WO2017096639A1 - 一种吸附-超导磁分离除砷锑的磁性吸附剂及其制备方法 - Google Patents

一种吸附-超导磁分离除砷锑的磁性吸附剂及其制备方法 Download PDF

Info

Publication number
WO2017096639A1
WO2017096639A1 PCT/CN2015/097832 CN2015097832W WO2017096639A1 WO 2017096639 A1 WO2017096639 A1 WO 2017096639A1 CN 2015097832 W CN2015097832 W CN 2015097832W WO 2017096639 A1 WO2017096639 A1 WO 2017096639A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
ferrite
magnetic adsorbent
magnetic
based gel
Prior art date
Application number
PCT/CN2015/097832
Other languages
English (en)
French (fr)
Inventor
刘锐平
齐增禄
兰华春
朱利军
刘会娟
曲久辉
Original Assignee
中国科学院生态环境研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院生态环境研究中心 filed Critical 中国科学院生态环境研究中心
Publication of WO2017096639A1 publication Critical patent/WO2017096639A1/zh
Priority to US15/805,141 priority Critical patent/US10569250B2/en
Priority to US16/724,371 priority patent/US11135562B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/481Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • the invention belongs to the technical field of water treatment, and particularly relates to a magnetic adsorbent for removing heavy metals and a method for removing heavy metals such as arsenic and antimony in water by coupling with superconducting magnetic separation.
  • Arsenic strontium is a highly toxic heavy metal element, and its presence in the environment will have a serious impact on human health and ecological safety. Drinking water safety problems caused by arsenic contamination of natural groundwater are present all over the world, and in the case of cockroaches, it is mainly due to the contamination of drinking water sources or water bodies caused by the discharge of strontium ore and strontium-containing wastewater. China's "Sanitary Standard for Drinking Water" (GB5749-2006) imposes stricter regulations on the concentration of arsenic. The maximum concentration of arsenic in drinking water must be less than 10 ⁇ g/L, while the concentration limit of strontium is 5 ⁇ g. /L.
  • the adsorbents reported at home and abroad include activated alumina, red mud, modified activated carbon, iron oxyhydroxide, Manganese sand, hydrated manganese oxide, iron oxide-alumina composite nanomaterial, iron-manganese composite oxide/diatomaceous earth and other materials.
  • the iron oxide-alumina composite nanomaterial (patent application number: CN200710118307.1) invented by Cai Yazhen et al. has a small particle size and a large specific surface area, thereby exhibiting a strong ability to remove arsenic and the like from water. In the design process of adsorbent, there is an inevitable contradiction.
  • CN103736586A discloses a continuous superconducting magnetic separation system comprising a vertical cylindrical superconducting magnet and a high gradient medium mesh, which is located at a lower end of the inner cylinder of the superconducting magnet.
  • Gradient medium mesh support system which is equipped with a high gradient medium rotating disc with buckle, a high gradient medium field external transmission system, and a pressing system for realizing high gradient medium entering and exiting the magnetic field; after the candidate material enters the superconducting magnetic field, there is magnetic
  • the particles are attached in a high gradient medium mesh, and the non-magnetic particles are collected at the lower end of the superconducting magnet;
  • the high gradient medium mesh is stationary in the superconducting magnet through the magnetic separation zone supporting system, and enters or exits the magnetic field piece by piece through the pressing system;
  • the high-gradient dielectric mesh of the magnetic particles exits the magnetic field and then enters the cleaning zone and the external magnetic field transmission zone through the high gradient medium rotating disk, and then re-enters the magnetic separation zone through the top pressure system above the superconducting magnet to realize continuous operation.
  • One of the objects of the present invention is to provide a magnetic adsorbent which is highly efficient, economically feasible, and easy to be applied on a large scale in engineering, in view of pollutants such as arsenic and antimony in water.
  • Another object of the present invention is to provide a process for preparing a magnetic adsorbent.
  • a third object of the present invention is to provide a method of applying a magnetic adsorbent.
  • the design principle of the magnetic adsorbent according to the present invention is that the iron-based gel has a strong adsorption capacity and has weak magnetic properties; the ferrite has strong magnetism and has a certain ability to adsorb arsenic and antimony.
  • the ferromagnetic material iron-based gel with strong adsorption capacity is supported on the ferrite material with weak adsorption capacity but strong magnetic property by in-situ reaction method, thereby obtaining both strong adsorption capacity and excellent magnetic separation characteristics. s material.
  • the adsorbent adsorbing arsenic and the arsenic contaminant are separated into solid and liquid in the superconducting magnetic separation unit, and the arsenic in the water is purified and removed.
  • the magnetic adsorbent and the adsorption-superconducting magnetic separation method can be used for removing arsenic and antimony pollutants in drinking water, groundwater, industrial wastewater, water bodies such as lakes, reservoirs, rivers, etc., and can also be used for copper, chromium, cadmium, lead in water, Removal of pollutants such as heavy metals and phosphates, and water pollution control for sudden pollution incidents.
  • the magnetic adsorbent of the present invention is prepared by supporting an iron-based gel on the surface of a ferrite.
  • the ferrite may be selected from at least one of manganese ferrite, copper ferrite, magnesium ferrite, and triiron tetroxide.
  • the iron-based gel is prepared by the following method:
  • the iron salt concentration is in the range of 0.5 to 10 mmol/L, and the OH - concentration in the alkali solution is in the range of 0.1 to 10 mol/L;
  • the iron salt may be selected from the group consisting of ferric chloride, iron sulfate, iron nitrate, polyferric chloride, polymeric ferric sulfate, polymeric ferric nitrate, and the like. At least one of them.
  • the alkali solution may be selected from at least one of sodium hydroxide, potassium hydroxide, ammonia water and the like.
  • the iron-based gel is loaded on the ferrite surface by the method described below:
  • the magnetic adsorbent of the invention can be used for removing arsenic and antimony pollutants in drinking water, groundwater, industrial waste water, water bodies such as lakes, reservoirs and rivers, and also for heavy metals such as copper, chromium, cadmium, lead and antimony in water and phosphate. Pollutant removal and water pollution control for sudden pollution incidents.
  • the invention also provides a method for applying the magnetic adsorbent:
