁烯基硼酸丙二醇酯、环丁烯基硼酸频哪醇酯、环丁烯基硼酸蒎烷二醇酯、环戊烯基硼酸乙二醇酯、环戊烯基硼酸丙二醇酯、环戊烯基硼酸频哪醇酯、环戊烯基硼酸蒎烷二醇酯、环己烯基硼酸乙二醇酯、环己烯基硼酸丙二醇酯、环己烯基硼酸频哪醇酯、环己烯基硼酸蒎烷二醇酯、环辛烯基硼酸乙二醇酯、环辛烯基硼酸丙二醇酯、环辛烯基硼酸频哪醇酯、环辛烯基硼酸蒎烷二醇酯、环壬烯基硼酸乙二醇酯、环壬烯基硼酸丙二醇酯、环壬烯基硼酸频哪醇酯、环壬烯基硼酸蒎烷二醇酯、环癸烯基硼酸乙二醇酯、环癸烯基硼酸丙二醇酯、环癸烯基硼酸频哪醇酯、环癸烯基硼酸蒎烷二醇酯、环十二烯基硼酸乙二醇酯、环十二烯基硼酸丙二醇酯、环十二烯基硼酸频哪醇酯、环十二烯基硼酸蒎烷二醇酯、降冰片烯基硼酸乙二醇酯、降冰片烯基硼酸丙二醇酯、降冰片烯基硼酸频哪醇酯或降冰片烯基硼酸蒎烷二醇酯。
优选地,所述硼酸或硼酸酯化合物(b)选自取代或未取代的环烯基硼酸、环己烯硼酸二烷基酯或环己烯基硼酸亚烷基二酯。
所述硅氧烷化合物(a)与所述硼酸或硼酸酯化合物(b)的反应配比使得所述硅氧烷化合物(a)中与硅原子键合的氢原子与所述硼酸或硼酸酯化合物(b)中的烯基的摩尔比至少为0.8,优选为0.80-1.0,更优选为0.80-0.95。
所述硅氧烷化合物(a)与所述硼酸或硼酸酯化合物(b)之间的硅氢化反应优选在铂系催化剂存在下进行。所述铂系催化剂的实例包括但不限于铂黑、氯化铂、氯铂酸、氯铂酸的醇溶液、氯铂酸与醇的反应物、氯铂酸与烯烃化合物的反应物、氯铂酸与含乙烯基的硅氧烷的反应物、铂-烯烃络合物或铂-含乙烯基的硅氧烷的络合物。优选地,所述铂系催化剂选自铂-含乙烯基的硅氧烷的络合物,如铂(0)-1,3-二乙烯基-1,1,3,3-四甲基二硅氧烷络合物。所述铂烯催化剂的用量相对于所述硅氧烷化合物(a)和所述硼酸或硼酸酯化合物(b)的总重量优选为0.05-10000ppm,更优选为0.1-8000ppm,最优选为0.5-5000ppm。
所述硅氢化反应的温度通常为50-150℃,优选为60-100℃。
所述硅氢化反应可以在无溶剂条件下进行,也可以在溶剂中进行。当所述硅氢化反应在溶剂中进行时,所述溶剂的实例包括但不限于:脂肪烃类溶剂,如己烷、癸烷、十二烷等;芳烃类溶剂,如苯、甲苯、二甲苯等;卤代烃类溶剂,如四氯化碳、三氯甲烷、二氯甲烷、一氯甲烷等;醇类溶剂,如甲醇、乙醇、异丙醇、正丁醇等;醚类溶剂,如四氢呋喃、二乙醚、二丁醚等;酮类溶剂,如丙酮、甲乙酮等;酯类溶剂,如乙酸乙酯、乙酸丁酯;酰胺类溶剂,如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺等。所述溶剂的用量没有特别的限制,可根据实际情况进行具体选择。
在所述硅氢化加成反应结束之后,优选对反应混合物进行减压蒸馏。所述减压蒸馏的作用在于脱除未反应的硼酸或硼酸酯化合物(b)、有机溶剂(如 果存在的话)以及其他低沸物。
在本发明中,相对于所述有机聚硅氧烷(A)和所述有机氢聚硅氧烷(B)的用量合计100重量份,所述含硼有机硅化合物(C)的用量优选为0.5-20重量份,更优选为1-10重量份。
硅氢化反应催化剂(D)
本发明所述的太阳能电池组件用密封剂包含硅氢化反应催化剂(D)。所述硅氢化反应催化剂(D)的作用在于催化所述有机聚硅氧烷(A)中与硅原子键合的氢原子、所述有机氢聚硅氧烷(B)中与硅原子键合的烯基以及所述含硼有机硅化合物(C)中的环烯基之间的硅氢化反应。
在本发明中,所述硅氢化反应催化剂(D)通常使用含铂族金属元素如铂、铑、钯等的化合物。所述含铂族金属元素的化合物的实例包括但不限于:含铂化合物,如氯铂酸、氯铂酸与醇的反应产物、铂-烯烃络合物、铂-乙烯基硅烷络合物、铂-酮络合物、铂-膦络合物;含铑化合物,如铑-膦络合物、铑-硫化合物络合物;含钯化合物,如钯-膦络合物。当使用含铂化合物时,所述硅氢化反应催化剂(D)也可以是制备所述含硼有机硅化合物(C)时所使用的铂系催化剂。优选地,所述硅氢化反应催化剂(D)为氯铂酸与醇的反应产物或铂-乙烯基硅氧烷络合物。
在本发明中,相对于所述有机聚硅氧烷(A)和所述有机氢聚硅氧烷(B)的用量合计,所述硅氢化反应催化剂(D)以铂族金属元素重量换算的用量为0.1-1000ppm,优选为0.5-500ppm。
其他组分
