CN116371385A - 一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法 - Google Patents

一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法 Download PDF

Info

Publication number
CN116371385A
CN116371385A CN202310057509.9A CN202310057509A CN116371385A CN 116371385 A CN116371385 A CN 116371385A CN 202310057509 A CN202310057509 A CN 202310057509A CN 116371385 A CN116371385 A CN 116371385A
Authority
CN
China
Prior art keywords
mmcn
magnetic nano
phmb
bacteria
heavy metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310057509.9A
Other languages
English (en)
Inventor
张悦周
阿提夫·萨利姆
李鹏
刘萌
陈婧婕
王科
刘念
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Research Institute of Northwestern Polytechnical University
Original Assignee
Ningbo Research Institute of Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Research Institute of Northwestern Polytechnical University filed Critical Ningbo Research Institute of Northwestern Polytechnical University
Priority to CN202310057509.9A priority Critical patent/CN116371385A/zh
Publication of CN116371385A publication Critical patent/CN116371385A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种同时去除污水中重金属和细菌的磁性纳米吸附剂及其制备方法与应用,所述磁性纳米吸附剂为PHMB~g~MMCN@2.5。采用软模板方法制得磁性介孔碳纳米球(MMCN),再在其表面接枝上阳离子聚合物聚六亚甲基双胍(PHMB),获得磁性介孔碳纳米球接枝PHMB的磁性纳米吸附剂,可同时去除细菌和有毒重金属,在去离子水和湖泊水中都表现出良好的水净化能力,操作简单、分离方便、易于回收且可循环利用,因而在去除水中污染物方面具有良好的应用前景。

Description

一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备 方法
技术领域
本发明涉及纳米污水净化处理技术领域,具体为一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法。
背景技术
饮用水资源的稀缺和日益增长的人类活动造成的污染对环境和人类生命健康产生严重不良影响。最近的一项调查显示,全球超过12亿人无法获得清洁饮用水,并且造成每天约14000人死亡。淡水基质中有毒重金属和致病微生物等混合污染物受到人们的广泛关注,铊是一种独特的重金属,与汞、铅、镉、铜等金属相比,对人体和环境具有严重的毒性。含有金黄色葡萄球菌和大肠杆菌的细菌菌株进一步加剧了水传播疾病的问题,包括伤寒、痢疾和肝炎等疾病。传统去除有毒金属的水处理方法,包括沉淀法、催化法、结晶法、渗透法或吸附法等,但大多数都存在能耗高、持续时间长、去除率低和运行成本高等局限性。传统去除微生物的方法,包括紫外线照射、氯化和臭氧化等,但都需要持续的化学处理,最终还会导致有害副产物的形成、引起健康问题。由于混合环境污染经常发生,因此迫切需要开发一种可同时去除水中有害重金属和细菌的技术。近年来,纳米吸附剂因其高比表面积、多功能、低表观密度和快速的界面传质等优点成为水净化的有效工具。然而,纳米吸附剂具有吸附多种污染物的双重功能和易于分离的优点,目前还鲜有报道。