  • the magnetic adsorbent to the water to be treated, and the dosage is between 0.1 mg/L and 5 g/L, followed by thorough mixing; after the mixing reaction for 0.5 min to 5 min, after the magnetic adsorbent is added
  • the water enters the continuous superconducting magnetic separation system for solid-liquid separation, and the effluent flows out after reaching the sanitary standard of drinking water.
  • the continuous superconducting magnetic separation system is the superconducting magnetic separation system described in the patent application No. CN103736586A.
  • the iron-based gel of the present invention is weak in magnetic properties, and it is difficult to completely separate by superconducting magnetic separation; and if ferrite is used alone, it is difficult to ensure the transfer of pollutants such as arsenic and bismuth from water to solid phase in water.
  • an adsorbent material having both strong adsorption capacity and excellent magnetic separation characteristics can be obtained.
  • the loading method of the invention has simple operation process and is easy to implement; the water treatment agent or material used for preparing the magnetic adsorption material is cheap and easy to obtain; the superconducting magnetic separation method can well balance the balance between particle size and adsorption performance of the particle particles. .
  • the method of the invention has the following technical advantages: high adsorption capacity (saturated adsorption capacity up to 150 mg/g); solid-liquid separation speed is fast, separation can be completed in a few seconds, and conventional solid-liquid separation takes tens of minutes to several hours
  • the technology is highly adaptable and can be used to remove the single presence of pollutants or the coexistence of multiple pollutants.
  • the adsorption-superconducting magnetic separation method mentioned in the present invention can be used for removing arsenic and antimony pollutants in drinking water, groundwater, industrial wastewater, water bodies such as lakes, reservoirs and rivers (the concentration of arsenic and antimony in the water to be treated is 0.05 mg/L).
  • ⁇ 50mg/L can also be used for the removal of pollutants such as heavy metals and phosphates such as copper, chromium, cadmium, lead and antimony in water, as well as water pollution control for sudden pollution events.
  • pollutants such as heavy metals and phosphates such as copper, chromium, cadmium, lead and antimony in water, as well as water pollution control for sudden pollution events.
  • concentration of heavy metals in the effluent after treatment can meet the requirements of relevant drinking water hygiene standards, industrial wastewater discharge standards or surface water environmental quality standards.
  • Ferric acid is manganese ferrite. They were prepared sodium hydroxide solution and ferric chloride solution, ferric chloride concentration of 10mmol / L, sodium hydroxide solution OH - concentration of 10mol / L; under thorough stirring, the sodium hydroxide solution was slowly added dropwise The iron chloride solution was until the equilibrium pH value was 4.0; stirring was continued for 30 min, and the mixture was allowed to stand for 24 hours to obtain an iron-based gel suspension.
  • arsenic-contaminated water is the source of drinking water for natural groundwater, and the concentration of arsenic in water is 0.2 mg/L.
  • the magnetic adsorbent is added to the arsenic-contaminated water at a dose of 100 mg/L, and then thoroughly mixed; after the mixing reaction for 5 minutes, the water after the magnetic adsorbent is added enters the continuous superconducting magnetic separation system. Solid-liquid separation, the effluent will flow out after reaching the sanitary standard of drinking water.
  • Ferric acid salt is copper ferrite. They were prepared ferric nitrate solution and potassium hydroxide solution, the ferric nitrate concentration of 0.5mmol / L, sodium hydroxide solution OH - concentration in the range of 0.1mol / L; under thorough stirring, the potassium hydroxide solution was slowly added dropwise The solution was added to the ferric nitrate solution until the equilibrium pH was 7.5; stirring was continued for 5 min, and the mixture was allowed to stand for 60 min to obtain an iron-based gel suspension.
  • arsenic-contaminated water is an industrial wastewater, and the concentration of arsenic in water is 20.0 mg/L.
  • the magnetic adsorbent is added to the arsenic-contaminated water at a dosage of 5 g/L, and then thoroughly mixed; after the mixing reaction for 5 minutes, the water after the magnetic adsorbent is added enters the continuous superconducting magnetic separation system. Solid-liquid separation, the effluent flows out after reaching the industrial wastewater discharge standard.
  • Ferric acid salt is magnesium ferrite. Were prepared ferric sulfate solution and an aqueous ammonia solution, the concentration of iron sulfate 6mmol / L, a solution of ammonia OH - concentration of 3mol / L; under thorough stirring, an aqueous ammonia solution was slowly added dropwise to the ferric sulfate solution until a pH balance 6; stirring was continued for 15 min, and allowed to stand for 10 h to obtain an iron-based gel suspension.
  • Preparation of magnetic adsorbent under the condition of sufficient agitation, slowly add polyacrylamide solution to the magnesium ferrite suspension, the mass ratio of polyacrylamide to magnesium ferrite is 1:1000, the reaction is 60 min; under the condition of sufficient stirring Next, the iron-based gel suspension was slowly added to the ferrite suspension added with the polyacrylamide solution, and the mass ratio of the iron-based gel to the ferrite was 1:50, and the reaction was carried out for 120 minutes.
  • arsenic-contaminated water is contaminated river water, and the concentration of arsenic in water is 5.0 mg/L.
  • the magnetic adsorbent is added to the arsenic-contaminated water at a dosage of 500 mg/L, and then thoroughly mixed; after the mixing reaction for 3 minutes, the water after the magnetic adsorbent is added enters the continuous superconducting magnetic separation system. Solid-liquid separation, the effluent flows out after reaching the surface water environmental quality standard.
  • the ferrite was a mixture of ferric oxide tetraoxide and manganese ferrite in a ratio of 1:2 by mass.
  • arsenic-contaminated water is an industrial wastewater, and the concentration of arsenic in arsenic-contaminated water is 10.0 mg/L.
  • the magnetic adsorbent is added to the arsenic-contaminated water at a dosage of 1.5 g/L, and then thoroughly mixed; after the mixing reaction for 5 minutes, the water after the magnetic adsorbent is added enters the continuous superconducting magnetic separation system. The solid-liquid separation is carried out, and the effluent flows out after reaching the industrial wastewater discharge standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种磁性吸附剂及其制备方法和应用。该磁性吸附剂是通过将具有强吸附能力的弱磁性材料铁基凝胶通过原位反应的方法负载在吸附能力较弱但具有强磁性的铁酸盐材料上制成的。用于去除水体中重金属污染物和磷酸盐污染物。

