WO2017096601A1 - 无人机及其飞行状态的监管方法与监控系统 - Google Patents

无人机及其飞行状态的监管方法与监控系统 Download PDF

Info

Publication number
WO2017096601A1
WO2017096601A1 PCT/CN2015/097067 CN2015097067W WO2017096601A1 WO 2017096601 A1 WO2017096601 A1 WO 2017096601A1 CN 2015097067 W CN2015097067 W CN 2015097067W WO 2017096601 A1 WO2017096601 A1 WO 2017096601A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
drone
offline
information
mode
Prior art date
Application number
PCT/CN2015/097067
Other languages
English (en)
French (fr)
Inventor
陈明
龚明
陈永森
丁准
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2015/097067 priority Critical patent/WO2017096601A1/zh
Priority to EP15910076.7A priority patent/EP3388856B1/en
Priority to CN201580084920.9A priority patent/CN108291952B/zh
Priority to EP19218961.1A priority patent/EP3657293B1/en
Publication of WO2017096601A1 publication Critical patent/WO2017096601A1/zh
Priority to US16/003,347 priority patent/US10796587B2/en
Priority to US17/025,913 priority patent/US11886204B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • G05D1/46
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/246
    • G05D1/692
    • G05D1/80
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/006Navigation or guidance aids for a single aircraft in accordance with predefined flight zones, e.g. to avoid prohibited zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0082Surveillance aids for monitoring traffic from a ground station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/30Security of mobile devices; Security of mobile applications
    • H04W12/37Managing security policies for mobile devices or for controlling mobile applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/63Location-dependent; Proximity-dependent
    • H04W12/64Location-dependent; Proximity-dependent using geofenced areas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the invention relates to the technical field of safety flight monitoring of a micro drone in a low-altitude field, in particular to a monitoring method and a monitoring system for a drone and its flight state.
  • a drone is an aircraft that is primarily active in low-altitude areas and relies primarily on remote controls to control its flight. Since the flight environment in the low-altitude area is complex and vulnerable to a few no-fly zones, the government and security departments need to supervise drones to ensure social security.
  • An effective aviation regulatory system requires aircraft flight data, including flight time, latitude and longitude, altitude, speed, and heading.
  • Existing aviation regulatory systems generally require aircraft equipped with high-frequency communication equipment, secondary radar transponders, and broadcast automatic correlation monitoring equipment (ADS-B) to provide the aircraft's own flight information in flight, however, these equipment volumes
  • ADS-B broadcast automatic correlation monitoring equipment
  • the existing aviation supervision system cannot effectively obtain the flight data of the micro drone through its own technical means.
  • the flight data of the existing micro drones are stored in the storage device on the drone, and the user needs to take back the drone and then read the flight information stored by the drone, so that the acquisition of the flight data is relatively lagging, if Users do not actively read and upload this data, and the regulator is also unable to obtain it.
  • a method for supervising the flight state of a drone is applied to a supervisory server, and the supervisory method comprises the following steps:
  • the identity information includes UAV user identity information and UAV identity information
  • the offline flight parameters include at least: flight zone information and flight time.
  • the offline flight parameters further include: a maximum flight altitude, a farthest flight distance, and a maximum flight speed.
  • the monitoring method further includes: updating the drone deployment map according to the offline flight declaration information.
  • offline flight notification information is received through an online reporting platform.
  • step of receiving the offline flight report information sent by the control terminal includes:
  • the method further includes:
  • the method further includes:
  • the monitoring method further includes:
  • the monitoring method further includes:
  • a communication connection is established with the control terminal through a mobile communication network and/or a wireless access method.
  • a method for supervising the flight state of a drone is applied to a supervisory server, and the supervisory method comprises the following steps:
  • the offline flight declaration information includes identity information and offline flight parameters
  • the identity information includes UAV user identity information and UAV identity information
  • the offline flight parameters include at least: flight zone information and flight time.
  • offline flight notification information is received through an online reporting platform.
  • the method further includes:
  • the monitoring method further includes:
  • the monitoring method further includes: updating the drone deployment map according to the offline flight declaration information.
  • a monitoring system for a flight state of a drone is applied to a supervisory server, the monitoring system comprising:
  • control module configured to establish, by the communication device of the supervisory server, a communication connection with a control terminal of the drone;
  • a receiving module configured to receive offline flight notification information sent by the control terminal, where the offline flight notification information includes identity information and offline flight parameters;
  • a certificate generating module configured to generate an offline flight certificate of the drone according to the offline flight declaration information, where the offline flight certificate includes the offline flight declaration information;
  • the control module is further configured to receive and respond to the request signal for downloading an offline flight certificate sent by the control terminal, and send the offline flight certificate to the control terminal, to send the offline flight certificate by using the control terminal.
  • the corresponding drone is given to limit the flight behavior of the drone in the offline flight mode by the offline flight certificate.
  • the identity information includes UAV user identity information and UAV identity information
  • the offline flight parameters include at least: flight zone information and flight time.
  • the offline flight parameters further include: a maximum flight altitude, a farthest flight distance, and a maximum flight speed.
  • control module is further configured to update the drone deployment map according to the offline flight notification information.
  • the receiving module receives offline flight declaration information through an online reporting platform.
  • the receiving module receives offline flight declaration information through an online reporting platform.
  • the certificate generating module is further configured to provide a front end reporting interface of an offline flight certificate
  • the control module is further configured to display the front end reporting interface on the control terminal;
  • the receiving module is configured to receive offline flight notification information input in the front end reporting interface.
  • control module is further configured to establish a communication connection with the third-party authentication platform, and send the UAV user identity information to the third-party authentication platform for authentication;
  • the certificate generating module is configured to generate the offline flight certificate according to the offline flight notification information after the third-party authentication platform successfully authenticates the unmanned user identity information.
  • the certificate generating module is further configured to display a backend reporting interface of an offline flight certificate on a display screen of the supervisory server;
  • the receiving module is further configured to receive approval information of an offline flight parameter input in the front end reporting interface in the backend reporting interface.
  • the certificate generating module is further configured to provide a front-end query and modification interface of an offline flight certificate associated with the UAV user identity information and/or the UAV identity information;
  • the control module is further configured to display the front end query and modification interface on the control terminal;
  • the receiving module is further configured to receive an offline flight parameter modified in the front end query and modification interface
  • the certificate generating module is further configured to update information in the offline flight certificate according to the modified offline flight parameter;
  • the control module is further configured to push the updated offline flight certificate to the corresponding control terminal in real time.
  • the certificate generating module is further configured to display, on a display screen of the supervisory server, a backend query and modification interface of an offline flight certificate associated with the drone user identity information and/or the drone identity information;
  • the receiving module is further configured to receive an offline flight parameter modified in the backend query and modification interface
  • the certificate generating module is further configured to update information of the offline flight certificate according to the modified offline flight parameter;
  • the control module is further configured to push the updated offline flight certificate to the corresponding control terminal in real time.
  • a processor is applied to a supervisory server, the processor is configured to acquire program instructions stored in a storage device to perform the following steps:
  • the identity information includes UAV user identity information and UAV identity information
  • the offline flight parameters include at least: flight zone information and flight time.
  • the offline flight parameters further include: a maximum flight altitude, a farthest flight distance, and a maximum flight speed.
  • a processor is applied to a supervisory server, the processor is configured to acquire program instructions stored in a storage device to perform the following steps:
  • the offline flight declaration information includes identity information and offline flight parameters
  • the identity information includes UAV user identity information and UAV identity information
  • the offline flight parameters include at least: flight zone information and flight time.
  • the offline flight parameters further include: a maximum flight altitude, a farthest flight distance, and a maximum flight speed.
  • the identity information includes UAV user identity information and UAV identity information
  • the offline flight parameters include at least: flight zone information and flight time.
  • the offline flight parameters further include: a maximum flight altitude, a farthest flight distance, and a maximum flight speed.
  • a method for supervising the flight state of a drone is applied to a supervisory server, and the supervisory method comprises the following steps:
  • the flight information includes location information and a heading of the drone;
  • the preset safety flight parameter includes at least a latitude and longitude of a sensitive area associated with the drone identification information, and the preset sensitive area includes At least one of the following: a flight limited area and a no-fly area;
  • the supervision method specifically includes:
  • the drone If it is determined that the drone is about to enter or has entered the preset sensitive area, generating a corresponding flight limit instruction and/or warning information, the warning information at least comprising: changing heading information, the flight limit instruction It includes at least one of the following: forcibly changing the heading command, forcing a landing command, and forbidding the start command.
  • the flight information includes a plurality of flight parameters of the drone, the flight parameters include at least: a flight altitude, a flight speed; and the preset safety flight parameters include at least a relationship with the UAV user identity information.
  • the highest safe flight altitude and the maximum safe flight speed; the supervision method specifically includes:
  • the flight limit instruction includes at least one of the following: a forced lowering height command, a forced lower speed command.
  • the monitoring method further includes:
  • the air condition information including at least a latitude and longitude of the sensitive area, where the sensitive area includes the following At least one type: a limited flight area and a no-fly area.
  • step of setting the air condition information associated with the identity information of the drone in real time includes:
  • the air condition information associated with the drone identity information is automatically set in real time according to the flight information.
  • the monitoring method further includes: updating the drone deployment map according to the flight information of the drone.
  • a communication connection is established with the control terminal through a mobile communication network and/or a wireless access method.
  • a method for supervising the flight state of a drone is applied to a supervisory server, and the supervisory method comprises the following steps:
  • a flight restriction command is provided to limit the flight behavior of the drone in the online flight mode by the flight restriction command.
  • a communication connection is established directly or indirectly with the drone.
  • the flight limit instruction is a flight warning command or a flight control command.
  • the drone deployment map is updated according to the flight information of the drone.
  • a monitoring system for a flight state of a drone is applied to a supervisory server, and the monitoring system includes:
  • control module configured to establish, by the communication device of the supervisory server, a communication connection with a control terminal of the drone;
  • a receiving module configured to receive the drone identification information sent by the control terminal and the flight information of the drone
  • a security decision module configured to determine, according to preset safety flight parameters, whether the flight information of the drone meets flight safety regulations; and when determining that the flight information of the drone violates the flight safety regulations, Generate corresponding flight limit instructions and/or warning information;
  • the control module is further configured to control the communication device to send the flight limit instruction and/or warning information to the control terminal to limit the drone to be online by using the flight limit instruction and/or warning information Flight behavior in flight mode.
  • the flight information includes location information and a heading of the drone;
  • the preset safety flight parameter includes at least a latitude and longitude of a sensitive area associated with the drone identification information, and the preset sensitive area includes At least one of the following: a flight limited area and a no-fly area;
  • the security decision module is specifically configured to:
  • the drone If it is determined that the drone is about to enter or has entered the preset sensitive area, generating a corresponding flight limit instruction and/or warning information, the warning information at least comprising: changing heading information, the flight limit instruction It includes at least one of the following: forcibly changing the heading command, forcing a landing command, and forbidding the start command.
  • the flight information includes a plurality of flight parameters of the drone, the flight parameters include at least: a flight altitude, a flight speed; and the preset safety flight parameters include at least a relationship with the UAV user identity information.
  • the highest safe flight altitude and the maximum safe flight speed; the security decision module is also specifically used to:
  • the flight limit instruction includes at least one of the following: a forced lowering height command, a forced lower speed command.
  • the monitoring system further includes a setting module, configured to set, in real time, the air condition information associated with the identity information of the drone;
  • the control module is further configured to control the communication device to push the air condition information to the control terminal in real time, where the air condition information includes at least a latitude and longitude of the sensitive area, and the sensitive area includes at least one of the following: Area, no-fly zone.
  • the setting module when the setting module sets the air condition information associated with the identity information of the drone in real time, the setting module is specifically configured to:
  • the air condition information associated with the drone identity information is automatically set in real time according to the flight information.
  • control module is further configured to update the drone deployment map according to the flight information of the drone.
  • a processor is applied to a supervisory server, the processor is configured to acquire program instructions stored in a storage device to perform the following steps:
  • a processor is applied to a supervisory server, the processor is configured to acquire program instructions stored in a storage device to perform the following steps:
  • a flight restriction command is provided to limit the flight behavior of the drone in the online flight mode by the flight restriction command.
  • a method for supervising the flight state of a drone is applied to a control terminal, and the supervision method comprises the following steps:
  • the offline flight notification information includes identity information and offline flight parameters
  • the identity information includes UAV user identity information and UAV identity information
  • the offline flight parameters include at least: flight zone information and flight time.
  • the monitoring method further includes:
  • data transmission is performed with the supervisory server through a mobile communication network and/or a wireless access method.
  • the data transmission is performed by the mobile communication network and/or the wireless transmission mode, and the wireless access mode includes a WIFI or a Bluetooth mode.
  • a monitoring system for a flight state of a drone is applied to a control terminal, and the monitoring system includes:
  • control module configured to establish, by the communication device of the control terminal, a communication connection with the drone and the supervisory server;
  • the control module is further configured to control the communication device to send offline flight notification information to the supervision server, and send a request signal for downloading an offline flight certificate to the supervision server, where the offline flight notification information includes identity information and Offline flight parameters;
  • a receiving module configured to receive an offline flight certificate sent by the supervisory server, where the offline flight certificate includes the offline flight report information
  • the control module is further configured to control the communication device to forward the offline flight certificate to the drone to limit flight behavior of the drone in an offline flight mode by using the offline flight certificate.
  • the identity information includes UAV user identity information and UAV identity information
  • the offline flight parameters include at least: flight zone information and flight time.
  • the monitoring system further includes a setting module, wherein the setting module is configured to:
  • a processor is applied to a control terminal, wherein the processor is configured to acquire program instructions stored in a storage device to perform the following steps:
  • the offline flight notification information includes identity information and offline flight parameters
  • the identity information includes UAV user identity information and UAV identity information
  • the offline flight parameters include at least: flight zone information and flight time.
  • the offline flight notification information includes identity information and offline flight parameters
  • the identity information includes UAV user identity information and UAV identity information
  • the offline flight parameters include at least: flight zone information and flight time.
  • a method for supervising the flight state of a drone is applied to a control terminal, and the supervision method comprises the following steps:
  • the warning information includes at least one of: changing heading information, reducing speed information, and reducing height information
  • the flight limit instruction includes at least one of: forcibly changing a heading instruction, forcing a landing command, forcibly reducing a speed command, Force the height command to decrease.
  • the flight information includes position information of the drone and a plurality of flight parameters, and the flight parameters include at least: flight time, flight altitude, flight speed, and heading; the supervision method further includes:
  • the monitoring method further includes:
  • the air condition information includes at least a latitude and longitude of the sensitive area, and the sensitive area includes at least one of the following: a limited flight area and a no-fly area;
  • the monitoring method further includes:
  • the flight limit instruction and/or warning information is displayed by text.
  • the monitoring method further includes:
  • the air condition information including at least a latitude and longitude of the sensitive area, where the sensitive area includes at least one of the following: Flight limited area, no-fly area.
  • the monitoring method further includes:
  • the monitoring method further includes:
  • the mode of the control terminal When the mode of the control terminal is switched from the offline mode to the online mode, the offline flight information sent by the drone is received, and the offline flight information is automatically forwarded to the supervision server.
  • data transmission is performed with the supervisory server through a mobile communication network and/or a wireless access method.
  • the data transmission is performed by the mobile communication network and/or the wireless transmission mode, and the wireless access mode includes a WIFI or a Bluetooth mode.
  • a monitoring system for a flight state of a drone is applied to a control terminal, and the monitoring system includes:
  • control module configured to establish, by the communication device of the control terminal, a communication connection with the drone and the supervisory server;
  • a receiving module configured to receive the drone identification information sent by the drone and the flight information of the drone
  • the control module is further configured to automatically send the drone identification information and the flight information to the supervision server by using the communication device in an online mode;
  • the receiving module is further configured to receive a flight restriction instruction and/or warning information sent by the supervision server;
  • the control module is further configured to: when receiving the flight restriction instruction, forward the flight restriction instruction to the drone through the communication device, so that the drone executes the flight restriction instruction to pass the The flight restriction command limits the flight behavior of the drone in the online flight mode.
  • the warning information includes at least one of: changing heading information, reducing speed information, and reducing height information
  • the flight limit instruction includes at least one of: forcibly changing a heading instruction, forcing a landing command, forcibly reducing a speed command, Force the height command to decrease.
  • the flight information includes location information of the drone and a plurality of flight parameters, and the flight parameters include at least: flight time, flight altitude, flight speed, and heading; the control module is further configured to:
  • the receiving module is further configured to receive the air condition information that is sent by the supervisory server, where the air condition information includes at least a latitude and longitude of the sensitive area, where the sensitive area includes at least one of the following: a limited flight area and a no-fly area. ;
  • the control module is further configured to acquire map information, display a map on a display screen of the control terminal, and mark the sensitive area on the map according to the air condition information.
  • the monitoring system further includes a prompting module, configured to promptly display the flight restriction instruction and/or warning information by voice, or display the flight restriction instruction and/or warning information by text.
  • the receiving module is further configured to receive the air condition information pushed by the supervisory server; the control module is further configured to control the communications apparatus to automatically forward the air condition information to the drone,
  • the air condition information includes at least a latitude and longitude of the sensitive area, and the sensitive area includes at least one of the following: a limited flight area and a no-fly area.
  • the monitoring system further includes a setting module, wherein the setting module is configured to:
  • the receiving module is further configured to: when the control terminal is in offline mode, receive the offline flight information sent by the drone, and store the received offline flight information, where the control module further uses Controlling the communication device to transmit the offline flight information to the supervision server when the mode of the control terminal is switched to the online mode; or
  • the receiving module is further configured to receive offline flight information sent by the drone when the mode of the control terminal is switched from an offline mode to an online mode, where the control module is further configured to control the communication device to Offline flight information is automatically forwarded to the supervisory server.
  • a processor is applied to a control terminal, wherein the processor is configured to acquire program instructions stored in a storage device to perform the following steps:
  • the warning information includes at least one of: changing heading information, reducing speed information, and reducing height information
  • the flight limit instruction includes at least one of: forcibly changing a heading instruction, forcing a landing command, forcibly reducing a speed command, Force the height command to decrease.
  • the warning information includes at least one of: changing heading information, reducing speed information, and reducing height information
  • the flight limit instruction includes at least one of: forcibly changing a heading instruction, forcing a landing command, forcibly reducing a speed command, Force the height command to decrease.
  • a method for supervising the flight state of a drone is applied to a drone, and the supervising method comprises the following steps:
  • the flight behavior of the drone in the offline flight mode is monitored and limited according to the offline flight parameters in the offline flight certificate.
  • the monitoring method further includes:
  • the flight mode of the drone is set to the offline flight mode.
  • the monitoring method further includes:
  • flight mode of the drone is an offline flight mode
  • storing flight information of the drone and storing the offline flight mode when the flight mode of the drone is switched to the online flight mode Flight information is sent to the control terminal;
  • the flight information of the drone is sent to the control terminal for storage.
  • the offline flight certificate further includes identity information, where the identity information includes the UAV user identity information and the UAV identity information; and the monitoring method further includes:
  • the flight mode of the drone when the flight mode of the drone is set to an offline flight mode, acquiring the drone identity information and the drone identity information in the offline flight certificate, and verifying the identity information of the drone Whether the identity information of the drone in the offline flight certificate is consistent;
  • the UAV identity information is inconsistent with the UAV identity information in the offline flight certificate, the UAV is prohibited from being activated.
  • the offline flight parameters include at least: flight area information and flight time.
  • the offline flight parameters further include: limited flight area information, a maximum flight height, a farthest flight distance, and a maximum flight speed.
  • the step of monitoring and limiting the flight behavior of the drone in the offline flight mode according to the offline flight parameter in the offline flight certificate includes:
  • the flight parameters including at least: flight time, flight altitude, flight distance, flight speed, heading;
  • the step of monitoring and limiting the flight behavior of the drone in the offline flight mode according to the offline flight parameter in the offline flight certificate further includes:
  • the drone is flying outside the time of flight, the drone is prohibited from starting; and/or
  • the flying height of the drone exceeds the maximum flying height, automatically adjusting operating parameters of the corresponding power device of the drone to reduce the flying height;
  • the operating parameters of the corresponding power device of the drone are automatically adjusted to reduce the flight speed.
  • the monitoring method further includes: updating the drone navigation map according to the offline flight parameter.
  • data transmission is performed with the control terminal by using a mobile communication network and/or a wireless transmission mode, where the wireless transmission mode includes at least a WIFI or a Bluetooth transmission mode.
  • a method for supervising the flight state of a drone is applied to a drone, and the supervising method comprises the following steps:
  • the flight behavior of the drone in an offline flight mode is limited according to the offline flight parameter.
  • the offline flight information is included in an offline flight certificate.
  • the offline flight certificate is stored on the drone or on a control terminal communicatively connected to the drone.
  • the offline flight parameters include at least: flight area information and flight time.
  • the offline flight parameter includes flight limited area information.
  • the monitoring method further includes: updating the drone navigation map according to the offline flight parameter.
  • a monitoring system for a flight state of a drone is applied to a drone, and the monitoring system includes:
  • control module configured to establish, by the communication device of the drone, a communication connection with a control terminal of the drone
  • a receiving module configured to receive and store an offline flight certificate sent by the control terminal, where the offline flight certificate includes an offline flight parameter
  • the control module is further configured to monitor and limit flight behavior of the drone in an offline flight mode according to an offline flight parameter in the offline flight certificate when the drone is in an offline flight mode.
  • the monitoring system further includes a setting module, configured to set the flight mode of the drone to an online flight mode when the receiving module receives the online signal sent by the control terminal ;
  • the setting module is further configured to: receive, by the receiving module, an offline signal sent by the control terminal, and set a flight mode of the drone to an offline flight mode;
  • the setting module is further configured to set the flight mode of the drone to an offline flight mode when the flight position of the drone is not available.
  • control module is further configured to:
  • the flight information of the drone is stored on the drone, and is controlled when the flight mode of the drone is switched to the online flight mode
  • the communication device transmits the stored flight information in an offline flight mode to the control terminal;
  • the flight information of the drone is sent to the control terminal for storage.
  • the offline flight certificate further includes identity information, where the identity information includes the UAV user identity information and the UAV identity information;
  • the monitoring system further includes a verification module, configured to acquire the identity information of the drone and the identity information of the drone in the offline flight certificate when the flight mode of the drone is set to an offline flight mode, And verifying whether the drone identity information is consistent with the drone identity information in the offline flight certificate;
  • the control module is further configured to prohibit starting the drone when the drone identity information is inconsistent with the drone identity information in the offline flight certificate.
  • the offline flight parameters include at least: flight area information and flight time.
  • the offline flight parameters further include: limited flight area information, a maximum flight height, a farthest flight distance, and a maximum flight speed.
  • control module monitors and limits the flight behavior of the drone in the offline flight mode according to the offline flight parameter in the offline flight certificate
  • the control module is specifically configured to:
  • the flight parameters including at least: flight time, flight altitude, flight distance, flight speed, heading;
  • control module monitors and limits the flight behavior of the drone in the offline flight mode according to the offline flight parameter in the offline flight certificate
  • the control module is further used to:
  • the drone When the drone is flying outside the time of flight, the drone is prohibited from starting; and/or
  • the operating parameters of the corresponding power device of the drone are automatically adjusted to reduce the flight speed.
  • control module is further configured to update the drone navigation map according to the offline flight parameter.
  • a drone includes: a body and a flight parameter collecting device, a communication device, and a flight controller disposed on the body, wherein the flight parameter collecting device is configured to collect flight parameters and position information of the drone in real time. ;
  • the flight controller is configured to acquire program instructions stored in the storage device to perform the following steps:
  • the flight behavior of the drone in the offline flight mode is monitored and limited according to the offline flight parameters in the offline flight certificate.
  • a drone includes: a body and a flight parameter collecting device, a communication device, and a flight controller disposed on the body, wherein the flight parameter collecting device is configured to collect flight parameters and position information of the drone in real time. ;
  • the flight controller is configured to acquire program instructions stored in the storage device to perform the following steps:
  • the flight behavior of the drone in an offline flight mode is limited according to the offline flight parameter.
  • a method for supervising the flight state of a drone is applied to a drone, and the supervising method comprises the following steps:
  • the drone identification information and the flight information are automatically transmitted to the control terminal, and the flight restriction instruction forwarded by the control terminal is received and processed.
  • the flight restriction instruction includes at least one of forcibly changing a heading command, a forced landing command, a forced lowering speed command, and a forced lowering height command.
  • the monitoring method further includes:
  • the flight parameters of the drone are adjusted according to the flight limit command to perform a corresponding flight operation.
  • adjusting the flight parameters of the drone according to the flight limit instruction to perform a corresponding flight operation step specifically includes:
  • the monitoring method further includes:
  • the air condition information includes at least a sensitive area, where the sensitive area includes at least one of: a latitude and longitude of the fly-limited area and the no-fly area;
  • the monitoring method further includes:
  • the flight mode of the drone is set to the offline flight mode.
  • data transmission is performed with the control terminal by using a mobile communication network and/or a wireless transmission mode, where the wireless transmission mode includes at least a WIFI or a Bluetooth transmission mode.
  • a method for supervising the flight state of a drone is applied to a drone, and the supervising method comprises the following steps:
  • the drone identification information and the flight information are provided to a supervisory server, and flight limit instructions are received and processed.
  • the flight parameters of the drone are adjusted according to the flight limit command to perform a corresponding flight operation.
  • a communication connection is established directly or indirectly with the supervisory server.
  • the flight limit instruction is a flight warning command or a flight control command.
  • the drone navigation map is updated according to the flight information of the drone.
  • a monitoring system for a flight state of a drone is applied to a drone, and the monitoring system includes:
  • control module configured to acquire flight parameters and location information of the drone, and generate corresponding flight information according to the flight parameters and location information
  • the control module is further configured to establish, by the communication device of the drone, a communication connection with a control terminal of the drone;
  • the control module is further configured to control the communication device to automatically transmit the drone identification information and the flight information to the control terminal when the drone is in the online flight mode;
  • a receiving module configured to receive and process a flight restriction instruction forwarded by the control terminal.
