CN106000325B - 一种磁性脱色材料及其制备方法 - Google Patents

一种磁性脱色材料及其制备方法 Download PDF

Info

Publication number
CN106000325B
CN106000325B CN201610411988.XA CN201610411988A CN106000325B CN 106000325 B CN106000325 B CN 106000325B CN 201610411988 A CN201610411988 A CN 201610411988A CN 106000325 B CN106000325 B CN 106000325B
Authority
CN
China
Prior art keywords
water
magnetic
pigment
particle
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610411988.XA
Other languages
English (en)
Other versions
CN106000325A (zh
Inventor
杨虎
邹伟
李嘉
颜杰
陈炯
朱胜兰
苏桂萍
杨益祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhonghao Chenguang Research Institute of Chemical Industry Co Ltd
Sichuan University of Science and Engineering
Original Assignee
Zhonghao Chenguang Research Institute of Chemical Industry Co Ltd
Sichuan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhonghao Chenguang Research Institute of Chemical Industry Co Ltd, Sichuan University of Science and Engineering filed Critical Zhonghao Chenguang Research Institute of Chemical Industry Co Ltd
Priority to CN201610411988.XA priority Critical patent/CN106000325B/zh
Publication of CN106000325A publication Critical patent/CN106000325A/zh
Application granted granted Critical
Publication of CN106000325B publication Critical patent/CN106000325B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明涉及水处理技术领域,具体为一种磁性脱色材料及其制备方法和应用。本发明利用污水色素大多带负电荷的特性。通过对铁磁性材料进行表面修饰,在其表面嫁接具有不同碳链长度的季铵盐、季膦盐和季砷盐,以吸附富集分散在水中色素分子。待色素被完全吸附到磁性材料表面,用高梯度磁场将吸附色素分子的铁磁性微粒从污水中快速分离,实现对高色度污水的脱色处理。然后将吸附有色素分子的磁性微粒经适当的洗脱工艺使磁性材料得以回收,同时将色素分子进行浓缩。最后将浓缩的色素分子高温焚烧或微波理解实现无害化处理。该方法简单可靠、能源消耗低、磁性微粒可重复利用并能实线有毒有害色素的无害化处理。可用于焦化污水和印染废水排放前的脱色处理。

Description

一种磁性脱色材料及其制备方法
技术领域
本发明涉及水处理技术领域,具体为一种磁性脱色材料及其制备方法和应用。
背景技术
在对含有色素的污水,如印染和焦化污水进行处理时,选用合适的工艺对其进行脱色,是使排放水达标的关键。通常污水脱色的方法有,吸附脱色、絮凝脱色、化学氧化脱色,电化学氧化脱色、生物降解脱色和膜分离脱色等几种。在实际应用中单种处理方式常不能取得很好的效果,为了获得好的脱色效果常将上述的两种或者多种方法联合使用。
在实际应用中,发现这些脱色方法都具有一定的缺陷,如吸附脱色法中常使用活性炭、粉煤灰作为吸附剂,需求量大胆且重生困难,使得其运行成本较高,而且脱色效果一般。化学氧化脱色和电化学氧化脱色,也是常用的脱色方式,当色素分子是由硫氰化合物、多环芳烃以及杂环化合物等难于氧化的化合物组成时,其脱除效果较差。生物降解和絮凝脱色,都需要建立大型的处理池,初期的基建费用较高。膜处理对各种色素的脱色都具有很好的效果,但成本较高很难进行大规模的推广。