纳米技术的迅速发展,引起了人们对开发同步吸附和消毒的多功能专用纳米吸附剂的极大兴趣。这种具有可控特性的分级介孔纳米结构在吸附、分离、催化、生物医学和储能等方面具有广阔的应用前景。合成介孔聚合物碳纳米球的方法多种多样,其中软模板法因其前驱体与表面活性剂聚合物的灵活组装,可获得具有所需形貌和功能的可控结构而备受青睐。此外,纳米吸附剂的磁性可以促进它们从水系统中分离,防止造成二次污染,并且可以循环利用。含有儿茶酚和氨基的多巴胺(DA)分子可以在特定环境条件下自聚合成聚多巴胺(PDA),在各种表面形成涂层。此外,PDA涂层通过氢键、静电吸引、螯合和共价键等表现出很大的后改性潜力。阳离子聚合物,如聚六亚甲基双胍(PHMB),由于生物相容性和强大的杀菌性能,已广泛应用于医药和伤口护理消毒剂。
本申请使用PHMB改性的介孔PDA壳磁性纳米吸附剂可有效去除饮用水中的多种污染物。因此,开发集磁芯和稳定介孔壳优点于一体的核壳型纳米吸附剂,可为进一步修饰和固定活性位点提供各种有机官能团,可以同时实现吸附有害重金属和杀菌的目的。
发明内容
发明的目的在于提供一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,以实现上述背景技术中提出的技术效果。
为实现上述目的,发明提供如下技术方案:一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,具体包括以下步骤:
步骤一:制备磁性纳米核:
将三氯化铁(FeCl3)和柠檬酸钠溶于乙二醇中,再加入醋酸钠(NaAc)搅拌30min,转移至反应釜中于200℃下加热10h,将得到的磁性纳米核颗粒Fe3O4反复洗涤,再将其加入到溶剂中得到分散液,机械搅拌30min后,加入硅源继续搅拌8h,反复洗涤后得到磁性纳米核Fe3O4@SiO2
步骤二:制备可控PDA壳:
将F127和1,3,5-三甲苯(TMB)加入到溶剂中,加入Fe3O4@SiO2和多巴胺(DA)的乙醇悬浮液,1h后,再滴加氨水调节TMB/F127/DA胶束的融合,反应2h后,用磁铁分离纳米结构,然后反复洗涤、在60℃真空干燥后,将制备的样品(MMCN@x)在300℃-550℃N2气氛下加热3h;
步骤三:制备PHMB~g~MMCN@2.5
将N,N-二甲基甲酰胺(DMF)和PHMB加入圆底烧瓶中,然后加入MMCN@2.5和4-二甲氨基吡啶进行冰浴,逐滴添加N,N-二环己基碳酰亚胺(DCC)的DMF溶液,再在冰浴搅拌2h后,将样品在室温下搅拌8h,最后,将制备好的样品反复洗涤,经冻干得到PHMB~g~MMCN@2.5
优选的,所述FeCl3和柠檬酸钠的比例关系为0.325g:1.0g,所述乙二醇为20mL,所述NaAc重量为1.2g。
优选的,步骤一中所述溶剂包括水、乙醇、氨水,其中水、乙醇、氨水的比例关系为35mL:105mL:2.0mL。
优选的,所述硅源为硅酸四乙酯(TEOS),所述TEOS重量为2.79g;所述分散液体积为2mL,所述分散液浓度为40g/mL。
优选的,所述F127和TMB的比例关系为100mg:0.1mL,步骤二中所述溶剂包括水、乙醇,其中水、乙醇的比例关系为5mL:4.7mL。
优选的,所述Fe3O4@SiO2和DA的乙醇悬浮液为20mg Fe3O4@SiO2、120mg DA和0.3mL乙醇;所述氨水的浓度为28wt%,所述氨水的体积为1m-5mL,得到的纳米结构相应记为(MMCN@X),其中x为氨水的体积。
优选的,所述DMF和PHMB的比例关系为5mL:1mL;所述MMCN@2.5和4-二甲氨基吡啶的比例关系为25mg:0.927mg。
优选的,所述DCC的DMF溶液为39.14mg的DCC加入到2mL的DMF中。
与现有技术相比,发明的有益效果是:
1、该同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,首先制备出具有强磁性的纳米核Fe3O4@SiO2,再通过软模板法制备出具有可控PDA壳层的磁性纳米颗粒MMCN@2.5,最后将PHMB接枝到MMCN@2.5上制备出PHMB~g~MMCN@2.5磁性纳米吸附剂。制备过程工艺简单,重复性好。
2、该同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,制备出的磁性纳米吸附剂对有害重金属具有高的吸附能力,同时对金黄色葡萄球菌和大肠杆菌也具有良好的杀菌效果,在去离子水和湖泊水中表现出良好的水净化能力。
3、该同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,制备出的纳米吸附剂具有强磁性,可通过外加磁场收集,分离方便、易于回收且可循环利用,因而在去除水中的污染物方面具有良好的应用前景。
附图说明
图1是本发明磁性纳米吸附剂的制备流程示意图;
图2是本发明制备的磁性纳米核Fe3O4@SiO2的扫描电镜图;