  • the flight restriction instruction includes at least one of forcibly changing a heading command, a forced landing command, a forced lowering speed command, and a forced lowering height command.
  • control module is further configured to adjust flight parameters of the drone according to the flight limit instruction to perform a corresponding flight operation.
  • control module adjusts the flight parameters of the drone according to the flight limit instruction to perform a corresponding flight operation
  • control module is specifically configured to:
  • the receiving module is further configured to receive and store the air condition information forwarded by the control terminal, where the air condition information includes at least a sensitive area, where the sensitive area includes at least one of the following: a limited flight area and a no-fly area Latitude and longitude;
  • the control module is further configured to update the drone navigation map according to the air condition information, and monitor the flight status of the drone according to the flight information and the updated navigation map.
  • the monitoring system further includes a setting module, configured to set the flight mode of the drone to an online flight mode when the receiving module receives the online signal sent by the control terminal ;
  • the setting module is further configured to: receive, by the receiving module, an offline signal sent by the control terminal, and set a flight mode of the drone to an offline flight mode;
  • the setting module is further configured to set the flight mode of the drone to an offline flight mode when the flight position of the drone is not available.
  • a drone includes: a body and a flight parameter collecting device, a communication device, and a flight controller disposed on the body, wherein the flight parameter collecting device is configured to collect flight parameters and position information of the drone in real time. ;
  • the flight controller is configured to acquire program instructions stored in the storage device to perform the following steps:
  • the drone identification information and the flight information are automatically transmitted to the control terminal, and the flight restriction instruction forwarded by the control terminal is received and processed.
  • the flight controller is further configured to adjust flight parameters of the drone according to the flight limit instruction to perform a corresponding flight operation.
  • a drone includes: a body and a flight parameter collecting device, a communication device, and a flight controller disposed on the body, wherein the flight parameter collecting device is configured to collect flight parameters and position information of the drone in real time. ;
  • the flight controller is configured to acquire program instructions stored in the storage device to perform the following steps:
  • the drone identification information and the flight information are provided to a supervisory server, and flight limit instructions are received and processed.
  • the flight controller is further configured to adjust flight parameters of the drone according to the flight limit instruction to perform a corresponding flight operation.
  • a supervisory system for a flight state of a drone includes: a supervisory server, a control terminal, and a drone, wherein the supervisory server and the drone can perform bidirectional data transmission through the control terminal;
  • the supervisory server is configured to generate an offline flight certificate according to the offline flight report information sent by the control terminal, and send the offline flight certificate to the drone through the control terminal, where the offline flight certificate includes an offline flight parameter;
  • the drone monitors and limits the flight behavior of the drone in the offline flight mode according to the offline flight parameters in the offline flight certificate when in the offline flight mode.
  • control terminal includes a mobile device connected to each other and a remote controller of the drone, the mobile device is configured to be connected to the supervision server, and the remote controller is configured to be connected to the drone; or
  • the control terminal is a multi-function remote controller that integrates the functions of the mobile device and the remote controller of the drone.
  • a supervisory system for a flight state of a drone comprising: a supervisory server and a drone, wherein the supervisory server and the drone can directly or indirectly perform two-way data transmission;
  • the supervisory server is configured to generate an offline flight certificate according to the offline flight declaration information, and provide the offline flight certificate to the drone, wherein the offline flight certificate includes an offline flight parameter;
  • the drone monitors and limits the flight behavior of the drone in the offline flight mode according to the offline flight parameters in the offline flight certificate when in the offline flight mode.
  • a supervisory system for a flight state of a drone includes: a supervisory server, a control terminal, and a drone, wherein the supervisory server and the drone can perform bidirectional data transmission through the control terminal;
  • the drone actively reports the flight information of the drone to the supervisory server through the control terminal in an online flight state;
  • the supervisory server monitors, according to preset safety flight parameters, whether the flight information of the drone in the online flight mode meets flight safety regulations, and monitors that the flight information of the drone in the online flight mode violates Generating flight control instructions and/or warning information, and transmitting the flight limit command and/or warning information to the control terminal to limit by the flight limit command and/or warning information
  • the flight behavior of the drone in the online flight mode
  • control terminal includes a mobile device connected to each other and a remote controller of the drone, the mobile device is configured to be connected to the supervision server, and the remote controller is configured to be connected to the drone; or
  • the control terminal may be a multi-function remote controller that integrates the functions of the mobile device and the remote controller of the drone.
  • a supervisory system for a flight state of a drone comprising: a supervisory server and a drone, wherein the supervisory server and the drone can perform two-way data transmission through the control terminal;
  • the drone actively reports the flight information of the drone to the supervisory server in an online flight state
  • the supervisory server monitors whether the flight information of the drone meets the flight safety regulations according to preset safety flight parameters, and generates a corresponding flight when monitoring flight information of the drone violates the flight safety regulations Restricting the command and transmitting the flight limit command to the drone to limit flight behavior of the drone in the online flight mode by the flight limit command.
  • the method for supervising the flight state of the UAV can effectively supervise the flight behavior of the UAV in the offline flight mode and the online flight mode, and effectively solve the problem that the prior art cannot effectively acquire the micro-no
  • FIG. 1 is a schematic structural view of a supervisory system for a flight state of a drone according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method for supervising a flight state of a drone in a supervisory server according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of another method for supervising the flight state of a drone applied to a supervisory server according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a supervisory server according to an embodiment of the present invention.
  • FIG. 5 is a functional block diagram of a monitoring system in the supervisory server of FIG. 4.
  • FIG. 6 is a schematic flow chart of a method for supervising a flight state of a drone controlled by a terminal according to an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of another method for supervising the flight state of a drone of a control terminal according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a control terminal according to an embodiment of the present invention.
  • FIG. 9 is a functional block diagram of a monitoring system in the control terminal of FIG.
  • FIG. 10 is a schematic flow chart of a method for supervising a flight state of a drone applied to a drone according to an embodiment of the present invention.
  • FIG. 11 is a flow chart showing a method for supervising a flight state of a drone applied to a drone according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural view of a drone according to an embodiment of the present invention.
  • Figure 13 is a functional block diagram of the monitoring system in the drone of Figure 12.
  • FIG. 1 is a schematic structural diagram of a surveillance system 100 for a flight state of a drone according to an embodiment of the present invention.
  • the supervisory system 100 includes at least a supervisory server 20, a control terminal 50, and a drone 60.
  • the supervisory server 20 can establish a communication connection with the control terminal 50
  • the control terminal 50 can establish a communication connection with the drone 60, the supervisory server 20 and the drone
  • the bidirectional data transmission can be performed by the control terminal 50.
  • the two-way data transmission can be directly performed between the supervisory server 20 and the drone 60.
  • the supervisory server 20 may generate an offline flight certificate according to the offline flight declaration information previously declared by the user of the drone 60, and send it to the drone 60 through the control terminal 50.
  • the drone 60 monitors and limits the flight behavior of the drone 60 in the offline flight mode according to the offline flight parameters in the offline flight certificate when in the offline flight mode. That is, the flight behavior of the drone 60 in the offline flight state is limited by the flight parameters set in the offline flight certificate, whereby the supervisory server 20 is in the offline flight state of the drone 60.
  • the drone 60 can also be controlled to fly within a safe range.
  • the drone 60 can also actively report real-time flight information to the supervisory server 20 through the control terminal 50 in an online flight state, so that the supervisory server 20 monitors the drone. 60 flight behavior.
  • the supervisory server 20 monitors whether the flight information of the drone 60 in the online flight mode complies with the flight safety regulations according to preset safety flight parameters, and monitors the flight of the drone 60 in the online flight mode. When the information violates the flight safety regulations, generating corresponding flight restriction instructions and/or warning information, and transmitting the flight restriction instruction and/or warning information to the control terminal 50 to pass the flight restriction instruction and/or Or a warning message limits the flight behavior of the drone 60 in the online flight mode.
  • the control terminal 50 includes a mobile device 30 that is interconnected and a remote control 40 of the drone 60.
  • the mobile device 30 is configured to be connected to the supervisory server 20, and the remote controller 40 is configured to be connected to the drone 60.
  • the mobile device 30 includes, but is not limited to, a smartphone, a tablet.
  • the communication between the supervisory server 20 and the mobile device 30 may be established through a mobile communication network, for example, a 2G, 3G, 4G, or 5G network, and/or a wireless access method, such as a WIFI access method. .
  • the communication between the supervisory server 20 and the mobile device 30 can be performed through the Https communication protocol and data transmission.
  • the mobile device 30 and the remote controller 40 can establish a communication connection through a USB serial port connection, and perform communication and data transmission through an MFI protocol (IOS) or an OTG protocol (Android).
  • a communication connection may be established between the remote control 40 and the mobile device 30 by wireless transmission techniques, such as 2.4 GHz or 5 GHz wireless technology.
  • a communication connection between the remote controller 40 and the drone 60 can be established by wireless transmission technology, such as 2.4 GHz or 5 GHz wireless technology.
  • control terminal 50 can be a multi-function remote that integrates the functions of the mobile device 30 and the remote control 40 of the drone 60.
  • FIG. 2 is a schematic flowchart of a method 200 for supervising a flight state of a drone in a supervisory server according to an embodiment of the present invention.
  • the method of the embodiment of the present invention may be implemented by a processor. . It should be noted that the method in the embodiment of the present invention is not limited to the steps and the sequence in the flowchart shown in FIG. 2 . According to various embodiments, the steps in the flowchart shown in FIG. 2 may add, remove, or change the order.
  • the supervision method 200 can start from step 201.
  • Step 201 Establish a communication connection with the control terminal of the drone.
  • Step 202 Receive offline flight declaration information sent by the control terminal.
  • the offline flight declaration information includes identity information and offline flight parameters
  • the identity information includes the UAV user identity information and the drone identity information, such as a product serial number of the drone (Serial Number, SN code)
  • the offline flight parameters include at least: flight area information and flight time.
  • the offline flight parameters may further include at least: a maximum flying height, a farthest flying distance, and a maximum flying speed.
  • the supervision method 200 can receive offline flight notification information through an online reporting platform.
  • the offline flight notification information may be registered in the online reporting platform by the control terminal, the mobile device or the remote controller of the drone, or may be reported in the online through another communication device such as a computer. Registered in the platform.
  • the step 202 may specifically include:
  • the drone user can use the control terminal to log in to the front end reporting interface of the offline flight certificate to submit the offline flight declaration information, which is convenient for the drone user to operate.
  • Step 203 Establish a communication connection with the third-party authentication platform, and send the UAV user identity information to the third-party authentication platform for authentication.
  • Step 204 Determine whether the third-party authentication platform successfully authenticates the UAV user identity information. If the third-party authentication platform successfully authenticates the UAV user identity information, step 205 is performed; otherwise, the process returns to step 202.
  • the supervision method 200 of the embodiment authenticates the real identity of the user through the third-party authentication platform, so as to supervise and trace the responsibility of the drone user in the event of a security accident of the drone.
  • Step 205 Generate an offline flight certificate of the drone according to the offline flight declaration information.
  • the offline flight certificate includes the offline flight declaration information, that is, the identity information and the offline flight parameter, and the identity information includes the UAV user identity information and the UAV identity information,
  • the offline flight parameters include at least: flight area information and flight time. In other embodiments, the offline flight parameters further include at least: a maximum flying height, a farthest flying distance, and a maximum flying speed.
  • the step 205 may further include:
  • the system administrator of the supervisory server can approve the offline flight declaration information submitted by the drone user.
  • the offline flight certificate is generated according to the modified offline flight parameter.
  • Step 206 Receive and respond to the request signal for downloading an offline flight certificate sent by the control terminal, and send the offline flight certificate to the control terminal, to send the offline flight certificate to the corresponding Man-machine, thereby limiting the flight behavior of the drone in the offline flight mode by the offline flight certificate.
  • the monitoring method 200 may further include: updating the drone deployment map according to the offline flight notification information.
  • the monitoring method 200 may further include:
  • the drone user can log in to the front-end query and modification interface of the offline flight certificate provided by the supervisory server to modify the offline flight parameters according to actual flight requirements.
  • the monitoring method 200 may further include:
  • system administrator of the supervisory server can modify the offline flight parameters according to actual conditions.
  • the monitoring method 200 implements communication interaction between the supervisory server and the drone through a control terminal.
  • control terminal may also be omitted, and the supervisory server may directly interact with the drone, that is, the supervisory server receives offline flight report information of the drone. And generating the generated offline flight certificate directly to the drone without the intermediate link of the control terminal forwarding information.
  • the supervision method 200 of the embodiment of the present invention generates an offline flight certificate by using the unmanned aerial vehicle user identity information and the offline flight parameters reported by the drone user on the supervisory server, so that the drone is in the offline flight mode. It is also possible to monitor whether the flight information of the drone matches the reported flight information, thereby limiting the flight behavior of the drone in the offline flight mode.
  • FIG. 3 it is a schematic flowchart of another method 300 for supervising the flight state of a drone in a supervisory server according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may be implemented by a processor. It should be noted that the method in the embodiment of the present invention is not limited to the steps and the sequence in the flowchart shown in FIG. According to various embodiments, the steps in the flowchart shown in FIG. 3 may add, remove, or change the order.
  • the supervision method 300 can start from step 301.
  • Step 301 establishing a communication connection with the control terminal of the drone.
  • Step 302 Receive the drone identification information sent by the control terminal and the flight information of the drone.
  • the monitoring method 300 may further include: updating the drone deployment map according to the flight information of the drone.
  • Step 303 Determine, according to preset safety flight parameters, whether the flight information of the drone meets flight safety regulations. If it is determined that the flight information of the drone in the online flight mode violates the flight safety regulations, step 304 is performed. Otherwise, return to step 302.
  • Step 304 generating a corresponding flight restriction instruction and/or warning information, and transmitting the flight restriction instruction and/or warning information to the control terminal to limit the absence by the flight restriction instruction and/or warning information Flight behavior of man and machine in online flight mode.
  • the flight information includes at least position information and heading of the drone.
  • the preset safety flight parameter includes at least a latitude and longitude of a sensitive area associated with the drone identification information, and the preset sensitive area includes at least one of the following: an area limiting the flight of the drone (referred to as a “limited flight area”). ), the area where the drone is prohibited from flying (referred to as the "no-fly zone").
  • the supervision method 300 specifically includes:
  • the drone If it is determined that the drone is about to enter or has entered the preset sensitive area, generating a corresponding flight limit instruction and/or warning information, the warning information at least comprising: changing heading information, the flight limit instruction
  • the flight warning command or the flight control command includes at least one of the following: forcibly changing the heading command (ie, the drive-off command), the forced landing command, and the prohibition start command.
  • the flight information further includes at least a plurality of flight parameters of the drone, and the flight parameters include at least: a flight altitude and a flight speed.
  • the preset safety flight parameters further include at least a maximum safe flight altitude and a maximum safe flight speed associated with the drone user identity information.
  • the supervision method 300 specifically includes:
  • the flight limit instruction includes at least one of the following: a forced lowering height command, a forced lower speed command.
  • the warning message can be understood as information sent to the control terminal for alerting the drone user.
  • the drone user can adjust the flight parameters of the drone in time according to the prompt of the warning information.
  • the flight limit command can be understood as an instruction sent to the drone to control the drone to perform a corresponding flight operation.
  • control terminal may first send a warning message to prompt the drone user to adjust the drone in time. course.
  • the flight control command of the drone can also be set to give priority to the control command of the supervisory server by forcibly transmitting the flight limit command, thereby forcibly controlling the station.
  • the drone adjusts the flight parameters.
  • the monitoring method 300 of this embodiment further includes:
  • the air condition information including at least a latitude and longitude of the sensitive area, where the sensitive area includes the following At least one type: a limited flight area and a no-fly area.
  • the step of setting the air condition information associated with the identity information of the drone in real time may specifically include:
  • the input parameter is received, and the air condition information associated with the drone identity information is set according to the input parameter.
  • the system administrator of the supervisory server can edit and modify the air information on the supervisory server.
  • the supervisory server may determine the flight area of the drone according to the flight information, and automatically and in real time push different air condition information, so that the drone user adjusts the unmanned person according to the air condition information in time. Flight parameters of the aircraft.
  • the supervisory server implements communication interaction with the drone through the control terminal.
  • control terminal may also be omitted, and the supervisory server may directly interact with the drone, that is, the supervisory server may directly receive the drone identity information and The flight information of the drone and the flight restriction instruction are directly transmitted to the drone without the intermediate link of the control terminal forwarding information.
  • the supervision method 300 of the embodiment of the invention enables the supervisory server to obtain flight information in time to grasp the flight state of the drone in real time, thereby facilitating supervision and monitoring of the drone.
  • the supervision method 300 of the present invention may further generate a corresponding flight restriction instruction and/or warning information to determine the flight restriction instruction when determining that the flight behavior of the drone in the online flight mode violates safety regulations. And/or warning messages limit the flight behavior of the drone in the online flight mode.
  • FIG. 4 is a schematic structural diagram of a supervisory server 20 according to an embodiment of the present invention.
  • the supervisory server 20 includes, but is not limited to, a communication device 21, a storage device 22, and a processor 23.
  • the storage device 22 is configured to store various types of data of the supervisory server 20, such as drone user identity information, drone identity information, preset security flight parameters, and the like.
  • the storage device 22 may be a memory of the supervisory server 20, and may also be a removable storage device such as a removable media card, an external USB flash drive, and other flash memory or memory.
  • the processor 23 is configured to control the operation of the supervisory server 20.
  • the processor can be a central processing unit (CPU), a microprocessor, a digital signal processor, or other data processing chip.
  • the communication device 21 is configured to establish a communication connection with a control terminal of the drone.
  • the supervisory server 20 further includes a monitoring system 25 that is installed in the storage device 22 in the form of a software program or instruction and executed by the processor 23.
  • the monitoring system 25 can be partitioned into one or more modules that are stored in the storage device 22 and configured to be comprised by one or more processors 23 ( This embodiment is performed by a processor 23) that utilizes the monitoring system 25 to effectively monitor the flight behavior of the drone in the offline flight mode as well as in the online flight mode.
  • FIG. 5 is a functional block diagram of the monitoring system 25 in the supervisory server 20 of the embodiment of the present invention.
  • the monitoring system 25 includes, but is not limited to, a control module 251, a receiving module 252, a certificate generating module 253, a security decision module 254, and a setting module 255.
  • Each of the above functional modules is a series of program instruction segments capable of performing a specific function, and is more suitable than the software program itself to describe the execution process of the software in the computer, as in the processor 23 of the supervisory server 20, so the present invention
  • the description of the software program is described in modules.
  • each of the above functional modules may also be implemented by hardware or firmware.
  • control module 251 is configured to establish a communication connection with the control terminal of the drone through the communication device 21 of the supervisory server 20.
  • the receiving module 252 is configured to receive offline flight notification information sent by the control terminal.
  • the offline flight declaration information includes identity information and offline flight parameters
  • the identity information includes unmanned user identity information and drone identity information
  • the offline flight parameters include at least: flight area information and flight duration.
  • the offline flight parameters may further include at least: a maximum flying height, a farthest flying distance, and a maximum flying speed.
  • the receiving module 252 can receive offline flight notification information through an online reporting platform.
  • the offline flight notification information may be registered in the online reporting platform by the control terminal, the mobile device or the remote controller of the drone, or may be in the online device through other communication devices 21 such as a computer. Registered in the reporting platform.
  • the certificate generation module 253 is configured to provide a front end reporting interface for an offline flight certificate.
  • the control module 251 is further configured to display the front end reporting interface on the control terminal.
  • the receiving module 252 is further configured to receive offline flight notification information input in the front end reporting interface.
  • the drone user can use the control terminal to log in to the front end reporting interface of the offline flight certificate to submit the offline flight declaration information, which is convenient for the drone user to operate.
  • the certificate generating module 253 is configured to generate an offline flight certificate of the drone according to the offline flight report information, where the offline flight certificate includes the offline flight report information, that is, an identity Information and offline flight parameters, the identity information includes drone user identity information and drone identity information, and the offline flight parameters include at least: flight zone information and flight time. In other embodiments, the offline flight parameters further include at least: a maximum flying height, a farthest flying distance, and a maximum flying speed.
  • control module 251 is further configured to establish a communication connection with the third-party authentication platform, and send the UAV user identity information to the third-party authentication platform for authentication.
  • the certificate generating module 253 is configured to generate the offline flight certificate according to the offline flight notification information after the third-party authentication platform successfully authenticates the UAV user identity information.
  • the supervising server 20 of the embodiment authenticates the real identity of the user through the third-party authentication platform, so as to supervise and trace the responsibility of the drone user in the event of a security accident of the drone.
  • the certificate generating module 253 is further configured to display a backend reporting interface of the offline flight certificate on the display screen 24 of the supervisory server 20.
  • the receiving module 252 is further configured to receive, in the backend reporting interface, approval information of an offline flight parameter input in the front end reporting interface, for example, editing and modifying the offline flight parameter.
  • system administrator of the supervisory server 20 can approve the offline flight notification information submitted by the drone user.
  • the certificate generating module 253 generates the method according to the modified offline flight parameter. Offline flight certificate.
  • the control module 251 is further configured to receive and respond to the request signal for downloading an offline flight certificate sent by the control terminal, and send the offline flight certificate to the control terminal, to send the offline flight certificate by using the control terminal. Sending to the corresponding drone, thereby limiting the flight behavior of the drone in the offline flight mode by the offline flight certificate.
  • control module 251 is further configured to update the drone deployment map according to the offline flight notification information.
  • the certificate generating module 253 is further configured to provide a front-end query and modification interface of an offline flight certificate associated with the UAV user identity information and/or the UAV identity information. .
  • the control module 251 is further configured to display the front end query and modification interface on the control terminal.
  • the receiving module 252 is further configured to receive an offline flight parameter modified in the front end query and modification interface.
  • the certificate generating module 253 is further configured to update information in the offline flight certificate according to the modified offline flight parameter.
  • the control module 251 is further configured to push the updated offline flight certificate to the corresponding control terminal in real time.
  • the drone user can log in to the front-end query and modification interface of the offline flight certificate provided by the supervisory server 20 to modify the offline flight parameters according to actual flight requirements.
  • the certificate generating module 253 is further configured to display the UAV user identity information and/or the UAV identity information on the display screen 24 of the supervisory server 20.
  • the receiving module 252 is further configured to receive an offline flight parameter modified in the backend query and modification interface.
  • the certificate generating module 253 is further configured to update information of the offline flight certificate according to the modified offline flight parameter.
  • the control module 251 is further configured to push the updated offline flight certificate to the corresponding control terminal in real time.
  • system administrator of the supervisory server 20 can modify the offline flight parameters according to actual conditions.
  • the supervisory server 20 implements communication interaction with the drone through the control terminal.
  • control terminal may also be omitted, and the supervisory server 20 may directly interact with the drone, that is, the supervisory server 20 receives offline flight of the drone.
  • the information is reported and the generated offline flight certificate is directly provided to the drone without the intermediate link of the control terminal to forward the information.
  • the supervisory server 20 of the embodiment of the present invention generates an offline flight certificate according to the unmanned user identity information and the offline flight parameters reported by the drone user, so that the drone can also be monitored when the drone is in the offline flight mode. Whether the flight information of the drone is consistent with the reported flight information, thereby limiting the flight behavior of the drone in the offline flight mode.
  • the receiving module 252 is further configured to receive the drone identification information sent by the control terminal and the flight information of the drone.
  • control module 251 is further configured to update the drone deployment map according to the flight information of the drone.
  • the security decision module 254 is configured to determine, according to preset safety flight parameters, whether the flight information of the drone meets flight safety regulations, and to determine that the flight information of the drone violates the flight safety regulations. A corresponding flight limit command and/or warning message is generated.
  • the control module 251 is further configured to control the communication device 21 to send the flight restriction instruction and/or warning information to the control terminal to limit the drone by the flight restriction instruction and/or warning information. Flight behavior in online flight mode.
  • the flight information includes position information and heading of the drone.
  • the preset safety flight parameter includes at least a latitude and longitude of a sensitive area associated with the drone identification information, and the preset sensitive area includes at least one of the following: a limited flight area and a no-fly area.
  • the security decision module 254 is specifically configured to:
  • the drone If it is determined that the drone is about to enter or has entered the preset sensitive area, generating a corresponding flight limit instruction and/or warning information, the warning information at least comprising: changing heading information, the flight limit instruction
  • the flight warning command or the flight control command includes at least one of the following: forcibly changing the heading command, the forced landing command, and the prohibiting the starting command.
  • the flight information further includes at least a plurality of flight parameters of the drone, and the flight parameters include at least: a flight altitude and a flight speed.
  • the preset safety flight parameters further include at least a maximum safe flight altitude and a maximum safe flight speed associated with the drone user identity information.
  • the security decision module 254 is specifically configured to:
  • the flight limit instruction includes at least one of the following: a forced lowering height command, a forced lower speed command.
  • control terminal may first send a warning message to prompt the drone user to adjust the drone in time. Flight parameters.
  • the flight controller of the drone may be set to preferentially execute the control command of the supervisory server 20 by sending a flight restriction command, thereby forcibly controlling The drone adjusts flight parameters.
  • the setting module 255 is configured to set the air condition information associated with the UAV identity information in real time.
  • the control module 251 is further configured to control the communication device 21 to push the air condition information to the control terminal in real time, where the air condition information includes at least a latitude and longitude of the sensitive area, and the sensitive area includes at least one of the following: Flight limited area, no-fly area.
  • the setting module 255 when the setting module 255 sets the air condition information associated with the identity information of the drone in real time, the setting module 255 is specifically configured to:
  • the air condition information associated with the drone identity information is automatically set in real time according to the flight information.
  • the system administrator of the supervisory server 20 can edit and modify the air condition information on the supervisory server 20.
  • the supervisory server 20 may determine the flight area of the drone according to the flight information, and automatically and in real time push different air condition information, so that the drone user can adjust the no-time according to the air condition information. Flight parameters of man and machine.
  • the supervisory server 20 implements communication interaction with the drone through the control terminal.
  • control terminal may also be omitted, and the supervisory server 20 may directly interact with the drone, that is, the supervisory server 20 may directly receive the drone identity.
  • the information and the flight information of the drone, and the flight restriction instruction are directly transmitted to the drone without the intermediate link of the control terminal forwarding the information.
  • the supervisory server 20 of the embodiment of the present invention can obtain flight information in time to grasp the flight state of the drone in real time, thereby facilitating supervision and monitoring of the drone.