任选地,本发明所述的太阳能电池组件用密封剂还可以含有其他组分,只要所述其他组分及其用量不会明显损害本发明所述的太阳能电池组件用密封剂的粘合性、透光性及力学性能即可。所述其他组分的实例包括但不限于硅氢化反应抑制剂,如1-乙炔基环己醇、3,5-二甲基-1-己炔-3-醇、3-甲基 丁炔醇或马来酸二甲酯;填料,如二氧化钛、氧化锌、氧化铝、氧化铁、气溶胶氧化硅、硅酸锆、粉末化石英、硅藻土或白垩;热稳定剂;增塑剂;着色剂等。
太阳能电池组件用密封剂的配制
本发明所述的太阳能电池组件用密封剂的配制工艺没有特别的限制,只要能使所述有机聚硅氧烷(A)、有机氢聚硅氧烷(B)、含硼有机硅化合物(C)、硅氢化反应催化剂(D)以及任选的其他组分均匀混合即可。通常,可通过在混合装置中均匀混合各组分进行配制。所述混合装置的实例包括但不限于抹刀、鼓式辊、机械搅拌器、三辊滚轧机、Σ桨叶混合器、和面机、行星式混合器、螺杆、溶解器、蝶型混合器、挤压混合器或真空混合器。
在本发明中,所述太阳能电池组件用密封剂可以以单组分形式进行配制和包装,也可以以双组分形式进行配制和包装。
当以双组分形式进行配制和包装时,优选采用如下方式:
i)先将全部的所述硅氢化反应催化剂(D)与部分的所述有机聚硅氧烷(A)、部分的含硼有机硅化合物(C)均匀混合以提供第一包装,然后将剩余部分的所述有机聚硅氧烷(A)、全部的所述有机氢聚硅氧烷(B)、剩余部分的含硼有机硅化合物(C)均匀混合以提供第二包装;或者,
ii)先将全部的所述硅氢化反应催化剂(D)与部分的所述有机聚硅氧烷(A)、全部的含硼有机硅化合物(C)均匀混合以提供第一包装,然后将剩余部分的所述有机聚硅氧烷(A)、全部的所述有机氢聚硅氧烷(B)均匀混合以提供第二包装;或者,
iii)先将全部的所述硅氢化反应催化剂(D)与全部的所述有机聚硅氧烷(A)、全部的含硼有机硅化合物(C)均匀混合以提供第一包装,然后将全部的所述有机氢聚硅氧烷(B)作为第二包装。
当然,其他的双组分形式也是可能的,但重要的是保持所述有机氢聚硅 氧烷(B)与所述硅氢化反应催化剂(D)分开。
<太阳能电池组件>
本发明所述的太阳能电池组件,其结构和类型没有特别地限制,只要其包含由本发明所述的太阳能电池组件用密封剂所形成的固化层即可。
图1示出了本发明的太阳能电池组件的典型结构,其包括:
受光面保护层1,其位于太阳光入射一侧,
背光面保护层3,其位于与太阳光入射方向相反一侧,
太阳能电池单元2,其相互通过导线5电连接且位于受光面保护层1和背光面保护层3之间,以及
密封剂固化层4,其是由本发明所述的太阳能电池组件用密封剂在太阳能电池单元2的表面上固化所形成。
在本发明中,所述受光面保护层1可以由玻璃或合成树脂所构成。其中,所述玻璃优选为浮法玻璃、无色玻璃或钢化玻璃;所述合成树脂优选为丙烯酸系树脂、聚碳酸酯(PC)树脂、聚对苯二甲酸乙二醇酯(PET)树脂或环氧树脂。所述受光面保护层1的厚度通常为0.1-10mm,优选为0.3-5mm。
在本发明中,所述背光面保护层3可以由玻璃、金属、合成树脂或其层合体所构成。其中,所述玻璃可以是构成上述受光面保护层1所用的类型;所述金属优选为铜、铁或铝;所述合成树脂优选为聚对苯二甲酸乙二醇酯树脂或含氟聚烯烃树脂。所述背光面保护层3的厚度通常为0.1-10mm,优选为0.3-5mm。
在本发明中,所述太阳能电池单元2通常使用晶体型太阳能电池或薄膜型太阳能电池。其中,所述晶体型太阳能电池可以是单晶硅或多晶硅太阳能电池;所述薄膜型太阳能电池可以是薄膜硅型太阳能电池、薄膜非晶硅型太阳能电池或铜铟硒(CIS)型太阳能电池。
在本发明中,所述密封剂固化层4的厚度通常为10-2000μm,优选为 100-1000μm。
<密封太阳能电池组件的方法>
本发明所述的密封太阳能电池组件的方法,其包括:将上述太阳能电池组件用密封剂施加在太阳能电池组件上,并使其固化。
在本发明所述的方法中,施加所述太阳能电池组件用密封剂的方式没有特别的限制,可以采用喷涂、流涂、浸涂、刮涂、帘幕涂布或转印涂布。
在本发明所述的方法中,固化温度和固化时间没有特别的限制。通常,固化温度可以为50-150℃,优选为60-120℃;固化时间可以为5分钟至3小时,优选为5分钟至1小时。
实施例
下面结合实施例、应用例和对比应用例对本发明作更进一步的说明,但本发明的保护范围并不限于此。
合成例1
硅氧烷化合物1的制备:
将装有搅拌器、温度计、冷凝器和滴液漏斗的1L四口烧瓶至于冰浴中,在搅拌条件下依次向烧瓶内加入107.46g(0.80mol)1,1,3,3-四甲基二硅氧烷、100g去离子水和10g浓度为37.5wt%的浓盐酸。然后,向烧瓶内缓慢滴加107.79g(0.5mol)3-环己烯基三氯硅烷。滴加完毕后,在搅拌条件下继续反应1小时。将反应产物静置分层,并分离出水相。对收集到的有机相水洗3次,然后用浓度为5wt%碳酸氢钠水溶液水洗3次,之后再水洗3次。在水洗后的有机相中加入硫酸钠进行干燥,并在干燥后滤除硫酸钠。在干燥后的有机相中加入0.4g对羟基苯甲醚,经减压蒸馏得到137.24g反应产物。通过碳核共振波谱分析(13C-NMR)和硅核共振波谱分析(29Si-NMR),确认所述反应产物具有式(II-1)所示的化学结构(下称硅氧烷化合物1)。通过高效液相色谱(HPLC)分析,确定所述反应产物的纯度为99.3%。
Figure PCTCN2016095850-appb-000020
合成例2
硅氧烷化合物2的制备:
将装有搅拌器、温度计、冷凝器和滴液漏斗的1L四口烧瓶至于冰浴中,在搅拌条件下依次向烧瓶内加入107.46g(0.80mol)1,1,3,3-四甲基二硅氧烷、100g去离子水和10g浓度为37.5wt%的浓盐酸。然后,向烧瓶内缓慢滴加113.80g(0.5mol)5-降冰片烯基三氯硅烷。滴加完毕后,在搅拌条件下继续反应1小时。将反应产物静置分层,并分离出水相。对收集到的有机相水洗3次,然后用浓度为5wt%碳酸氢钠水溶液水洗3次,之后再水洗3次。在水洗后的有机相中加入硫酸钠进行干燥,并在干燥后滤除硫酸钠。在干燥后的有机相中加入0.4g对羟基苯甲醚,经减压蒸馏得到136.95g反应产物。通过碳核共振波谱分析(13C-NMR)和硅核共振波谱分析(29Si-NMR),确认所述反应产物具有式(II-2)所示的化学结构(下称硅氧烷化合物2)。通过高效液相色谱(HPLC)分析,确定所述反应产物的纯度为99.1%。
Figure PCTCN2016095850-appb-000021
实施例1
含硼有机硅化合物1的制备:
在装有搅拌器、温度计、冷凝器、滴液漏斗和氮气导管的250ml四口烧瓶中,通氮气置换烧瓶内的空气,在搅拌条件下依次加入35.38g(0.17mol)环己烯-1-基硼酸频哪醇酯、0.04g对羟基苯甲醚和14ml铂含量约2wt%的铂(0)-1,3-二乙烯基-1,1,3,3-四甲基二硅氧烷络合物的甲苯溶液,搅拌均匀后开 始加热。当烧瓶内温升至70℃时,在搅拌条件下缓慢滴加16.74g(0.05mol)由合成例1得到的硅氧烷化合物1。滴加完毕后,将烧瓶内温保持在80℃,在搅拌条件下继续反应。对反应混合物取样,进行傅里叶变换红外光谱分析(FT-IR)。当FT-IR显示反应混合物中与硅原子键合的氢原子的信号峰消失时,确定为反应终点。对反应混合物进行减压蒸馏,脱除未反应的环己烯-1-基硼酸频哪醇酯以及其他低沸物,得到38.23g反应产物。通过碳核共振波谱分析(13C-NMR)和硅核共振波谱分析(29Si-NMR),确认反应产物具有式(I-7)所示的化学结构(下称含硼有机硅化合物1)。通过高效液相色谱(HPLC)分析,确定所述反应产物的纯度为96.5%。
Figure PCTCN2016095850-appb-000022
实施例2
含硼有机硅化合物2的制备:
在装有搅拌器、温度计、冷凝器、滴液漏斗和氮气导管的250ml四口烧瓶中,通氮气置换烧瓶内的空气,在搅拌条件下依次加入35.38g(0.17mol)环己烯-1-基硼酸频哪醇酯、0.04g对羟基苯甲醚和14ml铂含量约2wt%的铂(0)-1,3-二乙烯基-1,1,3,3-四甲基二硅氧烷络合物的甲苯溶液,搅拌均匀后开始加热。当烧瓶内温升至70℃时,在搅拌条件下缓慢滴加17.31g(0.05mol)由合成例2得到的硅氧烷化合物2。滴加完毕后,将烧瓶内温保持在80℃,在搅拌条件下继续反应。对反应混合物取样,进行傅里叶变换红外光谱分析(FT-IR)。当FT-IR显示反应混合物中与硅原子键合的氢原子的信号峰消失时,确定为反应终点。对反应混合物进行减压蒸馏,脱除未反应的环己烯-1-基硼酸频哪醇酯以及其他低沸物,得到38.23g反应产物。通过碳核共振波谱 分析(13C-NMR)和硅核共振波谱分析(29Si-NMR),确认反应产物具有式(I-15)所示的化学结构(下称含硼有机硅化合物2)。通过高效液相色谱(HPLC)分析,确定所述反应产物的纯度为95.7%。
Figure PCTCN2016095850-appb-000023
应用例1
加成固化型有机聚硅氧烷组合物的配制:
将下述各组分混合,制备本发明应用例1的加成固化型有机聚硅氧烷组合物:
70重量份两末端由Me2ViSiO1/2单元封端的聚二甲基硅氧烷,其在23℃时的粘度为5000mPa·s,其中与硅原子键合的乙烯基含量为0.12wt%;
30重量份由Me3SiO1/2单元、Me2ViSiO1/2单元和SiO4/2单元组成,且Me3SiO1/2单元和Me2ViSiO1/2单元与SiO4/2单元的摩尔比(M/Q)为1.0的MQ树脂,其中与硅原子键合的乙烯基含量为5.4wt%;
5重量份主链由MeHSiO2/2单元和Me2SiO2/2单元组成,且两末端由Me3SiO1/2单元封端的甲基氢聚硅氧烷,其在23℃时的粘度为30mPa·s,其中与硅原子键合的氢原子含量为1.45wt%;
0.04重量份铂含量约2wt%的铂(0)-1,3-二乙烯基-1,1,3,3-四甲基二硅氧烷络合物的甲苯溶液;
0.001重量份1-乙炔基环己醇;
2重量份增粘剂,其为由实施例1所制备的含硼有机硅化合物1。
高温高湿和紫外线环境中的粘合性评价:
通过测定加成固化型有机聚硅氧烷组合物其固化物在高温高湿和紫外 线环境中暴露0小时和1000小时后对玻璃板的粘合强度和内聚破坏率,对其粘合性进行评价,相关评价结果记录在下述表1中。
其中,粘合强度和内聚破坏率的测定方法如下:将加成固化型有机聚硅氧烷组合物以12.5mm×25mm的粘合面积夹在宽度均为25mm的两块玻璃板之间,于压力为0.3Kg/cm2、温度为120℃的条件下加热固化1小时,由此制得试样。将试样在温度为85℃、相对湿度为100%和荧光紫外灯(340nm)曝光的环境中分别暴露0小时和1000小时,然后用拉伸试验机以水平相反方向拉伸试样两端,测定断裂时的拉伸强度(单位:MPa),由此对粘合强度进行评价。同时,对试样的断裂面进行评价,测定玻璃板与固化物未发生界面剥离(界面破坏)而固化物本身发生断裂(内聚破坏)的面积相对于断裂面总面积的比例(百分率),即内聚破坏率(%)。
应用例2
加成固化型有机聚硅氧烷组合物的配制:
除了将应用例1中的增粘剂替换为相同用量的由实施例2所制备的含硼有机硅化合物2外,其他组分及其用量均与应用例1相同。将所述各组分混合,制备本发明应用例2的加成固化型有机聚硅氧烷组合物。
高温高湿和紫外线环境中的粘合性评价:
应用例2的粘合性评价方法与应用例1相同,相关评价结果记录在下述表1中。
对比应用例1
加成固化型有机聚硅氧烷组合物的配制:
除了将应用例1中的增粘剂替换为相同用量的由CN103739848A的实施例1所制备的增粘剂(其是由γ-缩水甘油醚氧丙基三甲氧基硅烷、甲基苯基二甲氧基硅烷、硼酸三甲酯、乙烯基二甲基乙氧基硅烷经水解缩合反应制备而成)外,其他组分及其用量均与应用例1相同。将所述各组分混合,制备 对比应用例1的加成固化型有机聚硅氧烷组合物。
高温高湿和紫外线环境中的粘合性评价:
对比应用例1的粘合性评价方法与应用例1相同,相关评价结果记录在下述表1中。
对比应用例2
加成固化型有机聚硅氧烷组合物的配制:
除了将应用例1中的增粘剂替换为相同用量的由JP2000169482A所公开的下式所示的增粘剂外,其他组分及其用量均与应用例1相同。将所述各组分混合,制备对比应用例2的加成固化型有机聚硅氧烷组合物。
Figure PCTCN2016095850-appb-000024
高温高湿和紫外线环境中的粘合性评价:
对比应用例2的粘合性评价方法与应用例1相同,相关评价结果记录在下述表1中。
对比应用例3
加成固化型有机聚硅氧烷组合物的配制:
除了将应用例1中的增粘剂替换为相同用量的由US5614640A所公开的下式所示的增粘剂外,其他组分及其用量均与应用例1相同。将所述各组分混合,制备对比应用例3的加成固化型有机聚硅氧烷组合物。
Figure PCTCN2016095850-appb-000025
高温高湿和紫外线环境中的粘合性评价:
对比应用例3的粘合性评价方法与应用例1相同,相关评价结果记录在 下述表1中。
对比应用例4
加成固化型有机聚硅氧烷组合物的配制:
除了不加入任何增粘剂外,其他组分及其用量均与应用例1相同。将所述各组分混合,制备对比应用例4的加成固化型有机聚硅氧烷组合物。
高温高湿和紫外线环境中的粘合性评价:
对比应用例4的粘合性评价方法与应用例1相同,相关评价结果记录在下述表1中。
表1
Figure PCTCN2016095850-appb-000026