图3是本发明制备的MMCN@x的透射电镜图,其中,A、D图:MMCN@1,B、E图:MMCN@2.5,C、F图:MMCN@5
图4是本发明制备的MMCN@x的氮气吸附-脱附曲线图和孔径分布图;
图5是本发明实施例4所制备的PHMB~g~MMCN@2.5的电镜图,其中,A、B、C图:分别为磁性纳米核、MMCN@2.5和PHMB~g~MMCN@2.5的扫描电镜图,D图:PHMB~g~MMCN@2.5的透射电镜图,E图:PHMB~g~MMCN@2.5的扫描透射图,G-J图:PHMB~g~MMCN@2.5的元素分布图;
图6是本发明实施例4所制备的PHMB~g~MMCN@2.5的氮气吸附-脱附曲线图和孔径分布图;
图7是本发明实施例4所制备的PHMB~g~MMCN@2.5的红外分析谱图;
图8是本发明实施例2和实施例4所制备的磁性纳米核、MMCN@2.5和PHMB~g~MMCN@2.5的Zeta电势图;
图9是本发明实施例2和实施例4所制备的磁性纳米核、MMCN@2.5和PHMB~g~MMCN@2.5的磁滞回曲线;
图10是本发明实施例4所制备的PHMB~g~MMCN@2.5在不同pH溶液里对铊离子吸附效率的结果图;
图11是本发明实施例4所制备的PHMB~g~MMCN@2.5在含有其他重金属离子的溶液中对铊离子吸附效率的结果图;
图12是不同用量的MMCN@2.5,PHMB,PHMB~g~MMCN@2.5对金黄色葡萄球菌和大肠杆菌的杀菌结果图;
图13是不同用量的MMCN@2.5,PHMB,PHMB~g~MMCN@2.5对金黄色葡萄球菌和大肠杆菌的杀菌效果图;
图14是PHMB~g~MMCN@2.5随时间变化的杀菌动力学研究结果图;
图15是PHMB~g~MMCN@2.5对去离子水和湖水同时去除铊离子和金黄色葡萄球菌、大肠杆菌的结果图;
图16是PHMB~g~MMCN@2.5连续循环使用6次对铊离子的去除效率结果图;
图17是PHMB~g~MMCN@2.5连续循环使用6次的杀菌效率结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-17,发明提供一种技术方案:一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,包括以下步骤:
(1)制备磁性纳米核:
将FeCl3和柠檬酸钠溶于20mL乙二醇中,再加入NaAc搅拌30分钟,转移到反应釜中于200℃下加热10小时,将得到的磁性纳米核颗粒Fe3O4反复洗涤。再将其加入到溶剂中得到分散液,机械搅拌30分钟后,加入TEOS继续搅拌8小时,反复洗涤后得到磁性纳米核Fe3O4@SiO2
(2)制备可控PDA壳:
将F127和TMB加入到溶剂中超声,在机械搅拌下加入Fe3O4@SiO2和DA的乙醇悬浮液。1h后,滴加氨水调节TMB/F127/DA胶束的融合,反应继续进行2h。用磁铁分离纳米结构,然后反复洗涤。在60℃真空干燥后,将制备好的样品(MMCN@X)在300℃-550℃N2气氛下加热3h。
(3)制备PHMB-g-MMCN@2.5
将DMF和PHMB在机械搅拌下加入圆底烧瓶中,然后加入MMCN@2.5和4-二甲氨基吡啶进行冰浴。逐滴添加DCC的DMF溶液,再在冰浴下搅拌2h。然后,将溶液在室温下机械搅拌8小时。最后,将制备好的样品反复洗涤,经冻干得到PHMB-g-MMCN@2.5
图1显示的是本发明磁性纳米吸附剂的制备流程示意图;
本发明制备的可同时去除污水中重金属和细菌的磁性纳米吸附剂,壳层厚度为20~55nm,比表面积为363.47m2g-1,孔体积为0.426cm3g-1
本发明还提供了可同时去除污水中重金属和细菌的磁性纳米吸附剂在去除污水中重金属和细菌的应用。本发明首先制备出具有强磁性的纳米核Fe3O4@SiO2,再通过软模板法制备出具有可控PDA壳层的磁性纳米颗粒MMCN@2.5,最后将具有杀菌效果的阳离子聚合物PHMB接枝到MMCN@2.5上制备出PHMB~g~MMCN@2.5磁性纳米吸附剂。该磁性纳米吸附剂对有害重金属具有高的吸附能力,同时对金黄色葡萄球菌和大肠杆菌也具有良好的杀菌效果,在去离子水和湖泊水中表现出良好的水净化能力。
本实施例提供了一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,包括以下步骤:
实施例1
MMCN@1的制备:
(1)制备磁性纳米核
将FeCl3(0.325g)和柠檬酸三钠(1.0g)溶于乙二醇(20mL)中。然后,在混合物中加入NaAc(1.2g),搅拌30分钟后,转移到反应釜中在200℃下加热10小时,然后冷却到室温(25℃),将得到的磁性纳米核颗粒用milli Q水和乙醇反复洗涤。将磁性纳米核颗粒Fe3O4(2mL,40g/mL)分散于水(35mL)、乙醇(105mL)和氨水(2.0mL)的混合液中,机械搅拌30分钟后,加入TEOS(2.79g)继续搅拌8小时后,用milli Q水和乙醇洗涤数次。