  • the supervisory method of the present invention may also generate a corresponding flight limit instruction and/or warning information to determine the flight limit instruction and the flight control device when determining that the flight behavior of the drone in the online flight mode violates safety regulations. / or warning messages limit the flight behavior of the drone in online flight mode.
  • each function module of the monitoring system 25 in the policing server 20 in the embodiment of the present invention may refer to the description of the related steps in the corresponding embodiment in FIG. 2-3.
  • FIG. 6 is a schematic flowchart of a method 600 for monitoring a flight state of a drone in a control terminal according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may be implemented by a processor. It should be noted that the method of the embodiment of the present invention is not limited to the steps and the sequence in the flowchart shown in FIG. 6. According to various embodiments, the steps in the flowchart shown in FIG. 6 may add, remove, or change the order.
  • the supervision method 600 can start from step 601.
  • step 601 a communication connection with the drone and the supervisory server is established respectively.
  • the method further includes:
  • online mode means that the control terminal maintains a communication connection state with the supervisory server.
  • the control terminal can communicate with the supervisory server and data transmission through the mobile communication network or other wireless access methods, such as WIFI, in the online mode.
  • the control terminal can also communicate with the drone and data transmission in the online mode.
  • online flight mode refers to the flight mode of the drone when the control terminal is in the online mode.
  • the drone can communicate with the control terminal and data transmission in the online flight mode, and can communicate with the supervisory server and data transmission through the control terminal.
  • offline mode means that the control terminal does not establish a communication connection with the supervisory server.
  • the control terminal is in an offline mode and includes two states: a state in which the control terminal is in an unconnected mobile communication network or another wireless access mode, such as a WIFI state, that is, the control terminal is in a disconnected state. Another state is that the control terminal is not connected to the supervisory server or is in communication with the supervisory server although it is in a state of being connected to a mobile communication network or other wireless access mode, such as WIFI. Then the communication connection was disconnected.
  • the control terminal cannot communicate with the supervisory server and data transmission in the offline mode, but can communicate with the drone and data transmission.
  • offline flight mode refers to an airplane mode in which the drone is in an offline mode when the control terminal is in an offline mode, or when the GPS information cannot be acquired.
  • the drone can communicate with the control terminal and data transmission in the offline flight mode.
  • Step 602 Send offline flight notification information to the supervision server.
  • the offline flight declaration information includes identity information and offline flight parameters
  • the identity information includes unmanned user identity information and drone identity information
  • the offline flight parameters include at least: flight area information and flight duration.
  • the offline flight parameters may further include at least fly-limit area information, a maximum flight height, a farthest flight distance, and a maximum flight speed.
  • the supervision method 600 can send the offline flight notification information to the supervision server via an online reporting platform.
  • Step 603 Send a request signal for downloading an offline flight certificate to the supervisory server, and receive an offline flight certificate sent by the supervisory server, where the offline flight certificate includes the offline flight report information.
  • Step 604 Forward the offline flight certificate to the drone to limit flight behavior of the drone in an offline flight mode by using the offline flight certificate.
  • FIG. 7 is a schematic flowchart diagram of another method 700 for supervising a flight state of a drone in a control terminal according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may be implemented by a processor. It should be noted that the method of the embodiment of the present invention is not limited to the steps and the sequence in the flowchart shown in FIG. 7. According to various embodiments, the steps in the flowchart shown in FIG. 7 may add, remove, or change the order.
  • the supervision method 700 can start from step 701.
  • step 701 a communication connection with the drone and the supervisory server is established respectively.
  • the method further includes:
  • Step 702 Receive the drone identification information sent by the drone and the flight information of the drone.
  • the flight information includes location information of the UAV and a plurality of flight parameters, and the flight parameters include at least: flight time, flight altitude, flight speed, and heading.
  • the supervision method 700 of this embodiment may further include:
  • Step 703 Automatically send the drone identification information and the flight information to the supervision server in the online mode.
  • the monitoring method 700 may further include:
  • the mode of the control terminal When the mode of the control terminal is switched from the offline mode to the online mode, the offline flight information sent by the drone is received, and the offline flight information is automatically forwarded to the supervision server.
  • Step 704 Receive a flight restriction instruction and/or warning information sent by the supervision server.
  • the warning information includes at least one of changing heading information, reducing speed information, and reducing height information.
  • the flight limit command is a flight warning command or a flight control command, and includes at least one of the following: forcibly changing a heading command, a forced landing command, a forced lowering speed command, and a forced lowering height command.
  • Step 705 Forward the flight restriction instruction to the drone, causing the drone to execute the flight restriction instruction to limit flight of the drone in online flight mode by using the flight restriction instruction behavior.
  • the warning message can be understood as information sent to the control terminal for alerting the drone user.
  • the drone user can adjust the flight parameters of the drone in time according to the prompt of the warning information.
  • the flight limit command can be understood as an instruction sent to the drone to forcibly control the drone to perform a corresponding flight operation.
  • the supervisory server may first send a warning message to the control terminal to prompt the drone user to adjust the The heading of the drone.
  • the supervisory server may also set the flight controller of the drone to give priority to executing the control command of the supervisory server by sending a flight limit command. Thereby forcibly controlling the drone to adjust flight parameters.
  • the monitoring method 700 of this embodiment may further include:
  • the monitoring method 700 of this embodiment further includes:
  • the air condition information includes at least a latitude and longitude of the sensitive area, and the sensitive area includes at least one of the following: a limited flight area and a no-fly area;
  • the monitoring method 700 of this embodiment further includes: automatically forwarding the air condition information to the drone, so that the drone can update the drone navigation map in time.
  • FIG. 8 is a schematic structural diagram of a control terminal 50 according to an embodiment of the present invention.
  • the control terminal 50 includes, but is not limited to, a storage device 52, a processor 53, and a communication device 51.
  • the storage device 52 is configured to store various types of data of the control terminal 50, such as drone user identity information, drone identity information, and the like.
  • the storage device 52 may be a memory of the control terminal 50, and may also be a removable storage device such as a removable media card, an external USB flash drive, and other flash memory or memory.
  • the processor 53 is configured to control the operation of the control terminal 50.
  • the processor 53 can be a central processing unit (CPU), a microprocessor, a digital signal processor, or other data processing chip.
  • the communication device 51 is configured to establish a communication connection with the supervisory server and the drone, respectively.
  • the control terminal 50 further includes a monitoring system 55 that is installed in the storage device 52 in the form of a software program or instruction and executed by the processor 53.
  • the monitoring system 55 can be partitioned into one or more modules that are stored in the storage device 52 and configured to be comprised by one or more processors 53 ( The present embodiment is executed by a processor 53) by which the control terminal 55 can effectively monitor the flight behavior of the drone in the offline flight mode and in the online flight mode.
  • FIG. 9 is a functional block diagram of the monitoring system 55 in the control terminal 50 of the embodiment of the present invention.
  • the monitoring system 55 includes at least, but not limited to, a control module 551, a receiving module 552, and a setting module 553.
  • Each of the above functional modules is a series of program instruction segments capable of performing a specific function, and is more suitable than the software program itself to describe the execution process of the software in the computer, as in the processor 53 of the control terminal 50, so the present invention
  • the description of the software program is described in modules.
  • each of the above functional modules may also be implemented by hardware or firmware.
  • control module 551 is configured to establish a communication connection with the drone and the supervisory server through the communication device 51 of the control terminal 50, respectively.
  • the setting module 553 is configured to switch the mode of the control terminal 50 to the online mode after the communication device 51 establishes a communication connection with the supervision server.
  • the control module 551 is further configured to send an online signal to the drone through the communication device 51 to set the flight mode of the drone to an online flight mode.
  • the setting module 553 is further configured to switch the mode of the control terminal 50 to an offline mode after the communication device 51 disconnects the communication connection with the supervision server.
  • the control module 551 is further configured to send an offline signal to the drone through the communication device 51 to set the flight mode of the drone to an offline flight mode.
  • control module 551 is further configured to control the communication device 51 to send offline flight notification information to the supervision server, and send a request signal for downloading an offline flight certificate to the supervision server.
  • control module 551 can send the offline flight notification information to the supervision server through an online reporting platform.
  • the offline flight declaration information includes identity information and offline flight parameters
  • the identity information includes unmanned user identity information and drone identity information
  • the offline flight parameters include at least: flight area information and flight duration.
  • the offline flight parameters may further include at least fly-limit area information, a maximum flight height, a farthest flight distance, and a maximum flight speed.
  • the receiving module 552 is configured to receive an offline flight certificate sent by the supervisory server.
  • the offline flight certificate includes the offline flight declaration information.
  • the control module 551 is further configured to control the communication device 51 to forward the offline flight certificate to the drone to limit flight behavior of the drone in an offline flight mode by using the offline flight certificate.
  • the receiving module 552 is further configured to receive the drone identification information sent by the drone and the flight information of the drone.
  • the flight information includes location information of the UAV and a plurality of flight parameters, and the flight parameters include at least: flight time, flight altitude, flight speed, and heading.
  • control module 551 is further configured to:
  • the control module 551 is further configured to automatically send the drone identification information and the flight information to the supervision server in the online mode by the communication device 51.
  • the receiving module 552 is further configured to: when the control terminal 50 is in offline mode, receive the offline flight information sent by the drone, and store the received offline flight information,
  • the control module 551 is further configured to control the communication device 51 to send the offline flight information to the supervision server when the mode of the control terminal 50 is switched to the online mode.
  • the receiving module 552 is further configured to receive offline flight information sent by the drone when the mode of the control terminal 50 is switched from an offline mode to an online mode, and the control module 551 Also used to control the communication device 51 to automatically forward the offline flight information to the supervisory server.
  • the receiving module 552 is further configured to receive a flight restriction instruction and/or warning information sent by the supervision server.
  • the warning information includes at least one of: changing heading information, reducing speed information, and reducing height information
  • the flight limit instruction includes at least one of: forcibly changing a heading command, forcing a landing command, and forcibly lowering Speed command, forced lower height command.
  • the control module 551 is further configured to: when the flight restriction instruction is received, forward the flight restriction instruction to the drone through the communication device 51, so that the drone executes the flight restriction instruction And limiting the flight behavior of the drone in the online flight mode by the flight restriction instruction.
  • the warning message can be understood as information sent to the control terminal 50 for alerting the drone user.
  • the drone user can adjust the flight parameters of the drone in time according to the prompt of the warning information.
  • the flight limit command can be understood as an instruction sent to the drone to forcibly control the drone to perform a corresponding flight operation.
  • the supervisory server may first send a warning message to the control terminal 50 to prompt the drone user to adjust the location in time.
  • the heading of the drone may be first send a warning message to the control terminal 50 to prompt the drone user to adjust the location in time.
  • the supervisory server may also set the flight controller of the drone to give priority to executing the control command of the supervisory server by sending a flight limit command. Thereby forcibly controlling the drone to adjust flight parameters.
  • the monitoring system 55 further includes a prompting module 554, configured to control a voice device (not shown) of the control terminal 50 to voice prompt the flight limit instruction and/or warning information.
  • the prompting module 554 is further configured to display the flight restriction instruction and/or warning information by text on the display screen 54 of the control terminal 50, so that the drone user can know the warning information in time, and according to the The warning message adjusts the flight parameters of the drone or facilitates the drone user to know in time the flight limit command currently being executed by the drone.
  • the receiving module 552 is further configured to receive the air condition information that is sent by the supervisory server, where the air condition information includes at least a latitude and longitude of the sensitive area, where the sensitive area includes at least one of the following: a limited flight area, and a forbidden area Flying area.
  • the control module 551 is further configured to acquire map information, display a map on the display screen 54 of the control terminal 50, and mark the sensitive area on the map according to the air condition information.
  • the receiving module 552 is further configured to receive the air information pushed by the supervisory server.
  • the air condition information includes at least a latitude and longitude of the sensitive area, and the sensitive area includes at least one of the following: a limited flight area and a no-fly area.
  • the control module 551 is further configured to control the communication device 51 to automatically forward the air condition information to the drone.
  • each function module of the monitoring system 55 in the control terminal 50 in the embodiment of the present invention may refer to the description of the related steps in the corresponding embodiment of FIG. 6-7.
  • FIG. 10 is a schematic flowchart of a method 1000 for supervising a flight state of a drone in an unmanned aerial vehicle according to an embodiment of the present invention.
  • the method of the embodiment of the present invention may be implemented by a processor. It should be noted that the method of the embodiment of the present invention is not limited to the steps and the sequence in the flowchart shown in FIG. According to various embodiments, the steps in the flowchart shown in FIG. 10 may add, remove, or change the order.
  • the method of an embodiment of the invention may begin at step 1001.
  • Step 1001 establishing a communication connection with the control terminal of the drone.
  • Step 1002 Receive and store an offline flight certificate sent by the control terminal.
  • the offline flight certificate includes identity information and offline flight parameters
  • the identity information includes unmanned user identity information and drone identity information
  • the offline flight parameters include at least: flight area information and flight time.
  • the offline flight certificate is stored on the drone.
  • the offline flight certificate may also be stored on a control terminal communicatively connected to the drone.
  • the supervising method 1000 further includes: updating the drone navigation map according to the offline flight parameter.
  • the monitoring method 1000 may further include:
  • the flight mode of the drone is set to the offline flight mode.
  • Step 1003 When setting the flight mode of the drone to an offline flight mode, acquiring the drone identity information and the drone identity information in the offline flight certificate.
  • Step 1004 Verify whether the UAV identity information is consistent with the UAV identity information in the offline flight certificate. If the UAV identity information is inconsistent with the UAV identity information in the offline flight certificate, step 1005 is performed. If the UAV identity information is consistent with the UAV identity information in the offline flight certificate, step 1006 is performed.
  • step 1005 the drone is prohibited from being activated.
  • Step 1006 Monitor and limit flight behavior of the drone in an offline flight mode according to an offline flight parameter in the offline flight certificate.
  • the supervision method 1000 further includes:
  • flight mode of the drone is an offline flight mode
  • storing flight information of the drone and storing the offline flight mode when the flight mode of the drone is switched to the online flight mode Flight information is sent to the control terminal;
  • the flight information of the drone is sent to the control terminal for storage.
  • the offline flight parameters further include: a maximum flight altitude, a farthest flight distance, and a maximum flight speed.
  • the step 1006 specifically includes:
  • the flight parameters including at least: flight time, flight altitude, flight distance, flight speed, heading;
  • the step 1006 specifically includes:
  • the drone is flying outside the time of flight, the drone is prohibited from starting; and/or
  • the flying height of the drone exceeds the maximum flying height, automatically adjusting operating parameters of the corresponding power device of the drone to reduce the flying height;
  • the operating parameters of the corresponding power device of the drone are automatically adjusted to reduce the flight speed.
  • the supervision method 1000 implements communication interaction between the UAV and the supervision server by controlling the terminal.
  • control terminal may also be omitted, and the drone may directly interact with the supervisory server, that is, the drone directly receives the provided by the supervisory server.
  • Offline flight certificate without the intermediate link of the control terminal to forward information.
  • the supervising method 1000 of the embodiment of the present invention can effectively limit the flying drone by using an offline flight certificate pre-stored on the drone, such as a limited area, a height limit, a limit limit, a speed limit, and the like.
  • FIG. 11 is a schematic flowchart diagram of another method 1100 for superimposing a flight state of a drone in an unmanned aerial vehicle according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may be implemented by a processor. It should be noted that the method of the embodiment of the present invention is not limited to the steps and the sequence in the flowchart shown in FIG. According to various embodiments, the steps in the flowchart shown in FIG. 11 may add, remove, or change the order.
  • the method of an embodiment of the invention may begin at step 1101.
  • Step 1101 Acquire flight parameters and location information of the UAV in real time or timing, and generate corresponding flight information according to the flight parameters and location information.
  • the monitoring method 1100 further includes: updating the drone navigation map according to the flight information of the drone.
  • Step 1102 establishing a communication connection with the control terminal of the drone.
  • the monitoring method 1100 further includes:
  • the flight mode of the drone is set to the offline flight mode.
  • Step 1103 When the drone is in the online flight mode, automatically send the drone identity information and the flight information to the control terminal.
  • Step 1104 Receive and process a flight restriction instruction forwarded by the control terminal.
  • the flight restriction instruction includes at least one of forcibly changing a heading command, a forced landing command, a forced lowering speed command, and a forced lowering height command.
  • the step 1104 may specifically include: adjusting flight parameters of the drone according to the flight limit instruction to perform a corresponding flight operation.
  • the step 1104 can include:
  • the monitoring method 1100 further includes:
  • the air condition information includes at least a sensitive area, where the sensitive area includes at least one of: a latitude and longitude of the fly-limited area and the no-fly area;
  • Monitoring the flight status of the drone based on the flight information and the updated navigation map for example, monitoring and limiting flight parameters of the drone.
  • the monitoring method 1100 implements a communication interaction between the drone and the supervisory server by controlling the terminal.
  • control terminal may also be omitted, and the drone may directly interact with the supervisory server, that is, the drone directly sends the supervisory server without The human-machine identity information and the flight information of the drone, and the flight restriction instruction are directly received, without the intermediate link of the control terminal forwarding the information.
  • FIG. 12 is a schematic structural diagram of a drone 60 according to an embodiment of the present invention.
  • the drone 60 includes, but is not limited to, a flight parameter collection device 61, a communication device 62, a storage device 63, a flight controller 64, an ESC device 65, and a plurality of aircraft for driving the UAV 60 to fly.
  • Powerplant 66 is not limited to, a flight parameter collection device 61, a communication device 62, a storage device 63, a flight controller 64, an ESC device 65, and a plurality of aircraft for driving the UAV 60 to fly.
  • Powerplant 66 Powerplant 66.
  • the drone 60 may further include a body, a sensor, a power source, and key components such as circuit modules (not shown) that implement various functions.
  • the storage device 63 is configured to store various types of data of the UAV 60, such as flight data of the UAV 60, including but not limited to, user identity information, UAV 60 identity information, secure flight parameters, etc. .
  • the storage device 63 may be the memory of the drone 60, and may also be a removable storage device such as a removable media card, an external USB flash drive, and other flash memory or memory.
  • the flight controller 64 is used to control the operation of the drone 60.
  • the flight controller 64 can be a central processing unit (CPU), a microprocessor, a digital signal processor, or other data processing chip.
  • the storage device 63 is a flash memory.
  • the flight controller 64 is used for navigation of the drone 60, recording of flight information, overall control of the drone 60, such as controlling the flight speed, altitude, attitude, etc. of the drone 60.
  • the flight parameter collecting device 61 is configured to collect flight parameters and position information of the drone 60 in real time.
  • the flight parameters include, but are not limited to, flight altitude, flight distance, flight speed, heading.
  • the flight parameter collection device 61 specifically includes, but is not limited to, a height sensor (not shown), a speed sensor (not shown), an inertial measurement unit (not shown), and a position sensor (not shown).
  • the height sensor is used to detect the flying height of the drone 60.
  • the speed sensor is used to detect the flight speed of the drone 60.
  • the position sensor is used to detect the latitude and longitude of the drone 60.
  • the position sensor may be a GPS (Global Positioning System) positioning sensor or a GNSS (Global Navigation Satellite System) positioning sensor.
  • the inertial measurement unit is configured to detect information such as a flight attitude, a heading, and the like of the drone 60.
  • the flight control module calculates the flight distance based on the strength of the signal from the control terminal.
  • the flight parameter acquisition device 61 further includes a ranging sensor for detecting a real-time distance between the drone 60 and the control terminal.
  • the flight controller 64 transmits flight information of the drone 60 in the online flight mode (hereinafter referred to as "online flight”.
  • the information is transmitted back to the control terminal in real time by the remote controller, and then automatically sent by the control terminal to the supervisory server.
  • the flight controller 64 transmits flight information of the drone 60 in the offline flight mode (hereinafter referred to as “offline”
  • the flight information is stored in the storage device 63 on the drone 60, and when the online signal is received, the offline flight information is transmitted back to the control terminal through the remote controller, and then The control terminal is automatically sent to the supervision server.
  • the flight controller 64 transmits the offline flight information back to the control terminal for synchronization in real time.
  • the control terminal enters the online mode the saved offline information is automatically sent to the supervision server.
  • the drone 60 further includes a monitoring system 67 that is installed in the storage device 63 in the form of a software program or instruction and executed by the flight controller 64.
  • the monitoring system 67 can be segmented into one or more modules that are stored in the storage device 63 and configured to be executed by the flight controller 64, The drone 60 utilizes the monitoring system 67 to effectively monitor and limit the flight behavior of the drone 60 in an offline flight mode as well as in an online flight mode.
  • FIG. 13 is a functional block diagram of the monitoring system 67 in the drone 60 of the embodiment of the present invention.
  • the monitoring system 67 includes at least, but not limited to, a control module 671, a receiving module 672, a setting module 673, and a verification module 674.
  • Each of the above functional modules is a series of program instruction segments capable of performing a specific function, and is more suitable than the software program itself to describe the execution process of the software in the computer, as in the flight controller 64 of the drone 60, thus The description of the software program by the invention is described in modules.
  • each of the above functional modules may also be implemented by hardware or firmware.
  • the control module 671 is configured to acquire flight parameters and location information of the UAV 60 collected by the flight parameter collection device 61 in real time or timing, and generate corresponding flight information according to the flight parameters and the location information.
  • the control module 671 is further configured to establish a communication connection with the control terminal of the drone 60 through the communication device 62 of the drone 60.
  • the receiving module 672 is configured to receive and store an offline flight certificate sent by the control terminal.
  • the offline flight certificate includes identity information and offline flight parameters
  • the identity information includes the UAV 60 user identity information and the UAV 60 identity information
  • the offline flight parameters include at least: flight area information. And flight time.
  • the offline flight certificate is stored on the drone 60.
  • the offline flight certificate may also be stored on a control terminal communicatively coupled to the drone 60.
  • control module 671 is further configured to update the drone 60 to navigate the map according to the offline flight parameters.
  • the setting module 673 is configured to set an flight mode of the drone 60 to an online flight mode when the receiving module 672 receives the online signal sent by the control terminal; and receive at the receiving module 672.
  • the flight mode of the drone 60 is set to an offline flight mode; and when the control module 671 cannot obtain the flight position of the drone 60, The flight mode of the drone 60 is set to an offline flight mode.
  • the offline flight certificate further includes identity information, and the identity information includes the UAV 60 user identity information and the UAV 60 identity information.
  • the verification module 674 is configured to acquire the identity information of the drone 60 and the identity information of the drone 60 in the offline flight certificate when the flight mode of the drone 60 is set to the offline flight mode, and Verifying whether the identity information of the drone 60 is consistent with the identity information of the drone 60 in the offline flight certificate.
  • the control module 671 is further configured to prohibit starting the drone 60 when the identity information of the drone 60 is inconsistent with the identity information of the drone 60 in the offline flight certificate.
  • the control module 671 is further configured to monitor and limit the flight behavior of the drone 60 in the offline flight mode according to the offline flight parameters in the offline flight certificate when the drone 60 is in the offline flight mode.
  • control module 671 is further configured to:
  • the flight mode of the drone 60 is the offline flight mode
  • the flight information of the drone 60 is stored on the drone 60
  • the flight mode of the drone 60 is switched to Controlling the communication device 62 to transmit the stored flight information in the offline flight mode to the control terminal during the online flight mode;
  • the flight information of the drone 60 is transmitted to the control terminal for storage.
  • the offline flight parameters further include: a maximum flight altitude, a farthest flight distance, and a maximum flight speed.
  • control module 671 monitors and limits the flight behavior of the drone 60 in the offline flight mode according to the offline flight parameters in the offline flight certificate
  • control module 671 is specifically configured to:
  • the flight parameters including at least: flight time, flight altitude, flight distance, flight speed, heading;
  • Whether the flight speed of the drone 60 exceeds the maximum flight speed is monitored according to a maximum flight speed in the offline flight certificate.
  • control module 671 monitors and limits the flight behavior of the drone 60 in the offline flight mode according to the offline flight parameters in the offline flight certificate
  • control module 671 is further configured to:
  • the heading of the drone 60 is adjusted to control the drone 60 to fly in the flight area, or to prohibit the absence
  • the human machine 60 is activated; and/or
  • the drone 60 When the drone 60 is flying outside the time of flight, the drone 60 is prohibited from starting; and/or
  • the operating parameters of the corresponding power unit 66 of the drone 60 are automatically adjusted to reduce the flying height
  • the operating parameters of the corresponding power unit 66 of the drone 60 are automatically adjusted to reduce the flight distance;
  • the operating parameters of the corresponding power unit 66 of the drone 60 are automatically adjusted to reduce the flight speed.
  • control module 671 is further configured to update the drone 60 to navigate the map according to the offline flight parameters.
  • the drone 60 implements communication interaction with the supervisory server through the control terminal.
  • control terminal may also be omitted, and the drone 60 may directly interact with the supervision server, that is, the drone 60 directly receives the supervision server.
  • An offline flight certificate is provided without the intermediate link of the control terminal to forward information.
  • the UAV 60 of the embodiment of the present invention can effectively limit the UAV 60 by pre-existing the offline flight certificate, such as a limited area, a height limit, a limit limit, a speed limit, and the like.
  • control module 671 is further configured to control the communication device 62 to automatically send the unmanned aircraft 60 identity information and the flight information to the control when the drone 60 is in the online flight mode. terminal.
  • the receiving module 672 is further configured to receive a flight limit instruction forwarded by the control terminal, and the control module 671 is further configured to adjust a flight parameter of the drone 60 according to the flight limit instruction to perform a corresponding flight operation.
  • the flight restriction instruction includes at least one of forcibly changing a heading command, a forced landing command, a forced lowering speed command, and a forced lowering height command.
  • control module 671 adjusts the flight parameters of the drone 60 according to the flight limit instruction to perform a corresponding flight operation
  • the control module 671 is specifically configured to:
  • the receiving module 672 is further configured to receive and store the air condition information forwarded by the control terminal, where the air condition information includes at least a sensitive area, where the sensitive area includes at least one of: a latitude and longitude of the fly-limited area and the no-fly area .
  • the control module 671 is further configured to update the drone 60 navigation map according to the air condition information, and monitor the flight status of the drone 60 according to the flight information and the updated navigation map.
  • each functional module of the monitoring system 67 in the unmanned aerial vehicle 60 in the embodiment of the present invention may refer to the description of the related steps in the corresponding embodiments in the foregoing FIG. 10-11.
  • the drone 60 is capable of monitoring whether the flight information of the drone 60 matches the reported flight information in the offline flight mode by installing an offline flight certificate, thereby limiting the drone 60 in the Flight behavior in offline flight mode.
  • the flight information is uploaded to the supervisory server in real time in the online flight mode, so that the supervisory server can obtain flight information in time to grasp the flight state of the drone 60 in real time, thereby facilitating the drone 60.
  • the supervisory server can also limit the flight of the drone 60 in the online flight mode by transmitting a flight restriction command and/or warning information when the flight behavior of the drone 60 in the online flight mode violates safety regulations. behavior.
  • the drone 60 can implement the drone 60 and the plurality of wireless communication functions, such as 2G, 3G, 4G, 5G, WIFI, etc., by using a control terminal, such as a mobile phone, a tablet computer, or the like.
  • a control terminal such as a mobile phone, a tablet computer, or the like.
  • the two-way communication between the servers and the data transmission are supervised, so that the flight data of the drone 60 can be uploaded to the supervision server without adding additional hardware devices, which effectively solves the problem in the prior art.
  • the flight data of the micro drone 60 and the technical problem of not being able to effectively supervise the flight behavior of the micro drone 60 are effectively obtained.
  • the drone 60 implements communication interaction with the supervisory server through the control terminal.
  • control terminal may also be omitted, and the drone 60 may directly interact with the supervision server, that is, the drone 60 directly receives the supervision server.
  • the drone 60 directly transmits the drone 60 identity information and the flight information of the drone 60 to the supervisory server, and directly receives the flight restriction instruction without the need Control the intermediate link of the terminal to forward information.
  • the related apparatus and method disclosed may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

一种无人机(60)、无人机(60)飞行状态的监管系统(25)、监控系统(67)、处理器(53)以及存储器,一种无人机(60)飞行状态的监管方法。其中方法包括:根据离线飞行申报信息生成无人机(60)的离线飞行证书,并将该离线飞行证书提供给该无人机(60),从而通过该离线飞行证书限制该无人机(60)在离线飞行模式下的飞行行为;或者,上报无人机(60)的飞行信息,根据预设的安全飞行参数判断该无人机(60)的飞行信息是否符合飞行安全规定,并在判断出该无人机(60)的飞行信息违反该飞行安全规定时,生成相应的飞行限制指令,并将该飞行限制指令发送给该无人机(60)执行,以限制该无人机(60)在在线飞行模式下的飞行行为。

Description

无人机及其飞行状态的监管方法与监控系统 技术领域
本发明涉及低空领域的微型无人机安全飞行监控技术领域,特别涉及一种无人机及其飞行状态的监管方法和监控系统。
背景技术
无人机是一种主要活动在低空领域的飞行器,其主要依靠远程遥控器来控制其飞行。由于低空领域的飞行环境比较复杂且容易受到少数禁飞区域的限制,政府及安全部门需要对无人机进行监管,以保障社会安全。有效的航空监管系统需要获得航空器的飞行数据,包括飞行时间、经纬度、高度、速度和航向等。现有的航空监管系统普遍要求航空器配备高频通信设备、二次雷达应答机和广播式自动相关监视设备(ADS-B)等主动设备在飞行中提供航空器自身的飞行信息,然而,这些设备体积、重量过大,无法安装在微型无人机上。而通过地面雷达监控被动方式,由于微型无人机尺寸较小,地面监控的盲区较大,也是无法有效监控的。因此,现有的航空监管系统无法通过自身的技术手段有效获取微型无人机的飞行数据。此外,现有微型无人机的飞行数据都是保存在无人机上的存储装置中,用户需要收回无人机后再读取无人机存储的飞行信息,使得飞行数据的获取相对滞后,如果用户不主动读取并上传这些数据,监管者也是无法获取的。
发明内容
有鉴于此,有必要提出一种无人机及其飞行状态的监管方法与监控系统,以解决上述问题。
一种无人机飞行状态的监管方法,应用于监管服务器中,所述监管方法包括以下步骤:
建立与无人机的控制终端的通信连接;
接收所述控制终端发送的离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
接收并响应所述控制终端发送的下载离线飞行证书的请求信号,将所述离线飞行证书发送给所述控制终端,以通过所述控制终端将所述离线飞行证书发送给相应的无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
进一步地,所述离线飞行参数还包括:最高飞行高度、最远飞行距离、最大飞行速度。
进一步地,所述监管方法还包括:根据所述离线飞行申报信息更新无人机部署地图。
进一步地,通过在线申报平台接收离线飞行申报信息。
进一步地,接收所述控制终端发送的离线飞行申报信息步骤,具体包括:
提供离线飞行证书的前端申报界面,并将所述前端申报界面显示于所述控制终端上;以及
接收在所述前端申报界面中输入的离线飞行申报信息。
进一步地,在接收所述控制终端发送的离线飞行申报信息步骤之后,还包括:
与第三方认证平台建立通信连接,并将所述无人机用户身份信息发送给所述第三方认证平台进行认证;
若所述第三方认证平台成功认证所述无人机用户身份信息,则根据所述离线飞行申报信息生成所述离线飞行证书。
进一步地,根据所述离线飞行申报信息生成无人机的离线飞行证书步骤之前,还包括:
显示离线飞行证书的后端申报界面;以及
接收在所述后端申报界面中对在所述前端申报界面中输入的离线飞行参数的审批信息。
进一步地,所述监管方法还包括:
提供与无人机用户身份信息及/或无人机身份信息关联的离线飞行证书的前端查询与修改界面,并将所述前端查询与修改界面显示于所述控制终端上;
接收在所述前端查询与修改界面中修改的离线飞行参数;以及
根据所述修改后的离线飞行参数更新所述离线飞行证书中的信息,并将更新后的离线飞行证书实时推送给相应的控制终端。
进一步地,所述监管方法还包括:
显示与无人机用户身份信息及/或无人机身份信息关联的离线飞行证书的后端查询与修改界面;
接收在所述后端查询与修改界面中修改的离线飞行参数;以及
根据所述修改后的离线飞行参数更新所述离线飞行证书的信息,并将更新后的离线飞行证书实时推送给相应的控制终端。
进一步地,通过移动通信网络及/或无线接入方式与所述控制终端建立通信连接。
一种无人机飞行状态的监管方法,应用于监管服务器中,所述监管方法包括以下步骤:
接收无人机的离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
将所述离线飞行证书提供给所述无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
进一步地,通过在线申报平台接收离线飞行申报信息。
进一步地,在将所述离线飞行证书提供给所述无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为步骤之前,还包括:
建立与无人机的控制终端的通信连接,接收并响应所述控制终端发送的下载离线飞行证书的请求信号。
进一步地,所述监管方法还包括:
将所述离线飞行证书发送给所述控制终端,以通过所述控制终端将所述离线飞行证书发送给相应的无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述监管方法还包括:根据所述离线飞行申报信息更新无人机部署地图。
一种无人机飞行状态的监控系统,应用于一种监管服务器中,所述监控系统包括:
控制模块,用于通过所述监管服务器的通信装置建立与无人机的控制终端的通信连接;
接收模块,用于接收所述控制终端发送的离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
证书生成模块,用于根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
所述控制模块还用于接收并响应所述控制终端发送的下载离线飞行证书的请求信号,将所述离线飞行证书发送给所述控制终端,以通过所述控制终端将所述离线飞行证书发送给相应的无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
进一步地,所述离线飞行参数还包括:最高飞行高度、最远飞行距离、最大飞行速度。
进一步地,所述控制模块还用于根据所述离线飞行申报信息更新无人机部署地图。
进一步地,所述接收模块通过在线申报平台接收离线飞行申报信息。
进一步地,所述接收模块通过在线申报平台接收离线飞行申报信息。
进一步地,所述证书生成模块还用于提供离线飞行证书的前端申报界面;
所述控制模块还用于将所述前端申报界面显示于所述控制终端上;以及
所述接收模块用于接收在所述前端申报界面中输入的离线飞行申报信息。
进一步地,所述控制模块还用于与第三方认证平台建立通信连接,并将所述无人机用户身份信息发送给所述第三方认证平台进行认证;
所述证书生成模块用于在所述第三方认证平台成功认证所述无人机用户身份信息之后,根据所述离线飞行申报信息生成所述离线飞行证书。
进一步地,所述证书生成模块还用于在所述监管服务器的显示屏上显示离线飞行证书的后端申报界面;以及
所述接收模块还用于接收在所述后端申报界面中对在所述前端申报界面中输入的离线飞行参数的审批信息。
进一步地,所述证书生成模块还用于提供与无人机用户身份信息及/或无人机身份信息关联的离线飞行证书的前端查询与修改界面;
所述控制模块还用于将所述前端查询与修改界面显示于所述控制终端上;
所述接收模块还用于接收在所述前端查询与修改界面中修改的离线飞行参数;
所述证书生成模块还用于根据所述修改后的离线飞行参数更新所述离线飞行证书中的信息;以及
所述控制模块还用于将更新后的离线飞行证书实时推送给相应的控制终端。
进一步地,所述证书生成模块还用于在所述监管服务器的显示屏上显示与无人机用户身份信息及/或无人机身份信息关联的离线飞行证书的后端查询与修改界面;
所述接收模块还用于接收在所述后端查询与修改界面中修改的离线飞行参数;
所述证书生成模块还用于根据所述修改后的离线飞行参数更新所述离线飞行证书的信息;以及
所述控制模块还用于将更新后的离线飞行证书实时推送给相应的控制终端。
一种处理器,应用于监管服务器中,所述处理器用于获取存储装置中存储的程序指令,以执行以下步骤:
建立与无人机的控制终端的通信连接;
接收所述控制终端发送的离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
接收并响应所述控制终端发送的下载离线飞行证书的请求信号,将所述离线飞行证书发送给所述控制终端,以通过所述控制终端将所述离线飞行证书发送给相应的无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
进一步地,所述离线飞行参数还包括:最高飞行高度、最远飞行距离、最大飞行速度。
一种处理器,应用于监管服务器中,所述处理器用于获取存储装置中存储的程序指令,以执行以下步骤:
接收无人机的离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
将所述离线飞行证书提供给所述无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
进一步地,所述离线飞行参数还包括:最高飞行高度、最远飞行距离、最大飞行速度。
一种存储器,应用于监管服务器中,所述存储器用于存储程序指令,所述程序指令可被处理器获取以执行以下步骤:
建立与无人机的控制终端的通信连接;
接收所述控制终端发送的离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
接收并响应所述控制终端发送的下载离线飞行证书的请求信号,将所述离线飞行证书发送给所述控制终端,以通过所述控制终端将所述离线飞行证书发送给相应的无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
进一步地,所述离线飞行参数还包括:最高飞行高度、最远飞行距离、最大飞行速度。
一种无人机飞行状态的监管方法,应用于监管服务器中,所述监管方法包括以下步骤:
建立与无人机的控制终端的通信连接;
接收所述控制终端发送的无人机身份信息以及无人机的飞行信息;
根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定;以及
若判断出所述无人机的飞行信息违反所述飞行安全规定时,则生成相应的飞行限制指令和/或警告信息,并将所述飞行限制指令和/或警告信息发送给所述控制终端,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
进一步地,所述飞行信息包括所述无人机的位置信息、航向;预设的所述安全飞行参数至少包括与无人机身份信息关联的敏感区域的经纬度,预设的所述敏感区域包括如下至少一种:限飞区域、禁飞区域;所述监管方法具体包括:
根据所述无人机身份信息以及所述飞行信息判断所述无人机是否进入或即将进入预设的敏感区域;
若判断出所述无人机即将进入或已经进入预设的所述敏感区域,则生成相应的飞行限制指令和/或警告信息,所述警告信息至少包括:改变航向信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、禁止启动指令。
进一步地,所述飞行信息包括所述无人机的多种飞行参数,所述飞行参数至少包括:飞行高度、飞行速度;预设的所述安全飞行参数至少包括与无人机用户身份信息关联的最高安全飞行高度、最大安全飞行速度;所述监管方法具体还包括:
根据所述无人机身份信息以及所述飞行信息监控所述无人机的飞行状态,并判断所述无人机的飞行参数是否超出预设的所述安全飞行参数;
若判断出所述无人机的飞行参数超出预设的所述安全飞行参数,则生成相应的飞行限制指令和/或警告信息,所述警告信息包括如下至少一种:降低高度信息、降低速度信息,所述飞行限制指令包括如下至少一种:强制降低高度指令、强制降低速度指令。
进一步地,所述监管方法还包括:
实时设定与所述无人机身份信息关联的空情信息,并实时地向所述控制终端推送所述空情信息,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域。
进一步地,实时设定与所述无人机身份信息关联的空情信息步骤,具体包括:
接收输入的参数,并根据所述输入的参数设定与所述无人机身份信息关联的空情信息;及/或
根据所述飞行信息实时地自动设定与所述无人机身份信息关联的空情信息。
进一步地,所述监管方法还包括:根据所述无人机的飞行信息更新无人机部署地图。
进一步地,通过移动通信网络及/或无线接入方式与所述控制终端建立通信连接。
一种无人机飞行状态的监管方法,应用于监管服务器中,所述监管方法包括以下步骤:
接收无人机身份信息以及无人机的飞行信息;
根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定;以及
若判断出所述无人机的飞行信息违反所述飞行安全规定时,则生成相应的飞行限制指令,并将所述飞行限制指令发送给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
进一步地,与无人机直接或间接地建立通信连接。
进一步地,所述飞行限制指令为飞行预警指令或飞行控制指令。
进一步地,根据所述无人机的飞行信息更新无人机部署地图。
一种无人机飞行状态的监控系统,应用于监管服务器中,所述监控系统包括:
控制模块,用于通过所述监管服务器的通信装置建立与无人机的控制终端的通信连接;
接收模块,用于接收所述控制终端发送的无人机身份信息以及无人机的飞行信息;
安全决策模块,用于根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定;以及用于在判断出所述无人机的飞行信息违反所述飞行安全规定时,生成相应的飞行限制指令和/或警告信息;以及
所述控制模块还用于控制所述通信装置将所述飞行限制指令和/或警告信息发送给所述控制终端,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
进一步地,所述飞行信息包括所述无人机的位置信息、航向;预设的所述安全飞行参数至少包括与无人机身份信息关联的敏感区域的经纬度,预设的所述敏感区域包括如下至少一种:限飞区域、禁飞区域;所述安全决策模块具体用于:
根据所述无人机身份信息以及所述飞行信息判断所述无人机是否进入或即将进入预设的敏感区域;
若判断出所述无人机即将进入或已经进入预设的所述敏感区域,则生成相应的飞行限制指令和/或警告信息,所述警告信息至少包括:改变航向信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、禁止启动指令。
进一步地,所述飞行信息包括所述无人机的多种飞行参数,所述飞行参数至少包括:飞行高度、飞行速度;预设的所述安全飞行参数至少包括与无人机用户身份信息关联的最高安全飞行高度、最大安全飞行速度;所述安全决策模块具体还用于:
根据所述无人机身份信息以及所述飞行信息监控所述无人机的飞行状态,并判断所述无人机的飞行参数是否超出预设的所述安全飞行参数;
若判断出所述无人机的飞行参数超出预设的所述安全飞行参数,则生成相应的飞行限制指令和/或警告信息,所述警告信息包括如下至少一种:降低高度信息、降低速度信息,所述飞行限制指令包括如下至少一种:强制降低高度指令、强制降低速度指令。
进一步地,所述监控系统还包括设置模块,用于实时设定与所述无人机身份信息关联的空情信息;
所述控制模块还用于控制所述通信装置实时地向所述控制终端推送所述空情信息,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域。
进一步地,所述设置模块在实时设定与所述无人机身份信息关联的空情信息时,具体用于:
接收输入的参数,并根据所述输入的参数设定与所述无人机身份信息关联的空情信息;及/或
根据所述飞行信息实时地自动设定与所述无人机身份信息关联的空情信息。
进一步地,所述控制模块还用于根据所述无人机的飞行信息更新无人机部署地图。
一种处理器,应用于监管服务器中,所述处理器用于获取存储装置中存储的程序指令,以执行以下步骤:
建立与无人机的控制终端的通信连接;
接收所述控制终端发送的无人机身份信息以及无人机的飞行信息;
根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定;以及
若判断出所述无人机的飞行信息违反所述飞行安全规定时,则生成相应的飞行限制指令和/或警告信息,并将所述飞行限制指令和/或警告信息发送给所述控制终端,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
一种处理器,应用于监管服务器中,所述处理器用于获取存储装置中存储的程序指令,以执行以下步骤:
接收无人机身份信息以及无人机的飞行信息;
根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定;以及
若判断出所述无人机的飞行信息违反所述飞行安全规定时,则生成相应的飞行限制指令,并将所述飞行限制指令发送给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
一种存储器,应用于监管服务器中,所述存储器用于存储程序指令,所述程序指令可被处理器获取以执行以下步骤:
建立与无人机的控制终端的通信连接;
接收所述控制终端发送的无人机身份信息以及无人机的飞行信息;
根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定;以及
若判断出所述无人机的飞行信息违反所述飞行安全规定时,则生成相应的飞行限制指令和/或警告信息,并将所述飞行限制指令和/或警告信息发送给所述控制终端,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
一种无人机飞行状态的监管方法,应用于控制终端中,所述监管方法包括以下步骤:
分别建立与无人机以及监管服务器的通信连接;
向所述监管服务器发送离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
向所述监管服务器发送下载离线飞行证书的请求信号,并接收所述监管服务器发送的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
将所述离线飞行证书转发给所述无人机,以通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
进一步地,所述监管方法还包括:
在与所述监管服务器建立通信连接后,将所述控制终端的模式切换为在线模式,并发送在线信号给所述无人机,以将所述无人机的飞行模式设定为在线飞行模式;以及
在与所述监管服务器断开通信连接后,将所述控制终端的模式切换为离线模式,并发送离线信号给所述无人机,以将所述无人机的飞行模式设定为离线飞行模式。
进一步地,通过移动通信网络及/或无线接入方式与所述监管服务器进行数据传输。
进一步地,通过移动通信网络及/或无线传输方式与所述无人机进行数据传输,所述无线接入方式包括WIFI或蓝牙方式。
一种无人机飞行状态的监控系统,应用于控制终端中,所述监控系统包括:
控制模块,用于通过所述控制终端的通信装置分别建立与无人机以及监管服务器的通信连接;
所述控制模块还用于控制所述通信装置向所述监管服务器发送离线飞行申报信息,以及向所述监管服务器发送下载离线飞行证书的请求信号,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
接收模块,用于接收所述监管服务器发送的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
所述控制模块还用于控制所述通信装置将所述离线飞行证书转发给所述无人机,以通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
进一步地,所述监控系统还包括设置模块,所述设置模块用于:
在与所述监管服务器建立通信连接后,将所述控制终端的模式切换为在线模式,并通过所述通信装置发送在线信号给所述无人机,以将所述无人机的飞行模式设定为在线飞行模式;以及
在与所述监管服务器断开通信连接后,将所述控制终端的模式切换为离线模式,并通过所述通信装置发送离线信号给所述无人机,以将所述无人机的飞行模式设定为离线飞行模式。
一种处理器,应用于控制终端中,所述处理器用于获取存储装置中存储的程序指令,以执行以下步骤:
分别建立与无人机以及监管服务器的通信连接;
向所述监管服务器发送离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
向所述监管服务器发送下载离线飞行证书的请求信号,并接收所述监管服务器发送的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
将所述离线飞行证书转发给所述无人机,以通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
一种存储器,应用于控制终端中,所述存储器用于存储程序指令,所述程序指令可被处理器获取以执行以下步骤:
分别建立与无人机以及监管服务器的通信连接;
向所述监管服务器发送离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
向所述监管服务器发送下载离线飞行证书的请求信号,并接收所述监管服务器发送的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
将所述离线飞行证书转发给所述无人机,以通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
一种无人机飞行状态的监管方法,应用于控制终端中,所述监管方法包括以下步骤:
分别建立与无人机以及监管服务器的通信连接;
接收所述无人机发送的无人机身份信息以及无人机的飞行信息;
在在线模式下自动地将无人机身份信息以及所述飞行信息发送给所述监管服务器;
接收所述监管服务器发送的飞行限制指令和/或警告信息;以及
将所述飞行限制指令转发给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
进一步地,所述警告信息包括如下至少一种:改变航向信息、降低速度信息、降低高度信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
进一步地,所述飞行信息包括所述无人机的位置信息以及多种飞行参数,所述飞行参数至少包括:飞行时间、飞行高度、飞行速度、航向;所述监管方法还包括:
获取地图信息,并显示地图;
根据所述位置信息在所述地图上标记所述无人机的位置;
及/或,在所述地图上显示所述无人机的飞行参数。
进一步地,所述监管方法还包括:
接收所述监管服务器推送的空情信息,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域;
获取地图信息,并显示地图;以及
根据所述空情信息在所述地图上标记限飞区域及/或禁飞区域。
进一步地,所述监管方法还包括:
通过语音提示所述飞行限制指令和/或警告信息;或者
通过文字显示所述飞行限制指令和/或警告信息。
进一步地,所述监管方法还包括:
接收所述监管服务器推送的空情信息,并自动地将所述空情信息转发给所述无人机,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域。
进一步地,所述监管方法还包括:
在与所述监管服务器建立通信连接后,将所述控制终端的模式切换为在线模式,并发送在线信号给所述无人机,以将所述无人机的飞行模式设定为在线飞行模式;以及
在与所述监管服务器断开通信连接后,将所述控制终端的模式切换为离线模式,并发送离线信号给所述无人机,以将所述无人机的飞行模式设定为离线飞行模式。
进一步地,所述监管方法还包括:
在所述控制终端处于离线模式下接收到所述无人机发送的离线飞行信息时,将接收到的所述离线飞行信息存储,并在所述控制终端的模式被切换至在线模式时控制所述通信装置将所述离线飞行信息发送给所述监管服务器;或者
在所述控制终端的模式从离线模式切换至在线模式时,接收所述无人机发送的离线飞行信息,并将所述离线飞行信息自动转发给所述监管服务器。
进一步地,通过移动通信网络及/或无线接入方式与所述监管服务器进行数据传输。
进一步地,通过移动通信网络及/或无线传输方式与所述无人机进行数据传输,所述无线接入方式包括WIFI或蓝牙方式。
一种无人机飞行状态的监控系统,应用于控制终端中,所述监控系统包括:
控制模块,用于通过所述控制终端的通信装置分别建立与无人机以及监管服务器的通信连接;
接收模块,用于接收所述无人机发送的无人机身份信息以及无人机的飞行信息;
所述控制模块还用于通过所述通信装置在在线模式下自动地将无人机身份信息以及所述飞行信息发送给所述监管服务器;
所述接收模块还用于接收所述监管服务器发送的飞行限制指令和/或警告信息;以及
所述控制模块还用于在接收到飞行限制指令时,通过所述通信装置将所述飞行限制指令转发给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
进一步地,所述警告信息包括如下至少一种:改变航向信息、降低速度信息、降低高度信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
进一步地,所述飞行信息包括所述无人机的位置信息以及多种飞行参数,所述飞行参数至少包括:飞行时间、飞行高度、飞行速度、航向;所述控制模块还用于:
获取地图信息,并在所述控制终端的显示屏上显示地图;
根据所述位置信息在所述地图上标记所述无人机的位置;
及/或,在所述地图上显示所述无人机的飞行参数。
进一步地,所述接收模块还用于接收所述监管服务器推送的空情信息,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域;
所述控制模块还用于获取地图信息,并在所述控制终端的显示屏上显示地图,以及根据所述空情信息在所述地图上标记所述敏感区域。
进一步地,所述监控系统还包括提示模块,所述提示模块用于通过语音提示所述飞行限制指令和/或警告信息,或者通过文字显示所述飞行限制指令和/或警告信息。
进一步地,所述接收模块还用于接收所述监管服务器推送的空情信息;所述控制模块还用于控制所述通信装置自动地将所述空情信息转发给所述无人机,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域。
进一步地,所述监控系统还包括设置模块,所述设置模块用于:
在与所述监管服务器建立通信连接后,将所述控制终端的模式切换为在线模式,并通过所述通信装置发送在线信号给所述无人机,以将所述无人机的飞行模式设定为在线飞行模式;以及
在与所述监管服务器断开通信连接后,将所述控制终端的模式切换为离线模式,并通过所述通信装置发送离线信号给所述无人机,以将所述无人机的飞行模式设定为离线飞行模式。
进一步地,所述接收模块还用于在所述控制终端处于离线模式下接收到所述无人机发送的离线飞行信息时,将接收到的所述离线飞行信息存储,所述控制模块还用于在所述控制终端的模式被切换至在线模式时控制所述通信装置将所述离线飞行信息发送给所述监管服务器;或者
所述接收模块还用于在所述控制终端的模式从离线模式切换至在线模式时,接收所述无人机发送的离线飞行信息,所述控制模块还用于控制所述通信装置将所述离线飞行信息自动转发给所述监管服务器。
一种处理器,应用于控制终端中,所述处理器用于获取存储装置中存储的程序指令,以执行以下步骤:
分别建立与无人机以及监管服务器的通信连接;
接收所述无人机发送的无人机身份信息以及无人机的飞行信息;
在在线模式下自动地将无人机身份信息以及所述飞行信息发送给所述监管服务器;
接收所述监管服务器发送的飞行限制指令和/或警告信息;以及
将所述飞行限制指令转发给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
进一步地,所述警告信息包括如下至少一种:改变航向信息、降低速度信息、降低高度信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
一种存储器,应用于控制终端中,所述存储器用于存储程序指令,所述程序指令可被处理器获取以执行以下步骤:
分别建立与无人机以及监管服务器的通信连接;
接收所述无人机发送的无人机身份信息以及无人机的飞行信息;
在在线模式下自动地将无人机身份信息以及所述飞行信息发送给所述监管服务器;
接收所述监管服务器发送的飞行限制指令和/或警告信息;以及
将所述飞行限制指令转发给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
进一步地,所述警告信息包括如下至少一种:改变航向信息、降低速度信息、降低高度信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
一种无人机飞行状态的监管方法,应用于无人机中,所述监管方法包括以下步骤:
建立与无人机的控制终端的通信连接;
接收并存储所述控制终端发送的离线飞行证书,所述离线飞行证书包括离线飞行参数;以及
当所述无人机处于离线飞行模式时,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述监管方法还包括:
接收所述控制终端发送的在线信号,将所述无人机的飞行模式设定为在线飞行模式;以及
接收所述控制终端发送的离线信号,将所述无人机的飞行模式设定为离线飞行模式;以及
当无法获取到所述无人机的飞行位置时,将所述无人机的飞行模式设定为离线飞行模式。
进一步地,所述监管方法还包括:
当所述无人机的飞行模式为离线飞行模式时,存储所述无人机的飞行信息,并在所述无人机的飞行模式被切换为在线飞行模式时将存储的离线飞行模式下的飞行信息发送给所述控制终端;或者
当所述无人机的飞行模式为离线飞行模式时,将所述无人机的飞行信息发送给所述控制终端进行存储。
进一步地,所述离线飞行证书中还包括身份信息,所述身份信息包括无人机用户身份信息与无人机身份信息;所述监管方法还包括:
当设定所述无人机的飞行模式为离线飞行模式时,获取所述无人机身份信息以及所述离线飞行证书中的无人机身份信息,并验证所述无人机身份信息与所述离线飞行证书中的无人机身份信息是否一致;
若所述无人机身份信息与所述离线飞行证书中的无人机身份信息不一致,则禁止启动所述无人机。
进一步地,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
进一步地,所述离线飞行参数还包括:限飞区域信息、最高飞行高度、最远飞行距离、最大飞行速度。
进一步地,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为步骤,具体包括:
获取所述无人机的飞行参数以及位置信息,所述飞行参数至少包括:飞行时间、飞行高度、飞行距离、飞行速度、航向;
根据所述离线飞行证书中的飞行区域信息监控所述无人机的飞行位置是否在所述飞行区域内;及/或
根据所述离线飞行证书中的飞行时间监控所述无人机是否在所述飞行时间内飞行;及/或
根据所述离线飞行证书中的限飞区域信息监控所述无人机的飞行位置是否在所述限飞区域内;及/或
根据所述离线飞行证书中的最高飞行高度监控所述无人机的飞行高度是否超出所述最高飞行高度;及/或
根据所述离线飞行证书中的最远飞行距离监控所述无人机的飞行距离是否超出所述最远飞行距离;及/或
根据所述离线飞行证书中的最大飞行速度监控所述无人机的飞行速度是否超出所述最大飞行速度。
进一步地,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为步骤,具体还包括:
若所述无人机的飞行位置在所述飞行区域之外,则调整所述无人机的航向,以控制所述无人机在所述飞行区域中飞行,或者禁止所述无人机启动;及/或
若所述无人机在所述飞行时间外飞行,则禁止所述无人机启动;及/或
若所述无人机的飞行位置在所述限飞区域之内,则调整所述无人机的航向,以控制所述无人机在所述限飞区域外飞行,或者禁止所述无人机启动;及/或
若所述无人机的飞行高度超出所述最高飞行高度,则自动调整所述无人机的相应动力装置的工作参数,以减降低所述飞行高度;及/或
若所述无人机的飞行距离超出所述最远飞行距离,则自动调整所述无人机的相应动力装置的工作参数,以减小所述飞行距离;及/或
若所述无人机的飞行速度超出所述最大飞行速度,则自动调整所述无人机的相应动力装置的工作参数,以减降低所述飞行速度。
进一步地,所述监管方法还包括:根据所述离线飞行参数更新无人机导航地图。
进一步地,通过移动通信网络及/或无线传输方式与所述控制终端进行数据传输,所述无线传输方式至少包括WIFI或蓝牙传输方式。
一种无人机飞行状态的监管方法,应用于无人机中,所述监管方法包括以下步骤:
接收离线飞行信息,所述离线飞行信息包括离线飞行参数;以及
当所述无人机处于离线飞行模式时,根据所述离线飞行参数限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述离线飞行信息包含在离线飞行证书中。
进一步地,所述离线飞行证书存储于无人机上或与无人机通信连接的控制终端上。
进一步地,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
进一步地,所述离线飞行参数包括限飞区域信息。
进一步地,所述监管方法还包括:根据所述离线飞行参数更新无人机导航地图。
一种无人机飞行状态的监控系统,应用于无人机中,所述监控系统包括:
控制模块,用于通过所述无人机的通信装置建立与无人机的控制终端的通信连接;
接收模块,用于接收并存储所述控制终端发送的离线飞行证书,所述离线飞行证书包括离线飞行参数;以及
所述控制模块还用于当所述无人机处于离线飞行模式时,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述监控系统还包括设置模块,所述设置模块用于在所述接收模块接收到所述控制终端发送的在线信号时,将所述无人机的飞行模式设定为在线飞行模式;
所述设置模块还用于在所述接收模块接收所述控制终端发送的离线信号,将所述无人机的飞行模式设定为离线飞行模式;以及
所述设置模块还用于在无法获取到所述无人机的飞行位置时,将所述无人机的飞行模式设定为离线飞行模式。
进一步地,所述控制模块还用于:
当所述无人机的飞行模式为离线飞行模式时,将所述无人机的飞行信息存储于所述无人机上,并在所述无人机的飞行模式被切换为在线飞行模式时控制所述通信装置将存储的离线飞行模式下的飞行信息发送给所述控制终端;或者
当所述无人机的飞行模式为离线飞行模式时,将所述无人机的飞行信息发送给所述控制终端进行存储。
进一步地,所述离线飞行证书中还包括身份信息,所述身份信息包括无人机用户身份信息与无人机身份信息;
所述监控系统还包括验证模块,用于当设定所述无人机的飞行模式为离线飞行模式时,获取所述无人机身份信息以及所述离线飞行证书中的无人机身份信息,并验证所述无人机身份信息与所述离线飞行证书中的无人机身份信息是否一致;以及