Description

一种吸附-超导磁分离除砷锑的磁性吸附剂及其制备方法 技术领域
本发明属于水处理技术领域,特别涉及重金属去除的磁性吸附剂以及吸附与超导磁分离耦合去除水中砷锑等重金属的方法。
背景技术
砷锑是毒性很强的重金属元素,其在环境中存在将对人体健康和生态安全产生严重影响。在全世界范围内都存在由于天然地下水砷污染而导致的饮用水安全问题,而就锑而言则主要是由于认为开采锑矿和含锑废水排放导致的饮用水源或水体锑污染。我国《生活饮用水卫生标准》(GB5749-2006)对砷浓度限值做出了更为严格的规定,要求饮用水中砷最大浓度必须低于10μg/L,而锑的浓度限值则为5μg/L。
近十年来,国内外在除砷除锑方面开展了大量的研究与技术开发工作,吸附、絮凝-沉淀-过滤、絮凝-直接过滤、电渗析、离子交换、膜分离等去除方法得到了系统研究。吸附仍是去除水中砷锑的最佳方法之一。在除砷除锑吸附材料方面,国内外报导的吸附剂有活性氧化铝、赤泥、改性活性炭、羟基氧化铁、
Figure PCTCN2015097832-appb-000001
锰砂、水合锰氧化物、氧化铁-氧化铝复合纳米材料、铁锰复合氧化物/硅藻土等材料。例如,蔡亚岐等人发明的氧化铁-氧化铝复合纳米材料(专利申请号:CN200710118307.1)颗粒粒径细小、比表面积大,从而表现出很强的去除水中砷等污染物的能力。吸附剂设计过程中,存在一个不可避免的矛盾是,颗粒粒径越小废弃吸附性能越强,但对固液分离的要求则更高;反之,增加颗粒粒径将其作为吸附床填料,则代价是吸附性能下降。建立可有效强化固液分离的技术方法,可能是平衡上述矛盾的关键。
将材料赋磁形成赋磁功能吸附材料,这在国际上得到了广泛的研究,但截至目前仍缺乏中试或工程应用规模的案例。其原因在于仍缺乏高效、经济、且可工业化应用的磁分离设备。针对该问题,江苏旌凯中科超导高技术有限公司开展了系统开发工作,在磁性材料超导分离上取得了重要突破,形成了一系列关键技术(如CN201110053441,CN201310583350,CN201310516009)。发明人在前期研究开发工作基础上,提出将具有强吸附能力的弱磁性材料铁基凝胶通过原位反应的方法负载在吸附能力较弱但具有强磁性的铁酸盐材料上,从而 获得同时具备很强吸附能力与优异的磁分离特性的材料。材料吸附砷锑之后,再利用连续式超导磁分离系统完成固液分离。CN103736586A公开了一种连续式超导磁分离系统及其应用工艺,所述连续式超导磁分离系统包含立式圆柱型超导磁体,高梯度介质网,位于超导磁体内圆柱下端部的高梯度介质网承托系统,配制卡扣的高梯度介质转动盘,高梯度介质场外传动系统,以及实现高梯度介质进入及退出磁场的顶压系统;待选物料进入超导磁场后,有磁颗粒在高梯度介质网中附着,无磁颗粒在超导磁体下端收集;高梯度介质网通过磁选区承托系统在超导磁体内静止,通过顶压系统逐片进入或退出磁场;已吸附有磁颗粒的高梯度介质网退出磁场后通过高梯度介质转动盘先后进入清洗区和磁场外传动区,其后通过超导磁体上方顶压系统重新进入磁选区,实现连续作业。
发明内容
本发明的目的之一是针对水中的砷锑等污染物,提供一种性能高效、经济可行、易于在工程中大规模应用的磁性吸附剂。
本发明的目的之二是提供磁性吸附剂的制备方法。
本发明的目的之三是提供磁性吸附剂的应用方法。
本发明所涉及的磁性吸附剂的设计原理在于:铁基凝胶具有很强的吸附能力,且具有弱磁性;铁酸盐具有强磁性,且具有一定的吸附砷锑的能力。将具有强吸附能力的弱磁性材料铁基凝胶通过原位反应的方法负载在吸附能力较弱但具有强磁性的铁酸盐材料上,从而获得同时具备很强吸附能力与优异的磁分离特性的材料。吸附了砷的吸附剂以及砷污染物在超导磁分离单元中完成固液分离,水中的砷得以净化去除。采用该磁性吸附剂以及吸附-超导磁分离方法可用于去除饮用水、地下水、工业废水以及湖泊、水库、河流等水体中的砷锑污染物,也可用于水中铜、铬、镉、铅、铊等重金属和磷酸盐等污染物去除以及突发性污染事件的水体污染治理。
本发明所述的磁性吸附剂是由铁基凝胶负载在铁酸盐表面制得。
所述的铁酸盐可选自铁酸锰、铁酸铜、铁酸镁、四氧化三铁等中的至少一种。
所述的铁基凝胶通过如下方法制备:
(1)配制铁盐溶液和碱溶液,铁盐浓度范围为0.5~10mmol/L,碱溶液中OH-浓度范围为0.1~10mol/L;
(2)在充分搅拌的条件下,将碱液缓慢滴加到铁盐溶液中,平衡pH值在4~7.5之间;
(3)继续搅拌5~30min,静置60min~24h;
所述的铁盐可选自氯化铁、硫酸铁、硝酸铁、聚合氯化铁、聚合硫酸铁、聚合硝酸铁等 中的至少一种。
所述的碱溶液可选自氢氧化钠、氢氧化钾、氨水等中的至少一种。
所述的铁基凝胶采用如下所述的方法负载在所述的铁酸盐表面:
(1)在充分搅拌的条件下,向铁酸盐溶液中缓慢加入聚丙烯酰胺溶液,聚丙烯酰胺与铁酸盐的质量比为1:100~1:50000,反应30~120min,得铁酸盐悬浊液;
(2)在充分搅拌的条件下,将铁基凝胶悬浊液缓慢加入(1)所得铁酸盐悬浊液中,铁基凝胶与铁酸盐的质量比为1:10~1:500,反应60~240min。
本发明所述磁性吸附剂可用于去除饮用水、地下水、工业废水以及湖泊、水库、河流等水体中砷锑污染物,也可用于水中铜、铬、镉、铅、铊等重金属和磷酸盐等污染物去除以及突发性污染事件的水体污染治理。
本发明还提供了所述的磁性吸附剂的应用方法:
向待处理水中加入所述的磁性吸附剂,投量在0.1mg/L~5g/L之间,之后进行充分混合;混合反应0.5min~5min之后,投加了所述的磁性吸附剂之后的水进入连续式超导磁分离系统进行固液分离,出水达到生活饮用水卫生标准后流出。
所述的连续式超导磁分离系统是公开号为CN103736586A的专利申请所述的超导磁分离系统。
本发明的有益效果如下:
本发明涉及的铁基凝胶磁性较弱,采用超导磁分离难以完全分离;而若单独采用铁酸盐则难以确保完成水中砷锑等污染物由水相向固相的转移。将铁基凝胶负载铁酸盐上,可获得同时很强吸附能力与优异磁分离特性的吸附材料。本发明的负载方法操作过程简单,易于实现;制备磁性吸附材料采用的水处理药剂或材料价廉易得;利用超导磁分离方法可很好地平衡颗粒物颗粒粒径与吸附性能之间的平衡。本发明的方法具有如下技术优势:吸附容量高(饱和吸附容量可达150mg/g);固液分离速度快,在数秒内即可完成分离,而常规的固液分离需要数十分钟至数小时;技术适应性强,可用于去除污染物单一存在或多种污染物共存的情况。本发明提及的吸附-超导磁分离方法可用于去除饮用水、地下水、工业废水以及湖泊、水库、河流等水体中的砷锑污染物(待处理水中砷锑的浓度范围为0.05mg/L~50mg/L);也可用于水中铜、铬、镉、铅、铊等重金属和磷酸盐等污染物去除以及突发性污染事件的水体污染治理。处理后出水中重金属浓度可以达到相关生活饮用水卫生标准、工业废水排放标准或地表水环境质量标准等要求。
具体实施方式
下面通过具体的实施方案叙述本发明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。另外,实施方案应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。
实施例1
材料制备:铁酸盐采用铁酸锰。分别配制氯化铁溶液和氢氧化钠溶液,氯化铁浓度为10mmol/L,氢氧化钠溶液中OH-浓度为10mol/L;在充分搅拌的条件下,将氢氧化钠溶液缓慢滴加到氯化铁溶液中直至平衡pH值为4.0;继续搅拌30min,静置24h获得铁基凝胶悬浊液。
磁性吸附剂制备;在充分搅拌的条件下,往铁酸锰悬浊液中缓慢加入聚丙烯酰胺溶液,聚丙烯酰胺与铁酸锰的质量比为1:50000,反应30min;在充分搅拌的条件下,将铁基凝胶悬浊液缓慢加入添加了聚丙烯酰胺溶液的铁酸锰悬浊液中,铁基凝胶与铁酸锰的质量比为1:500,反应60min。
应用于含砷水净化:砷污染水为天然地下水的饮用水源水,水中砷浓度为0.2mg/L。往砷污染水中加入所述的磁性吸附剂,投量为100mg/L,之后进行充分混合;混合反应5min之后,投加了所述的磁性吸附剂之后的水进入连续式超导磁分离系统进行固液分离,出水达到生活饮用水卫生标准后流出。
实施例2
材料制备:铁酸盐采用铁酸铜。分别配制硝酸铁溶液和氢氧化钾溶液,硝酸铁浓度为0.5mmol/L,氢氧化钠溶液中OH-浓度范围为0.1mol/L;在充分搅拌的条件下,将氢氧化钾溶液缓慢滴加到硝酸铁溶液中直至平衡pH值为7.5;继续搅拌5min,静置60min获得铁基凝胶悬浊液。
磁性吸附剂制备;在充分搅拌的条件下,往铁酸铜悬浊液中缓慢加入聚丙烯酰胺溶液,聚丙烯酰胺与铁酸铜的质量比为1:100,反应120min;在充分搅拌的条件下,将铁基凝胶悬浊液缓慢加入添加了聚丙烯酰胺溶液的铁酸盐悬浊液中,铁基凝胶与铁酸盐的质量比为1:10,反应240min。
应用于含砷水净化:砷污染水为某工业废水,水中砷浓度为20.0mg/L。往砷污染水中加入所述的磁性吸附剂,投量为5g/L,之后进行充分混合;混合反应5min之后,投加了所述的磁性吸附剂之后的水进入连续式超导磁分离系统进行固液分离,出水达到工业废水排放标准后流出。
实施例3
材料制备:铁酸盐采用铁酸镁。分别配制硫酸铁溶液和氨水溶液,硫酸铁浓度6mmol/L,氨水溶液中OH-浓度为3mol/L;在充分搅拌的条件下,将氨水溶液缓慢滴加到硫酸铁溶液中直至平衡pH值为6;继续搅拌15min,静置10h获得铁基凝胶悬浊液。
磁性吸附剂制备:在充分搅拌的条件下,往铁酸镁悬浊液中缓慢加入聚丙烯酰胺溶液,聚丙烯酰胺与铁酸镁的质量比为1:1000,反应60min;在充分搅拌的条件下,将铁基凝胶悬浊液缓慢加入添加了聚丙烯酰胺溶液的铁酸盐悬浊液中,铁基凝胶与铁酸盐的质量比为1:50,反应120min。
应用于含砷水净化:砷污染水为受污染河流水,水中砷浓度为5.0mg/L。往砷污染水中加入所述的磁性吸附剂,投量为500mg/L,之后进行充分混合;混合反应3min之后,投加了所述的磁性吸附剂之后的水进入连续式超导磁分离系统进行固液分离,出水达到地表水环境质量标准后流出。
实施例4
材料制备:铁酸盐采用四氧化三铁和铁酸锰1:2质量比的混合物。分别配制聚合氯化铁溶液氢氧化钾溶液,聚合氯化铁浓度为3.5mmol/L,氢氧化钠溶液中OH-浓度范围为6.5mol/L;在充分搅拌的条件下,将氢氧化钾溶液缓慢滴加到硝酸铁溶液中直至平衡pH值为5.5;继续搅拌30min,静置5h获得铁基凝胶悬浊液。
磁性吸附剂制备;在充分搅拌的条件下,往铁酸铜悬浊液中缓慢加入聚丙烯酰胺溶液,聚丙烯酰胺与铁酸铜的质量比为1:25000,反应90min;在充分搅拌的条件下,将铁基凝胶悬浊液缓慢加入添加了聚丙烯酰胺溶液的铁酸盐悬浊液中,铁基凝胶与铁酸盐的质量比为1:300,反应180min。
应用于含砷水净化:砷污染水为某工业废水,砷污染水中砷浓度为10.0mg/L。往砷污染水中加入所述的磁性吸附剂,投量为1.5g/L,之后进行充分混合;混合反应5min之后,投加了所述的磁性吸附剂之后的水进入连续式超导磁分离系统进行固液分离,出水达到工业废水排放标准后流出。

Claims (10)

  1. 一种磁性吸附剂,其特征在于,所述磁性吸附剂由铁基凝胶负载在铁酸盐表面制得,其中铁基凝胶由铁盐溶液和碱溶液混合而成。
  2. 如权利要求1所述的一种磁性吸附剂,其特征在于,所述铁基凝胶采用如下方法负载在所述铁酸盐表面:
    (1)在充分搅拌的条件下,向铁酸盐溶液中缓慢加入聚丙烯酰胺溶液,聚丙烯酰胺与铁酸盐的质量比为1:100~1:50000,反应30~120min,得到铁酸盐悬浊液;
    (2)在充分搅拌的条件下,将铁基凝胶悬浊液缓慢加入(1)所得铁酸盐悬浊液中,铁基凝胶与铁酸盐的质量比为1:10~1:500,反应60~240min。
  3. 如权利要求1或2所述的一种磁性吸附剂,其特征在于,所述的铁酸盐为铁酸锰、铁酸铜、铁酸镁、四氧化三铁中的至少一种。
  4. 如权利要求1或2所述的一种磁性吸附剂,其特征在于,所述的铁基凝胶通过如下方法制备:
    (1)配制铁盐溶液和碱溶液,铁盐浓度范围为0.5~10mmol/L,碱溶液中OH-浓度范围为0.1~10mol/L;
    (2)在充分搅拌的条件下,将碱液缓慢滴加到铁盐溶液中,平衡pH值在4~7.5之间;
    (3)继续搅拌5~30min,静置60min~24h。
  5. 如权利要求4所述的一种磁性吸附剂,其特征在于,所述的铁盐为氯化铁、硫酸铁、硝酸铁、聚合氯化铁、聚合硫酸铁、聚合硝酸铁中的至少一种。
  6. 如权利要求4所述的一种磁性吸附剂,其特征在于,所述的碱溶液为氢氧化钠、氢氧化钾、氨水中的至少一种。
  7. 制备权利要求1-6任一所述磁性吸附剂的方法,包括如下步骤:
    所述的铁基凝胶通过如下方法制备:
    (1)配制铁盐溶液和碱溶液,铁盐浓度范围为0.5~10mmol/L,碱溶液中OH-浓度范围为0.1~10mol/L;
    (2)在充分搅拌的条件下,将碱液缓慢滴加到铁盐溶液中,平衡pH值在4~7.5之间;
    (3)继续搅拌5~30min,静置60min~24h;
    所述铁基凝胶采用如下方法负载在所述铁酸盐表面:
    (1)在充分搅拌的条件下,向铁酸盐溶液中缓慢加入聚丙烯酰胺溶液,聚丙烯酰胺与铁酸盐的质量比为1:100~1:50000,反应30~120min,得到铁酸盐悬浊液;
    (2)在充分搅拌的条件下,将铁基凝胶悬浊液缓慢加入(1)所得铁酸盐悬浊液中,铁基凝胶与铁酸盐的质量比为1:10~1:500,反应60~240min;
    所述的铁酸盐为铁酸锰、铁酸铜、铁酸镁、四氧化三铁中的至少一种;
    所述的铁盐为氯化铁、硫酸铁、硝酸铁、聚合氯化铁、聚合硫酸铁、聚合硝酸铁中的至少一种;
    所述的碱溶液为氢氧化钠、氢氧化钾、氨水中的至少一种。
  8. 权利要求1-6任一所述磁性吸附剂的用途,其特征在于,所述磁性吸附剂用于去除水体中的重金属污染物和磷酸盐污染物。
  9. 如权利要求8所述的磁性吸附剂的用途,其特征在于,向待处理水中加入所述的磁性吸附剂,投量在0.1mg/L~5g/L之间,之后进行充分混合;混合反应0.5min~5min之后,投加了所述的磁性吸附剂之后的水进入连续式超导磁分离系统进行固液分离,出水达到生活饮 用水卫生标准后流出。
  10. 如权利要求9所述的磁性吸附剂的用途,其特征在于,所述的连续式超导磁分离系统是公开号为CN103736586A的专利申请所述的超导磁分离系统。
PCT/CN2015/097832 2015-12-07 2015-12-18 一种吸附-超导磁分离除砷锑的磁性吸附剂及其制备方法 WO2017096639A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/805,141 US10569250B2 (en) 2015-12-07 2017-11-07 Magnetic adsorbent for removing arsenic and antimony by means of adsorption-superconducting magnetic separation and preparation method therefor
US16/724,371 US11135562B2 (en) 2015-12-07 2019-12-22 Magnetic adsorbent for removing arsenic and antimony by means of adsorption-superconducting magnetic separation and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510891129.0 2015-12-07
CN201510891129.0A CN105381780B (zh) 2015-12-07 2015-12-07 一种吸附‑超导磁分离除砷锑的磁性吸附剂及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/805,141 Continuation US10569250B2 (en) 2015-12-07 2017-11-07 Magnetic adsorbent for removing arsenic and antimony by means of adsorption-superconducting magnetic separation and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2017096639A1 true WO2017096639A1 (zh) 2017-06-15