(2)制备可控PDA壳
将100mgF127和0.1mLTMB加入到milli Q水(5mL)和乙醇(4.7mL)的混合液中超声。然后,在25℃机械搅拌(280rpm)下加入磁性纳米核(20mg)和DA(120mg)的乙醇(0.3mL)悬浮液。1h后,滴加1mL的氨水(28wt%),反应继续进行2h。用磁铁分离纳米结构,然后用milli Q水和乙醇洗涤。在60℃真空干燥后,将制备好的样品(MMCN@1)在300℃N2气氛下碳化1h,进一步提高到550℃加热2h。
图2是本发明制备的磁性纳米核Fe3O4@SiO2的扫描电镜图,从图中可以看出:磁性纳米核为规则的球形,粒径大小约为225nm。
图3是本发明制备的MMCN@x的透射电镜图,从A、D图中可以看出:MMCN@1上的PDA壳层约为20nm。
图4是本发明制备的MMCN@x的氮气吸附-脱附曲线图和孔径分布图,从图中可以看出:MMCN@1比表面积为112.74m2/g,孔径大约分布在10nm。
实施例2
MMCN@2.5的制备:
(1)制备磁性纳米核
将FeCl3(0.325g)和柠檬酸三钠(1.0g)溶于乙二醇(20mL)中。然后,在混合物中加入NaAc(1.2g),搅拌30分钟后,转移到反应釜中在200℃下加热10小时,然后冷却到室温(25℃),将得到的磁性纳米核颗粒用milli Q水和乙醇反复洗涤。将磁性纳米核颗粒Fe3O4(2mL,40g/mL)分散于水(35mL)、乙醇(105mL)和氨水(2.0mL)的混合液中,机械搅拌30分钟后,加入TEOS(2.79g)继续搅拌8小时后,用milli Q水和乙醇洗涤数次。
(2)制备可控PDA壳
将100mgF127和0.1mLTMB加入到milli Q水(5mL)和乙醇(4.7mL)的混合液中超声。然后,在25℃机械搅拌(280rpm)下加入磁性纳米核(20mg)和DA(120mg)的乙醇(0.3mL)悬浮液。1h后,滴加2.5mL的氨水(28wt%),反应继续进行2h。用磁铁分离纳米结构,然后用milliQ水和乙醇洗涤。在60℃真空干燥后,将制备好的样品(MMCN@2.5)在300℃N2气氛下碳化1h,进一步提高到550℃加热2h。
图3是本发明制备的MMCN@x的透射电镜图,从B、E图中可以看出:MMCN@2.5上的PDA壳层约为39nm。
图4本发明制备的MMCN@x的氮气吸附-脱附曲线图和孔径分布图,从图中可以看出:MMCN@2.5比表面积为421.24m2/g,孔径大约分布在13.45nm。
实施例3
MMCN@5的制备:
(1)制备磁性纳米核
将FeCl3(0.325g)和柠檬酸三钠(1.0g)溶于乙二醇(20mL)中。然后,在混合物中加入NaAc(1.2g),搅拌30分钟后,转移到反应釜中在200℃下加热10小时,然后冷却到室温(25℃),将得到的磁性纳米核颗粒用milli Q水和乙醇反复洗涤。将磁性纳米核颗粒Fe3O4(2mL,40g/mL)分散于水(35mL)、乙醇(105mL)和氨水(2.0mL)的混合液中,机械搅拌30分钟后,加入TEOS(2.79g)继续搅拌8小时后,用milli Q水和乙醇洗涤数次。
(2)制备可控PDA壳
将100mgF127和0.1mLTMB加入到milli Q水(5mL)和乙醇(4.7mL)的混合液中超声。然后,在25℃机械搅拌(280rpm)下加入磁性纳米核(20mg)和DA(120mg)的乙醇(0.3mL)悬浮液。1h后,滴加5mL的氨水(28wt%),反应继续进行2h。用磁铁分离纳米结构,然后用milli Q水和乙醇洗涤。在60℃真空干燥后,将制备好的样品(MMCN@5)在300℃N2气氛下碳化1h,进一步提高到550℃加热2h。
图3是本发明制备的MMCN@x的透射电镜图,从C、F图中可以看出:MMCN@5上的PDA壳层约为55nm。
图4本发明制备的MMCN@x的氮气吸附-脱附曲线图和孔径分布图,从图中可以看出:MMCN@5比表面积为256.74m2/g,孔径大约分布在9.98nm。
实施例4
PHMB-g-MMCN@2.5的制备:
将DMF(5mL)和PHMB(1mL)在机械搅拌(280rpm)下加入圆底烧瓶中,然后加入实施例2制备的MMCN@2.5(25mg)和4-二甲氨基吡啶(0.927mg),在冰浴中冷却到0℃。逐滴添加DCC(39.14mg)的DMF(2mL)溶液,再在冰浴下搅拌2h。然后,将溶液在室温下机械搅拌8小时。最后,将制备好的纳米结构用milli Q水和乙醇洗涤多次,经冻干得到PHMB-g-MMCN@2.5
图5是本发明制备的PHMB~g~MMCN@2.5的电镜图,从图中可以看出:MMCN@2.5为规则的球形,粒径大小约为250nm。PHMB~g~MMCN@2.5仍具有明显的介孔结构,其表面含有Fe、C、O和N等元素。