由本发明应用例1-2与对比应用例1-4的比较可以看出,应用例1-2的加成固化型有机聚硅氧烷组合物分别以本发明实施例1-2的含硼有机硅化合物作为增粘剂,其固化物在温度为85℃、相对湿度为100%和荧光紫外灯(340nm)曝光的环境中暴露1000小时后仍能保持至少5.6MPa的粘合强度和至少90%的内聚破坏率,亦即,本发明所述的含硼有机硅化合物能够在高温高湿和紫外线环境中为加成固化型有机聚硅氧烷组合物的固化物提供充分且长期稳定的粘合性。此外,本发明通过硅氢化反应制备含硼有机硅化合物,能够获得化学结构可控,基本上没有副产物,品质和性能稳定的含硼有机硅化合物。
实施例3-8和对比例1-4
太阳能电池组件用密封剂的配制:
按照下述表2所示的配比将表2所列出的各组分混合,分别制备本发明实施例3-8和对比例1-4的太阳能电池组件用密封剂。
以下对表2所列出的各组分进行详细说明。
作为有机聚硅氧烷(A)使用下述组分A-1和A-2:
A-1:两末端由Me2ViSiO1/2单元封端的聚二甲基硅氧烷,其在23℃时的粘度为5000mPa·s,其中与硅原子键合的乙烯基含量为0.12wt%;
A-2:由Me3SiO1/2单元、Me2ViSiO1/2单元和SiO4/2单元组成,且Me3SiO1/2单元和Me2ViSiO1/2单元与SiO4/2单元的摩尔比(M/Q)为1.0的MQ树脂,其中与硅原子键合的乙烯基含量为5.4wt%;
作为有机氢聚硅氧烷(B)使用下述组分B:
B:主链由MeHSiO2/2单元和Me2SiO2/2单元组成,且两末端由Me3SiO1/2单元封端的甲基氢聚硅氧烷,其在23℃时的粘度为30mPa·s,其中与硅原子键合的氢原子含量为1.45wt%;
作为增粘剂,使用下述组分C-1至C-5:
C-1:由实施例1制备的含硼有机硅化合物1;
C-2:由实施例2制备的含硼有机硅化合物2;
C-3:下式所示的增粘剂:
Figure PCTCN2016095850-appb-000027
C-4:下式所示的增粘剂:
Figure PCTCN2016095850-appb-000028
C-5:甲基丙烯酰氧基丙基三甲氧基硅烷;
作为硅氢化反应催化剂(D),使用下述组分D:
D:铂含量约2wt%的铂(0)-1,3-二乙烯基-1,1,3,3-四甲基二硅氧烷络合物的甲苯溶液;
作为硅氢化反应抑制剂,使用下述组分E:
E:1-乙炔基环己醇。
太阳能电池组件用密封剂的粘合性评价:
在粘合性评价中,分别以玻璃板和PET板模拟太阳能电池组件中的太阳能电池单元、受光面保护层和背光面保护层。通过测定本发明实施例3-8和对比例1-4的太阳能电池组件用密封剂其固化层在高温高湿和紫外线环境中暴露0小时和1000小时后对玻璃板或PET板的粘合强度和内聚破坏率,对本发明实施例3-8和对比例1-4的太阳能电池组件用密封剂其固化层对太阳能电池组件的粘合性进行模拟和评价。相关评价结果记录在下述表2中。
其中,太阳能电池组件用密封剂的粘合强度和内聚破坏率的测定方法,与加成固化型有机聚硅氧烷组合物的粘合强度和内聚破坏率的测定方法相同。
表2
应用例3-8和对比应用例5-8
本发明应用例3-8和对比应用例5-8的太阳能电池组件,其结构如图1所示。其中,受光面保护层1和背光面保护层3均采用厚度为3mm的无色钢化玻璃板;太阳能电池单元2采用单晶硅太阳能电池组,且通过导线4电连接并以2×2阵列形式进行设置。
太阳能电池组件的制作和密封:
取两块上述无色钢化玻璃板,分别在其一个表面上涂覆本发明实施例3-8和对比例1-4的太阳能电池组件用密封剂,形成厚度约为400μm的密封剂涂层。在其中一块无色钢化玻璃板的密封剂涂层上依次层合以2×2阵列形式设置的单晶硅太阳能电池组、涂覆有所述密封剂涂层(密封剂涂层朝向太阳能电池单元一侧)的另一块无色钢化玻璃板,并在烘箱中于压力为0.3Kg/cm2、温度为120℃的条件下保持1小时,使密封剂涂层固化形成图1所示的密封剂固化层4,由此制作本发明应用例3-8和对比应用例5-8的太阳能电池组件。
太阳能电池组件的外观评价:
将本发明应用例3-8和对比应用例5-8的太阳能电池组件在温度为85℃、相对湿度为100%和荧光紫外灯(340nm)曝光的环境中暴露1000小时。通过观察对外观进行如下评价:i)如果密封剂固化层与太阳能电池单元、受光面保护层以及背光面保护层之间均保持无间隙的密封,则说明密封剂固化层对太阳能电池组件的粘合性良好,记为“○”;ii)如果密封剂固化层与太阳能电池单元、受光面保护层或背光面保护层之间存在间隙或开裂,则说明密封剂固化层对太阳能电池组件的粘合性不佳,记为“×”。