所述控制模块还用于当所述无人机身份信息与所述离线飞行证书中的无人机身份信息不一致时,禁止启动所述无人机。
进一步地,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
进一步地,所述离线飞行参数还包括:限飞区域信息、最高飞行高度、最远飞行距离、最大飞行速度。
进一步地,所述控制模块在根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为时,具体用于:
获取所述无人机的飞行参数以及位置信息,所述飞行参数至少包括:飞行时间、飞行高度、飞行距离、飞行速度、航向;
根据所述离线飞行证书中的飞行区域信息监控所述无人机的飞行位置是否在所述飞行区域内;及/或
根据所述离线飞行证书中的飞行时间监控所述无人机是否在所述飞行时间内飞行;及/或
根据所述离线飞行证书中的限飞区域信息监控所述无人机的飞行位置是否在所述限飞区域内;及/或
根据所述离线飞行证书中的最高飞行高度监控所述无人机的飞行高度是否超出所述最高飞行高度;及/或
根据所述离线飞行证书中的最远飞行距离监控所述无人机的飞行距离是否超出所述最远飞行距离;及/或
根据所述离线飞行证书中的最大飞行速度监控所述无人机的飞行速度是否超出所述最大飞行速度。
进一步地,所述控制模块在根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为时,具体还用于:
当所述无人机的飞行位置在所述飞行区域之外时,调整所述无人机的航向,以控制所述无人机在所述飞行区域中飞行,或者禁止所述无人机启动;及/或
当所述无人机在所述飞行时间外飞行时,禁止所述无人机启动;及/或
当所述无人机的飞行位置在所述限飞区域之内时,调整所述无人机的航向,以控制所述无人机在所述限飞区域外飞行,或者禁止所述无人机启动;及/或
当所述无人机的飞行高度超出所述最高飞行高度时,自动调整所述无人机的相应动力装置的工作参数,以减降低所述飞行高度;及/或
当所述无人机的飞行距离超出所述最远飞行距离时,自动调整所述无人机的相应动力装置的工作参数,以减小所述飞行距离;及/或
当所述无人机的飞行速度超出所述最大飞行速度时,自动调整所述无人机的相应动力装置的工作参数,以减降低所述飞行速度。
进一步地,所述控制模块还用于根据所述离线飞行参数更新无人机导航地图。
一种无人机,包括:机体以及设于所述机体上的飞行参数采集装置、通信装置、飞行控制器,所述飞行参数采集装置用于实时采集所述无人机的飞行参数以及位置信息;
所述飞行控制器,用于获取存储装置中存储的程序指令,以执行以下步骤:
建立与无人机的控制终端的通信连接;
接收并存储所述控制终端发送的离线飞行证书,所述离线飞行证书包括离线飞行参数;以及
当所述无人机处于离线飞行模式时,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为。
一种无人机,包括:机体以及设于所述机体上的飞行参数采集装置、通信装置、飞行控制器,所述飞行参数采集装置用于实时采集所述无人机的飞行参数以及位置信息;
所述飞行控制器,用于获取存储装置中存储的程序指令,以执行以下步骤:
接收离线飞行信息,所述离线飞行信息包括离线飞行参数;以及
当所述无人机处于离线飞行模式时,根据所述离线飞行参数限制所述无人机在离线飞行模式下的飞行行为。
一种无人机飞行状态的监管方法,应用于无人机中,所述监管方法包括以下步骤:
获取所述无人机的飞行参数以及位置信息,并根据所述飞行参数以及位置信息生成相应的飞行信息;
建立与无人机的控制终端的通信连接;以及
当所述无人机处于在线飞行模式时,自动地将无人机身份信息以及所述飞行信息发送给控制终端,以及接收并处理所述控制终端转发的飞行限制指令。
进一步地,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
进一步地,所述监管方法还包括:
根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作。
进一步地,根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作步骤,具体包括:
根据所述飞行限制指令调节所述无人机的电子调速器的参数,以调节所述无人机的相应动力装置的工作参数,从而使所述无人机执行相应的飞行操作。
进一步地,所述监管方法还包括:
接收并存储所述控制终端转发的空情信息,所述空情信息至少包括敏感区域,所述敏感区域包括如下至少一种:限飞区域和禁飞区域的经纬度;以及
根据所述空情信息更新无人机导航地图;
根据所述飞行信息以及所述更新后的导航地图监控所述无人机的飞行状态。
进一步地,所述监管方法还包括:
接收所述控制终端发送的在线信号,将所述无人机的飞行模式设定为在线飞行模式;以及
接收所述控制终端发送的离线信号,将所述无人机的飞行模式设定为离线飞行模式;以及
当无法获取到所述无人机的飞行位置时,将所述无人机的飞行模式设定为离线飞行模式。
进一步地,通过移动通信网络及/或无线传输方式与所述控制终端进行数据传输,所述无线传输方式至少包括WIFI或蓝牙传输方式。
一种无人机飞行状态的监管方法,应用于无人机中,所述监管方法包括以下步骤:
根据所述无人机的飞行参数生成相应的飞行信息;
将无人机身份信息以及所述飞行信息提供给监管服务器,以及接收并处理飞行限制指令。
进一步地,根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作。
进一步地,与监管服务器直接或间接地建立通信连接。
进一步地,所述飞行限制指令是飞行预警指令或飞行控制指令。
进一步地,根据所述无人机的飞行信息更新无人机导航地图。
一种无人机飞行状态的监控系统,应用于无人机中,所述监控系统包括:
控制模块,用于获取所述无人机的飞行参数以及位置信息,并根据所述飞行参数以及位置信息生成相应的飞行信息;
所述控制模块还用于通过所述无人机的通信装置建立与无人机的控制终端的通信连接;
所述控制模块还用于当所述无人机处于在线飞行模式时,控制所述通信装置自动地将无人机身份信息以及所述飞行信息发送给控制终端;以及
接收模块,用于接收并处理所述控制终端转发的飞行限制指令。
进一步地,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
进一步地,所述控制模块还用于根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作。
进一步地,所述控制模块在根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作时,具体用于:
根据所述飞行限制指令调节所述无人机的电子调速器的参数,以调节所述无人机的相应动力装置的工作参数,从而使所述无人机执行相应的飞行操作。
进一步地,所述接收模块还用于接收并存储所述控制终端转发的空情信息,所述空情信息至少包括敏感区域,所述敏感区域包括如下至少一种:限飞区域和禁飞区域的经纬度;以及
所述控制模块还用于根据所述空情信息更新无人机导航地图,以及根据所述飞行信息以及所述更新后的导航地图监控所述无人机的飞行状态。
进一步地,所述监控系统还包括设置模块,所述设置模块用于在所述接收模块接收到所述控制终端发送的在线信号时,将所述无人机的飞行模式设定为在线飞行模式;
所述设置模块还用于在所述接收模块接收所述控制终端发送的离线信号,将所述无人机的飞行模式设定为离线飞行模式;以及
所述设置模块还用于在无法获取到所述无人机的飞行位置时,将所述无人机的飞行模式设定为离线飞行模式。
一种无人机,包括:机体以及设于所述机体上的飞行参数采集装置、通信装置、飞行控制器,所述飞行参数采集装置用于实时采集所述无人机的飞行参数以及位置信息;
所述飞行控制器,用于获取存储装置中存储的程序指令,以执行以下步骤:
获取所述无人机的飞行参数以及位置信息,并根据所述飞行参数以及位置信息生成相应的飞行信息;
建立与无人机的控制终端的通信连接;以及
当所述无人机处于在线飞行模式时,自动地将无人机身份信息以及所述飞行信息发送给控制终端,以及接收并处理所述控制终端转发的飞行限制指令。
进一步地,所述飞行控制器还用于根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作。
一种无人机,包括:机体以及设于所述机体上的飞行参数采集装置、通信装置、飞行控制器,所述飞行参数采集装置用于实时采集所述无人机的飞行参数以及位置信息;
所述飞行控制器,用于获取存储装置中存储的程序指令,以执行以下步骤:
根据所述无人机的飞行参数生成相应的飞行信息;
将无人机身份信息以及所述飞行信息提供给监管服务器,以及接收并处理飞行限制指令。
进一步地,所述飞行控制器还用于根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作。
一种无人机飞行状态的监管系统,包括:监管服务器、控制终端、以及无人机,所述监管服务器与所述无人机可通过所述控制终端进行双向数据传输;
所述监管服务器用于根据所述控制终端发送的离线飞行申报信息生成离线飞行证书,并通过所述控制终端发给所述无人机,其中,所述离线飞行证书包括离线飞行参数;
所述无人机在处于离线飞行模式时,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为。
进一步地,所述控制终端包括相互连接的移动设备以及无人机的遥控器,所述移动设备用于与所述监管服务器连接,所述遥控器用于与所述无人机连接;或者
所述控制终端为集成了所述移动设备与所述无人机的遥控器的功能的多功能遥控器。
一种无人机飞行状态的监管系统,包括:监管服务器以及无人机,所述监管服务器与所述无人机可直接或间接地进行双向数据传输;
所述监管服务器用于根据离线飞行申报信息生成离线飞行证书,并将所述离线飞行证书提供给所述无人机,其中,所述离线飞行证书包括离线飞行参数;
所述无人机在处于离线飞行模式时,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为。
一种无人机飞行状态的监管系统,包括:监管服务器、控制终端、以及无人机,所述监管服务器与所述无人机可通过所述控制终端进行双向数据传输;
所述无人机在在线飞行状态下通过所述控制终端主动向所述监管服务器上报所述无人机的飞行信息;以及
所述监管服务器根据预设的安全飞行参数监控所述无人机在在线飞行模式下的飞行信息是否符合飞行安全规定,并在监控到所述无人机在在线飞行模式下的飞行信息违反所述飞行安全规定时,生成相应的飞行限制指令和/或警告信息,并将所述飞行限制指令和/或警告信息发送给所述控制终端,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
进一步地,所述控制终端包括相互连接的移动设备以及无人机的遥控器,所述移动设备用于与所述监管服务器连接,所述遥控器用于与所述无人机连接;或者
所述控制终端可为集成了所述移动设备与所述无人机的遥控器的功能的多功能遥控器。
一种无人机飞行状态的监管系统,包括:监管服务器以及无人机,所述监管服务器与所述无人机可通过所述控制终端进行双向数据传输;
所述无人机在在线飞行状态下主动向所述监管服务器上报所述无人机的飞行信息;以及
所述监管服务器根据预设的安全飞行参数监控所述无人机的飞行信息是否符合飞行安全规定,并在监控到所述无人机的飞行信息违反所述飞行安全规定时,生成相应的飞行限制指令,并将所述飞行限制指令发送给所述无人机,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
本发明提供的无人机飞行状态的监管方法,可有效地监管所述无人机在离线飞行模式以及在在线飞行模式下的飞行行为,有效地解决了现有技术中无法有效地获取微型无人机的飞行数据以及无法有效地对微型无人机的飞行行为进行监管的技术问题,且无需增加额外的硬件,实现成本低。
附图说明
图1是本发明实施例的一种无人机飞行状态的监管系统的结构示意图。
图2是本发明实施例的一种应用于监管服务器中的无人机飞行状态的监管方法的流程示意图。
图3是本发明实施例的另一种应用于监管服务器的无人机飞行状态的监管方法的流程示意图。
图4是本发明实施例的一种监管服务器的结构示意图。
图5是图4中的监管服务器中的监控系统的功能模块图。
图6是本发明实施例的一种应用于控制终端的无人机飞行状态的监管方法的流程示意图。
图7是本发明实施例的另一种应用于控制终端的无人机飞行状态的监管方法的流程示意图。
图8是本发明实施例的一种控制终端的结构示意图。
图9是图8中的控制终端中的监控系统的功能模块图。
图10是本发明实施例的一种应用于无人机的无人机飞行状态的监管方法的流程示意图。
图11是本发明实施例的一种应用于无人机的无人机飞行状态的监管方法的流程示意图。
图12是本发明实施例的一种无人机的结构示意图。
图13是图12中的无人机中的监控系统的功能模块图。
主要元件符号说明
监管系统 100
监管服务器 20
通信装置 21
存储装置 22
处理器 23
显示屏 24
监控系统 25
控制模块 251
接收模块 252
证书生成模块 253
安全决策模块 254
设置模块 255
移动设备 30
遥控器 40
控制终端 50
通信装置 51
存储装置 52
处理器 53
显示屏 54
监控系统 55
控制模块 551
接收模块 552
设置模块 553
提示模块 554
无人机 60
飞行参数采集装置 61
通信装置 62
存储装置 63
飞行控制器 64
电调装置 65
动力装置 66
监控系统 67
控制模块 671
接收模块 672
设置模块 673
验证模块 674
监管方法 200、300、600、700、1000、1100
步骤 201-206、301-304、601-604、701-705、1001-1006、1101-1105
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,是本发明实施例的一种无人机飞行状态的监管系统100的结构示意图。所述监管系统100至少包括监管服务器20、控制终端50、以及无人机60。在本实施方式中,所述监管服务器20可与所述控制终端50建立通信连接,所述控制终端50可与所述无人机60建立通信连接,所述监管服务器20与所述无人机60可通过所述控制终端50进行双向数据传输。在其他实施方式中,所述监管服务器20与所述无人机60之间可直接进行双向数据传输。
在本实施方式中,所述监管服务器20可根据无人机60用户预先申报的离线飞行申报信息生成离线飞行证书,并通过所述控制终端50发给所述无人机60。所述无人机60在安装所述离线飞行证书之后,当处于离线飞行模式时,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机60在离线飞行模式下的飞行行为,即,所述无人机60在离线飞行状态下的飞行行为受所述离线飞行证书中设定的飞行参数的限制,从而,所述监管服务器20在所述无人机60处于离线飞行状态下也能控制所述无人机60在安全范围内飞行。
在本实施方式中,所述无人机60在在线飞行状态下还可通过所述控制终端50主动向所述监管服务器20上报实时的飞行信息,以便所述监管服务器20监控所述无人机60的飞行行为。所述监管服务器20根据预设的安全飞行参数监控所述无人机60在在线飞行模式下的飞行信息是否符合飞行安全规定,并在监控到所述无人机60在在线飞行模式下的飞行信息违反所述飞行安全规定时,生成相应的飞行限制指令和/或警告信息,并将所述飞行限制指令和/或警告信息发送给所述控制终端50,以通过所述飞行限制指令和/或警告信息限制所述无人机60在在线飞行模式下的飞行行为。
在一种实施方式中,所述控制终端50包括相互连接的移动设备30以及无人机60的遥控器40。所述移动设备30用于与所述监管服务器20连接,所述遥控器40用于与所述无人机60连接。所述移动设备30包括,但不限于,智能手机、平板电脑。
其中,所述监管服务器20与所述移动设备30之间可通过移动通信网络,例如,2G、3G、4G或5G网络等,及/或,无线接入方式,例如WIFI接入方式建立通信连接。所述监管服务器20与所述移动设备30之间可通过Https通信协议进行通信以及数据传输。
所述移动设备30与所述遥控器40之间可通过USB串口连接方式建立通信连接,并通过MFI协议(IOS)或OTG协议(安卓)进行通信以及数据传输。或者,所述遥控器40与所述移动设备30之间也可通过无线传输技术,例如2.4GHz或5GHz无线技术建立通信连接。
所述遥控器40与所述无人机60之间可通过无线传输技术,例如2.4GHz或5GHz无线技术建立通信连接。
在另一种实施方式中,所述控制终端50可为集成了所述移动设备30与所述无人机60的遥控器40的功能的多功能遥控器。
具体地,请参阅图2,是本发明实施例的一种应用于监管服务器中的无人机飞行状态的监管方法200的流程示意图,本发明实施例的所述方法可以由一个处理器来实现。应说明的是,本发明实施例的所述方法并不限于图2所示的流程图中的步骤及顺序。根据不同的实施例,图2所示的流程图中的步骤可以增加、移除、或者改变顺序。在本实施方式中,所述监管方法200可以从步骤201开始。
步骤201,建立与无人机的控制终端的通信连接。
步骤202,接收所述控制终端发送的离线飞行申报信息。
在本实施方式中,所述离线飞行申报信息包括身份信息与离线飞行参数,所述身份信息包括无人机用户身份信息与无人机身份信息,例如无人机的产品序列号(Serial Number,SN码),所述离线飞行参数至少包括:飞行区域信息和飞行时间。在其他实施方式中,所述离线飞行参数至少还可包括:最高飞行高度、最远飞行距离、最大飞行速度。
在本实施方式中,所述监管方法200可通过在线申报平台接收离线飞行申报信息。其中,所述离线飞行申报信息可通过所述控制终端、所述移动设备或所述无人机的遥控器在所述在线申报平台中注册,也可以通过计算机等其他通信装置在所述在线申报平台中注册。
在一种实施方式中,所述步骤202具体可包括:
提供离线飞行证书的前端申报界面,并将所述前端申报界面显示于所述控制终端上;以及
接收在所述前端申报界面中输入的离线飞行申报信息。
这样,无人机用户即可使用所述控制终端登陆离线飞行证书的所述前端申报界面来提交所述离线飞行申报信息,方便无人机用户操作。
步骤203,与第三方认证平台建立通信连接,并将所述无人机用户身份信息发送给所述第三方认证平台进行认证。
步骤204,判断所述第三方认证平台是否成功认证所述无人机用户身份信息。若所述第三方认证平台成功认证所述无人机用户身份信息,则执行步骤205,否则,返回步骤202。
本实施例的所述监管方法200通过所述第三方认证平台认证用户的真实身份,以便在发生无人机的安全事故时监管和追查无人机用户的责任。
步骤205,根据所述离线飞行申报信息生成无人机的离线飞行证书。
在本实施方式中,所述离线飞行证书中包含有所述离线飞行申报信息,即包括身份信息与离线飞行参数,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。在其他实施方式中,所述离线飞行参数至少还包括:最高飞行高度、最远飞行距离、最大飞行速度。
在一种实施方式中,所述步骤205之前还可包括:
显示离线飞行证书的后端申报界面;
接收在所述后端申报界面中对在所述前端申报界面中输入的离线飞行参数的审批信息,例如对所述离线飞行参数进行编辑与修改。
这样,所述监管服务器的系统管理员即可对无人机用户提交的所述离线飞行申报信息进行审批。
可以理解的是,若在所述后端申报界面中有对无人机用户提交的所述离线飞行申报信息进行编辑与修改,则根据修改后的离线飞行参数生成所述离线飞行证书。
步骤206,接收并响应所述控制终端发送的下载离线飞行证书的请求信号,将所述离线飞行证书发送给所述控制终端,以通过所述控制终端将所述离线飞行证书发送给相应的无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
可选的,所述监管方法200还可包括:根据所述离线飞行申报信息更新无人机部署地图。
可选的,在生成了所述离线飞行证书之后,所述监管方法200还可包括:
提供与无人机用户身份信息及/或无人机身份信息关联的离线飞行证书的前端查询与修改界面,并将所述前端查询与修改界面显示于所述控制终端上;
接收在所述前端查询与修改界面中修改的离线飞行参数;以及
根据所述修改后的离线飞行参数更新所述离线飞行证书中的信息,并将更新后的离线飞行证书实时推送给相应的控制终端。
这样,无人机用户就可以根据实际飞行需要,登陆到所述监管服务器提供的离线飞行证书的前端查询与修改界面去对所述离线飞行参数进行修改。
可选的,在生成了所述离线飞行证书之后,所述监管方法200还可包括:
显示与无人机用户身份信息及/或无人机身份信息关联的离线飞行证书的后端查询与修改界面;
接收在所述后端查询与修改界面中修改的离线飞行参数;以及
根据所述修改后的离线飞行参数更新所述离线飞行证书的信息,并将更新后的离线飞行证书实时推送给相应的控制终端。
这样,所述监管服务器的系统管理员就可以根据实际情况,对所述离线飞行参数进行修改。
在本实施方式中,所述监管方法200通过控制终端实现所述监管服务器与所述无人机之间的通信交互。
可以理解的是,在另一种实施方式中,所述控制终端也可以省略,所述监管服务器可与所述无人机直接进行交互,即所述监管服务器接收无人机的离线飞行申报信息,并将生成的离线飞行证书直接提供给所述无人机,而不需要所述控制终端转发信息的中间环节。
本发明实施例的所述监管方法200通过在监管服务器上根据无人机用户身份信息以及无人机用户报备的离线飞行参数生成离线飞行证书,以便在所述无人机处于离线飞行模式下时也能监控所述无人机的飞行信息与所报备的飞行信息是否相符,从而限制所述无人机在离线飞行模式下的飞行行为。
请参阅图3,是本发明实施例的另一种应用于监管服务器中的无人机飞行状态的监管方法300的流程示意图,本发明实施例的所述方法可以由一个处理器来实现。应说明的是,本发明实施例的所述方法并不限于图3所示的流程图中的步骤及顺序。根据不同的实施例,图3所示的流程图中的步骤可以增加、移除、或者改变顺序。在本实施方式中,所述监管方法300可以从步骤301开始。
步骤301,建立与无人机的控制终端的通信连接。
步骤302,接收所述控制终端发送的无人机身份信息以及无人机的飞行信息。
在本实施方式中,所述监管方法300还可包括:根据所述无人机的飞行信息更新无人机部署地图。
步骤303,根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定。若判断出所述无人机在在线飞行模式下的飞行信息违反所述飞行安全规定,则执行步骤304。否则,返回步骤302。
步骤304,生成相应的飞行限制指令和/或警告信息,并将所述飞行限制指令和/或警告信息发送给所述控制终端,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
在本实施方式中,所述飞行信息至少包括所述无人机的位置信息、航向。预设的所述安全飞行参数至少包括与无人机身份信息关联的敏感区域的经纬度,预设的所述敏感区域包括如下至少一种:限制无人机飞行的区域(简称“限飞区域”)、禁止无人机飞行的区域(简称“禁飞区域”)。
所述监管方法300具体包括:
根据所述无人机身份信息以及所述飞行信息判断所述无人机是否进入或即将进入预设的敏感区域;
若判断出所述无人机即将进入或已经进入预设的所述敏感区域,则生成相应的飞行限制指令和/或警告信息,所述警告信息至少包括:改变航向信息,所述飞行限制指令为飞行预警指令或飞行控制指令,包括如下至少一种:强制改变航向指令(即驱离指令)、强迫降落指令、禁止启动指令。
在本实施方式中,所述飞行信息至少还包括所述无人机的多种飞行参数,所述飞行参数至少包括:飞行高度、飞行速度。预设的所述安全飞行参数至少还包括与无人机用户身份信息关联的最高安全飞行高度、最大安全飞行速度。
所述监管方法300具体还包括:
根据所述无人机身份信息以及所述飞行信息监控所述无人机的飞行状态,并判断所述无人机的飞行参数是否超出预设的所述安全飞行参数;
若判断出所述无人机的飞行参数超出预设的所述安全飞行参数,则生成相应的飞行限制指令和/或警告信息,所述警告信息包括如下至少一种:降低高度信息、降低速度信息,所述飞行限制指令包括如下至少一种:强制降低高度指令、强制降低速度指令。
在一种实施方式中,所述警告信息可以理解为发送给控制终端的信息,是用于警告无人机用户的。无人机用户可以根据所述警告信息的提示及时调整无人机的飞行参数。所述飞行限制指令可以理解为发送给无人机的指令,以控制无人机执行相应的飞行操作。
例如,在首次判断出所述无人机即将进入或已经进入预设的所述敏感区域时,可先给所述控制终端发送警告信息,以提示无人机用户及时调整所述无人机的航向。
若警告无效,或者所述无人机的飞行行为严重违反了飞行安全规定,也可通过发送飞行限制指令来将无人机的飞行控制器设置为优先执行监管服务器的控制指令,从而强行控制所述无人机调整飞行参数。
可选的,本实施例的所述监管方法300还包括:
实时设定与所述无人机身份信息关联的空情信息,并实时地向所述控制终端推送所述空情信息,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域。
在本实施方式中,实时设定与所述无人机身份信息关联的空情信息步骤,具体可包括:
接收输入的参数,并根据所述输入的参数设定与所述无人机身份信息关联的空情信息。
及/或,根据所述飞行信息实时地自动设定与所述无人机身份信息关联的空情信息。
这样,所述监管服务器的系统管理员就可在监管服务器上编辑、修改所述空情信息。或者,监管服务器也可根据所述飞行信息来确定无人机的飞行区域,并自动、实时地推送不同的空情信息,以便无人机用户根据所述空情信息来及时调整所述无人机的飞行参数。
在本实施方式中,所述监管服务器通过控制终端实现与所述无人机之间的通信交互。
可以理解的是,在另一种实施方式中,所述控制终端也可以省略,所述监管服务器可与所述无人机直接进行交互,即所述监管服务器可直接接收无人机身份信息以及无人机的飞行信息,以及将所述飞行限制指令直接发送给所述无人机,而不需要所述控制终端转发信息的中间环节。
本发明实施例的所述监管方法300使得监管服务器可以及时获得飞行信息,以实时掌握无人机的飞行状态,从而便于对无人机进行监管和监控。本发明的所述监管方法300还可在判断出所述无人机在在线飞行模式下的飞行行为违反安全规定时,生成相应的飞行限制指令和/或警告信息,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
请参阅图4,是本发明实施例的一种监管服务器20的结构示意图。所述监管服务器20包括,但不限于,通信装置21、存储装置22以及处理器23。其中,所述存储装置22用于存储所述监管服务器20的各类数据,例如无人机用户身份信息、无人机身份信息、预设的安全飞行参数等。所述存储装置22可以是所述监管服务器20的内存,还可以是可移除的存储装置,例如可移除媒体卡、外置U盘、及其他闪存或存储器。所述处理器23用于控制所述监管服务器20工作。所述处理器可为中央处理器(Central Processing Unit, CPU)、微处理器、数字信号处理器或其他数据处理芯片。
所述通信装置21用于与无人机的控制终端建立通信连接。
在本实施方式中,所述监管服务器20还包括监控系统25,所述监控系统25以软件程序或指令的形式安装在所述存储装置22中,并由所述处理器23执行。在本实施方式中,所述监控系统25可以被分割成一个或多个模块,所述一个或多个模块被存储在所述存储装置22中并被配置成由一个或多个处理器23(本实施例为一个处理器23)执行,所述监管服务器20利用所述监控系统25可有效地监管无人机在离线飞行模式以及在在线飞行模式下的飞行行为。
请参阅图5,是本发明实施例的监管服务器20中的监控系统25的功能模块图。所述监控系统25包括,但不限于,控制模块251、接收模块252、证书生成模块253、安全决策模块254、以及设置模块255。上述各功能模块是能够完成特定功能的一系列程序指令段,比软件程序本身更适合于描述软件在计算机中的执行过程,如在所述监管服务器20的处理器23中执行,因此本发明对软件程序的描述都以模块描述。另外,上述各功能模块亦可以由硬件、固件(firmware)方式实现。
在本实施方式中,所述控制模块251用于通过所述监管服务器20的通信装置21建立与无人机的控制终端的通信连接。
所述接收模块252用于接收所述控制终端发送的离线飞行申报信息。在本实施方式中,所述离线飞行申报信息包括身份信息与离线飞行参数,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。在其他实施方式中,所述离线飞行参数至少还可包括:最高飞行高度、最远飞行距离、最大飞行速度。
其中,所述接收模块252可通过在线申报平台接收离线飞行申报信息。其中,所述离线飞行申报信息可通过所述控制终端、所述移动设备或所述无人机的遥控器在所述在线申报平台中注册,也可以通过计算机等其他通信装置21在所述在线申报平台中注册。
在一种实施方式中,所述证书生成模块253用于提供离线飞行证书的前端申报界面。所述控制模块251还用于将所述前端申报界面显示于所述控制终端上。所述接收模块252还用于接收在所述前端申报界面中输入的离线飞行申报信息。
这样,无人机用户即可使用所述控制终端登陆离线飞行证书的所述前端申报界面来提交所述离线飞行申报信息,方便无人机用户操作。
在本实施方式中,所述证书生成模块253用于根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息,即包括身份信息与离线飞行参数,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。在其他实施方式中,所述离线飞行参数至少还包括:最高飞行高度、最远飞行距离、最大飞行速度。
在本实施方式中,所述控制模块251还用于与第三方认证平台建立通信连接,并将所述无人机用户身份信息发送给所述第三方认证平台进行认证。所述证书生成模块253用于在所述第三方认证平台成功认证所述无人机用户身份信息之后,再根据所述离线飞行申报信息生成所述离线飞行证书。
本实施例的所述监管服务器20通过所述第三方认证平台认证用户的真实身份,以便在发生无人机的安全事故时监管和追查无人机用户的责任。
在本实施方式中,所述证书生成模块253还用于在所述监管服务器20的显示屏24上显示离线飞行证书的后端申报界面。所述接收模块252还用于接收在所述后端申报界面中对在所述前端申报界面中输入的离线飞行参数的审批信息,例如对所述离线飞行参数进行编辑与修改。
这样,所述监管服务器20的系统管理员即可对无人机用户提交的所述离线飞行申报信息进行审批。
可以理解的是,若在所述后端申报界面中有对无人机用户提交的所述离线飞行申报信息进行编辑与修改,则所述证书生成模块253根据修改后的离线飞行参数生成所述离线飞行证书。
所述控制模块251还用于接收并响应所述控制终端发送的下载离线飞行证书的请求信号,将所述离线飞行证书发送给所述控制终端,以通过所述控制终端将所述离线飞行证书发送给相应的无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
可选的,所述控制模块251还可用于根据所述离线飞行申报信息更新无人机部署地图。
可选的,在生成了所述离线飞行证书之后,所述证书生成模块253还用于提供与无人机用户身份信息及/或无人机身份信息关联的离线飞行证书的前端查询与修改界面。所述控制模块251还用于将所述前端查询与修改界面显示于所述控制终端上。所述接收模块252还用于接收在所述前端查询与修改界面中修改的离线飞行参数。所述证书生成模块253还用于根据所述修改后的离线飞行参数更新所述离线飞行证书中的信息。所述控制模块251还用于将更新后的离线飞行证书实时推送给相应的控制终端。
这样,无人机用户就可以根据实际飞行需要,登陆到所述监管服务器20提供的离线飞行证书的前端查询与修改界面去对所述离线飞行参数进行修改。
可选的,在生成了所述离线飞行证书之后,所述证书生成模块253还用于在所述监管服务器20的显示屏24上显示与无人机用户身份信息及/或无人机身份信息关联的离线飞行证书的后端查询与修改界面。所述接收模块252还用于接收在所述后端查询与修改界面中修改的离线飞行参数。所述证书生成模块253还用于根据所述修改后的离线飞行参数更新所述离线飞行证书的信息。所述控制模块251还用于将更新后的离线飞行证书实时推送给相应的控制终端。
这样,所述监管服务器20的系统管理员就可以根据实际情况,对所述离线飞行参数进行修改。
在本实施方式中,所述监管服务器20通过控制终端实现与所述无人机之间的通信交互。
可以理解的是,在另一种实施方式中,所述控制终端也可以省略,所述监管服务器20可与所述无人机直接进行交互,即所述监管服务器20接收无人机的离线飞行申报信息,并将生成的离线飞行证书直接提供给所述无人机,而不需要所述控制终端转发信息的中间环节。
本发明实施例的所述监管服务器20根据无人机用户身份信息以及无人机用户报备的离线飞行参数生成离线飞行证书,以便在所述无人机处于离线飞行模式下时也能监控所述无人机的飞行信息与所报备的飞行信息是否相符,从而限制所述无人机在离线飞行模式下的飞行行为。
在本实施方式中,所述接收模块252还用于接收所述控制终端发送的无人机身份信息以及无人机的飞行信息。
可选的,所述控制模块251还可用于根据所述无人机的飞行信息更新无人机部署地图。
所述安全决策模块254用于根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定,以及用于在判断出所述无人机的飞行信息违反所述飞行安全规定时,生成相应的飞行限制指令和/或警告信息。
所述控制模块251还用于控制所述通信装置21将所述飞行限制指令和/或警告信息发送给所述控制终端,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
在本实施方式中,所述飞行信息包括所述无人机的位置信息、航向。预设的所述安全飞行参数至少包括与无人机身份信息关联的敏感区域的经纬度,预设的所述敏感区域包括如下至少一种:限飞区域、禁飞区域。
在本实施方式中,所述安全决策模块254具体用于:
根据所述无人机身份信息以及所述飞行信息判断所述无人机是否进入或即将进入预设的敏感区域;
若判断出所述无人机即将进入或已经进入预设的所述敏感区域,则生成相应的飞行限制指令和/或警告信息,所述警告信息至少包括:改变航向信息,所述飞行限制指令为飞行预警指令或飞行控制指令,包括如下至少一种:强制改变航向指令、强迫降落指令、禁止启动指令。
在本实施方式中,所述飞行信息至少还包括所述无人机的多种飞行参数,所述飞行参数至少包括:飞行高度、飞行速度。预设的所述安全飞行参数至少还包括与无人机用户身份信息关联的最高安全飞行高度、最大安全飞行速度。
所述安全决策模块254具体还用于:
根据所述无人机身份信息以及所述飞行信息监控所述无人机的飞行状态,并判断所述无人机的飞行参数是否超出预设的所述安全飞行参数;
若判断出所述无人机的飞行参数超出预设的所述安全飞行参数,则生成相应的飞行限制指令和/或警告信息,所述警告信息包括如下至少一种:降低高度信息、降低速度信息,所述飞行限制指令包括如下至少一种:强制降低高度指令、强制降低速度指令。
例如,在首次判断出所述无人机即将进入或已经进入预设的所述敏感区域时,可先给所述控制终端发送警告信息,以提示无人机用户及时调整所述无人机的飞行参数。
若警告无效,或者所述无人机的飞行行为严重违反了飞行安全规定,也可通过发送飞行限制指令来将无人机的飞行控制器设置为优先执行监管服务器20的控制指令,从而强行控制所述无人机调整飞行参数。
在本实施方式中,所述设置模块255用于实时设定与所述无人机身份信息关联的空情信息。所述控制模块251还用于控制所述通信装置21实时地向所述控制终端推送所述空情信息,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域。
在本实施方式中,所述设置模块255在实时设定与所述无人机身份信息关联的空情信息时,具体用于:
接收输入的参数,并根据所述输入的参数设定与所述无人机身份信息关联的空情信息;及/或
根据所述飞行信息实时地自动设定与所述无人机身份信息关联的空情信息。
这样,所述监管服务器20的系统管理员就可在监管服务器20上编辑、修改所述空情信息。或者,监管服务器20也可根据所述飞行信息来确定无人机的飞行区域,并自动、实时地推送不同的空情信息,以便无人机用户根据所述空情信息来及时调整所述无人机的飞行参数。
在本实施方式中,所述监管服务器20通过控制终端实现与所述无人机之间的通信交互。
可以理解的是,在另一种实施方式中,所述控制终端也可以省略,所述监管服务器20可与所述无人机直接进行交互,即所述监管服务器20可直接接收无人机身份信息以及无人机的飞行信息,以及将所述飞行限制指令直接发送给所述无人机,而不需要所述控制终端转发信息的中间环节。
本发明实施例的所述监管服务器20可以及时获得飞行信息,以实时掌握无人机的飞行状态,从而便于对无人机进行监管和监控。本发明的所述监管方法还可在判断出所述无人机在在线飞行模式下的飞行行为违反安全规定时,生成相应的飞行限制指令和/或警告信息,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
需要说明的是,本发明实施例中所述监管服务器20中的监控系统25的各个功能模块的具体实现可对应地参考上述图2-3对应实施例中相关步骤的描述。
请参阅图6,是本发明实施例的一种应用于控制终端中的无人机飞行状态的监管方法600的流程示意图,本发明实施例的所述方法可以由一个处理器来实现。应说明的是,本发明实施例的所述方法并不限于图6所示的流程图中的步骤及顺序。根据不同的实施例,图6所示的流程图中的步骤可以增加、移除、或者改变顺序。在本实施方式中,所述监管方法600可以从步骤601开始。
步骤601,分别建立与无人机以及监管服务器的通信连接。
在本实施方式中,在所述步骤601之后,还包括:
在与所述监管服务器建立通信连接后,将所述控制终端的模式切换为在线模式,并发送在线信号给所述无人机,以将所述无人机的飞行模式设定为在线飞行模式;以及
在与所述监管服务器断开通信连接后,将所述控制终端的模式切换为离线模式,并发送离线信号给所述无人机,以将所述无人机的飞行模式设定为离线飞行模式。
本发明所称的“在线模式”是指所述控制终端与所述监管服务器保持通信连接状态。其中,所述控制终端在所述在线模式下可通过移动通信网络或其他的无线接入方式,例如WIFI,与所述监管服务器进行通信以及数据传输。所述控制终端在所述在线模式下还可与所述无人机进行通信以及数据传输。
本发明所称的“在线飞行模式”是指所述无人机在所述控制终端处于在线模式时的飞行模式。所述无人机在所述在线飞行模式可与所述控制终端进行通信以及数据传输,并可通过所述控制终端与所述监管服务器进行通信以及数据传输。
本发明所称的“离线模式”是指所述控制终端与所述监管服务器未建立通信连接。其中,所述控制终端处于离线模式包括两种状态:一种状态是所述控制终端处于未连接移动通信网络或其他的无线接入方式,例如WIFI的状态,即所述控制终端处于断网状态;另一种状态是所述控制终端虽然处于连接到移动通信网络或其他的无线接入方式,例如WIFI的状态,但未与所述监管服务器连接,或者在与所述监管服务器建立了通信连接后又断开了通信连接。所述控制终端在所述离线模式下无法与所述监管服务器进行通信以及数据传输,但可与所述无人机进行通信以及数据传输。
本发明所称的“离线飞行模式”是指所述无人机在所述控制终端处于离线模式时的飞行模式,或无法采集到GPS信息时的飞行模式。所述无人机在所述离线飞行模式可与所述控制终端进行通信以及数据传输。
步骤602,向所述监管服务器发送离线飞行申报信息。
在本实施方式中,所述离线飞行申报信息包括身份信息与离线飞行参数,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。在其他实施方式中,所述离线飞行参数至少还可包括:限飞区域信息、最高飞行高度、最远飞行距离、最大飞行速度。
在一种实施方式中,所述监管方法600可通过在线申报平台向所述监管服务器发送所述离线飞行申报信息。
步骤603,向所述监管服务器发送下载离线飞行证书的请求信号,并接收所述监管服务器发送的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息。
步骤604,将所述离线飞行证书转发给所述无人机,以通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
请参阅图7,是本发明实施例的另一种应用于控制终端中的无人机飞行状态的监管方法700的流程示意图,本发明实施例的所述方法可以由一个处理器来实现。应说明的是,本发明实施例的所述方法并不限于图7所示的流程图中的步骤及顺序。根据不同的实施例,图7所示的流程图中的步骤可以增加、移除、或者改变顺序。在本实施方式中,所述监管方法700可以从步骤701开始。
步骤701,分别建立与无人机以及监管服务器的通信连接。
在本实施方式中,在所述步骤701之后,还包括:
在与所述监管服务器建立通信连接后,将所述控制终端的模式切换为在线模式,并发送在线信号给所述无人机,以将所述无人机的飞行模式设定为在线飞行模式;以及
在与所述监管服务器断开通信连接后,将所述控制终端的模式切换为离线模式,并发送离线信号给所述无人机,以将所述无人机的飞行模式设定为离线飞行模式。
步骤702,接收所述无人机发送的无人机身份信息以及无人机的飞行信息。
在本实施方式中,所述飞行信息包括所述无人机的位置信息以及多种飞行参数,所述飞行参数至少包括:飞行时间、飞行高度、飞行速度、航向。
本实施例的所述监管方法700还可包括:
获取地图信息,并显示地图;
根据所述位置信息在所述地图上标记所述无人机的位置;
及/或,在所述地图上显示所述无人机的飞行参数。
步骤703,在在线模式下自动地将无人机身份信息以及所述飞行信息发送给所述监管服务器。
在本实施方式中,所述监管方法700还可包括:
在所述控制终端处于离线模式下接收到所述无人机发送的离线飞行信息时,将接收到的所述离线飞行信息存储,并在所述控制终端的模式被切换至在线模式时控制所述通信装置将所述离线飞行信息发送给所述监管服务器;或者
在所述控制终端的模式从离线模式切换至在线模式时,接收所述无人机发送的离线飞行信息,并将所述离线飞行信息自动转发给所述监管服务器。
步骤704,接收所述监管服务器发送的飞行限制指令和/或警告信息。
在本实施方式中,所述警告信息包括如下至少一种:改变航向信息、降低速度信息、降低高度信息。所述飞行限制指令为飞行预警指令或飞行控制指令,包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
步骤705,将所述飞行限制指令转发给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
在一种实施方式中,所述警告信息可以理解为发送给控制终端的信息,是用于警告无人机用户的。无人机用户可以根据所述警告信息的提示及时调整无人机的飞行参数。所述飞行限制指令可以理解为发送给无人机的指令,以强行控制无人机执行相应的飞行操作。
例如,在首次判断出所述无人机即将进入或已经进入预设的所述敏感区域时,所述监管服务器可先给所述控制终端发送警告信息,以提示无人机用户及时调整所述无人机的航向。
若警告无效,或者所述无人机的飞行行为严重违反了飞行安全规定,所述监管服务器也可通过发送飞行限制指令来将无人机的飞行控制器设置为优先执行监管服务器的控制指令,从而强行控制所述无人机调整飞行参数。
可选的,本实施例的所述监管方法700还可包括:
通过语音提示所述飞行限制指令和/或警告信息;或者通过文字显示所述飞行限制指令和/或警告信息,以便于无人机用户及时获知所述警告信息,并根据所述警告信息调整所述无人机的飞行参数,或者以便于无人机用户及时获知所述无人机当前正在执行的所述飞行限制指令。
可选的,本实施例的所述监管方法700还包括:
接收所述监管服务器推送的空情信息,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域;
获取地图信息,并显示地图;以及
根据所述空情信息在所述地图上标记限飞区域及/或禁飞区域。
可选的,本实施例的所述监管方法700还包括:自动地将所述空情信息转发给所述无人机,以便于所述无人机能够及时更新无人机导航地图。
请参阅图8,是本发明实施例的一种控制终端50的结构示意图。所述控制终端50包括,但不限于,存储装置52、处理器53以及通信装置51。其中,所述存储装置52用于存储所述控制终端50的各类数据,例如无人机用户身份信息、无人机身份信息等。所述存储装置52可以是所述控制终端50的内存,还可以是可移除的存储装置,例如可移除媒体卡、外置U盘、及其他闪存或存储器。所述处理器53用于控制所述控制终端50工作。所述处理器53可为中央处理器(Central Processing Unit, CPU)、微处理器、数字信号处理器或其他数据处理芯片。
所述通信装置51用于与监管服务器以及无人机分别建立通信连接。
在本实施方式中,所述控制终端50还包括监控系统55,所述监控系统55以软件程序或指令的形式安装在所述存储装置52中,并由所述处理器53执行。在本实施方式中,所述监控系统55可以被分割成一个或多个模块,所述一个或多个模块被存储在所述存储装置52中并被配置成由一个或多个处理器53(本实施例为一个处理器53)执行,所述控制终端50利用所述监控系统55可有效地监控无人机在离线飞行模式以及在在线飞行模式下的飞行行为。
请参阅图9,是本发明实施例的控制终端50中的监控系统55的功能模块图。所述监控系统55至少包括,但不限于,控制模块551、接收模块552、以及设置模块553。上述各功能模块是能够完成特定功能的一系列程序指令段,比软件程序本身更适合于描述软件在计算机中的执行过程,如在所述控制终端50的处理器53中执行,因此本发明对软件程序的描述都以模块描述。另外,上述各功能模块亦可以由硬件、固件(firmware)方式实现。
在本实施方式中,所述控制模块551用于通过所述控制终端50的通信装置51分别建立与无人机以及监管服务器的通信连接。
在本实施方式中,所述设置模块553用于在所述通信装置51与所述监管服务器建立通信连接后,将所述控制终端50的模式切换为在线模式。所述控制模块551还用于通过所述通信装置51发送在线信号给所述无人机,以将所述无人机的飞行模式设定为在线飞行模式。
在本实施方式中,所述设置模块553还用于在所述通信装置51与所述监管服务器断开通信连接后,将所述控制终端50的模式切换为离线模式。所述控制模块551还用于通过所述通信装置51发送离线信号给所述无人机,以将所述无人机的飞行模式设定为离线飞行模式。
在本实施方式中,所述控制模块551还用于控制所述通信装置51向所述监管服务器发送离线飞行申报信息,以及向所述监管服务器发送下载离线飞行证书的请求信号。
在一种实施方式中,所述控制模块551可通过在线申报平台向所述监管服务器发送所述离线飞行申报信息。
在本实施方式中,所述离线飞行申报信息包括身份信息与离线飞行参数,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。在其他实施方式中,所述离线飞行参数至少还可包括:限飞区域信息、最高飞行高度、最远飞行距离、最大飞行速度。
所述接收模块552用于接收所述监管服务器发送的离线飞行证书。其中,所述离线飞行证书中包含有所述离线飞行申报信息。
所述控制模块551还用于控制所述通信装置51将所述离线飞行证书转发给所述无人机,以通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
在本实施方式中,所述接收模块552还用于接收所述无人机发送的无人机身份信息以及无人机的飞行信息。
在本实施方式中,所述飞行信息包括所述无人机的位置信息以及多种飞行参数,所述飞行参数至少包括:飞行时间、飞行高度、飞行速度、航向。
在本实施方式中,所述控制模块551还用于:
获取地图信息,并在所述控制终端50的显示屏54上显示地图;
根据所述位置信息在所述地图上标记所述无人机的位置;
及/或,在所述地图上显示所述无人机的飞行参数。
所述控制模块551还用于通过所述通信装置51在在线模式下自动地将无人机身份信息以及所述飞行信息发送给所述监管服务器。
在一种实施方式中,所述接收模块552还用于在所述控制终端50处于离线模式下接收到所述无人机发送的离线飞行信息时,将接收到的所述离线飞行信息存储,所述控制模块551还用于在所述控制终端50的模式被切换至在线模式时控制所述通信装置51将所述离线飞行信息发送给所述监管服务器。
在另一种实施方式中,所述接收模块552还用于在所述控制终端50的模式从离线模式切换至在线模式时,接收所述无人机发送的离线飞行信息,所述控制模块551还用于控制所述通信装置51将所述离线飞行信息自动转发给所述监管服务器。
在本实施方式中,所述接收模块552还用于接收所述监管服务器发送的飞行限制指令和/或警告信息。
在本实施方式中,所述警告信息包括如下至少一种:改变航向信息、降低速度信息、降低高度信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
所述控制模块551还用于在接收到所述飞行限制指令时,通过所述通信装置51将所述飞行限制指令转发给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
在一种实施方式中,所述警告信息可以理解为发送给控制终端50的信息,是用于警告无人机用户的。无人机用户可以根据所述警告信息的提示及时调整无人机的飞行参数。所述飞行限制指令可以理解为发送给无人机的指令,以强行控制无人机执行相应的飞行操作。
例如,在首次判断出所述无人机即将进入或已经进入预设的所述敏感区域时,所述监管服务器可先给所述控制终端50发送警告信息,以提示无人机用户及时调整所述无人机的航向。
若警告无效,或者所述无人机的飞行行为严重违反了飞行安全规定,所述监管服务器也可通过发送飞行限制指令来将无人机的飞行控制器设置为优先执行监管服务器的控制指令,从而强行控制所述无人机调整飞行参数。
可选的,所述监控系统55还包括提示模块554,所述提示模块554用于控制所述控制终端50的语音装置(图未示)进行语音提示所述飞行限制指令和/或警告信息,或者所述提示模块554还可用于在所述控制终端50的显示屏54上通过文字显示所述飞行限制指令和/或警告信息,以便于无人机用户及时获知所述警告信息,并根据所述警告信息调整所述无人机的飞行参数,或者以便于无人机用户及时获知所述无人机当前正在执行的所述飞行限制指令。
可选的,所述接收模块552还用于接收所述监管服务器推送的空情信息,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域。
所述控制模块551还用于获取地图信息,并在所述控制终端50的显示屏54上显示地图,以及根据所述空情信息在所述地图上标记所述敏感区域。
可选的,所述接收模块552还用于接收所述监管服务器推送的空情信息。所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域。所述控制模块551还用于控制所述通信装置51自动地将所述空情信息转发给所述无人机。
需要说明的是,本发明实施例中所述控制终端50中的监控系统55的各个功能模块的具体实现可对应地参考上述图6-7对应实施例中相关步骤的描述。
请参阅图10,是本发明实施例的一种应用于无人机中的无人机飞行状态的监管方法1000的流程示意图,本发明实施例的所述方法可以由一个处理器来实现。应说明的是,本发明实施例的所述方法并不限于图10所示的流程图中的步骤及顺序。根据不同的实施例,图10所示的流程图中的步骤可以增加、移除、或者改变顺序。本发明实施例的所述方法可以从步骤1001开始。
步骤1001,建立与无人机的控制终端的通信连接。
步骤1002,接收并存储所述控制终端发送的离线飞行证书。
在本实施方式中,所述离线飞行证书包括身份信息以及离线飞行参数,所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
在本实施方式中,所述离线飞行证书存储于无人机上。可选的,所述离线飞行证书也可存储于与无人机通信连接的控制终端上。
在本实施方式中,所述监管方法1000还包括:根据所述离线飞行参数更新无人机导航地图。
在本实施方式中,所述监管方法1000还可包括:
接收所述控制终端发送的在线信号,将所述无人机的飞行模式设定为在线飞行模式;以及
接收所述控制终端发送的离线信号,将所述无人机的飞行模式设定为离线飞行模式;以及
当无法获取到所述无人机的飞行位置时,将所述无人机的飞行模式设定为离线飞行模式。
步骤1003,当设定所述无人机的飞行模式为离线飞行模式时,获取所述无人机身份信息以及所述离线飞行证书中的无人机身份信息。
步骤1004,验证所述无人机身份信息与所述离线飞行证书中的无人机身份信息是否一致。若所述无人机身份信息与所述离线飞行证书中的无人机身份信息不一致,则执行步骤1005。若所述无人机身份信息与所述离线飞行证书中的无人机身份信息一致,则执行步骤1006。
步骤1005,禁止启动所述无人机。
步骤1006,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为。
在本实施方式中,所述监管方法1000还包括:
当所述无人机的飞行模式为离线飞行模式时,存储所述无人机的飞行信息,并在所述无人机的飞行模式被切换为在线飞行模式时将存储的离线飞行模式下的飞行信息发送给所述控制终端;或者
当所述无人机的飞行模式为离线飞行模式时,将所述无人机的飞行信息发送给所述控制终端进行存储。
在一种实施方式中,所述离线飞行参数还包括:最高飞行高度、最远飞行距离、最大飞行速度。
在一种实施方式中,所述步骤1006具体包括:
获取所述无人机的飞行参数以及位置信息,所述飞行参数至少包括:飞行时间、飞行高度、飞行距离、飞行速度、航向;
根据所述离线飞行证书中的飞行区域信息监控所述无人机的飞行位置是否在所述飞行区域内;及/或
根据所述离线飞行证书中的飞行时间监控所述无人机是否在所述飞行时间内飞行;及/或
根据所述离线飞行证书中的限飞区域信息监控所述无人机的飞行位置是否在所述限飞区域内;及/或
根据所述离线飞行证书中的最高飞行高度监控所述无人机的飞行高度是否超出所述最高飞行高度;及/或
根据所述离线飞行证书中的最远飞行距离监控所述无人机的飞行距离是否超出所述最远飞行距离;及/或
根据所述离线飞行证书中的最大飞行速度监控所述无人机的飞行速度是否超出所述最大飞行速度。
在一种实施方式中,所述步骤1006具体还包括:
若所述无人机的飞行位置在所述飞行区域之外,则调整所述无人机的航向,以控制所述无人机在所述飞行区域中飞行,或者禁止所述无人机启动;及/或
若所述无人机在所述飞行时间外飞行,则禁止所述无人机启动;及/或
若所述无人机的飞行位置在所述限飞区域之内,则调整所述无人机的航向,以控制所述无人机在所述限飞区域外飞行,或者禁止所述无人机启动;及/或
若所述无人机的飞行高度超出所述最高飞行高度,则自动调整所述无人机的相应动力装置的工作参数,以减降低所述飞行高度;及/或
若所述无人机的飞行距离超出所述最远飞行距离,则自动调整所述无人机的相应动力装置的工作参数,以减小所述飞行距离;及/或
若所述无人机的飞行速度超出所述最大飞行速度,则自动调整所述无人机的相应动力装置的工作参数,以减降低所述飞行速度。
在本实施方式中,所述监管方法1000通过控制终端实现所述无人机与所述监管服务器之间的通信交互。
可以理解的是,在另一种实施方式中,所述控制终端也可以省略,所述无人机可与所述监管服务器直接进行交互,即所述无人机直接接收所述监管服务器提供的离线飞行证书,而不需要所述控制终端转发信息的中间环节。
本发明实施例的所述监管方法1000通过在无人机上预存的离线飞行证书,从而可有效地对所述无人机进行限飞,例如限区域、限高、限远、限速等。
请参阅图11,是本发明实施例的另一种应用于无人机中的无人机飞行状态的监管方法1100的流程示意图,本发明实施例的所述方法可以由一个处理器来实现。应说明的是,本发明实施例的所述方法并不限于图11所示的流程图中的步骤及顺序。根据不同的实施例,图11所示的流程图中的步骤可以增加、移除、或者改变顺序。本发明实施例的所述方法可以从步骤1101开始。
步骤1101,实时或定时地获取所述无人机的飞行参数以及位置信息,并根据所述飞行参数以及位置信息生成相应的飞行信息。
在本实施方式中,所述监管方法1100还包括:根据所述无人机的飞行信息更新无人机导航地图。
步骤1102,建立与无人机的控制终端的通信连接。
在本实施方式中,所述监管方法1100还包括:
接收所述控制终端发送的在线信号,将所述无人机的飞行模式设定为在线飞行模式;以及
接收所述控制终端发送的离线信号,将所述无人机的飞行模式设定为离线飞行模式;以及
当无法获取到所述无人机的飞行位置时,将所述无人机的飞行模式设定为离线飞行模式。
步骤1103,当所述无人机处于在线飞行模式时,自动地将无人机身份信息以及所述飞行信息发送给控制终端。
步骤1104,接收并处理所述控制终端转发的飞行限制指令。所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
在本实施方式中,所述步骤1104具体可包括:根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作。
更具体地,所述步骤1104可包括:
根据所述飞行限制指令调节所述无人机的电子调速器的参数,以调节所述无人机的相应动力装置的工作参数,从而使所述无人机执行相应的飞行操作。
在本实施方式中,所述监管方法1100还包括:
接收并存储所述控制终端转发的空情信息,所述空情信息至少包括敏感区域,所述敏感区域包括如下至少一种:限飞区域和禁飞区域的经纬度;以及
根据所述空情信息更新无人机导航地图;
根据所述飞行信息以及所述更新后的导航地图监控所述无人机的飞行状态,例如,监控并限制所述无人机的飞行参数。
在本实施方式中,所述监管方法1100通过控制终端实现所述无人机与所述监管服务器之间的通信交互。
可以理解的是,在另一种实施方式中,所述控制终端也可以省略,所述无人机可与所述监管服务器直接进行交互,即所述无人机直接向所述监管服务器发送无人机身份信息以及无人机的飞行信息,以及直接接收所述飞行限制指令,而不需要所述控制终端转发信息的中间环节。
请参阅图12,是本发明实施例的一种无人机60的结构示意图。所述无人机60包括,但不限于,飞行参数采集装置61、通信装置62、存储装置63、飞行控制器64、电调装置65、以及用于驱动所述无人机60飞行的多个动力装置66。
应说明的是,所述无人机60还可以包括机体、传感器、电源、以及实现各种功能的电路模块(图中未示出)等关键部件。
其中,所述存储装置63用于存储所述无人机60的各类数据,例如无人机60的飞行数据,包括但不限于,用户身份信息、无人机60身份信息、安全飞行参数等。所述存储装置63可以是所述无人机60的内存,还可以是可移除的存储装置,例如可移除媒体卡、外置U盘、及其他闪存或存储器。该飞行控制器64用于控制所述无人机60工作。所述飞行控制器64可为中央处理器(Central Processing Unit, CPU)、微处理器、数字信号处理器或其他数据处理芯片。在本实施方式中,所述存储装置63为Flash存储器。所述飞行控制器64用于无人机60的导航、飞行信息的记录、无人机60的整体控制,例如控制所述无人机60的飞行速度、高度、姿态等。
所述飞行参数采集装置61用于实时采集所述无人机60的飞行参数以及位置信息。所述飞行参数包括,但不限于,飞行高度、飞行距离、飞行速度、航向。相应地,所述飞行参数采集装置61具体包括,但不限于,高度传感器(图未示)、速度传感器(图未示)、惯性测量单元(图未示)、位置传感器(图未示)。
其中,所述高度传感器用于检测所述无人机60的飞行高度。
所述速度传感器用于检测所述无人机60的飞行速度。
所述位置传感器用于检测所述无人机60的经纬度。所述位置传感器可为GPS(Global Positioning System,全球定位系统)定位传感器、GNSS(Global Navigation Satellite System,全球导航卫星系统)定位传感器。
所述惯性测量单元用于检测所述无人机60的飞行姿态、航向等信息。
在本实施方式中,所述飞控模块根据来自所述控制终端的信号的强度来计算所述飞行距离。在其他实施方式中,所述飞行参数采集装置61还包括测距传感器,用于检测所述无人机60与所述控制终端之间的实时距离。
在本实施方式中,当所述无人机60处于所述在线飞行模式时,所述飞行控制器64将所述无人机60在所述在线飞行模式下的飞行信息(以下简称“在线飞行信息”)通过所述遥控器实时同步地传回给所述控制终端,再由所述控制终端自动发送给所述监管服务器。
在一种实施方式中,当所述无人机60处于所述离线飞行模式时,所述飞行控制器64将所述无人机60在所述离线飞行模式下的飞行信息(以下简称“离线飞行信息”)保存在所述无人机60上的存储装置63中,并在收到所述在线信号时,将所述离线飞行信息通过所述遥控器传回给所述控制终端,再由所述控制终端自动发送给所述监管服务器。
在另一实施方式中,当所述无人机60处于所述离线飞行模式时,所述飞行控制器64将所述离线飞行信息实时同步地传回给所述控制终端保存。所述控制终端在进入在线模式时,自动将保存的所述离线信息发送给所述监管服务器。
在本实施方式中,所述无人机60还包括监控系统67,所述监控系统67以软件程序或指令的形式安装在所述存储装置63中,并由所述飞行控制器64执行。在本实施方式中,所述监控系统67可以被分割成一个或多个模块,所述一个或多个模块被存储在所述存储装置63中并被配置成由所述飞行控制器64执行,所述无人机60利用所述监控系统67可有效地监控并限制所述无人机60在离线飞行模式以及在在线飞行模式下的飞行行为。
请参阅图13,是本发明实施例的无人机60中的监控系统67的功能模块图。所述监控系统67至少包括,但不限于,控制模块671、接收模块672、设置模块673、以及验证模块674。上述各功能模块是能够完成特定功能的一系列程序指令段,比软件程序本身更适合于描述软件在计算机中的执行过程,如在所述无人机60的飞行控制器64中执行,因此本发明对软件程序的描述都以模块描述。另外,上述各功能模块亦可以由硬件、固件(firmware)方式实现。
所述控制模块671用于实时或定时地获取所述飞行参数采集装置61采集到的所述无人机60的飞行参数以及位置信息,并根据所述飞行参数以及位置信息生成相应的飞行信息。
所述控制模块671还用于通过所述无人机60的通信装置62建立与无人机60的控制终端的通信连接。
所述接收模块672用于接收并存储所述控制终端发送的离线飞行证书。
在本实施方式中,所述离线飞行证书包括身份信息以及离线飞行参数,所述身份信息包括无人机60用户身份信息与无人机60身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
在本实施方式中,所述离线飞行证书存储于无人机60上。可选的,所述离线飞行证书也可存储于与无人机60通信连接的控制终端上。
在本实施方式中,所述控制模块671还用于根据所述离线飞行参数更新无人机60导航地图。
所述设置模块673用于在所述接收模块672接收到所述控制终端发送的在线信号时,将所述无人机60的飞行模式设定为在线飞行模式;以及在所述接收模块672接收到所述控制终端发送的离线信号时,将所述无人机60的飞行模式设定为离线飞行模式;以及在所述控制模块671无法获取到所述无人机60的飞行位置时,将所述无人机60的飞行模式设定为离线飞行模式。
所述离线飞行证书中还包括身份信息,所述身份信息包括无人机60用户身份信息与无人机60身份信息。
所述验证模块674用于当设定所述无人机60的飞行模式为离线飞行模式时,获取所述无人机60身份信息以及所述离线飞行证书中的无人机60身份信息,并验证所述无人机60身份信息与所述离线飞行证书中的无人机60身份信息是否一致。
所述控制模块671还用于当所述无人机60身份信息与所述离线飞行证书中的无人机60身份信息不一致时,禁止启动所述无人机60。
所述控制模块671还用于当所述无人机60处于离线飞行模式时,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机60在离线飞行模式下的飞行行为。
在本实施方式中,所述控制模块671还用于:
当所述无人机60的飞行模式为离线飞行模式时,将所述无人机60的飞行信息存储于所述无人机60上,并在所述无人机60的飞行模式被切换为在线飞行模式时控制所述通信装置62将存储的离线飞行模式下的飞行信息发送给所述控制终端;或者
当所述无人机60的飞行模式为离线飞行模式时,将所述无人机60的飞行信息发送给所述控制终端进行存储。
在一种实施方式中,所述离线飞行参数还包括:最高飞行高度、最远飞行距离、最大飞行速度。
所述控制模块671在根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机60在离线飞行模式下的飞行行为时,具体用于:
实时或定时地获取所述无人机60的飞行参数以及位置信息,所述飞行参数至少包括:飞行时间、飞行高度、飞行距离、飞行速度、航向;
根据所述离线飞行证书中的飞行区域信息监控所述无人机60的飞行位置是否在所述飞行区域内;及/或
根据所述离线飞行证书中的飞行时间监控所述无人机60是否在所述飞行时间内飞行;及/或
根据所述离线飞行证书中的限飞区域信息监控所述无人机60的飞行位置是否在所述限飞区域内;及/或
根据所述离线飞行证书中的最高飞行高度监控所述无人机60的飞行高度是否超出所述最高飞行高度;及/或
根据所述离线飞行证书中的最远飞行距离监控所述无人机60的飞行距离是否超出所述最远飞行距离;及/或
根据所述离线飞行证书中的最大飞行速度监控所述无人机60的飞行速度是否超出所述最大飞行速度。
所述控制模块671在根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机60在离线飞行模式下的飞行行为时,具体还用于:
当所述无人机60的飞行位置在所述飞行区域之外时,调整所述无人机60的航向,以控制所述无人机60在所述飞行区域中飞行,或者禁止所述无人机60启动;及/或
当所述无人机60在所述飞行时间外飞行时,禁止所述无人机60启动;及/或
当所述无人机60的飞行位置在所述限飞区域之内时,调整所述无人机60的航向,以控制所述无人机60在所述限飞区域外飞行,或者禁止所述无人机60启动;及/或
当所述无人机60的飞行高度超出所述最高飞行高度时,自动调整所述无人机60的相应动力装置66的工作参数,以减降低所述飞行高度;及/或
当所述无人机60的飞行距离超出所述最远飞行距离时,自动调整所述无人机60的相应动力装置66的工作参数,以减小所述飞行距离;及/或
当所述无人机60的飞行速度超出所述最大飞行速度时,自动调整所述无人机60的相应动力装置66的工作参数,以减降低所述飞行速度。
在本实施方式中,所述控制模块671还用于根据所述离线飞行参数更新无人机60导航地图。
在本实施方式中,所述无人机60通过控制终端实现与所述监管服务器之间的通信交互。
可以理解的是,在另一种实施方式中,所述控制终端也可以省略,所述无人机60可与所述监管服务器直接进行交互,即所述无人机60直接接收所述监管服务器提供的离线飞行证书,而不需要所述控制终端转发信息的中间环节。
本发明实施例的所述无人机60通过预存离线飞行证书,从而可有效地对所述无人机60进行限飞,例如限区域、限高、限远、限速等。
在本实施方式中,所述控制模块671还用于当所述无人机60处于在线飞行模式时,控制所述通信装置62自动地将无人机60身份信息以及所述飞行信息发送给控制终端。
所述接收模块672还用于接收所述控制终端转发的飞行限制指令,所述控制模块671还用于根据所述飞行限制指令调整所述无人机60的飞行参数以执行相应的飞行操作。
所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
所述控制模块671在根据所述飞行限制指令调整所述无人机60的飞行参数以执行相应的飞行操作时,具体用于:
根据所述飞行限制指令调节所述无人机60的电子调速器的参数,以调节所述无人机60的相应动力装置66的工作参数,从而使所述无人机60执行相应的飞行操作。
所述接收模块672还用于接收并存储所述控制终端转发的空情信息,所述空情信息至少包括敏感区域,所述敏感区域包括如下至少一种:限飞区域和禁飞区域的经纬度。
所述控制模块671还用于根据所述空情信息更新无人机60导航地图,以及根据所述飞行信息以及所述更新后的导航地图监控所述无人机60的飞行状态。
需要说明的是,本发明实施例中所述无人机60中的监控系统67的各个功能模块的具体实现可对应地参考上述图10-11对应实施例中相关步骤的描述。
所述无人机60一方面通过安装离线飞行证书,从而在离线飞行模式下能够监控所述无人机60的飞行信息与所报备的飞行信息是否相符,从而限制所述无人机60在离线飞行模式下的飞行行为。另一方面在在线飞行模式下将飞行信息实时地上传给所述监管服务器,以便所述监管服务器能够及时获得飞行信息,以实时掌握无人机60的飞行状态,从而便于对无人机60进行监管和监控。当所述无人机60在在线飞行模式下的飞行行为违反安全规定时,所述监管服务器还能通过发送飞行限制指令和/或警告信息限制所述无人机60在在线飞行模式下的飞行行为。
此外,所述无人机60通过利用控制终端,例如手机、平板电脑等的多种无线通信功能,例如2G、3G、4G、5G、WIFI等,即可实现所述无人机60与所述监管服务器之间的双向通信以及数据传输,从而在无需增加额外的硬件设备的情况下即可将所述无人机60的飞行数据上传给所述监管服务器,有效地解决了现有技术中无法有效地获取微型无人机60的飞行数据以及无法有效地对微型无人机60的飞行行为进行监管的技术问题。
在本实施方式中,所述无人机60通过控制终端实现与所述监管服务器之间的通信交互。
可以理解的是,在另一种实施方式中,所述控制终端也可以省略,所述无人机60可与所述监管服务器直接进行交互,即所述无人机60直接接收所述监管服务器提供的离线飞行证书,或者,所述无人机60直接向所述监管服务器发送无人机60身份信息以及无人机60的飞行信息,以及直接接收所述飞行限制指令,而不需要所述控制终端转发信息的中间环节。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (145)

  1. 一种无人机飞行状态的监管方法,应用于监管服务器中,其特征在于:所述监管方法包括以下步骤:
    建立与无人机的控制终端的通信连接;
    接收所述控制终端发送的离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
    根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
    接收并响应所述控制终端发送的下载离线飞行证书的请求信号,将所述离线飞行证书发送给所述控制终端,以通过所述控制终端将所述离线飞行证书发送给相应的无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
  2. 如权利要求1所述的无人机飞行状态的监管方法,其特征在于:所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  3. 如权利要求2所述的无人机飞行状态的监管方法,其特征在于:所述离线飞行参数还包括:最高飞行高度、最远飞行距离、最大飞行速度。
  4. 如权利要求1-3任意一项所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:根据所述离线飞行申报信息更新无人机部署地图。
  5. 如权利要求1所述的无人机飞行状态的监管方法,其特征在于:通过在线申报平台接收离线飞行申报信息。
  6. 如权利要求1-3任意一项所述的无人机飞行状态的监管方法,其特征在于:接收所述控制终端发送的离线飞行申报信息步骤,具体包括:
    提供离线飞行证书的前端申报界面,并将所述前端申报界面显示于所述控制终端上;以及
    接收在所述前端申报界面中输入的离线飞行申报信息。
  7. 如权利要求1-3任意一项所述的无人机飞行状态的监管方法,其特征在于:在接收所述控制终端发送的离线飞行申报信息步骤之后,还包括:
    与第三方认证平台建立通信连接,并将所述无人机用户身份信息发送给所述第三方认证平台进行认证;
    若所述第三方认证平台成功认证所述无人机用户身份信息,则根据所述离线飞行申报信息生成所述离线飞行证书。
  8. 如权利要求1-3任意一项所述的无人机飞行状态的监管方法,其特征在于:根据所述离线飞行申报信息生成无人机的离线飞行证书步骤之前,还包括:
    显示离线飞行证书的后端申报界面;以及
    接收在所述后端申报界面中对在所述前端申报界面中输入的离线飞行参数的审批信息。
  9. 如权利要求1-3任意一项所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    提供与无人机用户身份信息及/或无人机身份信息关联的离线飞行证书的前端查询与修改界面,并将所述前端查询与修改界面显示于所述控制终端上;
    接收在所述前端查询与修改界面中修改的离线飞行参数;以及
    根据所述修改后的离线飞行参数更新所述离线飞行证书中的信息,并将更新后的离线飞行证书实时推送给相应的控制终端。
  10. 如权利要求1-3任意一项所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    显示与无人机用户身份信息及/或无人机身份信息关联的离线飞行证书的后端查询与修改界面;
    接收在所述后端查询与修改界面中修改的离线飞行参数;以及
    根据所述修改后的离线飞行参数更新所述离线飞行证书的信息,并将更新后的离线飞行证书实时推送给相应的控制终端。
  11. 如权利要求1所述的无人机飞行状态的监管方法,其特征在于:通过移动通信网络及/或无线接入方式与所述控制终端建立通信连接。
  12. 一种无人机飞行状态的监管方法,应用于监管服务器中,其特征在于:所述监管方法包括以下步骤:
    接收无人机的离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
    根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
    将所述离线飞行证书提供给所述无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
  13. 如权利要求12所述的无人机飞行状态的监管方法,其特征在于:所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  14. 如权利要求12所述的无人机飞行状态的监管方法,其特征在于:通过在线申报平台接收离线飞行申报信息。
  15. 如权利要求12所述的无人机飞行状态的监管方法,其特征在于:在将所述离线飞行证书提供给所述无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为步骤之前,还包括:
    建立与无人机的控制终端的通信连接,接收并响应所述控制终端发送的下载离线飞行证书的请求信号。
  16. 如权利要求12或15所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    将所述离线飞行证书发送给所述控制终端,以通过所述控制终端将所述离线飞行证书发送给相应的无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
  17. 如权利要求12所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:根据所述离线飞行申报信息更新无人机部署地图。
  18. 一种无人机飞行状态的监控系统,应用于一种监管服务器中,其特征在于:所述监控系统包括:
    控制模块,用于通过所述监管服务器的通信装置建立与无人机的控制终端的通信连接;
    接收模块,用于接收所述控制终端发送的离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
    证书生成模块,用于根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
    所述控制模块还用于接收并响应所述控制终端发送的下载离线飞行证书的请求信号,将所述离线飞行证书发送给所述控制终端,以通过所述控制终端将所述离线飞行证书发送给相应的无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
  19. 如权利要求18所述的无人机飞行状态的监控系统,其特征在于:所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  20. 如权利要求19所述的无人机飞行状态的监控系统,其特征在于:所述离线飞行参数还包括:最高飞行高度、最远飞行距离、最大飞行速度。
  21. 如权利要求18-20任意一项所述的无人机飞行状态的监控系统,其特征在于:所述控制模块还用于根据所述离线飞行申报信息更新无人机部署地图。
  22. 如权利要求18所述的无人机飞行状态的监控系统,其特征在于:所述接收模块通过在线申报平台接收离线飞行申报信息。
  23. 如权利要求18-20任意一项所述的无人机飞行状态的监控系统,其特征在于:
    所述证书生成模块还用于提供离线飞行证书的前端申报界面;
    所述控制模块还用于将所述前端申报界面显示于所述控制终端上;以及
    所述接收模块用于接收在所述前端申报界面中输入的离线飞行申报信息。
  24. 如权利要求18-20任意一项所述的无人机飞行状态的监控系统,其特征在于:所述控制模块还用于与第三方认证平台建立通信连接,并将所述无人机用户身份信息发送给所述第三方认证平台进行认证;
    所述证书生成模块用于在所述第三方认证平台成功认证所述无人机用户身份信息之后,根据所述离线飞行申报信息生成所述离线飞行证书。
  25. 如权利要求18-20任意一项所述的无人机飞行状态的监控系统,其特征在于:
    所述证书生成模块还用于在所述监管服务器的显示屏上显示离线飞行证书的后端申报界面;以及
    所述接收模块还用于接收在所述后端申报界面中对在所述前端申报界面中输入的离线飞行参数的审批信息。
  26. 如权利要求18-20任意一项所述的无人机飞行状态的监控系统,其特征在于:
    所述证书生成模块还用于提供与无人机用户身份信息及/或无人机身份信息关联的离线飞行证书的前端查询与修改界面;
    所述控制模块还用于将所述前端查询与修改界面显示于所述控制终端上;
    所述接收模块还用于接收在所述前端查询与修改界面中修改的离线飞行参数;
    所述证书生成模块还用于根据所述修改后的离线飞行参数更新所述离线飞行证书中的信息;以及
    所述控制模块还用于将更新后的离线飞行证书实时推送给相应的控制终端。
  27. 如权利要求18-20任意一项所述的无人机飞行状态的监控系统,其特征在于:
    所述证书生成模块还用于在所述监管服务器的显示屏上显示与无人机用户身份信息及/或无人机身份信息关联的离线飞行证书的后端查询与修改界面;
    所述接收模块还用于接收在所述后端查询与修改界面中修改的离线飞行参数;
    所述证书生成模块还用于根据所述修改后的离线飞行参数更新所述离线飞行证书的信息;以及
    所述控制模块还用于将更新后的离线飞行证书实时推送给相应的控制终端。
  28. 一种处理器,应用于监管服务器中,其特征在于:所述处理器用于获取存储装置中存储的程序指令,以执行以下步骤:
    建立与无人机的控制终端的通信连接;
    接收所述控制终端发送的离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
    根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
    接收并响应所述控制终端发送的下载离线飞行证书的请求信号,将所述离线飞行证书发送给所述控制终端,以通过所述控制终端将所述离线飞行证书发送给相应的无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
  29. 如权利要求28所述的处理器,其特征在于:所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  30. 如权利要求29所述的处理器,其特征在于:所述离线飞行参数还包括:最高飞行高度、最远飞行距离、最大飞行速度。
  31. 一种处理器,应用于监管服务器中,其特征在于:所述处理器用于获取存储装置中存储的程序指令,以执行以下步骤:
    接收无人机的离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
    根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
    将所述离线飞行证书提供给所述无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
  32. 如权利要求31所述的处理器,其特征在于:所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  33. 如权利要求32所述的处理器,其特征在于:所述离线飞行参数还包括:最高飞行高度、最远飞行距离、最大飞行速度。
  34. 一种存储器,应用于监管服务器中,其特征在于:所述存储器用于存储程序指令,所述程序指令可被处理器获取以执行以下步骤:
    建立与无人机的控制终端的通信连接;
    接收所述控制终端发送的离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
    根据所述离线飞行申报信息生成无人机的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
    接收并响应所述控制终端发送的下载离线飞行证书的请求信号,将所述离线飞行证书发送给所述控制终端,以通过所述控制终端将所述离线飞行证书发送给相应的无人机,从而通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
  35. 如权利要求34所述的存储器,其特征在于:所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  36. 如权利要求35所述的存储器,其特征在于:所述离线飞行参数还包括:最高飞行高度、最远飞行距离、最大飞行速度。
  37. 一种无人机飞行状态的监管方法,应用于监管服务器中,其特征在于:所述监管方法包括以下步骤:
    建立与无人机的控制终端的通信连接;
    接收所述控制终端发送的无人机身份信息以及无人机的飞行信息;
    根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定;以及
    若判断出所述无人机的飞行信息违反所述飞行安全规定时,则生成相应的飞行限制指令和/或警告信息,并将所述飞行限制指令和/或警告信息发送给所述控制终端,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
  38. 如权利要求37所述的无人机飞行状态的监管方法,其特征在于:所述飞行信息包括所述无人机的位置信息、航向;预设的所述安全飞行参数至少包括与无人机身份信息关联的敏感区域的经纬度,预设的所述敏感区域包括如下至少一种:限飞区域、禁飞区域;所述监管方法具体包括:
    根据所述无人机身份信息以及所述飞行信息判断所述无人机是否进入或即将进入预设的敏感区域;
    若判断出所述无人机即将进入或已经进入预设的所述敏感区域,则生成相应的飞行限制指令和/或警告信息,所述警告信息至少包括:改变航向信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、禁止启动指令。
  39. 如权利要求37或38所述的无人机飞行状态的监管方法,其特征在于:所述飞行信息包括所述无人机的多种飞行参数,所述飞行参数至少包括:飞行高度、飞行速度;预设的所述安全飞行参数至少包括与无人机用户身份信息关联的最高安全飞行高度、最大安全飞行速度;所述监管方法具体还包括:
    根据所述无人机身份信息以及所述飞行信息监控所述无人机的飞行状态,并判断所述无人机的飞行参数是否超出预设的所述安全飞行参数;
    若判断出所述无人机的飞行参数超出预设的所述安全飞行参数,则生成相应的飞行限制指令和/或警告信息,所述警告信息包括如下至少一种:降低高度信息、降低速度信息,所述飞行限制指令包括如下至少一种:强制降低高度指令、强制降低速度指令。
  40. 如权利要求37所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    实时设定与所述无人机身份信息关联的空情信息,并实时地向所述控制终端推送所述空情信息,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域。
  41. 如权利要求40所述的无人机飞行状态的监管方法,其特征在于:实时设定与所述无人机身份信息关联的空情信息步骤,具体包括:
    接收输入的参数,并根据所述输入的参数设定与所述无人机身份信息关联的空情信息;及/或
    根据所述飞行信息实时地自动设定与所述无人机身份信息关联的空情信息。
  42. 如权利要求37所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:根据所述无人机的飞行信息更新无人机部署地图。
  43. 如权利要求37所述的无人机飞行状态的监管方法,其特征在于:通过移动通信网络及/或无线接入方式与所述控制终端建立通信连接。
  44. 一种无人机飞行状态的监管方法,应用于监管服务器中,其特征在于:所述监管方法包括以下步骤:
    接收无人机身份信息以及无人机的飞行信息;
    根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定;以及
    若判断出所述无人机的飞行信息违反所述飞行安全规定时,则生成相应的飞行限制指令,并将所述飞行限制指令发送给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
  45. 如权利要求44所述的无人机飞行状态的监管方法,其特征在于:与无人机直接或间接地建立通信连接。
  46. 如权利要求44所述的无人机飞行状态的监管方法,其特征在于:所述飞行限制指令为飞行预警指令或飞行控制指令。
  47. 如权利要求44所述的无人机飞行状态的监管方法,其特征在于:根据所述无人机的飞行信息更新无人机部署地图。
  48. 一种无人机飞行状态的监控系统,应用于监管服务器中,其特征在于:所述监控系统包括:
    控制模块,用于通过所述监管服务器的通信装置建立与无人机的控制终端的通信连接;
    接收模块,用于接收所述控制终端发送的无人机身份信息以及无人机的飞行信息;
    安全决策模块,用于根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定;以及用于在判断出所述无人机的飞行信息违反所述飞行安全规定时,生成相应的飞行限制指令和/或警告信息;以及
    所述控制模块还用于控制所述通信装置将所述飞行限制指令和/或警告信息发送给所述控制终端,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
  49. 如权利要求48所述的无人机飞行状态的监控系统,其特征在于:所述飞行信息包括所述无人机的位置信息、航向;预设的所述安全飞行参数至少包括与无人机身份信息关联的敏感区域的经纬度,预设的所述敏感区域包括如下至少一种:限飞区域、禁飞区域;所述安全决策模块具体用于:
    根据所述无人机身份信息以及所述飞行信息判断所述无人机是否进入或即将进入预设的敏感区域;
    若判断出所述无人机即将进入或已经进入预设的所述敏感区域,则生成相应的飞行限制指令和/或警告信息,所述警告信息至少包括:改变航向信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、禁止启动指令。
  50. 如权利要求48或49所述的无人机飞行状态的监控系统,其特征在于:所述飞行信息包括所述无人机的多种飞行参数,所述飞行参数至少包括:飞行高度、飞行速度;预设的所述安全飞行参数至少包括与无人机用户身份信息关联的最高安全飞行高度、最大安全飞行速度;所述安全决策模块具体还用于:
    根据所述无人机身份信息以及所述飞行信息监控所述无人机的飞行状态,并判断所述无人机的飞行参数是否超出预设的所述安全飞行参数;
    若判断出所述无人机的飞行参数超出预设的所述安全飞行参数,则生成相应的飞行限制指令和/或警告信息,所述警告信息包括如下至少一种:降低高度信息、降低速度信息,所述飞行限制指令包括如下至少一种:强制降低高度指令、强制降低速度指令。
  51. 如权利要求48所述的无人机飞行状态的监控系统,其特征在于:所述监控系统还包括设置模块,用于实时设定与所述无人机身份信息关联的空情信息;
    所述控制模块还用于控制所述通信装置实时地向所述控制终端推送所述空情信息,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域。
  52. 如权利要求51所述的无人机飞行状态的监控系统,其特征在于:所述设置模块在实时设定与所述无人机身份信息关联的空情信息时,具体用于:
    接收输入的参数,并根据所述输入的参数设定与所述无人机身份信息关联的空情信息;及/或
    根据所述飞行信息实时地自动设定与所述无人机身份信息关联的空情信息。
  53. 如权利要求48所述的无人机飞行状态的监控系统,其特征在于:所述控制模块还用于根据所述无人机的飞行信息更新无人机部署地图。
  54. 一种处理器,应用于监管服务器中,其特征在于:所述处理器用于获取存储装置中存储的程序指令,以执行以下步骤:
    建立与无人机的控制终端的通信连接;
    接收所述控制终端发送的无人机身份信息以及无人机的飞行信息;
    根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定;以及
    若判断出所述无人机的飞行信息违反所述飞行安全规定时,则生成相应的飞行限制指令和/或警告信息,并将所述飞行限制指令和/或警告信息发送给所述控制终端,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
  55. 一种处理器,应用于监管服务器中,其特征在于:所述处理器用于获取存储装置中存储的程序指令,以执行以下步骤:
    接收无人机身份信息以及无人机的飞行信息;
    根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定;以及
    若判断出所述无人机的飞行信息违反所述飞行安全规定时,则生成相应的飞行限制指令,并将所述飞行限制指令发送给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
  56. 一种存储器,应用于监管服务器中,其特征在于:所述存储器用于存储程序指令,所述程序指令可被处理器获取以执行以下步骤:
    建立与无人机的控制终端的通信连接;
    接收所述控制终端发送的无人机身份信息以及无人机的飞行信息;
    根据预设的安全飞行参数判断所述无人机的飞行信息是否符合飞行安全规定;以及
    若判断出所述无人机的飞行信息违反所述飞行安全规定时,则生成相应的飞行限制指令和/或警告信息,并将所述飞行限制指令和/或警告信息发送给所述控制终端,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
  57. 一种无人机飞行状态的监管方法,应用于控制终端中,其特征在于:所述监管方法包括以下步骤:
    分别建立与无人机以及监管服务器的通信连接;
    向所述监管服务器发送离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
    向所述监管服务器发送下载离线飞行证书的请求信号,并接收所述监管服务器发送的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
    将所述离线飞行证书转发给所述无人机,以通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
  58. 如权利要求57所述的无人机飞行状态的监管方法,其特征在于:所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  59. 如权利要求57所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    在与所述监管服务器建立通信连接后,将所述控制终端的模式切换为在线模式,并发送在线信号给所述无人机,以将所述无人机的飞行模式设定为在线飞行模式;以及
    在与所述监管服务器断开通信连接后,将所述控制终端的模式切换为离线模式,并发送离线信号给所述无人机,以将所述无人机的飞行模式设定为离线飞行模式。
  60. 如权利要求57所述的无人机飞行状态的监管方法,其特征在于:通过移动通信网络及/或无线接入方式与所述监管服务器进行数据传输。
  61. 如权利要求57所述的无人机飞行状态的监管方法,其特征在于:通过移动通信网络及/或无线传输方式与所述无人机进行数据传输,所述无线接入方式包括WIFI或蓝牙方式。
  62. 一种无人机飞行状态的监控系统,应用于控制终端中,其特征在于:所述监控系统包括:
    控制模块,用于通过所述控制终端的通信装置分别建立与无人机以及监管服务器的通信连接;
    所述控制模块还用于控制所述通信装置向所述监管服务器发送离线飞行申报信息,以及向所述监管服务器发送下载离线飞行证书的请求信号,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
    接收模块,用于接收所述监管服务器发送的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
    所述控制模块还用于控制所述通信装置将所述离线飞行证书转发给所述无人机,以通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
  63. 如权利要求62所述的无人机飞行状态的监控系统,其特征在于:所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  64. 如权利要求62所述的无人机飞行状态的监控系统,其特征在于:所述监控系统还包括设置模块,所述设置模块用于:
    在与所述监管服务器建立通信连接后,将所述控制终端的模式切换为在线模式,并通过所述通信装置发送在线信号给所述无人机,以将所述无人机的飞行模式设定为在线飞行模式;以及
    在与所述监管服务器断开通信连接后,将所述控制终端的模式切换为离线模式,并通过所述通信装置发送离线信号给所述无人机,以将所述无人机的飞行模式设定为离线飞行模式。
  65. 一种处理器,应用于控制终端中,其特征在于:所述处理器用于获取存储装置中存储的程序指令,以执行以下步骤:
    分别建立与无人机以及监管服务器的通信连接;
    向所述监管服务器发送离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
    向所述监管服务器发送下载离线飞行证书的请求信号,并接收所述监管服务器发送的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
    将所述离线飞行证书转发给所述无人机,以通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
  66. 如权利要求65所述的处理器,其特征在于:所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  67. 一种存储器,应用于控制终端中,其特征在于:所述存储器用于存储程序指令,所述程序指令可被处理器获取以执行以下步骤:
    分别建立与无人机以及监管服务器的通信连接;
    向所述监管服务器发送离线飞行申报信息,其中,所述离线飞行申报信息包括身份信息与离线飞行参数;
    向所述监管服务器发送下载离线飞行证书的请求信号,并接收所述监管服务器发送的离线飞行证书,其中,所述离线飞行证书中包含有所述离线飞行申报信息;以及
    将所述离线飞行证书转发给所述无人机,以通过所述离线飞行证书限制所述无人机在离线飞行模式下的飞行行为。
  68. 如权利要求67所述的存储器,其特征在于:所述身份信息包括无人机用户身份信息与无人机身份信息,所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  69. 一种无人机飞行状态的监管方法,应用于控制终端中,其特征在于:所述监管方法包括以下步骤:
    分别建立与无人机以及监管服务器的通信连接;
    接收所述无人机发送的无人机身份信息以及无人机的飞行信息;
    在在线模式下自动地将无人机身份信息以及所述飞行信息发送给所述监管服务器;
    接收所述监管服务器发送的飞行限制指令和/或警告信息;以及
    将所述飞行限制指令转发给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
  70. 如权利要求69所述的无人机飞行状态的监管方法,其特征在于:所述警告信息包括如下至少一种:改变航向信息、降低速度信息、降低高度信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
  71. 如权利要求70所述的无人机飞行状态的监管方法,其特征在于:所述飞行信息包括所述无人机的位置信息以及多种飞行参数,所述飞行参数至少包括:飞行时间、飞行高度、飞行速度、航向;所述监管方法还包括:
    获取地图信息,并显示地图;
    根据所述位置信息在所述地图上标记所述无人机的位置;
    及/或,在所述地图上显示所述无人机的飞行参数。
  72. 如权利要求70或71所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    接收所述监管服务器推送的空情信息,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域;
    获取地图信息,并显示地图;以及
    根据所述空情信息在所述地图上标记限飞区域及/或禁飞区域。
  73. 如权利要求72所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    通过语音提示所述飞行限制指令和/或警告信息;或者
    通过文字显示所述飞行限制指令和/或警告信息。
  74. 如权利要求69所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    接收所述监管服务器推送的空情信息,并自动地将所述空情信息转发给所述无人机,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域。
  75. 如权利要求69所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    在与所述监管服务器建立通信连接后,将所述控制终端的模式切换为在线模式,并发送在线信号给所述无人机,以将所述无人机的飞行模式设定为在线飞行模式;以及
    在与所述监管服务器断开通信连接后,将所述控制终端的模式切换为离线模式,并发送离线信号给所述无人机,以将所述无人机的飞行模式设定为离线飞行模式。
  76. 如权利要求75所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    在所述控制终端处于离线模式下接收到所述无人机发送的离线飞行信息时,将接收到的所述离线飞行信息存储,并在所述控制终端的模式被切换至在线模式时控制所述通信装置将所述离线飞行信息发送给所述监管服务器;或者
    在所述控制终端的模式从离线模式切换至在线模式时,接收所述无人机发送的离线飞行信息,并将所述离线飞行信息自动转发给所述监管服务器。
  77. 如权利要求69所述的无人机飞行状态的监管方法,其特征在于:通过移动通信网络及/或无线接入方式与所述监管服务器进行数据传输。
  78. 如权利要求69所述的无人机飞行状态的监管方法,其特征在于:通过移动通信网络及/或无线传输方式与所述无人机进行数据传输,所述无线接入方式包括WIFI或蓝牙方式。
  79. 一种无人机飞行状态的监控系统,应用于控制终端中,其特征在于:所述监控系统包括:
    控制模块,用于通过所述控制终端的通信装置分别建立与无人机以及监管服务器的通信连接;
    接收模块,用于接收所述无人机发送的无人机身份信息以及无人机的飞行信息;
    所述控制模块还用于通过所述通信装置在在线模式下自动地将无人机身份信息以及所述飞行信息发送给所述监管服务器;
    所述接收模块还用于接收所述监管服务器发送的飞行限制指令和/或警告信息;以及
    所述控制模块还用于在接收到飞行限制指令时,通过所述通信装置将所述飞行限制指令转发给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
  80. 如权利要求79所述的无人机飞行状态的监控系统,其特征在于:所述警告信息包括如下至少一种:改变航向信息、降低速度信息、降低高度信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
  81. 如权利要求79所述的无人机飞行状态的监控系统,其特征在于:所述飞行信息包括所述无人机的位置信息以及多种飞行参数,所述飞行参数至少包括:飞行时间、飞行高度、飞行速度、航向;所述控制模块还用于:
    获取地图信息,并在所述控制终端的显示屏上显示地图;
    根据所述位置信息在所述地图上标记所述无人机的位置;
    及/或,在所述地图上显示所述无人机的飞行参数。
  82. 如权利要求80或81所述的无人机飞行状态的监控系统,其特征在于:所述接收模块还用于接收所述监管服务器推送的空情信息,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域;
    所述控制模块还用于获取地图信息,并在所述控制终端的显示屏上显示地图,以及根据所述空情信息在所述地图上标记所述敏感区域。
  83. 如权利要求82所述的无人机飞行状态的监控系统,其特征在于:所述监控系统还包括提示模块,所述提示模块用于通过语音提示所述飞行限制指令和/或警告信息,或者通过文字显示所述飞行限制指令和/或警告信息。
  84. 如权利要求79所述的无人机飞行状态的监控系统,其特征在于:所述接收模块还用于接收所述监管服务器推送的空情信息;所述控制模块还用于控制所述通信装置自动地将所述空情信息转发给所述无人机,所述空情信息至少包括敏感区域的经纬度,所述敏感区域包括如下至少一种:限飞区域、禁飞区域。
  85. 如权利要求79所述的无人机飞行状态的监控系统,其特征在于:所述监控系统还包括设置模块,所述设置模块用于:
    在与所述监管服务器建立通信连接后,将所述控制终端的模式切换为在线模式,并通过所述通信装置发送在线信号给所述无人机,以将所述无人机的飞行模式设定为在线飞行模式;以及
    在与所述监管服务器断开通信连接后,将所述控制终端的模式切换为离线模式,并通过所述通信装置发送离线信号给所述无人机,以将所述无人机的飞行模式设定为离线飞行模式。
  86. 如权利要求85所述的无人机飞行状态的监控系统,其特征在于:所述接收模块还用于在所述控制终端处于离线模式下接收到所述无人机发送的离线飞行信息时,将接收到的所述离线飞行信息存储,所述控制模块还用于在所述控制终端的模式被切换至在线模式时控制所述通信装置将所述离线飞行信息发送给所述监管服务器;或者
    所述接收模块还用于在所述控制终端的模式从离线模式切换至在线模式时,接收所述无人机发送的离线飞行信息,所述控制模块还用于控制所述通信装置将所述离线飞行信息自动转发给所述监管服务器。
  87. 一种处理器,应用于控制终端中,其特征在于:所述处理器用于获取存储装置中存储的程序指令,以执行以下步骤:
    分别建立与无人机以及监管服务器的通信连接;
    接收所述无人机发送的无人机身份信息以及无人机的飞行信息;
    在在线模式下自动地将无人机身份信息以及所述飞行信息发送给所述监管服务器;
    接收所述监管服务器发送的飞行限制指令和/或警告信息;以及
    将所述飞行限制指令转发给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
  88. 如权利要求87所述的处理器,其特征在于:所述警告信息包括如下至少一种:改变航向信息、降低速度信息、降低高度信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
  89. 一种存储器,应用于控制终端中,其特征在于:所述存储器用于存储程序指令,所述程序指令可被处理器获取以执行以下步骤:
    分别建立与无人机以及监管服务器的通信连接;
    接收所述无人机发送的无人机身份信息以及无人机的飞行信息;
    在在线模式下自动地将无人机身份信息以及所述飞行信息发送给所述监管服务器;
    接收所述监管服务器发送的飞行限制指令和/或警告信息;以及
    将所述飞行限制指令转发给所述无人机,使所述无人机执行所述飞行限制指令,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
  90. 如权利要求89所述的存储器,其特征在于:所述警告信息包括如下至少一种:改变航向信息、降低速度信息、降低高度信息,所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
  91. 一种无人机飞行状态的监管方法,应用于无人机中,其特征在于:所述监管方法包括以下步骤:
    建立与无人机的控制终端的通信连接;
    接收并存储所述控制终端发送的离线飞行证书,所述离线飞行证书包括离线飞行参数;以及
    当所述无人机处于离线飞行模式时,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为。
  92. 如权利要求91所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    接收所述控制终端发送的在线信号,将所述无人机的飞行模式设定为在线飞行模式;以及
    接收所述控制终端发送的离线信号,将所述无人机的飞行模式设定为离线飞行模式;以及
    当无法获取到所述无人机的飞行位置时,将所述无人机的飞行模式设定为离线飞行模式。
  93. 如权利要求92所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    当所述无人机的飞行模式为离线飞行模式时,存储所述无人机的飞行信息,并在所述无人机的飞行模式被切换为在线飞行模式时将存储的离线飞行模式下的飞行信息发送给所述控制终端;或者
    当所述无人机的飞行模式为离线飞行模式时,将所述无人机的飞行信息发送给所述控制终端进行存储。
  94. 如权利要求92所述的无人机飞行状态的监管方法,其特征在于:所述离线飞行证书中还包括身份信息,所述身份信息包括无人机用户身份信息与无人机身份信息;所述监管方法还包括:
    当设定所述无人机的飞行模式为离线飞行模式时,获取所述无人机身份信息以及所述离线飞行证书中的无人机身份信息,并验证所述无人机身份信息与所述离线飞行证书中的无人机身份信息是否一致;
    若所述无人机身份信息与所述离线飞行证书中的无人机身份信息不一致,则禁止启动所述无人机。
  95. 如权利要求91所述的无人机飞行状态的监管方法,其特征在于:所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  96. 如权利要求95所述的无人机飞行状态的监管方法,其特征在于:所述离线飞行参数还包括:限飞区域信息、最高飞行高度、最远飞行距离、最大飞行速度。
  97. 如权利要求96所述的无人机飞行状态的监管方法,其特征在于:根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为步骤,具体包括:
    获取所述无人机的飞行参数以及位置信息,所述飞行参数至少包括:飞行时间、飞行高度、飞行距离、飞行速度、航向;
    根据所述离线飞行证书中的飞行区域信息监控所述无人机的飞行位置是否在所述飞行区域内;及/或
    根据所述离线飞行证书中的飞行时间监控所述无人机是否在所述飞行时间内飞行;及/或
    根据所述离线飞行证书中的限飞区域信息监控所述无人机的飞行位置是否在所述限飞区域内;及/或
    根据所述离线飞行证书中的最高飞行高度监控所述无人机的飞行高度是否超出所述最高飞行高度;及/或
    根据所述离线飞行证书中的最远飞行距离监控所述无人机的飞行距离是否超出所述最远飞行距离;及/或
    根据所述离线飞行证书中的最大飞行速度监控所述无人机的飞行速度是否超出所述最大飞行速度。
  98. 如权利要求97所述的无人机飞行状态的监管方法,其特征在于:根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为步骤,具体还包括:
    若所述无人机的飞行位置在所述飞行区域之外,则调整所述无人机的航向,以控制所述无人机在所述飞行区域中飞行,或者禁止所述无人机启动;及/或
    若所述无人机在所述飞行时间外飞行,则禁止所述无人机启动;及/或
    若所述无人机的飞行位置在所述限飞区域之内,则调整所述无人机的航向,以控制所述无人机在所述限飞区域外飞行,或者禁止所述无人机启动;及/或
    若所述无人机的飞行高度超出所述最高飞行高度,则自动调整所述无人机的相应动力装置的工作参数,以减降低所述飞行高度;及/或
    若所述无人机的飞行距离超出所述最远飞行距离,则自动调整所述无人机的相应动力装置的工作参数,以减小所述飞行距离;及/或
    若所述无人机的飞行速度超出所述最大飞行速度,则自动调整所述无人机的相应动力装置的工作参数,以减降低所述飞行速度。
  99. 如权利要求91或95或96所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:根据所述离线飞行参数更新无人机导航地图。
  100. 如权利要求91所述的无人机飞行状态的监管方法,其特征在于:通过移动通信网络及/或无线传输方式与所述控制终端进行数据传输,所述无线传输方式至少包括WIFI或蓝牙传输方式。
  101. 一种无人机飞行状态的监管方法,应用于无人机中,其特征在于:所述监管方法包括以下步骤:
    接收离线飞行信息,所述离线飞行信息包括离线飞行参数;以及
    当所述无人机处于离线飞行模式时,根据所述离线飞行参数限制所述无人机在离线飞行模式下的飞行行为。
  102. 如权利要求101所述的无人机飞行状态监管方法,其特征在于:所述离线飞行信息包含在离线飞行证书中。
  103. 如权利要求102所述的无人机飞行状态监管方法,其特征在于:所述离线飞行证书存储于无人机上或与无人机通信连接的控制终端上。
  104. 如权利要求101的无人机飞行状态监管方法,其特征在于:所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  105. 如权利要求101所述的无人机飞行状态监管方法,其特征在于:所述离线飞行参数包括限飞区域信息。
  106. 如权利要求101或104或105所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:根据所述离线飞行参数更新无人机导航地图。
  107. 一种无人机飞行状态的监控系统,应用于无人机中,其特征在于:所述监控系统包括:
    控制模块,用于通过所述无人机的通信装置建立与无人机的控制终端的通信连接;
    接收模块,用于接收并存储所述控制终端发送的离线飞行证书,所述离线飞行证书包括离线飞行参数;以及
    所述控制模块还用于当所述无人机处于离线飞行模式时,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为。
  108. 如权利要求107所述的无人机飞行状态的监控系统,其特征在于:所述监控系统还包括设置模块,所述设置模块用于在所述接收模块接收到所述控制终端发送的在线信号时,将所述无人机的飞行模式设定为在线飞行模式;
    所述设置模块还用于在所述接收模块接收所述控制终端发送的离线信号,将所述无人机的飞行模式设定为离线飞行模式;以及
    所述设置模块还用于在无法获取到所述无人机的飞行位置时,将所述无人机的飞行模式设定为离线飞行模式。
  109. 如权利要求108所述的无人机飞行状态的监控系统,其特征在于:所述控制模块还用于:
    当所述无人机的飞行模式为离线飞行模式时,将所述无人机的飞行信息存储于所述无人机上,并在所述无人机的飞行模式被切换为在线飞行模式时控制所述通信装置将存储的离线飞行模式下的飞行信息发送给所述控制终端;或者
    当所述无人机的飞行模式为离线飞行模式时,将所述无人机的飞行信息发送给所述控制终端进行存储。
  110. 如权利要求108所述的无人机飞行状态的监控系统,其特征在于:所述离线飞行证书中还包括身份信息,所述身份信息包括无人机用户身份信息与无人机身份信息;
    所述监控系统还包括验证模块,用于当设定所述无人机的飞行模式为离线飞行模式时,获取所述无人机身份信息以及所述离线飞行证书中的无人机身份信息,并验证所述无人机身份信息与所述离线飞行证书中的无人机身份信息是否一致;以及
    所述控制模块还用于当所述无人机身份信息与所述离线飞行证书中的无人机身份信息不一致时,禁止启动所述无人机。
  111. 如权利要求107所述的无人机飞行状态的监控系统,其特征在于:所述离线飞行参数至少包括:飞行区域信息和飞行时间。
  112. 如权利要求111所述的无人机飞行状态的监管方法,其特征在于:所述离线飞行参数还包括:限飞区域信息、最高飞行高度、最远飞行距离、最大飞行速度。
  113. 如权利要求112所述的无人机飞行状态的监控系统,其特征在于:所述控制模块在根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为时,具体用于:
    获取所述无人机的飞行参数以及位置信息,所述飞行参数至少包括:飞行时间、飞行高度、飞行距离、飞行速度、航向;
    根据所述离线飞行证书中的飞行区域信息监控所述无人机的飞行位置是否在所述飞行区域内;及/或
    根据所述离线飞行证书中的飞行时间监控所述无人机是否在所述飞行时间内飞行;及/或
    根据所述离线飞行证书中的限飞区域信息监控所述无人机的飞行位置是否在所述限飞区域内;及/或
    根据所述离线飞行证书中的最高飞行高度监控所述无人机的飞行高度是否超出所述最高飞行高度;及/或
    根据所述离线飞行证书中的最远飞行距离监控所述无人机的飞行距离是否超出所述最远飞行距离;及/或
    根据所述离线飞行证书中的最大飞行速度监控所述无人机的飞行速度是否超出所述最大飞行速度。
  114. 如权利要求113所述的无人机飞行状态的监控系统,其特征在于:所述控制模块在根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为时,具体还用于:
    当所述无人机的飞行位置在所述飞行区域之外时,调整所述无人机的航向,以控制所述无人机在所述飞行区域中飞行,或者禁止所述无人机启动;及/或
    当所述无人机在所述飞行时间外飞行时,禁止所述无人机启动;及/或
    当所述无人机的飞行位置在所述限飞区域之内时,调整所述无人机的航向,以控制所述无人机在所述限飞区域外飞行,或者禁止所述无人机启动;及/或
    当所述无人机的飞行高度超出所述最高飞行高度时,自动调整所述无人机的相应动力装置的工作参数,以减降低所述飞行高度;及/或
    当所述无人机的飞行距离超出所述最远飞行距离时,自动调整所述无人机的相应动力装置的工作参数,以减小所述飞行距离;及/或
    当所述无人机的飞行速度超出所述最大飞行速度时,自动调整所述无人机的相应动力装置的工作参数,以减降低所述飞行速度。
  115. 如权利要求107所述的无人机飞行状态监控系统,其特征在于:所述控制模块还用于根据所述离线飞行参数更新无人机导航地图。
  116. 一种无人机,包括:机体以及设于所述机体上的飞行参数采集装置、通信装置、飞行控制器,所述飞行参数采集装置用于实时采集所述无人机的飞行参数以及位置信息;
    所述飞行控制器,用于获取存储装置中存储的程序指令,以执行以下步骤:
    建立与无人机的控制终端的通信连接;
    接收并存储所述控制终端发送的离线飞行证书,所述离线飞行证书包括离线飞行参数;以及
    当所述无人机处于离线飞行模式时,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为。
  117. 一种无人机,包括:机体以及设于所述机体上的飞行参数采集装置、通信装置、飞行控制器,所述飞行参数采集装置用于实时采集所述无人机的飞行参数以及位置信息;
    所述飞行控制器,用于获取存储装置中存储的程序指令,以执行以下步骤:
    接收离线飞行信息,所述离线飞行信息包括离线飞行参数;以及
    当所述无人机处于离线飞行模式时,根据所述离线飞行参数限制所述无人机在离线飞行模式下的飞行行为。
  118. 一种无人机飞行状态的监管方法,应用于无人机中,其特征在于:所述监管方法包括以下步骤:
    获取所述无人机的飞行参数以及位置信息,并根据所述飞行参数以及位置信息生成相应的飞行信息;
    建立与无人机的控制终端的通信连接;以及
    当所述无人机处于在线飞行模式时,自动地将无人机身份信息以及所述飞行信息发送给控制终端,以及接收并处理所述控制终端转发的飞行限制指令。
  119. 如权利要求118所述的无人机飞行状态的监管方法,其特征在于:所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
  120. 如权利要求118所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作。
  121. 如权利要求120所述的无人机飞行状态的监管方法,其特征在于:根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作步骤,具体包括:
    根据所述飞行限制指令调节所述无人机的电子调速器的参数,以调节所述无人机的相应动力装置的工作参数,从而使所述无人机执行相应的飞行操作。
  122. 如权利要求118所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    接收并存储所述控制终端转发的空情信息,所述空情信息至少包括敏感区域,所述敏感区域包括如下至少一种:限飞区域和禁飞区域的经纬度;以及
    根据所述空情信息更新无人机导航地图;
    根据所述飞行信息以及所述更新后的导航地图监控所述无人机的飞行状态。
  123. 如权利要求118所述的无人机飞行状态的监管方法,其特征在于:所述监管方法还包括:
    接收所述控制终端发送的在线信号,将所述无人机的飞行模式设定为在线飞行模式;以及
    接收所述控制终端发送的离线信号,将所述无人机的飞行模式设定为离线飞行模式;以及
    当无法获取到所述无人机的飞行位置时,将所述无人机的飞行模式设定为离线飞行模式。
  124. 如权利要求118所述的无人机飞行状态的监管方法,其特征在于:通过移动通信网络及/或无线传输方式与所述控制终端进行数据传输,所述无线传输方式至少包括WIFI或蓝牙传输方式。
  125. 一种无人机飞行状态的监管方法,应用于无人机中,其特征在于:所述监管方法包括以下步骤:
    根据所述无人机的飞行参数生成相应的飞行信息;
    将无人机身份信息以及所述飞行信息提供给监管服务器,以及接收并处理飞行限制指令。
  126. 如权利要求125所述的无人机飞行状态的监管方法,其特征在于:根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作。
  127. 如权利要求125所述的无人机飞行状态的监管方法,其特征在于:与监管服务器直接或间接地建立通信连接。
  128. 如权利要求125所述的无人机飞行状态的监管方法,其特征在于:所述飞行限制指令是飞行预警指令或飞行控制指令。
  129. 如权利要求125所述的无人机飞行状态的监管方法,其特征在于:根据所述无人机的飞行信息更新无人机导航地图。
  130. 一种无人机飞行状态的监控系统,应用于无人机中,其特征在于:所述监控系统包括:
    控制模块,用于获取所述无人机的飞行参数以及位置信息,并根据所述飞行参数以及位置信息生成相应的飞行信息;
    所述控制模块还用于通过所述无人机的通信装置建立与无人机的控制终端的通信连接;
    所述控制模块还用于当所述无人机处于在线飞行模式时,控制所述通信装置自动地将无人机身份信息以及所述飞行信息发送给控制终端;以及
    接收模块,用于接收并处理所述控制终端转发的飞行限制指令。
  131. 如权利要求130所述的无人机飞行状态的监控系统,其特征在于:所述飞行限制指令包括如下至少一种:强制改变航向指令、强迫降落指令、强制降低速度指令、强制降低高度指令。
  132. 如权利要求130所述的无人机飞行状态的监控系统,其特征在于:所述控制模块还用于根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作。
  133. 如权利要求132所述的无人机飞行状态的监控系统,其特征在于:所述控制模块在根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作时,具体用于:
    根据所述飞行限制指令调节所述无人机的电子调速器的参数,以调节所述无人机的相应动力装置的工作参数,从而使所述无人机执行相应的飞行操作。
  134. 如权利要求130所述的无人机飞行状态的监控系统,其特征在于:所述接收模块还用于接收并存储所述控制终端转发的空情信息,所述空情信息至少包括敏感区域,所述敏感区域包括如下至少一种:限飞区域和禁飞区域的经纬度;以及
    所述控制模块还用于根据所述空情信息更新无人机导航地图,以及根据所述飞行信息以及所述更新后的导航地图监控所述无人机的飞行状态。
  135. 如权利要求130所述的无人机飞行状态的监控系统,其特征在于:所述监控系统还包括设置模块,所述设置模块用于在所述接收模块接收到所述控制终端发送的在线信号时,将所述无人机的飞行模式设定为在线飞行模式;
    所述设置模块还用于在所述接收模块接收所述控制终端发送的离线信号,将所述无人机的飞行模式设定为离线飞行模式;以及
    所述设置模块还用于在无法获取到所述无人机的飞行位置时,将所述无人机的飞行模式设定为离线飞行模式。
  136. 一种无人机,包括:机体以及设于所述机体上的飞行参数采集装置、通信装置、飞行控制器,所述飞行参数采集装置用于实时采集所述无人机的飞行参数以及位置信息;
    所述飞行控制器,用于获取存储装置中存储的程序指令,以执行以下步骤:
    获取所述无人机的飞行参数以及位置信息,并根据所述飞行参数以及位置信息生成相应的飞行信息;
    建立与无人机的控制终端的通信连接;以及
    当所述无人机处于在线飞行模式时,自动地将无人机身份信息以及所述飞行信息发送给控制终端,以及接收并处理所述控制终端转发的飞行限制指令。
  137. 如权利要求136所述的无人机,其特征在于:所述飞行控制器还用于根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作。
  138. 一种无人机,包括:机体以及设于所述机体上的飞行参数采集装置、通信装置、飞行控制器,所述飞行参数采集装置用于实时采集所述无人机的飞行参数以及位置信息;
    所述飞行控制器,用于获取存储装置中存储的程序指令,以执行以下步骤:
    根据所述无人机的飞行参数生成相应的飞行信息;
    将无人机身份信息以及所述飞行信息提供给监管服务器,以及接收并处理飞行限制指令。
  139. 如权利要求138所述的无人机,其特征在于:所述飞行控制器还用于根据所述飞行限制指令调整所述无人机的飞行参数以执行相应的飞行操作。
  140. 一种无人机飞行状态的监管系统,包括:监管服务器、控制终端、以及无人机,所述监管服务器与所述无人机可通过所述控制终端进行双向数据传输;
    所述监管服务器用于根据所述控制终端发送的离线飞行申报信息生成离线飞行证书,并通过所述控制终端发给所述无人机,其中,所述离线飞行证书包括离线飞行参数;
    所述无人机在处于离线飞行模式时,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为。
  141. 如权利要求140所述的监管系统,其特征在于:所述控制终端包括相互连接的移动设备以及无人机的遥控器,所述移动设备用于与所述监管服务器连接,所述遥控器用于与所述无人机连接;或者
    所述控制终端为集成了所述移动设备与所述无人机的遥控器的功能的多功能遥控器。
  142. 一种无人机飞行状态的监管系统,包括:监管服务器以及无人机,所述监管服务器与所述无人机可直接或间接地进行双向数据传输;
    所述监管服务器用于根据离线飞行申报信息生成离线飞行证书,并将所述离线飞行证书提供给所述无人机,其中,所述离线飞行证书包括离线飞行参数;
    所述无人机在处于离线飞行模式时,根据所述离线飞行证书中的离线飞行参数监控并限制所述无人机在离线飞行模式下的飞行行为。
  143. 一种无人机飞行状态的监管系统,包括:监管服务器、控制终端、以及无人机,所述监管服务器与所述无人机可通过所述控制终端进行双向数据传输;
    所述无人机在在线飞行状态下通过所述控制终端主动向所述监管服务器上报所述无人机的飞行信息;以及
    所述监管服务器根据预设的安全飞行参数监控所述无人机在在线飞行模式下的飞行信息是否符合飞行安全规定,并在监控到所述无人机在在线飞行模式下的飞行信息违反所述飞行安全规定时,生成相应的飞行限制指令和/或警告信息,并将所述飞行限制指令和/或警告信息发送给所述控制终端,以通过所述飞行限制指令和/或警告信息限制所述无人机在在线飞行模式下的飞行行为。
  144. 如权利要求143所述的监管系统,其特征在于:所述控制终端包括相互连接的移动设备以及无人机的遥控器,所述移动设备用于与所述监管服务器连接,所述遥控器用于与所述无人机连接;或者
    所述控制终端可为集成了所述移动设备与所述无人机的遥控器的功能的多功能遥控器。
  145. 一种无人机飞行状态的监管系统,包括:监管服务器以及无人机,所述监管服务器与所述无人机可直接或间接地进行双向数据传输;
    所述无人机在在线飞行状态下主动向所述监管服务器上报所述无人机的飞行信息;以及
    所述监管服务器根据预设的安全飞行参数监控所述无人机的飞行信息是否符合飞行安全规定,并在监控到所述无人机的飞行信息违反所述飞行安全规定时,生成相应的飞行限制指令,并将所述飞行限制指令发送给所述无人机,以通过所述飞行限制指令限制所述无人机在在线飞行模式下的飞行行为。
PCT/CN2015/097067 2015-12-10 2015-12-10 无人机及其飞行状态的监管方法与监控系统 WO2017096601A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2015/097067 WO2017096601A1 (zh) 2015-12-10 2015-12-10 无人机及其飞行状态的监管方法与监控系统
EP15910076.7A EP3388856B1 (en) 2015-12-10 2015-12-10 Unmanned aerial vehicle, and flight state supervising method and monitoring system thereof
CN201580084920.9A CN108291952B (zh) 2015-12-10 2015-12-10 无人机及其飞行状态的监管方法与监控系统
EP19218961.1A EP3657293B1 (en) 2015-12-10 2015-12-10 Unmanned aerial vehicle and supervision method and monitoring system for flight state thereof
US16/003,347 US10796587B2 (en) 2015-12-10 2018-06-08 Unmanned aerial vehicle and supervision method and monitoring system for flight state thereof
US17/025,913 US11886204B2 (en) 2015-12-10 2020-09-18 Unmanned aerial vehicle and supervision method and monitoring system for flight state thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/097067 WO2017096601A1 (zh) 2015-12-10 2015-12-10 无人机及其飞行状态的监管方法与监控系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/003,347 Continuation US10796587B2 (en) 2015-12-10 2018-06-08 Unmanned aerial vehicle and supervision method and monitoring system for flight state thereof

Publications (1)

Publication Number Publication Date
WO2017096601A1 true WO2017096601A1 (zh) 2017-06-15

Family

ID=59012596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097067 WO2017096601A1 (zh) 2015-12-10 2015-12-10 无人机及其飞行状态的监管方法与监控系统

Country Status (4)

Country Link
US (2) US10796587B2 (zh)
EP (2) EP3657293B1 (zh)
CN (1) CN108291952B (zh)
WO (1) WO2017096601A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357305A (zh) * 2017-06-19 2017-11-17 深圳市易成自动驾驶技术有限公司 飞行控制方法、无人机及计算机存储介质
CN109345829A (zh) * 2018-10-29 2019-02-15 百度在线网络技术(北京)有限公司 无人车的监控方法、装置、设备及存储介质
WO2020093496A1 (zh) * 2018-11-05 2020-05-14 深圳市翔农创新科技有限公司 无人机安全控制系统、方法及计算机可读存储介质
WO2021217596A1 (zh) * 2020-04-30 2021-11-04 深圳市大疆创新科技有限公司 无人机监管方法、相关装置及系统

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016131015A2 (en) * 2015-02-13 2016-08-18 Esco Corporation Monitoring ground-engaging products for earth working equipment
WO2016154943A1 (en) 2015-03-31 2016-10-06 SZ DJI Technology Co., Ltd. Systems and methods for geo-fencing device communications
CN107409051B (zh) 2015-03-31 2021-02-26 深圳市大疆创新科技有限公司 用于生成飞行管制的认证系统和方法
US20190019418A1 (en) * 2015-08-27 2019-01-17 Dronsystems Limited Automated system of air traffic control (atc) for at least one unmanned aerial vehicle (uav)
CN109814600A (zh) * 2019-03-12 2019-05-28 重庆大学 一种无人机电缆隧道巡检飞行方法
CN111727415A (zh) * 2019-06-12 2020-09-29 深圳市大疆创新科技有限公司 一种无人机的控制方法、终端、无人机及存储介质
CN111615720A (zh) * 2019-06-14 2020-09-01 深圳市大疆创新科技有限公司 移动平台控制系统、方法、终端设备及遥控设备
CN112449364B (zh) * 2019-09-05 2023-03-03 华为技术有限公司 异常离线状态确定方法及相关装置
CN112154428A (zh) * 2019-10-12 2020-12-29 深圳市大疆创新科技有限公司 数据处理方法、处理及存储设备、飞行设备和控制系统
US11747802B2 (en) * 2019-12-11 2023-09-05 Mason Electric Co. Ruggedized remote control display management system for harsh and safety-critical environments
CN112513765A (zh) * 2020-02-26 2021-03-16 深圳市大疆创新科技有限公司 信息处理方法、电子设备、信息处理系统和可读存储介质
CN111554286A (zh) * 2020-04-26 2020-08-18 云知声智能科技股份有限公司 一种基于语音控制无人机的方法和设备
CN111915936B (zh) * 2020-09-03 2022-05-13 中国联合网络通信集团有限公司 无人机监管方法、装置和用户终端
CN114355966A (zh) * 2021-01-12 2022-04-15 深圳市慧明捷科技有限公司 轻便无人机飞手定位指挥系统
CN112947561B (zh) * 2021-02-09 2022-03-08 北京三快在线科技有限公司 一种无人机的异常处理系统、方法及装置
CN112987705B (zh) * 2021-03-02 2022-06-28 北京航空航天大学 一种基于5g传输的飞机自动滑跑驶离技术的验证系统
CN113093791A (zh) * 2021-03-24 2021-07-09 上海特金信息科技有限公司 无人机身份鉴别的控制方法、控制器、设备及介质
CN113990112B (zh) * 2021-10-25 2023-01-31 浙江这里飞科技有限公司 一种无人机的监管方法、装置、电子设备及存储介质
WO2024040444A1 (zh) * 2022-08-23 2024-02-29 深圳市大疆创新科技有限公司 数据处理方法、装置、设备、可移动平台、无人机、存储介质及程序产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833870A (zh) * 2010-05-20 2010-09-15 无锡汉和航空技术有限公司 一种无人驾驶机空中安全监控方法
US20140249693A1 (en) * 2013-02-15 2014-09-04 Disney Enterprises, Inc. Controlling unmanned aerial vehicles as a flock to synchronize flight in aerial displays
CN104359473A (zh) * 2014-10-24 2015-02-18 南京航空航天大学 一种动态环境下无人机编队飞行的协同航迹智能规划方法
CN104615143A (zh) * 2015-01-23 2015-05-13 广州快飞计算机科技有限公司 无人机调度方法
CN104820431A (zh) * 2015-05-08 2015-08-05 西北工业大学 多无人机集群对地观测系统及其编队控制方法
CN104950907A (zh) * 2015-06-26 2015-09-30 广州快飞计算机科技有限公司 无人机的监控方法、装置及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056937B4 (de) * 2006-11-30 2010-07-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fernsteuerbares Fahrzeug und Verfahren zur Steuerung eines fernsteuerbaren Fahrzeuges
US8515596B2 (en) * 2009-08-18 2013-08-20 Honeywell International Inc. Incremental position-based guidance for a UAV
US20120143482A1 (en) * 2010-12-02 2012-06-07 Honeywell International Inc. Electronically file and fly unmanned aerial vehicle
US8798922B2 (en) * 2012-11-16 2014-08-05 The Boeing Company Determination of flight path for unmanned aircraft in event of in-flight contingency
EP3552955B1 (en) * 2013-12-13 2021-07-14 SZ DJI Technology Co., Ltd. Methods for launching and landing an unmanned aerial vehicle
EP3100127B8 (en) * 2014-01-31 2023-01-04 Tata Consultancy Services Limited A computer implemented system and method for providing robust communication links to unmanned aerial vehicles
US9354296B2 (en) * 2014-05-20 2016-05-31 Verizon Patent And Licensing Inc. Dynamic selection of unmanned aerial vehicles
US9552736B2 (en) * 2015-01-29 2017-01-24 Qualcomm Incorporated Systems and methods for restricting drone airspace access
CN107409051B (zh) * 2015-03-31 2021-02-26 深圳市大疆创新科技有限公司 用于生成飞行管制的认证系统和方法
US20190103030A1 (en) * 2015-06-12 2019-04-04 Airspace Systems, Inc. Aerial vehicle identification beacon and reader system
US10319243B2 (en) * 2015-11-30 2019-06-11 At&T Intellectual Property I, L.P. Computer aided dispatch of drones

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833870A (zh) * 2010-05-20 2010-09-15 无锡汉和航空技术有限公司 一种无人驾驶机空中安全监控方法
US20140249693A1 (en) * 2013-02-15 2014-09-04 Disney Enterprises, Inc. Controlling unmanned aerial vehicles as a flock to synchronize flight in aerial displays
CN104359473A (zh) * 2014-10-24 2015-02-18 南京航空航天大学 一种动态环境下无人机编队飞行的协同航迹智能规划方法
CN104615143A (zh) * 2015-01-23 2015-05-13 广州快飞计算机科技有限公司 无人机调度方法
CN104820431A (zh) * 2015-05-08 2015-08-05 西北工业大学 多无人机集群对地观测系统及其编队控制方法
CN104950907A (zh) * 2015-06-26 2015-09-30 广州快飞计算机科技有限公司 无人机的监控方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3388856A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357305A (zh) * 2017-06-19 2017-11-17 深圳市易成自动驾驶技术有限公司 飞行控制方法、无人机及计算机存储介质
CN109345829A (zh) * 2018-10-29 2019-02-15 百度在线网络技术(北京)有限公司 无人车的监控方法、装置、设备及存储介质
WO2020093496A1 (zh) * 2018-11-05 2020-05-14 深圳市翔农创新科技有限公司 无人机安全控制系统、方法及计算机可读存储介质
WO2021217596A1 (zh) * 2020-04-30 2021-11-04 深圳市大疆创新科技有限公司 无人机监管方法、相关装置及系统

Also Published As

Publication number Publication date
US20180293901A1 (en) 2018-10-11
EP3657293B1 (en) 2022-07-20
EP3657293A1 (en) 2020-05-27
US20210004025A1 (en) 2021-01-07
US10796587B2 (en) 2020-10-06
US11886204B2 (en) 2024-01-30
EP3388856A1 (en) 2018-10-17
CN108291952A (zh) 2018-07-17
CN108291952B (zh) 2022-07-26
EP3388856A4 (en) 2018-12-05
EP3388856B1 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
WO2017096601A1 (zh) 无人机及其飞行状态的监管方法与监控系统
WO2016018017A1 (en) Mobile communication system, different mobile devices sharing same phone number on mobile communication system, and method of providing mobile communication service between different mobile devices sharing same phone number
WO2016175628A1 (en) Service sharing device and method
WO2015108283A1 (ko) 클라우드 스트리밍 서비스를 위한 어플리케이션 에러 검출 방법, 이를 위한 장치 및 시스템
WO2013095065A1 (ko) 다수 기기 무선 충전을 위한 무선 전력 전송 시스템 및 방법
WO2014187037A1 (zh) 流转发方法、设备及系统
EP3420754A1 (en) Method and enb equipment for supporting seamless handover
WO2015142002A1 (en) Method and device for sharing functions of smart key
WO2019245323A1 (en) Method for processing rlc failure, network device and computer storage medium
WO2016003108A1 (ko) 화상 형성 장치, 그 위치 안내 방법 및 화상 형성 시스템
WO2021150014A1 (en) Self-optimization method and device
WO2020122676A1 (en) Apparatus and method for initial access in wireless communication system
WO2021002696A1 (en) Method for transferring subscription and electronic device for supporting the same
WO2017107158A1 (zh) 无人机飞行提示系统和方法、控制终端、飞行系统
EP3227817A1 (en) Method and cloud server for managing device
WO2020222578A1 (ko) Nas 프로토콜을 이용한 세션 및 이동성 관리 방안
WO2014063360A1 (zh) 业务接入的控制方法及设备
WO2017116034A1 (ko) 전자 장치, 전자 장치의 통신 방법 및 이동 단말기의 통신 방법
WO2022045789A1 (en) Method and apparatus for recovering profile in case of device change failure
CN104322023A (zh) 流转发方法、设备及系统
WO2018070669A1 (ko) 다국어 지원 객실용 서비스요청장치를 이용한 서비스요청 시스템 및 서비스요청방법
CN107113172A (zh) 无人机认证方法,安全通信方法及对应系统
WO2013172638A1 (en) Method and apparatus for processing state information in communication system
WO2017039130A1 (ko) 디스플레이 장치 및 그의 동작 방법
CN107111426A (zh) 调参方法、调参装置、调参系统及调参存储器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015910076

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015910076

Country of ref document: EP

Effective date: 20180710