图6是本发明制备的PHMB~g~MMCN@2.5的氮气吸附-脱附曲线图和孔径分布图,从图中可以看出:比表面积为363.47m2/g,孔径大约分布在11.26nm。
图7是本发明实施例4所制备的PHMB~g~MMCN@2.5的红外分析谱图,从图中可以看出:2331cm-1和2361cm-1处的-C≡N峰表明PHMB成功接枝在MMCN@2.5上。
图8是本发明实施例2和实施例4所制备的磁性纳米核、MMCN@2.5和PHMB~g~MMCN@2.5的Zeta电势图,从图中可以看出:磁性纳米核的电势为负值,MMCN@2.5的电势也为负值,PHMB~g~MMCN@2.5的电势为正值,这也表明成功接枝了阳离子聚合物PHMB。
图9是本发明实施例2和实施例4所制备的磁性纳米核、MMCN@2.5和PHMB~g~MMCN@2.5的磁滞回曲线,从图中可以看出,磁性纳米核、MMCN@2.5和PHMB~g~MMCN@2.5的饱和磁化强度分别为1.34emu g-1、0.53emu g-1和0.24emu g-1,并且PHMB~g~MMCN@2.5能够被磁铁从水中聚集在一起,撤去磁场后可重新良好地分散在水中,这也表明该磁性纳米吸附剂分离方便、易于回收利用。
图10是本发明实施例4所制备的PHMB~g~MMCN@2.5在不同pH溶液里对铊离子吸附效率的结果图,从图中可以看出,随着pH由酸性增加到碱性,铊离子去除率从57%增加至99%,在pH为7时,吸附效率达到最大值为99%,但在pH值较高时,吸附效率下降。
图11是本发明实施例4所制备的PHMB~g~MMCN@2.5在含有其他重金属阳离子的溶液中对铊吸附效率的结果图(初始阳离子浓度:10或100mg/L;“Mix”是指含有七个等浓度干扰阳离子的混合物),从图中可以看出,PHMB~g~MMCN@2.5在六种重金属阳离子(Cu、Zn、Mg、Ca、Na和K)的存在下,对铊离子表现出近96%的去除率,在混合溶液中对铊离子表现出近92%的去除率。
图12是不同用量的MMCN@2.5,PHMB,PHMB~g~MMCN@2.5对金黄色葡萄球菌和大肠杆菌的杀菌结果图,从图中可以看出,PHMB~g~MMCN@2.5处理后的金黄色葡萄球菌和大肠杆菌菌落数降低到103CFU mL-1,最小抑菌浓度分别低至2ug mL-1和2.5ugmL-1
图13是不同用量的MMCN@2.5,PHMB,PHMB~g~MMCN@2.5对金黄色葡萄球菌和大肠杆菌的杀菌效果图。
图14是PHMB~g~MMCN@2.5随时间变化的杀菌动力学研究结果图,从图中可以看出,PHMB~g~MMCN@2.5具有超快的杀菌性能,对金黄色葡萄球菌和大肠杆菌均在4min内达到了99.99%的抑制率。
图15是PHMB~g~MMCN@2.5在去离子水和湖水中同时去除铊离子和金黄色葡萄球菌、大肠杆菌的结果图,从图中可以看出,PHMB~g~MMCN@2.5在去离子水中对铊离子表现出>99.1%的去除率,在湖水中对铊离子表现出近91%的去除率。
图16是PHMB~g~MMCN@2.5连续循环6次对铊的去除效率结果图,从图中可以看出该磁性纳米吸附剂连续循环使用6次仍能对铊离子保持>82%的吸附效率。
图17是PHMB~g~MMCN@2.5连续循环6次的杀菌效率结果图,从图中可以看出该磁性纳米吸附剂连续循环使用6次仍能对金黄色葡萄球菌和大肠杆菌的杀菌效率达到99.99%,连续循环6次均具有较好的抑菌效果。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (8)

1.一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,其特征在于:具体包括以下步骤:
步骤一:制备磁性纳米核:
将三氯化铁(FeCl3)和柠檬酸钠溶于乙二醇中,再加入醋酸钠(NaAc)搅拌30min,转移至反应釜中于200℃下加热10h,将得到的磁性纳米核颗粒Fe3O4反复洗涤,再将其加入到溶剂中得到分散液,机械搅拌30min后,加入硅源继续搅拌8h,反复洗涤后得到磁性纳米核Fe3O4@SiO2
步骤二:制备可控PDA壳:
将F127和1,3,5-三甲苯(TMB)加入到溶剂中,加入Fe3O4@SiO2和多巴胺(DA)的乙醇悬浮液,1h后,再滴加氨水调节TMB/F127/DA胶束的融合,反应2h后,用磁铁分离纳米结构,然后反复洗涤、在60℃真空干燥后,将制备的样品(MMCN@x)在300℃-550℃N2气氛下加热3h;
步骤三:制备PHMB~g~MMCN@2.5
将N,N-二甲基甲酰胺(DMF)和PHMB加入圆底烧瓶中,然后加入MMCN@2.5和4-二甲氨基吡啶进行冰浴,逐滴添加N,N-二环己基碳酰亚胺(DCC)的DMF溶液,再在冰浴搅拌2h后,将样品在室温下搅拌8h,最后,将制备好的样品反复洗涤,经冻干得到PHMB~g~MMCN@2.5