表3
Figure PCTCN2016095850-appb-000030
从本发明实施例3-8与对比例1-4的比较可以看出,本发明实施例3-8的太阳能电池组件用密封剂分别含有由实施例1-2所制备的含硼有机硅化合物,其固化层在温度为85℃、相对湿度为100%和荧光紫外灯(340nm)曝光的环境中暴露1000小时后,仍能对玻璃板和PET板保持至少5.2MPa的 粘合强度和至少85%的内聚破坏率;同时,从本发明应用例3-8与对比应用例5-8的比较可以看出,本发明应用例3-8的太阳能电池组件分别包含由实施例3-8的太阳能电池组件用密封剂固化所形成的密封剂固化层,其在温度为85℃、相对湿度为100%和荧光紫外灯(340nm)曝光的环境中暴露1000小时后,仍能保持密封剂固化层与太阳能电池单元、受光面保护层或背光面保护层之间的无间隙密封。综上可见,由于含有所述含硼有机硅化合物,本发明所述的太阳能电池组件用密封剂,其固化层在高温高湿和紫外线环境中能够对太阳能电池组件保持充分且长期稳定的粘合性。
实用性
根据本发明实施例所提供的含硼有机硅化合物、太阳能电池组件用密封剂以及太阳能电池组件,可应用于太阳能电池领域。其中,所述含硼有机硅化合物用作加成固化型有机聚硅氧烷组合物的增粘剂,能够在高温高湿和紫外线环境中为其固化物提供充分且长期稳定的粘合性。可以用于制备太阳能电池组件用密封剂,进而制备得到太阳能电池组件。
本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员可以想到的任何变形、改进、替换均落入本发明的范围。

Claims (12)

  1. 含硼有机硅化合物,其特征在于,其具有式(I)所示的化学结构:
    Figure PCTCN2016095850-appb-100001
    式(I)中:
    B为硼原子,
    Q为取代或未取代的碳原子数3-20的环烯基,
    L为取代或未取代的碳原子数3-20的环烷基,
    与B相连的两个OR1中的两个R1各自为氢原子或碳原子数1-20的烷基,或者,与B相连的两个OR1中的两个R1相互连接形成碳原子数2-20的亚烷基。
  2. 根据权利要求1所述的含硼有机硅化合物,其特征在于,所述Q选自取代或未取代的环丙烯基、环丁烯基、环戊烯基、环己烯基、环辛烯基、环壬烯基、环癸烯基、环十二烯基或降冰片烯基。
  3. 根据权利要求2所述的含硼有机硅化合物,其特征在于,所述Q选自取代或未取代的环己烯基或降冰片烯基。
  4. 根据权利要求1所述的含硼有机硅化合物,其特征在于,所述L选自取代或未取代的环丙基、环丁基、环戊基、环己基、环辛基、环壬基、环癸基、环十二烷基或降冰片烷基。
  5. 根据权利要求4所述的含硼有机硅化合物,其特征在于,所述L选自取代或未取代的环己基。
  6. 制备权利要求1-5中任一项所述的含硼有机硅化合物的方法,其特征在于,包括:使以下物质发生硅氢化反应:
    (a)式(II)所示的硅氧烷化合物:
    Figure PCTCN2016095850-appb-100002
    式(II)中,Q与权利要求1式(I)中所定义的相同,
    (b)式(III)所示的硼酸或硼酸酯化合物:
    Figure PCTCN2016095850-appb-100003
    式(III)中:
    L′选自取代或未取代的碳原子数3-20的环烯基,
    R1与权利要求1式(I)中所定义的相同。
  7. 根据权利要求6所述的方法,其特征在于,所述L′选自取代或未取代的环丙烯基、环丁烯基、环戊烯基、环己烯基、环辛烯基、环壬烯基、环癸烯基、环十二烯基或降冰片烯基。
  8. 根据权利要求7所述的方法,其特征在于,所述L′选自取代或未取代的环己烯基。
  9. 根据权利要求1-5中任一项所述的含硼有机硅化合物或者由权利要求6-8中任一项所述的方法制备的含硼有机硅化合物的用途,其特征在于,其用作加成固化型有机聚硅氧烷组合物的增粘剂。
  10. 太阳能电池组件用密封剂,其特征在于,包含:
    (A)每分子中含有至少两个与硅原子键合的烯基的有机聚硅氧烷,
    (B)每分子中含有至少两个与硅原子键合的氢原子的有机氢聚硅氧烷,(C)权利要求1-5中任一项所述的含硼有机硅化合物,
    (D)硅氢化反应催化剂。
  11. 太阳能电池组件,其特征在于,包含由权利要求10所述的太阳能 电池组件用密封剂固化所形成的固化层。
  12. 密封太阳能电池组件的方法,其特征在于,包括:将权利要求10所述的太阳能电池组件用密封剂施加在太阳能电池组件上,并使其固化。
PCT/CN2016/095850 2015-12-07 2016-08-18 含硼有机硅化合物、太阳能电池组件用密封剂以及太阳能电池组件 WO2017096945A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510888485.7A CN106831845B (zh) 2015-12-07 2015-12-07 含硼有机硅化合物、其制备方法和用途
CN201510888485.7 2015-12-07
CN201510892174.8 2015-12-07
CN201510892174.8A CN106854451B (zh) 2015-12-07 2015-12-07 太阳能电池组件用密封剂、太阳能电池组件及其密封方法

Publications (1)

Publication Number Publication Date
WO2017096945A1 true WO2017096945A1 (zh) 2017-06-15

Family

ID=59013713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095850 WO2017096945A1 (zh) 2015-12-07 2016-08-18 含硼有机硅化合物、太阳能电池组件用密封剂以及太阳能电池组件

Country Status (1)

Country Link
WO (1) WO2017096945A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108047449A (zh) * 2017-12-30 2018-05-18 汕头市骏码凯撒有限公司 一种含硼增粘剂的合成方法
CN111154453A (zh) * 2020-01-19 2020-05-15 厦门艾贝森电子有限公司 一种耐热单组份加成型有机硅胶黏剂及其制备方法
JP2020533319A (ja) * 2017-09-07 2020-11-19 ハチソン メディファーマ リミテッド シクロオレフィン置換複素芳香族化合物およびそれらの使用
JP2021178802A (ja) * 2020-05-15 2021-11-18 信越化学工業株式会社 有機ケイ素化合物
CN114805418A (zh) * 2022-04-14 2022-07-29 深圳市明粤科技有限公司 一种粘结剂、芯片互连材料及其制备方法和半导体器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252029B1 (en) * 1998-09-30 2001-06-26 Dow Corning Toray Silicone Co. Ltd. Hydroxyphenyl group-containing organosilicon compound, and method for manufacturing same
CN103589164A (zh) * 2012-08-16 2014-02-19 深圳市红叶杰科技有限公司 粘接性加成型液体硅橡胶
CN103739848A (zh) * 2013-12-25 2014-04-23 北京化工大学 加成型有机硅封装胶用增粘剂及其制备方法
CN104497906A (zh) * 2014-12-03 2015-04-08 中国科学院化学研究所 一种用于加成型硅橡胶的含硼增粘剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252029B1 (en) * 1998-09-30 2001-06-26 Dow Corning Toray Silicone Co. Ltd. Hydroxyphenyl group-containing organosilicon compound, and method for manufacturing same
CN103589164A (zh) * 2012-08-16 2014-02-19 深圳市红叶杰科技有限公司 粘接性加成型液体硅橡胶
CN103739848A (zh) * 2013-12-25 2014-04-23 北京化工大学 加成型有机硅封装胶用增粘剂及其制备方法
CN104497906A (zh) * 2014-12-03 2015-04-08 中国科学院化学研究所 一种用于加成型硅橡胶的含硼增粘剂及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020533319A (ja) * 2017-09-07 2020-11-19 ハチソン メディファーマ リミテッド シクロオレフィン置換複素芳香族化合物およびそれらの使用
JP7273030B2 (ja) 2017-09-07 2023-05-12 ハチソン メディファーマ リミテッド シクロオレフィン置換複素芳香族化合物およびそれらの使用
JP7273030B6 (ja) 2017-09-07 2024-02-15 ハチソン メディファーマ リミテッド シクロオレフィン置換複素芳香族化合物およびそれらの使用
CN108047449A (zh) * 2017-12-30 2018-05-18 汕头市骏码凯撒有限公司 一种含硼增粘剂的合成方法
CN111154453A (zh) * 2020-01-19 2020-05-15 厦门艾贝森电子有限公司 一种耐热单组份加成型有机硅胶黏剂及其制备方法
JP2021178802A (ja) * 2020-05-15 2021-11-18 信越化学工業株式会社 有機ケイ素化合物
JP7220686B2 (ja) 2020-05-15 2023-02-10 信越化学工業株式会社 有機ケイ素化合物
CN114805418A (zh) * 2022-04-14 2022-07-29 深圳市明粤科技有限公司 一种粘结剂、芯片互连材料及其制备方法和半导体器件
CN114805418B (zh) * 2022-04-14 2023-12-26 深圳市明粤科技有限公司 一种粘结剂、芯片互连材料及其制备方法和半导体器件

Similar Documents

Publication Publication Date Title
WO2017096945A1 (zh) 含硼有机硅化合物、太阳能电池组件用密封剂以及太阳能电池组件
US9346954B2 (en) Curable resin composition
US20110297209A1 (en) Silicone resin composition for solar cell module, and solar cell module
JP7053124B2 (ja) 硬化性シリコーン組成物、その硬化物、および光学ディスプレイ
JP5971178B2 (ja) 太陽電池モジュール用シリコーン封止材及び太陽電池モジュール
CN106831845B (zh) 含硼有机硅化合物、其制备方法和用途
TW202000834A (zh) 錨定添加劑及其製備和使用方法
TW202012543A (zh) 矽氧烷組合物
US10100156B2 (en) Curable resin composition
JP5696798B2 (ja) ポリシロキサン
JP6015864B2 (ja) 硬化性樹脂組成物
CN109415565B (zh) 固化性聚有机硅氧烷组合物及其用途
JP5983549B2 (ja) 太陽電池モジュールの製造方法
JP2014053626A (ja) 太陽電池モジュール
CN106854451B (zh) 太阳能电池组件用密封剂、太阳能电池组件及其密封方法
CN107760258B (zh) 电池组件用密封剂、电池组件及其密封方法
JP2013112719A (ja) 太陽電池封止用シリコーン組成物
CN107760253B (zh) 太阳能电池用密封剂、太阳能电池组件及其密封方法
TW202045607A (zh) 加成硬化型聚矽氧組成物、光反射材用聚矽氧硬化物、光反射材及光半導體裝置
JP6070527B2 (ja) 太陽電池モジュールの製造方法
CN116120888A (zh) 一种耐低温硬化的有机硅光学贴合胶及其制备和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872141

Country of ref document: EP

Kind code of ref document: A1