Family

ID=55414932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097832 WO2017096639A1 (zh) 2015-12-07 2015-12-18 一种吸附-超导磁分离除砷锑的磁性吸附剂及其制备方法

Country Status (3)

Country Link
US (2) US10569250B2 (zh)
CN (1) CN105381780B (zh)
WO (1) WO2017096639A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110523774A (zh) * 2019-09-30 2019-12-03 武汉工程大学 利用土著微生物-植物联合去除磷矿废弃地中铅污染的方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105381780B (zh) * 2015-12-07 2017-10-31 中国科学院生态环境研究中心 一种吸附‑超导磁分离除砷锑的磁性吸附剂及其制备方法
CN106622100B (zh) * 2016-10-13 2019-06-07 东华理工大学 一种铁锰复合物结合超导磁分离除砷再利用的方法
CN106710660B (zh) * 2016-12-12 2018-04-03 北京师范大学 用于放射性污染土壤治理的固化吸附与磁分离反应器系统
CN107670631B (zh) * 2017-10-13 2019-11-29 东北大学 由芬顿泥制备锑吸附剂并顺序生产硝基还原催化剂的方法
CN107999033B (zh) * 2017-11-23 2020-04-14 浙江海洋大学 一种吸附砷的聚多巴胺/氨基化碳纳米管/海藻酸钠微球
CN108940183B (zh) * 2018-08-07 2020-12-22 东北师范大学 一种以水厂铁锰污泥为原料制备磁性吸附剂的方法
CN109437465A (zh) * 2018-11-29 2019-03-08 重庆大学 一种使用铁酸锰去除高浓度工业含铊废水的方法
CN109908897A (zh) * 2019-03-29 2019-06-21 福州大学 四氧化三铁负载铜水煤气变换反应催化剂的制备方法
RU2729787C1 (ru) * 2019-04-24 2020-08-12 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Установка для очистки водных сред от мышьяксодержащих соединений с использованием магнитоактивного сорбента
CN110395790A (zh) * 2019-07-30 2019-11-01 中国科学院青海盐湖研究所 一种磁性氢氧化镁复合材料及其制备方法
CN110642324B (zh) * 2019-08-15 2021-12-14 广州大学 一种去除废水中锑的方法
RU2750039C1 (ru) * 2020-08-05 2021-06-21 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Лабораторная установка для испытания образцов магнитоактивных сорбентов по очистке воды
CN113233565A (zh) * 2021-04-06 2021-08-10 神美科技有限公司 一种重金属去除剂及其制备方法
CN113274972A (zh) * 2021-06-29 2021-08-20 东北电力大学 一种复合改性硅藻土及其制备方法和应用
CN113955873B (zh) * 2021-09-23 2023-08-29 鄂尔多斯市紫荆创新研究院 适用于微污染原水的水处理除氟剂及其制备和使用方法
CN114700045A (zh) * 2022-03-14 2022-07-05 浙江大学 农田污染灌溉水中镉砷去除的吸附剂及其制备和去除方法
CN115382519A (zh) * 2022-04-26 2022-11-25 华侨大学 一种核壳磁性锆基吸附剂及其制备方法与应用
CN115715977B (zh) * 2022-11-15 2023-05-16 湖南科技大学 一种沥青基磁性HCPs吸附剂及其制备方法与应用
CN116371385A (zh) * 2023-01-15 2023-07-04 西北工业大学宁波研究院 一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法
CN116196884B (zh) * 2023-03-27 2024-05-24 昆明理工大学 一种锰活化赤泥催化氧化吸附材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101041123A (zh) * 2007-03-16 2007-09-26 清华大学 一种高负载量的亚铁氰化物/二氧化硅杂化材料的制备方法
CN102527319A (zh) * 2012-01-09 2012-07-04 中国科学院金属研究所 一种高效超顺磁性铁酸盐纳米砷吸附剂及其制备工艺
CN104150540A (zh) * 2014-07-14 2014-11-19 河南大学 一种重金属离子吸附剂铁氧体空心球MFe2O4

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302912A4 (en) * 1987-01-16 1990-04-10 Univ Clarkson METHOD FOR PRODUCING MONODISPERGIZED FERRITES CONTAINING BARIUM.
CN1247466C (zh) * 2002-11-13 2006-03-29 中国科学院生态环境研究中心 一种利用磁性吸附剂处理水的工艺
WO2011086567A1 (en) * 2010-01-12 2011-07-21 Council Of Scientific & Industrial Research Magnetic dye-adsorbent catalyst
JP5201153B2 (ja) 2010-01-13 2013-06-05 第一精工株式会社 電気コネクタ及び電気コネクタ組立体
US9050605B2 (en) * 2011-11-17 2015-06-09 Lamar University, A Component Of The Texas State University System, An Agency Of The State Of Texas Graphene nanocomposites
WO2014188448A1 (en) * 2013-05-24 2014-11-27 Council Of Scientific & Industrial Research Semiconductor-oxides nanotubes-based composite particles useful for dye-removal and process thereof
CN103736586B (zh) * 2013-07-24 2016-05-25 江苏旌凯中科超导高技术有限公司 一种连续式超导磁分离系统及其应用工艺
WO2015048909A1 (en) * 2013-10-04 2015-04-09 Gu Frank X Method and apparatus for producing recyclable photocatalytic particulates
US9751785B2 (en) * 2013-10-08 2017-09-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Photocatalytic reduction of oxo-anions
SI24657A (sl) * 2014-03-28 2015-09-30 IOS, Inštitut za okoljevarstvo in senzorje d.o.o. Postopek priprave superparamaganetnih votlih sferičnih nanostruktur
EP3785799B1 (en) * 2015-08-06 2023-01-18 Lia Diagnostics, Inc. Manufacturing methods for water dispersible assays
CN105381780B (zh) * 2015-12-07 2017-10-31 中国科学院生态环境研究中心 一种吸附‑超导磁分离除砷锑的磁性吸附剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101041123A (zh) * 2007-03-16 2007-09-26 清华大学 一种高负载量的亚铁氰化物/二氧化硅杂化材料的制备方法
CN102527319A (zh) * 2012-01-09 2012-07-04 中国科学院金属研究所 一种高效超顺磁性铁酸盐纳米砷吸附剂及其制备工艺
CN104150540A (zh) * 2014-07-14 2014-11-19 河南大学 一种重金属离子吸附剂铁氧体空心球MFe2O4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110523774A (zh) * 2019-09-30 2019-12-03 武汉工程大学 利用土著微生物-植物联合去除磷矿废弃地中铅污染的方法
CN110523774B (zh) * 2019-09-30 2022-01-11 武汉工程大学 利用土著微生物-植物联合去除磷矿废弃地中铅污染的方法

Also Published As

Publication number Publication date
US11135562B2 (en) 2021-10-05
CN105381780A (zh) 2016-03-09
US20180071710A1 (en) 2018-03-15
US10569250B2 (en) 2020-02-25
CN105381780B (zh) 2017-10-31
US20200139341A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
WO2017096639A1 (zh) 一种吸附-超导磁分离除砷锑的磁性吸附剂及其制备方法
Siddiqui et al. Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement
Dhoble et al. Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As (III) in water
Thirunavukkarasu et al. Arsenic removal from drinking water using iron oxide-coated sand
Yoon et al. Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles
Gupta et al. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles
Loganathan et al. Defluoridation of drinking water using adsorption processes
Sarkar et al. Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent
Prasad et al. Adsorption of arsenite (As3+) on nano-sized Fe2O3 waste powder from the steel industry
Ahmed et al. Phosphate removal from river water using a highly efficient magnetically recyclable Fe3O4/La (OH) 3 nanocomposite
Azari et al. Nitrate removal from aqueous solution by carbon nanotubes magnetized with nano zero-valent iron
CN106076261B (zh) 一种重金属离子吸附剂及制备方法和应用
Wang et al. Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system
Koh et al. Critical review on lanthanum-based materials used for water purification through adsorption of inorganic contaminants
Amin et al. Removal of Cr (VI) from simulated electroplating wastewater by magnetite nanoparticles
Saha et al. Comparative studies for selection of technologies for arsenic removal from drinking water
Zhang et al. Removal of Cd (II) by modified maifanite coated with Mg-layered double hydroxides in constructed rapid infiltration systems
Qian et al. Co-adsorption of perfluorooctane sulfonate and phosphate on boehmite: influence of temperature, phosphate initial concentration and pH
Maji et al. Implementation of the adsorbent iron-oxide-coated natural rock (IOCNR) on synthetic As (III) and on real arsenic-bearing sample with filter
WO2011016038A1 (en) Method for removal of selenium contaminants from aqueous fluids
Chen et al. Effect of tartaric acid on the adsorption of Pb (Ⅱ) via humin: Kinetics and mechanism
CN108889266A (zh) 一种磁性镁铝复合氧化物及其制备方法和应用
Wang et al. A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles
Lin et al. Magnetite-modified activated carbon based capping and mixing technology for sedimentary phosphorus release control
Iqbal et al. Nanocomposites of sedimentary material with ZnO and magnetite for the effective sequestration of arsenic from aqueous systems: Reusability, modeling and kinetics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910113

Country of ref document: EP

Kind code of ref document: A1