2.如权利要求1所述的一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,其特征在于:所述FeCl3和柠檬酸钠的比例关系为0.325g:1.0g,所述乙二醇为20mL,所述NaAc重量为1.2g。
3.如权利要求1所述的一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,其特征在于:步骤一中所述溶剂包括水、乙醇、氨水,其中水、乙醇、氨水的比例关系为35mL:105mL:2.0mL。
4.如权利要求1所述的一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,其特征在于:所述硅源为硅酸四乙酯(TEOS),所述TEOS重量为2.79g;所述分散液体积为2mL,所述分散液浓度为40g/mL。
5.如权利要求1所述的一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,其特征在于:所述F127和TMB的比例关系为100mg:0.1mL,步骤二中所述溶剂包括水、乙醇,其中水、乙醇的比例关系为5mL:4.7mL。
6.如权利要求1所述的一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,其特征在于:所述Fe3O4@SiO2和DA的乙醇悬浮液为20mgFe3O4@SiO2、120mgDA和0.3mL乙醇;所述氨水的浓度为28wt%,所述氨水的体积为1m-5mL,得到的纳米结构相应记为(MMCN@X),其中x为氨水的体积。
7.如权利要求1所述的一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,其特征在于:所述DMF和PHMB的比例关系为5mL:1mL;所述MMCN@2.5和4-二甲氨基吡啶的比例关系为25mg:0.927mg。
8.如权利要求1所述的一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法,其特征在于:所述DCC的DMF溶液为39.14mg的DCC加入到2mL的DMF中。
CN202310057509.9A 2023-01-15 2023-01-15 一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法 Pending CN116371385A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310057509.9A CN116371385A (zh) 2023-01-15 2023-01-15 一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310057509.9A CN116371385A (zh) 2023-01-15 2023-01-15 一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法

Publications (1)

Publication Number Publication Date
CN116371385A true CN116371385A (zh) 2023-07-04

Family

ID=86966253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310057509.9A Pending CN116371385A (zh) 2023-01-15 2023-01-15 一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法

Country Status (1)

Country Link
CN (1) CN116371385A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664936A (zh) * 2016-01-07 2016-06-15 上海工程技术大学 一种以多巴胺为碳源制备核壳结构纳米复合材料的方法
US20180071710A1 (en) * 2015-12-07 2018-03-15 Research Center For Eco-Environmental Sciences, Chinese Academy Of Sciences Magnetic Adsorbent for Removing Arsenic and Antimony by means of Adsorption-Superconducting Magnetic Separation and Preparation Method therefor