发明内容
本发明正是针对以上技术问题,提供一种磁性脱色材料及其制备方法和应用。该方法通过界面和表面技术强化铁磁性粉末材料对色素分子的吸附富集能力,将水中不易氧化、生物降解的色素吸附到磁性粉末的表面。然后,利用强磁场将吸附有色素的磁性粉末,从污水中脱除,实现对有色污水的脱色。然后利用必要的洗脱技术使磁性材料得循环使用,并实现对污水色素浓缩,然后利用焚烧、回收等技术实现有毒色素的无害化处理。该技术具有较高的集成化,投资和运行成本低,对有色污水的脱色具有很好的应用前景
本发明的具体技术方案如下:
一种磁性脱色材料具有以下特性,
铁磁性核心、包覆在铁磁性核心的中间层和嫁接具有不同碳链长度的能够吸附带负电荷色素的阳离子基团;所述的铁磁性核心为磁性纳米颗粒,包括铁磁金属纳米颗粒及铁、钴、镍的微粒;铁磁性复合金属微粒,铁-钯合金微粒、铁-铂合金微粒,稀土合金微粒,和磁性金属氧化物微粒及四氧化三铁微粒中的任意一种。
所述包覆在铁磁性核心的中间层的厚度为1-2000nm。
所述嫁接具有不同碳链长度的能够吸附带负电荷色素的阳离子基团是指:嫁接具有不同碳链长度的季铵盐、季膦盐和季砷盐中够吸附带负电荷色素的阳离子基团,基团在表面的覆盖率为5-95%,季铵盐、季膦盐和季砷盐中的碳链含有2-20个碳的烷烃和芳烃。
所述的磁性纳米颗粒的粒径1nm-2000nm之间,比表面积为20-500 m2/g,其形貌为球形、棒状、立方体、长方体、六棱柱或纳米花。
所述包覆在铁磁性核心中间层的组成为二氧化硅、酚醛树脂、密胺树脂、聚丙烯酸树脂及其衍生物中的任意一种。
一种磁性脱色材料的制备方法包括以下步骤:
1)磁性纳米颗粒材料为超细粉体,经500目以上的筛网过筛,并将过筛后的磁性铁粉利用酸活化;
2)在5-90°C温度下,将活化后的铁磁性粉末分散到乙醇或异丙醇的水溶液中,醇水的体积比为0.1-10,然后加入四乙基硅酸酯或四甲基硅酸酯,或间苯二酚、均三苯酚、甲醛、糠醛中酚和醛的组合(即从中酚和醛中任选一种酚与任意选择一种醛的混合物),或甲基丙烯酸甲酯、甲基丙烯酸乙烯、丙烯酸甲酯、丙烯酸乙酯中任意一种或两种的混合物,在加入催化剂的条件下在磁性材料包覆一层惰性的包覆层;催化剂通常为氨水或者盐酸。
3)在包覆二氧化硅的过程中加入三甲氧基氨基硅丙烷,三乙基氧基氨基硅丙烷,三甲氧基膦基硅丙烷,三乙基氧基磷基硅丙烷,三甲氧基砷基硅丙烷,三乙基氧基砷基硅丙烷等含有氨基、膦基和有机砷硅氧烷。在酚醛树脂合成过程加入间苯二胺、间氨基苯酚,三聚氰胺和其他带胺基单体或含有砷和膦基的单体,这类带有胺基、磷和砷的单体与反应物的摩尔比为0.01-1之间;
4)在步骤3)得到磁性材料中的中加入甲醛、硫酸二甲酯,卤甲烷和长链的卤代烷烃(长链的卤代烷烃为溴代十六烷,氯代十六烷或碘代十六烷等)形成季铵盐。从而得到能够吸附水中带色素的磁性微粒。所述的卤甲烷为一氯甲烷,一溴甲烷或碘甲烷,并控制氨基与卤代烃的摩尔比为1:1-1:2。
采用以上所述磁性脱色材料进行污水处理的工艺包括以下步骤:
1)将合成的磁性微粒在5-90°C将改性后材料投入高色度的废水中,形成1g/L-100g/L的分散液,然后利用功率1 w/L-100 w/L,频率为30Hz-100 MHz的超声并充分搅拌的情况下,使铁磁性微粒在水中分散均匀,并保持搅拌10-300 min;
2)然后在处理容器外壁外加强度为100Gs-10000Gs的强磁场,并保持10-300min,或至水中色度小于50 CU,在保有磁场的情况下放出清水;
3)加入原水体积1%-20%的清水,或者体积比为0.1-10的乙醇/水溶液,并除去磁场,然后利用功率1 w/L-100 w/L,频率为30Hz-100 MHz的超声并充分搅拌的情况下,使铁磁性微粒重新在水中分散均匀,并保持搅拌10-300 min后,重新开启磁场,放出废水。
该工艺还包括重复步骤2)-4)。
本发明的效果和益处是:
(一)、通过化学方法强化铁磁性材料对带负电荷色素的吸附能力,将其用于焦化污水和印染污水的脱色,脱色后污水色度和COD下降明显。
(二)、该发明具有方法简单可靠、能源消耗低、磁性微粒可重复利用并能实线有毒有害色素的无害化处理。可用于焦化污水和印染废水排放前的脱色处理。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合具体实施方式对本发明作进一步的详细描述,但不应将此理解为本发明上述主题的范围仅限于下述实施例。
以下%如无特殊说明,均表示wt%。
实施例1:利用四氧化三铁纳米微粒实现焦化污水深度脱色
取27.8g的七水合硫酸亚铁和3.99g硫酸亚铁配制成50mL溶液,然后加入200mL氨水溶液(100mL浓氨水和100mL去离子水),并剧烈搅拌2h。然后将混合物转移到烧杯中,并将烧杯放置到磁铁上方,使磁性四氧化三铁迅速沉淀到烧杯的底部,倒掉上部的水和杂质,并利用去离子清洗2-3次得到高纯度的四氧化三铁纳米微粒。取其中的2g四氧化三铁微粒分散在20 mL的去离子水中并用1mL 28%的氨水和0.5mL浓硫酸(50wt%)活化后。将此材料以0.1%(质量比)的量加入到色度大于1400CU的焦化污水,并利用硫酸调节溶液的pH值到3.2,在充分搅拌20min然后将溶液放置到磁铁上方,30min 后在保持磁场的条件下放出清水,经测定清水的色度85 CU。在清水完全放出后关闭磁场,加入20mL清水并利用氨水调节pH至8.0,并超声分散20分钟再将溶液放置到磁铁上方,并放出浑浊液后,可再次放入需要处理的焦化废水进行循环。发现材料经10次循环的处理后清水的浊色度仍小于100CU。
实施例2:利用市售的磁铁矿粉实现焦化污水深度脱色
取5.0g精制的粒径为过1000目的磁铁矿粉,分散到装有50mL去离子水中的烧杯中,并加入1mL 36%盐酸搅拌20min后加入氨水中和至pH=8,然后利用磁场使磁铁矿粉沉淀到烧杯底部,在保持磁场的情况下将含有非磁性微粒的上层清水倒掉。加入到色度大于1400CU的焦化污水,并利用硫酸调节溶液的pH值到3.2,在充分搅拌20min然后将溶液放置到磁铁上方,30min 后在保持磁场的条件下放出清水,经测定清水的色度92 CU。在清水完全放出后关闭磁场,加入20mL清水并利用氨水调节pH至8.0,并超声分散20分钟再将溶液放置到磁铁上方,并放出浑浊液后,可再次放入需要处理的焦化废水进行循环。发现材料经10次循环的处理后清水的浊色度仍小于120 CU。
实施例3:利用改性四氧化三铁纳米微粒实现焦化污水深度脱色
取27.8g的七水合硫酸亚铁和39.9g硫酸亚铁配制成50mL溶液,然后加入100mL氨水溶液(50mL 328%氨水和50mL去离子水),并剧烈搅拌2h。然后将混合物转移到烧杯中,并将烧杯放置到磁铁上方,使磁性四氧化三铁迅速沉淀到烧杯的底部,倒掉上部的水和杂质,并利用去离子清洗2-3次得到高纯度的四氧化三铁纳米微粒。取50g纳米四氧化三铁加10mL氨水和50mL乙醇和200mL氨水,利用机械搅拌剧烈搅拌充分,然后加入5g正硅酸四乙酯对铁粉进行改性,反应2h后加入2g三乙氧基丙基氨基硅烷,使颗粒表面带上氨基,然后利用磁场将此材料分离处理,重新分散中水中加入甲醛和甲酸,分离干燥后得到表面为叔氨基的纳米四氧化三铁微粒,最后加材料在氯甲烷中回流,最终得到表面为季铵盐的四氧化三铁纳米微粒。将合成的磁性材料以0.1%(质量比)加入到色度大于1400CU的焦化污水,在充分搅拌20min后将溶液放置到磁铁上方,30min 后在保持磁场的条件下放出清水,经测定清水的色度25 CU。在清水完全放出后关闭磁场,加入100mL乙醇,并超声分散20分钟再将溶液放置到磁铁上方,并放出浑浊液后,可再次放入需要处理的焦化废水进行循环。发现材料经10次循环的处理后清水的浊色度仍小于50 CU。
实施例4:利用改性磁铁矿粉实现焦化污水深度脱色
取50g精制的粒径为1000目的磁铁矿粉,分散到装有200mL去离子水中的烧杯中,并加入2mL 36%盐酸搅拌20min后加入氨水中和至pH=8,然后利用磁场使磁铁矿粉沉淀到烧杯底部,在保持磁场的情况下将含有非磁性微粒的上层清水倒掉。取50g除杂后的磁铁矿粉加10 mL氨水和50mL乙醇和200mL氨水,利用机械搅拌剧烈搅拌充分,然后加入5g正硅酸四乙酯对磁铁矿粉进行改性,反应2h后加入2g三乙氧基丙基氨基硅烷,使颗粒表面带上氨基,然后利用磁场将此材料分离处理,重新分散中水中加入甲醛和甲酸,分离干燥后得到表面为叔氨基的纳米四氧化三铁微粒,最后加材料在氯甲烷中回流,最终得到表面为季铵盐的磁铁矿粉,将此改性后的磁性矿粉以0.1%(质量比)加入到色度大于1400CU的焦化污水,充分搅拌20min后将溶液放置到磁铁上方,30min 后在保持磁场的条件下放出清水,经测定清水的色度45 CU。在清水完全放出后关闭磁场,然后加入100mL加并超声分散20分钟再将溶液放置到磁铁上方,并放出浑浊液后,可再次放入需要处理的焦化废水进行循环。发现材料经10次循环的处理后清水的浊色度仍小于80 CU。
实施例5:利用四氧化三铁纳米微粒实印染废水的深度脱色处理
取27。8g的七水合硫酸亚铁和39.9g硫酸亚铁配制成50mL溶液,然后加入50mL氨水溶液(25mL浓氨水和25mL去离子水),并剧烈搅拌2h。然后将混合物转移到烧杯中,并将烧杯放置到磁铁上方,使磁性四氧化三铁迅速沉淀到烧杯的底部,倒掉上部的水和杂质,并利用去离子清洗2-3次得到高纯度的四氧化三铁纳米微粒。取其中的2g四氧化三铁微粒分散在20 mL的去离子水中并1 mL浓氨水和0.5mL浓硫酸(50wt%)活化后。将材料一0.1%的质量比加入到吸光度为3的印染污水,并利用硫酸调节溶液的pH值到3.2,在充分搅拌20min然后将溶液放置到磁铁上方,30min 后在保持磁场的条件下放出清水,经测定清水的吸光度0.15CU。在清水完全放出后关闭磁场,加入20mL清水并利用氨水调节pH至8.0,并超声分散20分钟再将溶液放置到磁铁上方,并放出浑浊液后,可再次放入需要处理的焦化废水进行循环。发现材料经10次循环的处理后清水的吸光度仍小于0.2。
实施例6:利用市售的磁铁矿粉实现印染污水深度脱色
取5.0g精制的粒径为1000目的磁铁矿粉,分散到装有50mL去离子水中的烧杯中,并加入1mL浓盐酸搅拌20min后加入氨水中和至pH=8,然后利用磁场使磁铁矿粉沉淀到烧杯底部,在保持磁场的情况下将含有非磁性微粒的上层清水倒掉。加入到吸光度为3的印染污水,并利用硫酸调节溶液的pH值到3.2,在充分搅拌20min然后将溶液放置到磁铁上方,30min 后在保持磁场的条件下放出清水,经测定清水的吸光度0.21。在清水完全放出后关闭磁场,加入20mL清水并利用氨水调节pH至8.0,并超声分散20分钟再将溶液放置到磁铁上方,并放出浑浊液后,可再次放入需要处理的焦化废水进行循环。发现材料经10次循环的处理后清水的浊吸光度0.3。
实施例7:利用改性四氧化三铁纳米微粒实现印染污水深度脱色
取27.8g的七水合硫酸亚铁和39.9g硫酸亚铁配制成50mL溶液,然后加入100mL氨水溶液(50mL浓氨水和50mL去离子水),并剧烈搅拌2h。然后将混合物转移到烧杯中,并将烧杯放置到磁铁上方,使磁性四氧化三铁迅速沉淀到烧杯的底部,倒掉上部的水和杂质,并利用去离子清洗2-3次得到高纯度的四氧化三铁纳米微粒。取50g纳米四氧化三铁加10 mL氨水和50mL乙醇和200mL氨水,利用机械搅拌剧烈搅拌充分,然后加入5g正硅酸四乙酯对铁粉进行改性,反应2h后加入2g三乙氧基丙基氨基硅烷,使颗粒表面带上氨基,然后利用磁场将此材料分离处理,重新分散中水中加入甲醛和甲酸,分离干燥后得到表面为叔氨基的纳米四氧化三铁微粒,最后加材料在氯甲烷中回流,最终得到表面为季铵盐的四氧化三铁纳米微粒。将合成的磁性材料以0.1%(质量比)加入到吸光度为3的印染污水,在充分搅拌20min后将溶液放置到磁铁上方,30min 后在保持磁场的条件下放出清水,经测定清水的色度0.06 CU。在清水完全放出后关闭磁场,加入100mL乙醇,并超声分散20分钟再将溶液放置到磁铁上方,并放出浑浊液后,可再次放入需要处理的焦化废水进行循环。发现材料经10次循环的处理后清水的吸光度仍小于0.1。
实施例8:利用改性磁铁矿粉实现实现印染污水深度脱色
取50g精制的粒径为1000目的磁铁矿粉,分散到装有200mL去离子水中的烧杯中,并加入2mL浓盐酸搅拌20min后加入氨水中和至pH=8,然后利用磁场使磁铁矿粉沉淀到烧杯底部,在保持磁场的情况下将含有非磁性微粒的上层清水倒掉。取50g除杂后的磁铁矿粉加10 mL氨水和50mL乙醇和200mL氨水,利用机械搅拌剧烈搅拌充分,然后加入5g正硅酸四乙酯对磁铁矿粉进行改性,反应2h后加入2g三乙氧基丙基氨基硅烷,使颗粒表面带上氨基,然后利用磁场将此材料分离处理,重新分散中水中加入甲醛和甲酸,分离干燥后得到表面为叔氨基的纳米四氧化三铁微粒,最后加材料在氯甲烷中回流,最终得到表面为季铵盐的磁铁矿粉,将合成的磁性材料以0.1%(质量比)加入到吸光度为3的印染污水,在充分搅拌20min后将溶液放置到磁铁上方,30min 后在保持磁场的条件下放出清水,经测定清水的色度0.09 CU。在清水完全放出后关闭磁场,加入100mL乙醇,并超声分散20分钟再将溶液放置到磁铁上方,并放出浑浊液后,可再次放入需要处理的焦化废水进行循环。发现材料经10次循环的处理后清水的吸光度仍小于0.15。
实施例9:利用镍纳米棒实现实现焦化污水深度脱色
取5g湿化学法合成的镍纳米棒,加入取氨水和20mL乙醇和80mL氨水,利用机械搅拌剧烈搅拌充分,然后加入2g正硅酸四乙酯对铁粉进行改性,反应2h后加入0.8g三乙氧基丙基氨基硅烷,使颗粒表面带上氨基,然后利用磁场将此材料分离处理,重新分散中水中加入甲醛和甲酸,分离干燥后得到表面为叔氨基的纳米四氧化三铁微粒,最后加材料在氯甲烷中回流,最终得到表面为季铵盐的四氧化三铁纳米微粒。将合成的磁性材料以0.1%(质量比)加入到色度大于1400CU的焦化污水,在充分搅拌20min后将溶液放置到磁铁上方,30min后在保持磁场的条件下放出清水,经测定清水的色度35CU。在清水完全放出后关闭磁场,加入100mL乙醇,并超声分散20分钟再将溶液放置到磁铁上方,并放出浑浊液后,可再次放入需要处理的焦化废水进行循环。发现材料经10次循环的处理后清水的浊色度仍小于50 CU。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (5)

1.一种磁性脱色材料的制备方法,其特征在于该磁性脱色材料具有以下特性,
铁磁性核心、包覆在铁磁性核心的中间层和嫁接具有不同碳链长度的能够吸附带负电荷色素的阳离子基团;所述的铁磁性核心为铁磁金属纳米颗粒,铁磁性复合金属微粒,稀土合金磁性微粒,磁性金属氧化物微粒中的任意一种;所述包覆在铁磁性核心中间层的组成为二氧化硅、酚醛树脂及其衍生物中的任意一种;所述嫁接具有不同碳链长度的能够吸附带负电荷色素的阳离子基团是指:嫁接具有不同碳链长度的季铵盐中够吸附带负电荷色素的阳离子基团,基团在表面的覆盖率为5-95%,季铵盐中的碳链含有2-20个碳的烷烃和芳烃;具体包括以下步骤:
1)铁磁性材料为超细粉体,经500目以上的筛网过筛,并将过筛后的铁磁性粉末用酸活化;
2)在5-90℃温度下,将活化后的铁磁性粉末分散到乙醇或异丙醇的水溶液中,然后加入四乙基硅酸酯、四甲基硅酸酯,或间苯二酚、均三苯酚、甲醛、糠醛中酚和醛的组合中任意一种或两种的混合物,在加入氨水或盐酸的条件下在磁性材料包覆一层惰性的包覆层;
3)在包覆二氧化硅的过程中加入氨丙基三乙氧基硅烷,氨丙基三甲氧基硅烷;在酚醛树脂合成过程加入间苯二胺、间氨基苯酚,三聚氰胺和其他带胺基单体,这类带有胺基的单体与反应物的摩尔比为0.01-1之间;
4)在步骤3)得到磁性材料中的中加入甲醛和甲酸形成叔氨基,再在氯甲烷中回流形成季铵盐,从而得到能够吸附水中带色素的磁性微粒。
2.根据权利要求1所述的制备方法,其特征在于:所述包覆在铁磁性核心的中间层的厚度为1-2000nm。
3.根据权利要求1所述的制备方法,其特征在于:所述铁磁性材料的粒径为1nm-2000nm,比表面积为20-500 m2/g,其形貌为球形、棒状、立方体、六棱柱或纳米花。
4.采用如权利要求1至权利要求3中任意一项权利要求所述方法制备得到的磁性脱色材料进行污水处理的工艺,其特征在于包括以下步骤:
1)将合成的磁性微粒在5-90℃将改性后材料投入高色度的废水中,形成1g/L-100g/L的分散液,然后利用功率1 w/L-100 w/L,频率为30Hz-100 MHz的超声并充分搅拌的情况下,使铁磁性微粒在水中分散均匀,并保持搅拌10-300 min;
2)然后在处理容器外壁外加强度为100Gs-10000Gs的强磁场,并保持10-300 min,或至水中色度小于50 CU,在保有磁场的情况下放出清水;
3)加入原水体积1%-20%的清水,或者体积比为0.1-10的乙醇/水溶液,并除去磁场,然后利用功率1 w/L-100 w/L,频率为30Hz-100 MHz的超声并充分搅拌的情况下,使铁磁性微粒重新在水中分散均匀,并保持搅拌10-300 min后,重新开启磁场,放出废水。
5.根据权利要求4所述的工艺,其特征在于:该工艺还包括重复步骤2)-3)。
CN201610411988.XA 2016-06-14 2016-06-14 一种磁性脱色材料及其制备方法 Expired - Fee Related CN106000325B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610411988.XA CN106000325B (zh) 2016-06-14 2016-06-14 一种磁性脱色材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610411988.XA CN106000325B (zh) 2016-06-14 2016-06-14 一种磁性脱色材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106000325A CN106000325A (zh) 2016-10-12
CN106000325B true CN106000325B (zh) 2019-11-26

Family

ID=57091075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610411988.XA Expired - Fee Related CN106000325B (zh) 2016-06-14 2016-06-14 一种磁性脱色材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106000325B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645485A (zh) * 2016-12-27 2017-05-10 广州市食品检验所 一种利用氨基化磁性纳米材料测定饮料中阴离子合成色素含量的方法
CN107446546B (zh) * 2017-09-01 2020-08-25 四川理工学院 一种新型磁性密封材料及其制备方法
CN107694522B (zh) * 2017-10-16 2021-03-26 广州中国科学院工业技术研究院 含有有机硅季铵盐的纳米粒子及其制备方法和用途
CN108786740A (zh) * 2018-07-06 2018-11-13 武汉霖泉环保科技有限公司 一种用于污水处理的磁性材料及其制备方法
CN113354049A (zh) * 2021-07-12 2021-09-07 东北石油大学 一种油田水处理用超支化磁性破乳絮凝剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360659A (zh) * 2011-06-24 2012-02-22 中国科学院宁波材料技术与工程研究所 磁性亚微米复合核壳颗粒及其制备方法和应用
CN103638988A (zh) * 2013-12-06 2014-03-19 上海师范大学 磁性介孔材料、其制备方法及应用
CN105217695A (zh) * 2015-08-28 2016-01-06 南京大学 一种新型磁性纳米磁种及其处理工业生化尾水的方法和应用
CN105399176A (zh) * 2015-11-03 2016-03-16 昆明理工大学 一种磺酸基改性超顺磁纳米材料的制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284740B1 (ko) * 2011-06-02 2013-07-17 효림산업주식회사 실리카 코팅된 마그네타이트 마이크로미터(μm)사이즈 자성수착제 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360659A (zh) * 2011-06-24 2012-02-22 中国科学院宁波材料技术与工程研究所 磁性亚微米复合核壳颗粒及其制备方法和应用
CN103638988A (zh) * 2013-12-06 2014-03-19 上海师范大学 磁性介孔材料、其制备方法及应用
CN105217695A (zh) * 2015-08-28 2016-01-06 南京大学 一种新型磁性纳米磁种及其处理工业生化尾水的方法和应用
CN105399176A (zh) * 2015-11-03 2016-03-16 昆明理工大学 一种磺酸基改性超顺磁纳米材料的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"磁性纳米材料的制备及其吸附重铬酸根离子的性能";张立等,;《应用化学》;20130831;第30卷(第8期);第927页摘要、第1段、第927-928页1.2磁性纳米材料的制备、2.1磁性纳米材料的电子显微镜图 *

Also Published As

Publication number Publication date
CN106000325A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106000325B (zh) 一种磁性脱色材料及其制备方法
JP6494468B2 (ja) 磁性ナノ粒子を用いた水の浄化
Azad et al. Preparation and characterization of an AC–Fe 3 O 4–Au hybrid for the simultaneous removal of Cd 2+, Pb 2+, Cr 3+ and Ni 2+ ions from aqueous solution via complexation with 2-((2, 4-dichloro-benzylidene)-amino)-benzenethiol: Taguchi optimization
Zhang et al. A magnetic nanomaterial modified with poly-lysine for efficient removal of anionic dyes from water
Yang et al. La-EDTA coated Fe3O4 nanomaterial: preparation and application in removal of phosphate from water
Javaheri et al. Enhancement of Cd2+ removal from aqueous solution by multifunctional mesoporous silica: Equilibrium isotherms and kinetics study
Du et al. α-Fe 2 O 3 nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic
Habuda-Stanić et al. Arsenite and arsenate sorption by hydrous ferric oxide/polymeric material
Wang Preparation of magnetic hydroxyapatite and their use as recyclable adsorbent for phenol in wastewater
CN101503217B (zh) 废水除磷羧基功能化纳米Fe3O4吸附剂的制备及应用方法
Hou et al. Synthesis of core–shell structured magnetic mesoporous silica microspheres with accessible carboxyl functionalized surfaces and radially oriented large mesopores as adsorbents for the removal of heavy metal ions
Hashemian Removal of Acid Red 151 from water by adsorption onto nano-composite MnFe 2O 4/kaolin
Jing et al. Free-standing large-mesoporous silica films decorated with lanthanum as new adsorbents for efficient removal of phosphate
Shi et al. Removal of Pb2+, Hg2+, and Cu2+ by chain-like Fe3O4@ SiO2@ chitosan magnetic nanoparticles
Huang et al. In situ decoration of La (OH) 3 on polyethyleneimine-linked dendritic mesoporous silica nanospheres targeting at efficient and simultaneous removal of phosphate and Congo red
AU2017278084A1 (en) Porous decontamination removal composition
Alizadeh et al. Synthesis and application of amin-modified Fe3O4@ MCM-41 core-shell magnetic mesoporous for effective removal of pb2+ ions from aqueous solutions and optimization with response surface methodology
Kumarage et al. Electrospun amine-functionalized silica nanoparticles–cellulose acetate nanofiber membranes for effective removal of hardness and heavy metals (As (v), Cd (ii), Pb (ii)) in drinking water sources
KR101739286B1 (ko) 인 흡착용 흡착제의 제조방법
GB2135983A (en) Selective adsorption of borate ions from aqueous solution
CN110876917A (zh) 一种超顺磁响应纳米磷吸附剂及其制备方法
Hermosa et al. Methyl Orange Adsorption onto Magnetic Fe3O4/Carbon (AC, GO, PGO) Nanocomposites
Lin et al. Application of magnetite modified with aluminum/silica to adsorb phosphate in aqueous solution
Chen et al. One-pot synthesis of magnetic cationic adsorbent modified with PDDA for organic phosphonates removal
Shariati et al. Application of magnetite nanoparticles modified Azolla as an adsorbent for removal of reactive yellow dye from aqueous solutions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191126