CN107999033A (zh) * 2017-11-23 2018-05-08 浙江海洋大学 一种吸附砷的聚多巴胺/氨基化碳纳米管/海藻酸钠微球
CN108336313A (zh) * 2017-11-20 2018-07-27 青岛科技大学 磁控弹性链状Fe3O4/C/red P储钠性能的研究
CN108722349A (zh) * 2018-05-04 2018-11-02 广州大学 磁性水热炭的制备方法及其应用
CN109935430A (zh) * 2019-03-06 2019-06-25 湖南理工学院 一种磁性一维链状纳米复合物的制备和应用
CN112960726A (zh) * 2021-03-17 2021-06-15 安徽工业大学 一种铁碳复合材料及其制备方法和应用
CN113539601A (zh) * 2021-06-18 2021-10-22 复旦大学 一种具有软性外壳的磁性介孔高分子复合囊泡及制备方法
CN115254067A (zh) * 2022-09-29 2022-11-01 山东博科科学仪器有限公司 一种硅羟基磁珠及其合成方法、应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180071710A1 (en) * 2015-12-07 2018-03-15 Research Center For Eco-Environmental Sciences, Chinese Academy Of Sciences Magnetic Adsorbent for Removing Arsenic and Antimony by means of Adsorption-Superconducting Magnetic Separation and Preparation Method therefor
CN105664936A (zh) * 2016-01-07 2016-06-15 上海工程技术大学 一种以多巴胺为碳源制备核壳结构纳米复合材料的方法
CN108336313A (zh) * 2017-11-20 2018-07-27 青岛科技大学 磁控弹性链状Fe3O4/C/red P储钠性能的研究
CN107999033A (zh) * 2017-11-23 2018-05-08 浙江海洋大学 一种吸附砷的聚多巴胺/氨基化碳纳米管/海藻酸钠微球
CN108722349A (zh) * 2018-05-04 2018-11-02 广州大学 磁性水热炭的制备方法及其应用
JP2019193926A (ja) * 2018-05-04 2019-11-07 广州大学 磁性水熱炭の製造方法及びその応用
CN109935430A (zh) * 2019-03-06 2019-06-25 湖南理工学院 一种磁性一维链状纳米复合物的制备和应用
CN112960726A (zh) * 2021-03-17 2021-06-15 安徽工业大学 一种铁碳复合材料及其制备方法和应用
CN113539601A (zh) * 2021-06-18 2021-10-22 复旦大学 一种具有软性外壳的磁性介孔高分子复合囊泡及制备方法
CN115254067A (zh) * 2022-09-29 2022-11-01 山东博科科学仪器有限公司 一种硅羟基磁珠及其合成方法、应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUIFANG MA等: "Multifunctional Magnetic Porous Microspheres for Highly Efficient and Recyclable Water Disinfection and Dye Removal", 《ACS APPLIED POLYMER MATERIALS》, 23 February 2022 (2022-02-23), pages 1576 *

Similar Documents

Publication Publication Date Title
Zheng et al. Surface modified by green synthetic of Cu-MOF-74 to improve the anti-biofouling properties of PVDF membranes
Zhan et al. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles
Su Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature
KR102041519B1 (ko) 박테리아 및 중금속의 동시 제거를 위한 나노복합물 고분자-탄소 기반 나노재료 필터
Luo et al. Non-toxic chitosan-based hydrogel with strong adsorption and sensitive detection abilities for tetracycline
Jian et al. Self-assembled one-dimensional MnO 2@ zeolitic imidazolate framework-8 nanostructures for highly efficient arsenite removal
Wu et al. Multi-functional magnetic water purifier for disinfection and removal of dyes and metal ions with superior reusability
US8636906B2 (en) Liquid purification using magnetic nanoparticles
Liu et al. Magnetic nanocomposite adsorbents
Hou et al. Graphene oxide coated quartz sand as a high performance adsorption material in the application of water treatment
Kheshtzar et al. Facile synthesis of smartaminosilane modified-SnO2/porous silica nanocomposite for high efficiency removal of lead ions and bacterial inactivation
CN105565506A (zh) 一种负载具有核-壳结构的磁性纳米颗粒的生物复合材料及其制备方法和用途
US20170266670A1 (en) Liquid purification using magnetic nanoparticles
US20190193088A1 (en) Liquid purification using magnetic nanoparticles
Salahuddin et al. Nano-hybrid based on polypyrrole/chitosan/grapheneoxide magnetite decoration for dual function in water remediation and its application to form fashionable colored product
CN106000325B (zh) 一种磁性脱色材料及其制备方法
CN110252267A (zh) 纳米杂化材料的制备及其用途
Gunathilaka et al. Effect of surfactants on morphology and textural parameters of silica nanoparticles derived from paddy husk and their efficient removal of methylene blue
CN109603906B (zh) 一种蒽醌-2-磺酸钠/氧化石墨烯复合光催化杀菌剂及其制备方法和应用
CN116371385A (zh) 一种同时去除污水中重金属和细菌的磁性纳米吸附剂的制备方法
CN110771627B (zh) 磁性复合抗菌材料及其制备方法
Cai et al. A novel strategy to immobilize bacteria on polymer particles for efficient adsorption and biodegradation of soluble organics
Zheng et al. Optimal preparation of a core–shell structural magnetic nanoadsorbent for efficient tetracycline removal
CN113289502B (zh) 淀粉样蛋白纤维氧化铁复合膜的制备方法以及市政污水处理厂的尾水中磷酸盐的去除方法
CN111792697B (zh) 磁性焦糖化碳纳米材料在去除水体中重金属的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination