WO2013095065A1 - 다수 기기 무선 충전을 위한 무선 전력 전송 시스템 및 방법 - Google Patents

다수 기기 무선 충전을 위한 무선 전력 전송 시스템 및 방법 Download PDF

Info

Publication number
WO2013095065A1
WO2013095065A1 PCT/KR2012/011319 KR2012011319W WO2013095065A1 WO 2013095065 A1 WO2013095065 A1 WO 2013095065A1 KR 2012011319 W KR2012011319 W KR 2012011319W WO 2013095065 A1 WO2013095065 A1 WO 2013095065A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
power
wireless power
information
power transmission
Prior art date
Application number
PCT/KR2012/011319
Other languages
English (en)
French (fr)
Inventor
임승옥
원윤재
문연국
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2013095065A1 publication Critical patent/WO2013095065A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source

Definitions

  • the present invention relates to a system and method for wirelessly transmitting power to a plurality of devices requiring charging based on a magnetic resonance wireless power transmission technology.
  • a wireless charging system using magnetic induction is used as a wireless power transmission technology for wirelessly transmitting energy.
  • the magnetic induction method of inducing current through a magnetic field from one coil to another is very sensitive to the distance and relative position between the coils, so that the transmission efficiency drops rapidly even if the distance between the two coils is slightly dropped or twisted. Accordingly, this magnetic induction charging system can only be used in a short distance of several cm or less.
  • US Patent 7,741,735 discloses a non-radiative energy transfer method based on the attenuation wave coupling of the resonant field. This is because two resonators with the same frequency do not affect other non-resonators around them, but they tend to couple with each other and are introduced as a technology that can transfer energy over a long distance compared to conventional electromagnetic induction. .
  • an object of the present invention is to provide a wireless power transmission system and method having an interface for controlling wireless power transmission for a plurality of devices.
  • the present invention defines the requirements of the interface for controlling the wireless power transmission for a plurality of devices, and provides the protocol and procedure of the control interface.
  • the multi-device wireless power transfer system is a multi-node wireless power transfer system including a wireless power transmitter and a plurality of wireless chargers spaced apart from the wireless power transmitter, wherein the wireless charger communicates.
  • the wireless power transmitter determines whether the wireless charger is a wireless power transmission service based on an ID received from the wireless charger, and the wireless charger transmits both communication and wireless power transmission.
  • the wireless charger provides a wireless power transmission service, characterized in that the wireless power transmission service may be provided in a simultaneous power transmission mode or a time division power transmission mode.
  • a charging method of a multi-device wireless charging system includes a wireless power transmitter in a multi-device wireless charging system including a wireless power transmitter and a plurality of wireless chargers spaced apart from the wireless power transmitter.
  • a method of charging the wireless charger comprising: receiving identification information from the wireless charger by the wireless power transmitter; Transmitting a data request to the wireless charger when the identification information is eligible; Receiving data including battery information, RSSI information, and LF / DUAL device information from the wireless charger; Classifying the received data and determining a charging area and a communication area; And notifying the charging area or the communication area to the wireless charger according to the result of the determining.
  • the method may further include transmitting, by the wireless power transmitter, the wireless power to the wireless charger when the wireless charger is located in the charging area according to the result of the determining.
  • the wireless charger may further include informing a user that the wireless charger is located in the communication area.
  • the wireless power transmitter transmits first test power to the plurality of wireless chargers, and the current and voltage of the wireless power transmitter according to the test power. Detecting and performing a first impedance matching; Transmitting, by the wireless power transmitter, second test power to the plurality of wireless chargers and performing second impedance matching based on received power information received from each of the plurality of wireless chargers; And simultaneously transmitting power to the plurality of wireless chargers based on the second impedance matching result.
  • the wireless power transmitter Prior to performing the first impedance matching, the wireless power transmitter further comprises changing a frequency to a wireless power transmission frequency obtained from wireless charger information received from at least one of the plurality of wireless chargers. Can be.
  • the wireless power transmitter may transmit second test power to the plurality of wireless chargers and then request the received power information to the plurality of wireless chargers, and transmit the wireless power.
  • the device may receive the received power information from each of the plurality of wireless chargers and then calculate the wireless power transmission efficiency of each of the plurality of wireless chargers based on the received power information.
  • the wireless power transmitter may further include the step of notifying the end of the wireless power transmission to each of the plurality of wireless chargers, and notifying the end of the wireless power transmission After the step, each of the plurality of wireless charger may further comprise the step of turning off the power antenna.
  • a charging method of a multi-device wireless charging system includes the steps of: determining, by the wireless power transmitter, priorities for the plurality of wireless chargers; Transmitting the determined priorities to all of the plurality of wireless chargers; And sequentially transmitting wireless power to the plurality of wireless chargers according to the determined priority, wherein transmitting the wireless power comprises: transmitting first test power to the wireless charger that is a target for transmitting wireless power.
  • Detecting a current and a voltage of the wireless power transmitter according to the test power to perform first impedance matching Transmitting, by the wireless power transmitter, a second test power to the wireless charger and performing second impedance matching based on received power information received from the wireless charger; And transmitting power to the wireless charger based on the second impedance matching result.
  • the wireless power transmitter may further include changing a frequency to a wireless power transmission frequency obtained from wireless charger information received from the wireless charger.
  • the wireless power transmitter may transmit the second test power to the wireless charger and then request the received power information to the wireless charger, and the wireless power transmitter transmits the wireless power. After receiving the received power information from the charger, the wireless power transmission efficiency of the wireless charger may be calculated based on the received power information.
  • the method may further include checking an allocation time for the wireless charger and notifying end of wireless power transmission.
  • the wireless charger may further comprise turning off the power antenna.
  • the requirements of an interface for controlling wireless power transfer for a plurality of devices are defined, and protocols and procedures of the control interface are provided to enable proper operation of the multi-device wireless power transfer system.
  • FIG 3 illustrates physical / spatial components of a wireless power transfer system according to an embodiment of the present invention.
  • FIG. 4 illustrates a time division based wireless power transfer general procedure according to an embodiment of the present invention.
  • FIG. 5 is a hierarchical diagram of a wireless power transmission system according to an embodiment of the present invention.
  • FIG. 20 Figure 20 Figure 6. Power Receiver Recognition / Authentication and Charging Zone / Communication Zone
  • FIG. 22 is Figure 8. Time Division Power Transmission
  • FIG 23 is Figure 9. Remove Foreign Material
  • FIG 24 is Figure 10. New Power Receiver Appears and Existing Power Receiver Disappears
  • FIG. 26 is Figure 12. Power Transmission End
  • Figure 13 shows the power transfer between devices.
  • the present invention defines an interface for system management for wirelessly transmitting power within a few meters to multiple devices that need charging based on a self-resonant wireless power transmission technology.
  • the present invention selectively uses various types of frequency bands from low frequency (50 kHz) to high frequency (15 MHz) for wireless power transmission, and needs a support of a communication system capable of exchanging data and control signals for system control. .
  • the present invention can be applied to various industrial fields such as a mobile terminal industry, a home appliance industry, an electric vehicle industry, a medical device industry, and a robot industry that use a battery or use electronic devices.
  • the present invention contemplates a system capable of transmitting power to one or more multiple devices using one transmitting coil provided with the device.
  • Wireless power transmission system Multi-device Wireless Charging System: to provide a wireless power transmission system in the magnetic field region
  • Power transmitter Multi-device Wireless Charging System- Charger: provides a wireless power transmission to the power receiver in a multiple device within the magnetic field zone, and apparatus for managing the entire system
  • Multi-device Wireless Charging System- Deivce apparatus that receives a wireless power transmission from the power transmitter in the magnetic field region
  • Charging area an area made an actual wireless power transmission within the magnetic field region, can vary depending upon the size, power requirements, the operating frequency of the application.
  • Communication areas an area for managing a wireless power transmission for the power receiving device within the magnetic field region, wider than the charging area.
  • MWCS Multi-device Wireless Charging System
  • MWCS-C Multi-device Wireless Charging System-Charger
  • MWCS-D Multi-device Wireless Charging System-Deivce
  • Wireless power transmission is a system for efficiently supplying power to a plurality of power receivers wirelessly and consists of one power transmitter and one or a plurality of power receivers.
  • an interface capable of managing a complicated wireless power transmission network is necessary compared to 1: 1 wireless power transmission. Understand the current wireless power transmission status based on the exchanged power transmission information including ID recognition, authentication, etc., and then select the power transmission mode that provides the best efficiency to each power receiver. Procedures and interfaces for control and management of accidents, such as response to receivers, must be involved.
  • the technology can be applied to the following industries using batteries or electronic devices that require them.
  • the power transmitter performs wireless power transmission by time division-based scheduling, and manages the joining, separation, and release of power receivers for wireless power transmission environment control.
  • Various frequency bands can be selected and used for efficient wireless power transmission and interoperability.
  • a wireless communication system capable of exchanging power transmission information and control signals is required.
  • wireless power transmission using in-band magnetic field communication for exchanging information and control signals uses a frequency such as wireless power transmission in the magnetic field to increase the efficiency of frequency use.
  • Wireless power transmission is divided into physical components, spatial components and temporal components.
  • the physical component is composed of a power transmitter and a power receiver
  • the spatial component is composed of a charging zone and a communication zone
  • the temporal component is a time unit based on a time division method for wireless power transmission to multiple devices.
  • the wireless power transmission network is a network capable of data communication and wireless power transmission with each of the power receivers based on the power transmitter.
  • the power transmitter manages the entire wireless power transmission network and there is only one in the network. See Figure 3 for an illustration of the physical components.
  • the basic preparation procedure for wireless power transmission should be preceded by recognizing and authenticating the power receivers in the area where communication is possible and exchanging data for wireless power transmission. Therefore, there is a virtual space divided into a charging zone and a communication zone, and the power transmitter starts managing the power receivers in the communication zone, which is a communication area, and the power belonging to the charging zone, which is a wireless power transmission area, among them. Perform actual wireless power transfer to the receivers.
  • spatial charging zones and communication zones can be efficiently formed due to the characteristics of the magnetic field that cannot exist over long distances, but when using other communication methods, the size of communication area that can be supported Because of the wide variety and the large number of power receivers to be considered, the number of power receivers to be considered may increase rapidly, and the output power of other communication methods may need to be adjusted in the power transmitter.
  • FIG 3 illustrates physical / spatial components of a wireless power transfer system according to an embodiment of the present invention.
  • the wireless power transmission network uses a time division multiple access (TDMA) scheme, which is managed by the power transmitter and distributed according to the request of the power receiver and the determination of the power transmitter.
  • TDMA time division multiple access
  • various procedures such as recognition, authentication, analysis, and wireless power transmission for providing wireless power transmission to a plurality of devices are performed on a time division basis.
  • FIG. 4 illustrates a time division based wireless power transfer general procedure according to an embodiment of the present invention.
  • a power receiver recognition / authentication procedure for determining whether a power receiver recognized by the power transmitter is suitable for providing a wireless power transmission service is required.
  • wireless power transmission is simultaneously performed to all devices in the charging zone according to the situation.
  • the power transmission can be terminated or the user can arbitrarily stop the current power transmission service.
  • the power transmitter periodically transmits a join request signal, and the power receivers receiving the signal transmit their IDs in response.
  • the power transmitter determines whether the corresponding power receivers are the targets of the wireless power transmission service based on the received ID, and if the service transmitter is the service target, the power transmitter requests information for the wireless power transmission. Notify power receivers that are not subject to service and cannot provide service.
  • Wireless power transfer mode is largely composed of simultaneous power transfer mode, time division power transfer mode.
  • the power transmitter detects the charging status (battery remaining, battery discharge rate, received power level, voltage / current sensing information, etc.) received from the power receivers through current / voltage sensing and communication.
  • charging frequency band selection, impedance matching, output power level adjustment, etc. are performed.
  • Simultaneous power transmission mode during wireless power transmission is a mode for simultaneously transmitting wireless power to power receivers that need to provide all services in the charging zone.
  • the matching is adjusted based on the impedance value obtained by sensing the voltage / current flowing through the antenna, and the finer adjustment is performed by calculating the efficiency after receiving the received power received from the power receiver through communication. Is done.
  • wireless power transmission is simultaneously performed to all power receivers, and it continues until wireless power transmission ends.
  • Time-sharing power transmission mode during wireless power transmission is a mode in which wireless power transmission is individually transmitted to each power receiver for a given time by dividing the allotted time by giving priority to power receivers that need to provide all services in the charging zone. .
  • the wireless power transmission service is provided only for the time allotted for each power receiver, and is terminated when the service is completed for all power receivers.
  • the power receiver currently receiving the wireless power transmission service When the power receiver currently receiving the wireless power transmission service is buffered, the service is blocked and the buffer is notified to the power transmitter through communication. After receiving the buffer information, the power transmitter resumes the wireless power transmission service to the remaining power receivers without considering the power receiver.
  • the wireless power transfer termination is divided into a case in which there is no power receiver to provide a wireless power transfer service and a case in which the user wants to terminate.
  • the wireless power transmission service currently being provided is terminated and the power transmitter enters the standby mode.
  • the neighboring power receiver may request wireless power transmission.
  • the power receiver may transmit wireless power to the power receiver that requested the power transmission according to the user's selection.
  • the wireless power transmission system can classify the layers as follows.
  • FIG. 5 is a hierarchical diagram of a wireless power transmission system according to an embodiment of the present invention.
  • Applicant performs overall system operation and management for wireless power transmission to multiple devices.
  • the data needed to accomplish this is exchanged between the parameters of the components between the power transmitter and the power receiver and the system management is performed by the administrator.
  • the manager also manages and controls the coupler, which transmits the actual power.
  • This standard focuses on the management method between application, manager, and coupler that manages the charging of multiple devices. It does not cover the components of the media access control layer and the physical layer related to communication, and the corresponding factor exchange.
  • Table 1 function Component Between applications Power transmitter Power receiver Application-Manager Manager-coupler Application-Manager Manager-coupler Receiver Recognition / Authentication 2.2.12.2.2 2.3.1 2.5.1 Charging Zone / Communication Zone 2.2.32.2.4 2.3.2 2.5.2 Wireless power transmission Time division 2.2.52.2.6 2.3.32.3.42.3.52.3.62.3.7 2.4.12.4.22.4.32.4.42.4.5 2.5.32.5.42.5.8 2.6.12.6.2 The same time 2.2.5 2.3.32.3.42.3.52.3.6 2.4.12.4.22.4.32.4.5 2.5.42.5.8 2.6.2 A sudden situation Foreign substance 2.2.7 2.3.7 2.4.5 2.5.5 2.6.3 Appear and disappear 2.2.7 2.3.7 2.4.5 2.5.5 2.6.3 Buffer 2.2.8 2.3.8 2.4.6 2.5.7 2.6.5 End of wireless power transfer 2.2.9 2.3.9 2.4.7 2.5.6 2.6.4
  • the power transmitter determines whether the power receiver is a device suitable for providing a wireless power transmission service.
  • the definition of the component is as follows.
  • the power receiver receives an ID information request command of the power transmitter.
  • the power transmitter receives ID information from the power receiver, and this information is used to determine whether the power transmitter is eligible for the wireless power transmission service of the power receiver.
  • the power transmitter determines whether the power receiver is suitable for service provision based on the power receiver ID information, and notifies all power receivers.
  • the definition of the component is as follows.
  • It selects a power receiver suitable to receive the service and provides future wireless power transmission service only to the corresponding devices.
  • the definition of the component is as follows.
  • the power transmitter acquires the necessary charging information from all the power receivers.
  • Power transmitters can be managed and controlled to obtain necessary charging information from all power receivers and provide optimal wireless power transfer.
  • Table 4 factor type Value range Explanation Freq number 30 kHz to 300 MHz
  • frequency information to be used in the corresponding power transmission Battremain number 0% to 100% Current battery level of receiver Battdischarge number 0 A to 1000 A How much battery is discharged MaxPwr number -50 dBm to 100 dBm Power Level Information Acceptable by Receiver Pwr number -50 dBm to 100 dBm Received Power Receive Level Type Explanation Receiver type type Description to identify type of receiver RSSI number -80 dBm to 100 dBm Communication signal strength TBD
  • the power transmitter determines whether the charge zone or the communication zone belongs to all the power receivers.
  • the definition of the component is as follows.
  • All power receivers identify the area to which they belong, the power transmitter prepares to provide wireless power transmission to the power receivers in the charging zone, and the power receivers in the communication zone remain in standby for wireless power transmission. Provide power transfer.
  • the power receiver application recognizes the wireless power transfer mode and can be prepared according to the control of the power transmitter.
  • the power transmitter verifies the response of the power receiver and enters the specified wireless power transfer mode.
  • the information used in the time division priority charging mode includes wireless power transmission rank and allocation time information of each power receiver after scheduling.
  • the definition of the component is as follows.
  • the power transmitter can check the response of the power receiver and proceed with scheduling-based wireless power transmission.
  • the power transmitter When a sudden situation occurs, the power transmitter recognizes the situation and informs the power receiver of the situation, and includes information on commands appropriate to each situation.
  • the definition of the component is as follows.
  • the power transmitter transmits information and commands for controlling the power receiver to the power receiver application.
  • the power transmitter can obtain the relevant information from the power receiver to make more accurate and faster judgments and actions for accidents.
  • Table 8 factor type Value range Explanation Abnormal Binary judgment value 0 or 1 0: Rain Situation 1: Situation Charoff Binary judgment value 0 or 1 0: Charging coil off 1: Charging coil on Pwr -50 dBm to 100 dBm Received Power Receive Level Receiving power TBD
  • the power receiver If the power receiver is buffered during wireless power transmission, it includes information informing the power transmitter.
  • the definition of the component is as follows.
  • the power transmitter stops the power transmission to the power receiver and excludes it from consideration.
  • the power transmitter application manager performs management and control to efficiently provide wireless power transmission to multiple devices with information received from the power receiver. Management and control of the power transmitter is performed by the application manager.
  • the power transmitter application transmits the received power receiver ID information to the power transmitter manager to determine whether the device is suitable for receiving the wireless power service, and then informs the user of the device again and includes the necessary information.
  • the definition of the component is as follows.
  • the power receiver manager receives all power receiver ID information from the power transmitter application to determine whether or not it is suitable for service reception.
  • the power transmitter manager determines the location of the charging zone / communication zone of each power receiver based on the corresponding information. Include information about The definition of the component is as follows.
  • the power transmitter manager determines the charging zone / communication zone location of each power receiver based on the received information.
  • the power transmitter application When the discrimination information is transmitted to the power transmitter application, the power transmitter application notifies all power receiver applications whether to determine the location of the charging zone / communication zone, and the power transmitter application recognizes the power receivers in the charging zone as the wireless power transmission service target. And prepare.
  • Table 12 factor type Value range Explanation Req_zone Explanation Zone determination request Charge zone / communication zone determination request RSSI number -80 dBm to 100 dBm Communication signal strength Rsp_zone Binary judgment value 0 or 1 0: charging zone 1: communication zone TBD
  • the administrator is notified of the frequency information, and the manager controls the coupler to perform the wireless power transmission corresponding to the frequency.
  • the coupler of the power transmitter In order to provide wireless power transmission to a plurality of devices according to a situation, the coupler of the power transmitter must be controlled so that the device can receive power at the highest wireless power transmission efficiency, and includes information necessary to perform this.
  • the definition of the component is as follows.
  • the manager When the manager sends the situation information necessary for the current coupler control, the manager derives the factors to control the coupler based on the received information, and performs management and control.
  • the manager When the manager receives the charging status information from the application, the manager calculates the output power based on the information and informs the coupler so that power control can be performed.
  • the manager Upon receiving the battery remaining amount and battery discharge rate information of all power receivers from the application, the manager includes information for calculating the factor values necessary for scheduling based on the information and delivering the derived result values back to the application.
  • the definition of the component is as follows.
  • the manager performs a scheduling algorithm based on the information of the battery remaining amount and the discharge rate to derive the parameter values required for the scheduling.
  • the scheduling result is transmitted to the application to inform all the power receivers and the coupler of the power transmitter is controlled according to the algorithm.
  • the power transmitter needs current and voltage sensing in order to control the coupler for power level adjustment or impedance matching, and includes information for performing this.
  • the definition of the component is as follows.
  • the power transmitter When the power receiver notifies the buffer, the power transmitter includes the information necessary to terminate the current wireless power transfer and prepare to provide wireless power transfer to another power receiver.
  • the definition of the component is as follows.
  • the power transmitter application requests the power transmitter administrator to terminate the current wireless power transmission due to the buffer.
  • the power transmitter stops the current wireless power transmission and includes information necessary for terminating the wireless power transmission.
  • the definition of the component is as follows.
  • the power transmitter application requests the power transmitter administrator to terminate the wireless power transmission of the user.
  • the definition of the component is as follows.
  • the manager calculates and delivers the necessary parameter values to control the wireless power transmission frequency to the coupler.
  • impedance matching control of the coupler is required and information necessary for this is included.
  • the definition of the component is as follows.
  • the manager calculates and delivers the necessary parameter values for the coupler and matching control to the coupler.
  • the manager includes information for coupler control for output power level control of the power transmitter.
  • the definition of the component is as follows.
  • the manager calculates and sends the parameter values necessary for output power level control to the coupler.
  • the manager includes information necessary for coupler control for priority control in time division charging mode.
  • the definition of the component is as follows.
  • the manager calculates and sends the parameter values necessary for scheduling control to the coupler.
  • the administrator For current / voltage sensing used as observations of accident detection and matching control, the administrator includes the information needed for coupler control.
  • the definition of the component is as follows.
  • the power transmitter always reads the value while providing wireless power transfer.
  • the manager calculates and delivers the necessary parameter values for voltage / current sensing to the coupler.
  • the power transmitter When the power receiver notifies the buffer, the power transmitter includes the information necessary to terminate the current wireless power transfer and prepare to provide wireless power transfer to another power receiver.
  • the definition of the component is as follows.
  • the power transmitter manager requests the power transmitter coupler to terminate the current wireless power transmission due to the buffer.
  • the power transmitter application When the power transmitter application receives a request for terminating the wireless power transmission from the user, the power transmitter includes information necessary to stop the current wireless power transmission and wait until the next user receives the request.
  • the definition of the component is as follows.
  • the power transmitter manager requests the power transmitter coupler to terminate the wireless power transmission of the user.
  • the power receiver application defines components between the receiver application and the manager to prepare the information necessary for wireless charging or to control the coupler of the power receiver.
  • the definition of the component is as follows.
  • the application of the power receiver requests the manager for ID information of the power receiver.
  • the power receiver application prepares to transmit the ID information received from the manager to the application of the power transmitter.
  • It includes the information prepared and provided by the power receiver according to the request of the power transmitter in order to recognize the wireless power transmission situation and provide the optimal power transmission for the situation.
  • the definition of the component is as follows.
  • the application of the power receiver requests power receiver information from the manager of the power receiver.
  • the power receiver application prepares to transmit the ID information received from the manager to the application of the power transmitter.
  • frequency information to be used in the corresponding power transmission MaxPwr number -50 dBm to 100 dBm Power Level Information Acceptable by Receiver Battremain number 0% to 100% Current battery level of receiver Battdischarge number 0 A to 1000 A How much battery is discharged Pwr number -50 dBm to 100 dBm Received Power Receive Level Type Explanation Receiver type type Description to identify type of receiver RSSI number -80 dBm to 100 dBm Communication signal reception level TBD
  • the power receiver application Based on the scheduling information received from the power transmitter application, the power receiver application performs the power receiver coupler control to meet the scheduling through the power receiver manager and includes the necessary information.
  • the definition of the component is as follows.
  • the power receiver application transmits the reception scheduling information to the power receiver manager to calculate the parameter values necessary for the current coupler control based on the scheduling information received.
  • a request for a received power level When a request for a received power level is received from an application of a power transmitter, it includes information for sensing current / voltage to calculate power and delivering the information to the power transmitter.
  • the definition of the component is as follows.
  • the application of the power receiver requests the received power level information from the manager of the power receiver, which is implemented based on current / voltage sensing.
  • the manager of the power receiver delivers the current / voltage sensing information or the received power level information to the power receiver's application, and this information is used to control the output power of the power transmitter.
  • the power receiver application Based on the accident control information received from the power transmitter application, the power receiver application includes information for resolving the accident situation through the power receiver manager.
  • the definition of the component is as follows.
  • the power receiver application transmits the reception control information to the power receiver manager to calculate the parameter values necessary for the current coupler control based on the incident control information received.
  • the power receiver application Upon receiving the power transmission termination control from the power transmitter application, the power receiver application includes information for controlling the power receiver coupler to terminate the power transmission through the power receiver manager.
  • the definition of the component is as follows.
  • the power receiver application transmits control information to the power receiver manager to control the coupler so that power transmission termination control can be performed.
  • the power receiver which has been receiving wireless power, includes information that terminates the reception when the battery is fully charged and ends the power transmission by transmitting the contents to the power transmitter and does not consider the power receiver from the next wireless power transmission.
  • the definition of the component is as follows.
  • the information is transmitted to the power transmitter and includes information to help scheduling and power control.
  • the definition of the component is as follows.
  • the manager of the power receiver notifies the battery receiver of the change and amount of battery discharge rate.
  • the power receiver manager includes information necessary for coupler control based on a control command received to control the coupler of the power receiver according to the scheduling.
  • the definition of the component is as follows.
  • the power receiver manager controls the current coupler based on the received scheduling information.
  • the power receiver manager performs current / voltage sensing to detect changes in the receiving network or to calculate the received power and defines the necessary information.
  • the definition of the component is as follows.
  • the manager of the power receiver sends control commands to the coupler to sense voltage and current during power reception.
  • the power receiver coupler measures the current / voltage value and passes it to the manager of the power receiver.
  • the power receiver manager controls the coupler of the power receiver with the factor values calculated to solve the accident and includes the necessary information.
  • the definition of the component is as follows.
  • the power receiver manager controls the current coupler based on the incident control information received.
  • the power receiver manager controls the coupler for power transmission termination control and includes related information.
  • the definition of the component is as follows.
  • the power receiver manager controls the current coupler based on the received power transmission end control information.
  • the coupler control is required to terminate the reception and includes relevant information.
  • the definition of the component is as follows.
  • the manager of the power receiver controls the coupler of the power receiver so that the power receiver no longer receives power.
  • the frame including data for wireless power transmission control is composed of the elements shown in Table 42.
  • the power transmitter transmits control commands to the power receiver and the power receiver transmits power transmission information to the power transmitter through a frame configured as shown in Table 1.
  • the start field consists of 1 byte and indicates the start of one frame and has a fixed value of 0x7E.
  • the power receiver number field consists of 1 byte and the power transmitter is used to distinguish the power receiver from the application end. If the power receiver number is 0xFF, it means all power receivers.
  • the code field consists of 1 byte and is a code assigned to each frame type in order to distinguish the type of the frame to be transmitted. For more information, please refer to 3.3. See frame type.
  • the control field consists of 1 byte and provides frame serial number information and payload length information for each code.
  • the serial number is a sequential number assigned to each successive code frame in order to prevent a lost frame during message transmission.
  • the payload length indicates the length of the payload field following the control field in bytes.
  • the payload field has a variable length of 0 to N bytes and contains actual data. For more information, see 3.4. See payload format.
  • the CRC field consists of 1 byte and is used to determine whether the frame body is received without error.
  • the standard generated polynomial that creates the frame check sequence is
  • the end field consists of 1 byte and indicates the end of the frame. Like the start field, it has a fixed value of 0x7F.
  • the frame type is defined as four types of frames: request frame, response frame, data frame, and acknowledgment frame.
  • the request frame is used when the power transmitter transmits a request packet to a specific power receiver or broadcasts information to all receivers in the request period.
  • the request frame format is shown in Table 4.
  • the power receiver number is 0xFF in the frame header.
  • the response frame is used to transmit a response packet of the power receiver for the request of the power transmitter.
  • Response frame format is shown in Table 5. It is mainly used to respond to the charging information of the power receiver by the request of the power transmitter.
  • the data frame is used when the power receiver notifies the power receiver of the power receiver and detects a change in discharge amount even when there is no request from the power transmitter.
  • An acknowledgment frame is an acknowledgment frame of the power transmitter for acknowledgment and buffer notification of the received charging mode, time division order, and termination of charging.
  • the data acknowledgment frame consists only of the frame header without a frame body as shown in Table 7.
  • Payload format is configured differently according to the frame type such as request frame, response frame, data frame, acknowledgment frame.
  • the payload format of the request frame consists of a length, a request code, and one or more request blocks as shown in Table 8. If the power receiver number is 0xFF in the frame header, a request is made to the power receivers of all groups. Each block contains request data information.
  • the length field consists of 1 byte and represents the sum of the request block lengths, and the value of the length field is variable depending on the length and number of request blocks.
  • the request code in the payload of the request frame and the content contained in the request block of the request code are as follows.
  • the payload of the response frame holds the response data for the request.
  • the response frame payload is shown in Figure 19.
  • the first one byte is the group address, the next one is the response data length (L), the response code, and the next L bytes are the response data.
  • the length field consists of 1 byte and indicates the length of the response data and varies depending on the type of the response data.
  • the response code in the payload of the response frame and the data of the corresponding response code are as follows.
  • the payload of the data frame contains data informing the power transmitter of an emergency situation recognized by the power receiver without the request of the power receiver.
  • the response frame payload is shown in Table 12. The first 1 byte is the data code, then the L bytes are the data.
  • the data code in the payload of the data frame and the data content of the data code are as follows.
  • the acknowledgment acknowledgment frame payload is for the reception notification of the wireless power transmission mode of the power receiver, the reception notification of the reception scheduling information, the notification of the termination of the wireless power transmission, and the reception notification of the buffer information of the power transmitter.
  • the header is sent without the frame payload to inform the sender of its reception. Applicable in more cases in the future.
  • the power receiver receiving the communication signal sends its ID as a join response.
  • the power transmitter checks the ID of the received power receiver and notifies the subject that the subject is not eligible for the wireless power transmission service, and requests the data if the subject.
  • the power receiver Upon receiving the data request, the power receiver sends the power receiver information (battery remaining, battery discharge rate, charge frequency, required reception power strength, etc.) to the power transmitter as a data response.
  • the power transmitter that receives the power receiver information analyzes the received data and, in particular, determines whether the corresponding power receiver is currently located in the charging zone / communication zone based on the reception strength information.
  • the power receiver If the power receiver is in the communication zone, it is notified to the power receiver, and the power receiver notifies the user that his location is in the wireless power transmission communication zone. If the power receiver is in the charging zone, the power receiver is notified that the charging zone is in the charging zone, and the power transmitter considers the power receiver as a target for providing wireless power transmission service.
  • the power transmitter selecting the simultaneous power transmission mode Prior to performing the actual wireless power transmission, the power transmitter selecting the simultaneous power transmission mode first performs impedance matching to generate the best wireless transmission efficiency. The frequency is adjusted to the wireless power transmission frequency obtained from the power receiver information, and the test power is transmitted to calculate the impedance through the current / voltage sensing value of the power transmitter. Through this, primary impedance matching is performed, test power is transmitted again, and receiving power level is received from the power receiver to perform secondary fine impedance matching. When the optimal impedance matching is completed, the wireless power transmission service is provided and the service is continued until the sudden situation and the end of the wireless power transmission.
  • the power transmitter which selects the time division power transfer mode performs scheduling calculation based on the power receiver information obtained from the power receiver, calculates the order and time, and notifies all the power receivers. Based on the calculated order and time, each power receiver performs impedance matching to generate the best wireless transmission efficiency prior to actual power transmission.
  • the frequency is adjusted to the wireless power transmission frequency obtained from the power receiver information, and the test power is transmitted to calculate the impedance through the current / voltage sensing value of the power transmitter. Through this, primary impedance matching is performed, test power is transmitted again, and receiving power level is received from the power receiver to perform secondary fine impedance matching.
  • wireless power transmission service is started, wireless power transmission is provided for the estimated time, and wireless power transmission is provided to the next power receiver in the order of scheduling. If an unexpected situation occurs during the wireless power transmission or the wireless power transmission ends, the current service is terminated.
  • the current / voltage sensing through wireless power transmission is performed several times. You will be notified through the function.
  • the measured current, voltage, and calculated impedance change are severe, it is determined that a sudden situation occurs in the charging environment, and stops the current wireless power transmission and requests charging information from all power receivers. If all current power receivers do not exist or additional power receivers are identified, they are regarded as impedance changes due to the appearance or disappearance of power receivers, not foreign bodies, and the changed impedances are identified for optimal matching before wireless power transmission. .
  • the power receiver If the power receiver detects the battery buffer while receiving the wireless power, it informs the power transmitter of the battery buffer and shuts off the power antenna. The power transmitter notified whether or not the buffer has been charged is no longer determined to be considered for wireless power transmission and starts transmitting the wireless power to another power receiver.
  • the power transmitter stops the current wireless power transmission and waits for the next request in the standby mode.
  • a power receiver that requires wireless power reception but does not find a power transmitter in close proximity may request wireless power transmission from an adjacent power receiver.
  • the power receiver receiving the wireless power transmission request by providing its basic power receiver information determines whether the power transmission is provided to the requested power receiver and informs the user. If the user approves, the wireless power request response is sent and both the requested power receiver and the responding power receiver inform the user of the necessity and method for charging the power reception period. If the conditions are met, wireless power transfer is provided from the power receiver to the power receiver.
  • the power receiver When the power receiver confirms the change in the discharge rate of the battery, it is judged whether there is a person around the power receiver and informs the power transmitter so that the power transmitter can control the wireless power transmission output power that does not exceed the harmfulness of the human body. If wireless power transmission is being provided, stop for a while and control the output power and transmit again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

무선 전력송신 장치와 상기 무선 전력송신 장치와 이격되어 있는 다수의 무선 충전기기를 포함하는 멀티노드 무선 전력 전송 시스템으로서, 상기 무선 충전기기가 통신만 가능한 세미차징존에 위치할 때에는 상기 무선 전력송신 장치는 상기 무선 충전기기로부터 수신한 ID를 기반으로 상기 무선 충전기기가 무선전력전송 서비스의 대상인지 판별하고, 상기 무선 충전기기가 통신과 무선전력전송 모두 가능한 차징존에 위치할 때에는 상기 무선 충전기기에게 무선 전력전송 서비스를 제공하며, 상기 무선 전력전송 서비스는 동시 전력전송 모드 또는 시분할 전력전송 모드로 제공될 수 있는 멀티노드 무선 전력 전송 시스템이 제공된다.

Description

다수 기기 무선 충전을 위한 무선 전력 전송 시스템 및 방법
본 발명은 자기 공진 무선 전력 전송 기술을 기반으로 충전이 필요한 다수기기에게 무선으로 전력을 전송하는 시스템 및 방법에 관한 것이다.
무선으로 에너지를 전달하는 무선 전력 전송 기술로서 자기유도 현상을 이용한 무선 충전 시스템이 사용되고 있다.
예컨대, 전동칫솔 또는 무선 면도기 등이 전자기 유도의 원리로 충전되며, 최근에는 전자기 유도를 이용하여 휴대전화나 PDA, MP3 플레이어, 노트북 컴퓨터와 같은 휴대기기를 충전할 수 있는 무선충전제품들이 출시되고 있다.
그러나, 하나의 코일에서 다른 코일로 자기장을 통해 전류를 유도하는 자기유도 방식은 코일 사이의 거리 및 상대적 위치에 매우 민감하여 두 코일 사이의 거리가 약간 떨어지거나 틀어져도 전송 효율이 급속히 떨어진다. 이에 따라 이러한 자기유도 방식의 충전 시스템은 수 cm 이하의 근거리에서만 사용할 수 있다는 약점이 있다.
한편, 미국특허 7,741,735호에서는 공진장의 감쇄파 결합에 기반을 둔 비방사형 에너지 전달 방식을 개시하고 있다. 이는 두 개의 동일한 주파수를 갖는 공진체가 주위의 다른 비공진체와는 영향을 미치지 않지만 서로 커플링하려는 경향을 가지는 점을 이용한 것으로 기존의 전자기 유도에 비하여 먼 거리까지 에너지를 전달할 수 있는 기술로서 소개되고 있다.
본 발명은 상술한 바와 같은 기술적 배경에서 안출된 것으로서, 본 발명의 과제는 본 발명의 과제는 다수 장치에 대한 무선 전력전송을 제어하기 위한 인터페이스를 갖는 무선 전력전송 시스템 및 방법을 제공하고자 하는 것이다.
이와 같은 과제를 해결하기 위하여 본 발명에서는 다수 장치에 대한 무선 전력전송을 제어하기 위한 인터페이스의 요구사항을 정의하고, 제어 인터페이스의 프로토콜과 절차를 제공한다.
즉, 본 발명의 일면에 따른 멀티디바이스 무선 전력전송 시스템은, 무선 전력송신 장치와 상기 무선 전력송신 장치와 이격되어 있는 다수의 무선 충전기기를 포함하는 멀티노드 무선 전력 전송 시스템으로서, 상기 무선 충전기기가 통신만 가능한 세미차징존에 위치할 때에는 상기 무선 전력송신 장치는 상기 무선 충전기기로부터 수신한 ID를 기반으로 상기 무선 충전기기가 무선전력전송 서비스의 대상인지 판별하고, 상기 무선 충전기기가 통신과 무선전력전송 모두 가능한 차징존에 위치할 때에는 상기 무선 충전기기에게 무선 전력전송 서비스를 제공하며, 상기 무선 전력전송 서비스는 동시 전력전송 모드 또는 시분할 전력전송 모드로 제공될 수 있는 것을 특징으로 한다.
본 발명의 다른 면에 따른 다수기기 무선 충전 시스템의 충전 방법은, 무선전력 송신장치와 상기 무선전력 송신장치와 이격되어 있는 다수의 무선 충전기기를 포함하는 다수기기 무선 충전 시스템에서 상기 무선전력 송신장치가 상기 무선 충전기기를 충전하는 방법으로서, 상기 무선전력 송신장치가 상기 무선 충전기기로부터 식별정보를 수신하는 단계; 상기 식별정보가 적격인 경우 상기 무선 충전기기로 데이터 요청을 송신하는 단계; 상기 무선 충전기기로부터 배터리 정보, RSSI 정보, LF/DUAL 기기 정보를 포함하는 데이터를 수신하는 단계; 수신된 상기 데이터를 분속하고 충전영역과 통신영역을 판별하는 단계; 및 상기 판별하는 단계의 결과에 따라 상기 무선 충전기기로 충전영역 또는 통신영역을 알리는 단계를 포함한다.
여기에서, 상기 판별하는 단계의 결과에 따라 상기 무선 충전기기가 상기 충전영역에 위치하는 경우 상기 무선전력 송신장치가 상기 무선 충전기기로 무선전력을 송신하는 단계를 더 포함할 수 있으며, 상기 판별하는 단계의 결과에 따라 상기 무선 충전기기가 상기 통신영역에 위치하는 경우 상기 무선 충전기기는 상기 무선 충전기기가 상기 통신영역에 위치함을 사용자에게 알리는 단계를 더 포함할 수도 있다.
본 발명의 다른 면에 따른 다수기기 무선 충전 시스템의 충전 방법은, 상기 무선전력 송신장치가 상기 다수의 무선 충전기기로 제1 테스트 전력을 송신하고 상기 테스트 전력에 따른 상기 무선전력 송신장치의 전류 및 전압을 검출하여 제1 임피던스 매칭을 수행하는 단계; 상기 무선전력 송신장치가 상기 다수의 무선 충전기기로 제2 테스트 전력을 송신하고 상기 다수의 무선 충전기기 각각으로부터 수신한 수신전력 정보에 기반하여 제2 임피던스 매칭을 수행하는 단계; 및 상기 제2 임피던스 매칭 결과를 기반으로 상기 다수의 무선 충전기기로 동시에 전력을 송신하는 단계를 포함하여 이루어진다.
상기 제1 임피던스 매칭을 수행하는 단계 이전에, 상기 무선전력 송신장치가 상기 다수의 무선 충전기기 중 적어도 하나로부터 수신한 무선 충전기기 정보로부터 얻은 무선전력 송신 주파수로 주파수를 변경하는 단계를 더 포함할 수 있다.
상기 제2 임피던스 매칭을 수행하는 단계에서는, 상기 무선전력 송신장치가 상기 다수의 무선 충전기기로 제2 테스트 전력을 송신한 다음 상기 다수의 무선 충전기기로 상기 수신전력 정보를 요청할 수 있으며, 상기 무선전력 송신장치가 상기 다수의 무선 충전기기 각각으로부터 상기 수신전력 정보를 수신한 다음 상기 수신전력 정보에 기반하여 상기 다수의 무선 충전기기 각각의 무선전력 전송효율을 계산할 수도 있다.
상기 동시에 전력을 송신하는 단계 이후에 충전이 종료되면 상기 무선전력 송신장치가 상기 다수의 무선 충전기기 각각에게 무선전력 송신 종료를 통보하는 단계를 더 포함할 수 있으며, 상기 무선전력 송신 종료를 통보하는 단계 이후에 상기 다수의 무선 충전기기 각각이 전력 안테나를 오프하는 단계를 더 포함할 수도 있다.
본 발명의 또 다른 면에 따른 다수기기 무선 충전 시스템의 충전 방법은, 상기 무선전력 송신장치가 상기 다수의 무선 충전기기에 대한 우선순위를 결정하는 단계; 결정된 상기 우선순위를 상기 다수의 무선 충전기기 모두에게 전송하는 단계; 및 결정된 상기 우선순위에 따라 상기 다수의 무선 충전기기에 순차적으로 무선전력을 송신하는 단계를 포함하며, 상기 무선전력을 송신하는 단계는, 무선전력을 송신하는 대상인 상기 무선 충전기기로 제1 테스트 전력을 송신하고 상기 테스트 전력에 따른 상기 무선전력 송신장치의 전류 및 전압을 검출하여 제1 임피던스 매칭을 수행하는 단계; 상기 무선전력 송신장치가 상기 무선 충전기기로 제2 테스트 전력을 송신하고 상기 무선 충전기기로부터 수신한 수신전력 정보에 기반하여 제2 임피던스 매칭을 수행하는 단계; 및 상기 제2 임피던스 매칭 결과를 기반으로 상기 무선 충전기기로 전력을 송신하는 단계를 포한다.
상기 제1 임피던스 매칭을 수행하는 단계 이전에, 상기 무선전력 송신장치가 상기 무선 충전기기로부터 수신한 무선 충전기기 정보로부터 얻은 무선전력 송신 주파수로 주파수를 변경하는 단계를 더 포함하는 것이 바람직하다.
상기 제2 임피던스 매칭을 수행하는 단계에서는, 상기 무선전력 송신장치가 상기 무선 충전기기로 제2 테스트 전력을 송신한 다음 상기 무선 충전기기로 상기 수신전력 정보를 요청할 수 있으며, 상기 무선전력 송신장치가 상기 무선 충전기기로부터 상기 수신전력 정보를 수신한 다음 상기 수신전력 정보에 기반하여 상기 무선 충전기기의 무선전력 전송효율을 계산할 수도 있다.
상기 제2 임피던스 매칭 결과를 기반으로 상기 무선 충전기기로 전력을 송신하는 단계 이후에, 상기 무선 충전기기에 대한 할당시간을 확인하고 무선전력 송신 종료를 통보하는 단계를 더 포함할 수 있으며, 상기 무선전력 송신 종료를 통보하는 단계 이후에, 상기 무선 충전기기가 전력 안테나를 오프하는 단계를 더 포함할 수도 있다.
본 발명에 따르면, 다수 장치에 대한 무선 전력전송을 제어하기 위한 인터페이스의 요구사항을 정의하고, 제어 인터페이스의 프로토콜과 절차를 제공함으로써 멀티디바이스 무선 전력전송 시스템을 적절히 운영할 수 있도록 한다.
도 1은 무선전력전송 개요를 나타낸다.
도 2는 무선전력전송 서비스 개요를 나타낸다.
도 3은 본 발명의 실시예에 따른 무선 전력전송 시스템의 물리적/공간적 구성요소를 나타낸다.
도 4는 본 발명의 실시예에 따른 시분할 기반 무선전력전송 일반적 절차를 나타낸다.
도 5는 본 발명의 실시예에 따른 무선전력전송 시스템 계층 구분도이다.
도 6은 표 1 - 프레임 구조
도 7은 표 2 - 필드 설명 요약
도 8은 표 3 - 프레임 종류 값
도 9는 표 4 - 요청 프레임
도 10은 표 5 - 응답 프레임
도 11은 표 6 - 데이터 프레임
도 12는 표 7 - 수신알림 프레임
도 13은 표 8 - 요청프레임 페이로드 형식
도 14는 표 9 - 요청 코드 및 데이터
도 15는 표 10 - 응답프레임 페이로드 형식
도 16은 표 11 - 응답 코드 및 데이터
도 17은 표 12 - 데이터 프레임
도 18은 표 13 - 데이터 코드 및 블록
도 19는 표 14 - 수신알림 프레임
도 20은 그림 6. 전력수신기 인식/인증 및 충전존/통신존
도 21은 그림 7. 동시전력전송
도 22는 그림 8. 시분할전력전송
도 23은 그림 9. 이물질 제거
도 24는 그림 10. 새로운 전력수신기 등장 및 기존 전력수신기 사라짐
도 25는 그림 11. 기존 전력수신기 완충
도 26은 그림 12. 전력전송 종료
도 27은 그림 13. 기기간 전력 전송
도 28은 그림 14. 배터리 방전률 변화 알림
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
이하에서, 첨부한 도면을 참고로 하여 본 발명의 실시예에 따른 다수 기기 무선 충전을 위한 무선 전력 전송 시스템에 대하여 상세히 설명하기로 한다.
먼저 본 발명은 자기 공진 무선 전력 전송 기술을 기반으로 충전이 필요한 다수기기에게 수 m 이내에서 무선으로 전력을 전송하는 시스템 관리를 위한 인터페이스를 정의한다.
본 발명은 무선 전력 전송을 위하여 저주파(50kHz)부터 고주파(15MHz)까지의 다양한 종류의 주파수 대역을 선택적으로 사용하며, 시스템 제어를 위하여 데이터 및 제어신호를 교환할 수 있는 통신시스템의 지원이 필요하다.
본 발명은 배터리를 사용하거나 필요로 하는 전자기기를 사용하는 휴대단말 산업, 가전기기 산업, 전기자동차 산업, 의료기기 산업, 로봇 산업 등 다양한 산업분야에 적용될 수 있다.
본 발명은 기기를 제공한 개의 송신 코일을 사용하여 한 개 이상의 다수기기에 전력 전송이 가능한 시스템을 고려한다.
본 발명에서 사용되는 용어와 약어는 다음과 같다.
무선전력전송 시스템 (Multi-device Wireless Charging System): 자기장 영역 내에서 무선 전력 전송을 제공하는 시스템
전력송신기(Multi-device Wireless Charging System-Charger): 자기장 영역 내에서 다수기기의 전력수신기에게 무선전력전송을 제공하며 시스템 전체를 관리하는 장치
전력수신기(Multi-device Wireless Charging System-Deivce): 자기장 영역 내에서 전력송신기로부터 무선전력전송을 제공받는 장치
충전 지역(Charging Zone): 자기장 영역 내에서 실제적인 무선 전력 전송이 이루어지는 지역이며, 응용 제품의 크기, 요구 전력, 동작주파수에 따라 변할 수 있다.
통신 지역(Communication Zone): 자기장 영역 내에서 무선 전력 전송용 전력 수신 기기를 관리하기 위한 지역이며, 충전 지역보다 넓다.
MWCS: 무선전력전송시스템 (Multi-device Wireless Charging System)
MWCS-C: 전력송신기 (Multi-device Wireless Charging System-Charger)
MWCS-D: 전력수신기 (Multi-device Wireless Charging System-Deivce)
5 개요
무선전력전송은 다수의 전력수신기에 무선으로 전력을 효율적으로 공급하기 위한 시스템으로 한 개의 전력송신기와 하나 또는 다수 개의 전력수신기로 구성되어 있다. 다수의 전력수신기에게 효율적으로 전력을 전송 전송 및 이를 위한 제어를 위해서는 1:1 무선전력전송에 비해 복잡해진 무선전력전송 네트워크를 관리할 수 있는 인터페이스가 반드시 필요하다. ID인식, 인증 등의 절차를 포함하여 교환된 전력전송정보를 기반으로 현재의 무선전력전송 상황을 파악한 후 각 전력수신기에게 최고의 효율을 제공할 수 있는 전력전송모드를 선택하며 갑자기 사라지거나 등장하는 전력수신기에 대한 대응 등 돌발상황의 제어 및 관리 에 관한 절차 및 인터페이스가 반드시 수반되어야 한다.
도 1은 무선전력전송 개요를 나타낸다.
해당 기술은 배터리를 사용하거나 필요로 하는 전자기기를 사용하는 다음과 같은 산업분야에 적용될 수 있다.
- 휴대단말 산업: 휴대단말기에게 언제 어디서나 충전서비스를 제공
- 가전기기 산업: 가정 내에 유선의 복잡함과 불편함을 없애면서 배선의 간단함 및 가구배치의 자율성 보장
- 전기차 산업: 고압 충전의 위험성을 피하고 단일 표준기반의 효율적이고 편리한 충전 제공
- 의료기기 산업: 환자들에게 안정적이고 다양한 기능을 갖는 이식가능 기기를 제공
도 2는 무선전력전송 서비스 개요를 나타낸다.
다수기기에게 무선전력전송 제공을 위해 전력송신기는 시분할 기반의 스케줄링으로 무선전력전송을 수행하며, 또한 무선전력전송 환경제어를 위하여 전력수신기의 합류, 분리 및 해제를 관리한다.
근거리 장내에서 최대 수 m 이내에서 접촉을 포함한 원격으로 전력수신기의 종류에 따라 수 W에서 수백 W 급 전력전송기능을 제공하며, 전력수신기의 제품별 필요 무선전력전송 거리에 대하여 70% 이상의 효율을 보장해야 한다.
효율적인 무선전력전송과 상호운용성 제공을 위하여 다양한 주파수 대역을 취사선택하여 사용할 수 있다.
다수기기에게 효율적으로 무선전력전송 서비스를 제공하기 위해서는 전력전송정보 및 제어신호를 교환할 수 있는 무선통신시스템이 필요하다. 가능한 통신방법 중에서 정보 및 제어신호를 교환하기 위하여 In-band 자기장통신을 사용하는 무선전력전송은 주파수 사용의 효율성을 높이기 위하여 자기장 영역 내에서 무선전력전송과 같은 주파수를 무선통신에 사용한다.
무선전력전송은 물리적인 구성요소, 공간적인 구성요소 및 시간적인 구성요소로 나뉜다. 물리적인 구성요소는 전력송신기와 전력수신기로 구성되고 공간적인 요소는 충전존과 통신존으로 구성되며 시간적 구성요소는 다수기기에게 무선전력전송을 위한 시분할 방식 기반에서의 시간단위를 의미한다.
무선전력전송을 구성하는 물리적인 구성요소는 전력송신기를 중심으로 하는 스타 토폴로지에서의 전력송신기와 전력수신기를 의미한다. 무선전력전송 네트워크는 전력송신기를 중심으로 각각의 전력수신기들과 데이터 통신 및 무선전력전송을 할 수 있는 네트워크이다. 전력송신기는 무선전력전송 네트워크 전체를 관리하고 네트워크에서 오직 하나만이 존재한다. 물리적 구성요소에 대한 그림은 Figure 3을 참조한다.
효과적인 전력수신기들의 관리를 위하여 통신이 가능한 지역에서 미리 전력수신기를 인식 및 인증하고 무선전력전송에 필요한 데이터를 교환하여 무선전력전송을 위한 기본준비 절차가 선행되어야 한다. 따라서, 충전존과 통신존으로 구분된 가상의 공간이 있으며, 전력송신기는 통신가능지역인 통신존 안에 들어온 전력수신기들에 대해 관리를 시작하며, 이들 중 무선전력전송 가능지역인 충전존에 속한 전력수신기들에게 실제적인 무선전력전송을 행한다. In-band 자기장통신을 이용하는 무선전력전송의 경우 먼 거리까지 존재할 수 없는 자기장의 특성 때문에 공간적인 충전존과 통신존이 효율적으로 형성할 수 있지만 기타 통신방법을 사용하는 경우에는 지원 가능한 통신영역의 규모가 다양하고 방대하기 때문에 고려해야 되는 전력수신기의 수가 급증할 수가 있고 이를 방지하기 위해서는 전력송신기에서 기타 통신방법들의 출력파워 조절이 필요할 수 있다.
도 3은 본 발명의 실시예에 따른 무선 전력전송 시스템의 물리적/공간적 구성요소를 나타낸다.
무선전력전송 네트워크는 시간 분할 다중 접속(Time Division Multiple Access: TDMA) 방식을 사용하는데, 전력송신기에 의하여 관리되고 전력수신기의 요청과 전력송신기의 판단에 의하여 분배된다. 또한, 다수의 기기에게 무선전력전송 제공을 위한 인식, 인증, 분석, 무선전력전송 제공 등의 다양한 절차들이 시분할 기반으로 수행된다.
도 4는 본 발명의 실시예에 따른 시분할 기반 무선전력전송 일반적 절차를 나타낸다.
6 네트워크 구성 요소
6.1 일반사항
다수개의 전력수신기에게 무선전력전송을 수행하기 위해서는 전력송신기가 인식한 전력수신기가 무선전력전송 서비스를 제공하기에 적합한 기기인지 판별하는 전력수신기 인식/인증 절차가 우선적으로 필요하다.
다수개의 전력수신기에게 신속하게 무선전력전송을 제공하기 위해서는 일반적으로 전력수신기가 무선전력전송 서비스를 제공받을 수 없지만 무선통신이 가능한 통신존에 있는 경우에 전력수신기 인식/인증 및 무선전력전송을 위한 기본 데이터를 교환하여 무선전력전송 준비를 완료하게 된다. 준비 완료된 전력수신기가 충전존에 들어오게 되면 무선전력전송을 수행하여 무선전력전송을 위한 준비시간을 절약하여 신속한 서비스를 제공한다.
무선전력전송 서비스를 효율적으로 제공하기 위해 상황에 따라 충전존에 있는 모든 기기에게 무선전력전송을 동시에 수행하는 동시전력전송모드와 배터리 잔여량 기반 혹은 사용자 선정기반 등으로 우선순위를 정해 시분할로 개별적으로 무선전력전송을 수행하는 시분할전력전송모드가 있다.
모든 전력수신기들이 완충이 되면 전력전송이 종료되거나 사용자가 임의로 현재 제공하는 전력전송서비스를 멈출 수 있다.
다수개의 전력수신기에게 무선전력전송을 하기에 고려해야 될 돌발상황이 빈번하고 다양하다. 이에 대해 효율적인 대처를 하고자 무선전력전송 중에 네트워크 상에 돌발상황이 발생하면 전력송신기는 이를 인지하고 돌발상황이 처리되기 전까지 무선전력전송 서비스를 중단하여 사용자에게 돌발상황을 알리게 된다.
6.2 전력수신기 인식/인증
전력송신기는 주기적으로 합류요청 신호를 송신하고 이 신호를 수신한 전력수신기들은 자신의 ID를 응답으로 송신한다. 전력송신기는 수신 받은 ID를 기반으로 해당 전력수신기들이 무선전력전송 서비스의 대상인지 판별하게 되고 서비스 대상이면 무선전력전송을 위한 정보를 해당 전력수신기에게 요청한다. 서비스 대상이 아닌 전력수신기에게는 서비스를 제공할 수 없음을 통보한다.
6.3 무선전력전송 모드
무선전력전송 모드는 크게 동시전력전송모드, 시분할전력전송모드로 구성된다. 모든 모드에서 전력송신기는 전류/전압 센싱 및 통신을 통하여 전력수신기들로부터 전달받은 충전상황(배터리 잔여량, 배터리 방전률, 수신파워레벨, 전압/전류 센싱 정보 등)을 파악하여 해당 전력수신기에게 고효율 무선전력전송 서비스를 제공하기 위하여 충전주파수 대역 선택, 임피던스 매칭, 출력파워레벨 조절 등을 수행한다
6.3.1 동시전력전송모드
전력수신기의 인식과 전력전송에 필요한 정보교환이 끝난 후 무선전력전송 서비스가 시작된다. 무선전력전송 중 동시전력전송 모드는 충전존에 존재하는 모든 서비스 제공이 필요한 전력수신기들에게 동시에 무선전력을 전송하는 모드이다. 무선전력전송의 효율을 높이기 위해 안테나에 흐르는 전압/전류를 센싱하여 도출한 임피던스 값을 기반으로 매칭을 조절하며 보다 세밀한 조절은 통신을 통해 전력수신기로부터 전달받은 수신파워를 수신한 후 효율을 계산함으로써 이루어 진다. 충전을 위한 조절을 마치면 모든 전력수신기에게 동시에 무선전력전송을 수행하며 이는 무선전력전송종료 시까지 계속 진행된다
6.3.2 시분할전력전송모드
전력수신기의 인식과 무선전력전송에 필요한 정보교환이 끝난 후 무선전력전송 서비스가 시작된다. 무선전력전송 중 시분할전력전송모드는 충전존에 존재하는 모든 서비스 제공이 필요한 전력수신기들에게 우선순위를 두고 할당된 시간을 나누어 무선전력전송을 각각의 전력수신기마다 개별적으로 주어진 시간 동안에 송신하는 모드이다. 각각의 전력수신기마다 할당된 시간 동안에만 무선전력전송 서비스가 제공되며, 모든 전력수신기에게 서비스를 마치면 종료가 된다.
6.4 돌발상황관리
무선전력전송 서비스를 진행 중에 돌발상황이 발생하면 제공하는 서비스를 중단하고 돌발상황 해결을 진행한다. 돌발상황은 이물질 감지, 새로운 전력수신기의 등장 및 기존 전력수신기의 사라짐, 기존 전력수신기의 완충으로 인한 퇴장으로 분류할 수 있다. 모든 돌발상황은 전력송신기에서 안테나에 흐르는 전압/전류 및 임피던스 변화를 센싱하여 판별하고 통신을 통하여 보다 세밀하게 상황을 인식한 후 각 상황에 맞는 조치를 수행한다.
6.4.1 이물질 감지
무선전력전송의 효율을 변화시키는 이물질이 등장할 경우 이를 인식하여 사용자에게 이물질의 존재를 알람의 형식으로 통보한다.
6.4.2 새로운 전력수신기의 등장 및 기존 전력수신기의 사라짐
새로운 전력수신기가 등장하거나 기존 전력수신기가 사라지는 경우에는 이를 파악하고 다시 무선전력전송의 효율을 극대화할 수 있는 임피던스 매칭을 수행한 후 다시 무선전력전송 서비스를 재개한다.
6.4.3 기존 전력수신기의 완충
현재 무선전력전송 서비스를 받고 있는 전력수신기가 완충이 되면 제공받는 서비스를 차단하고 통신을 통해 전력송신기에게 자신의 완충을 알리게 된다. 전력송신기는 완충정보를 수신한 후에 해당 전력수신기는 고려하지 않고 나머지 전력수신기들에게 무선전력전송 서비스를 재개한다.
6.5 무선전력전송종료
무선전력전송종료는 무선전력전송 서비스를 제공할 전력수신기가 존재하지 않은 경우와 사용자가 원해서 종료하는 경우로 나뉜다. 현재 제공하고 있던 무선전력전송 서비스를 종료하고 전력송신기는 대기모드로 빠진다.
6.6 전력수신기간 무선전력전송
전력송신기가 존재하지 않거나 전력수신기가 충전지역 안에 있지 않은 경우 인접 전력수신기에게 무선전력전송을 요청할 수 있다. 요청을 받은 전력수신기는 사용자의 선택여부에 따라 전력송신을 요청한 전력수신기에게 무선전력을 전송할 수 있다.
7 무선전력전송 관리
7.1 일반사항
다수기기에게 무선전력전송을 수행하기 위해서는 통신과 충전을 고려한 관리가 필요하고 주로 스케줄링 기반으로 통신과 충전의 제어와 기능이 수행된다. 무선전력전송 시스템은 다음과 같이 계층을 구분할 수 있다.
도 5는 본 발명의 실시예에 따른 무선전력전송 시스템 계층 구분도이다.
응용자는 다수기기에게 무선전력전송을 위한 시스템 전반적인 운용 및 관리를 수행한다. 이를 수행하기 위해 필요한 데이터를 전력송신기와 전력수신기 사이의 응용자간에 구성요소의 인자를 교환 하며 관리자를 통해 시스템 관리를 수행한다. 또한 관리자를 통해 실질적인 전력을 전송하는 커플러를 관리 및 제어한다.
본 표준은 다수기기의 충전을 관리하는 응용자, 관리자, 및 커플러 간의 관리방법에 초점을 맞추는 표준으로써 통신과 관련된 매체접근제어 계층과 물리 계층과의 구성요소 및 해당 인자교환은 다루지 않는다.
표 1
기능 구성요소
응용자간 전력송신기 전력수신기
응용자-관리자 관리자-커플러 응용자-관리자 관리자-커플러
수신기 인식/인증 2.2.12.2.2 2.3.1 2.5.1
충전존/통신존 2.2.32.2.4 2.3.2 2.5.2
무선전력전송 시분할 2.2.52.2.6 2.3.32.3.42.3.52.3.62.3.7 2.4.12.4.22.4.32.4.42.4.5 2.5.32.5.42.5.8 2.6.12.6.2
동시 2.2.5 2.3.32.3.42.3.52.3.6 2.4.12.4.22.4.32.4.5 2.5.42.5.8 2.6.2
돌발상황 이물질 2.2.7 2.3.7 2.4.5 2.5.5 2.6.3
등장 및 사라짐 2.2.7 2.3.7 2.4.5 2.5.5 2.6.3
완충 2.2.8 2.3.8 2.4.6 2.5.7 2.6.5
무선전력전송종료 2.2.9 2.3.9 2.4.7 2.5.6 2.6.4
7.2 응용자간 구성요소
6장에서 정의한 기능들을 수행하기 위해서는 전력송신기와 전력수신기 응용자간에 효율적인 무선전력전송을 위한 명령어, 데이터 등이 포함된 인자들이 교환되고 교환된 인자들을 기반으로 시스템의 관리 및 제어가 수반되어야 한다. 응용자간에 교환되는 내용은 다음과 같다.
7.2.1 전력수신기 ID 정보
전력수신기의 ID정보를 기반으로 전력송신기가 해당 전력수신기가 무선전력전송 서비스를 제공하기에 적합한 기기인지 판별한다. 구성요소의 정의는 다음과 같다.
ATA-SCAN.request {
Req_join,
Dev_id,
}
7.2.1.1 전력수신기 ID 정보 요청
7.2.1.1.1 필요시기
전력송신기가 무선전력전송 시스템에서 전력수신기 들에게 합류요청을 하는 경우에 필요하다.
7.2.1.1.2 효과
전력수신기가 전력송신기의 ID 정보요청 명령을 수신한다.
7.2.1.2 전력수신기 ID 정보 응답
7.2.1.2.1 필요시기
전력수신기가 전력송신기로부터 받은 ID 정보 요청에 대한 응답이 준비된 경우에 필요하다.
7.2.1.2.2 효과
전력송신기는 전력수신기로부터 ID정보를 받고 이 정보는 전력송신기가 해당 전력수신기의 무선전력전송 서비스를 받을 자격여부를 판별하는데 사용된다.
표 2
인자 유형 값 범위 설명
Req_join 이진판단 값 0 또는 1 0: 대기상태 요청1: 수신기 합류 요청
Dev_id 숫자 0x00-0xFF 수신기 ID
TBD
7.2.2 무선전력전송 서비스 가능여부 알림
전력송신기가 전력수신기 ID정보를 기반으로 각 전력수신기의 서비스 제공 적합여부를 판별하여 모든 전력수신기에게 통보한다. 구성요소의 정의는 다음과 같다.
ATA-Service.inform {
Accept_deny,
Dev_num,
}
7.2.2.1 필요시기
전력송신기가 서비스 적합여부를 판단하고 이 결과를 통보하는 경우에 필요하다.
7.2.2.2 효과
서비스를 제공받기에 적합한 전력수신기를 선별하여 해당 기기들에게만 향후 무선전력전송 서비스를 제공한다.
표 3
인자 유형 값 범위 설명
Accept_deny 이진판단 값 0 또는 1 0: 무선충전 부적격1: 무선충전 적격
Dev_num 숫자 0x00-0xFF 적격수신기에게 number 부여
TBD
7.2.3 전력수신기정보
무선전력전송 상황을 인지하여 상황에 맞는 최적의 전력전송을 제공하기 위해 전력송신기와 전력수신기간에 교환되는 구성요소이다. 구성요소의 정의는 다음과 같다.
ATA-DEV.request {
Frequency,
BattRemain,
BattDischarge,
MaxPwr,
Pwr,
Type,
RSSI,
}
7.2.3.1 전력수신기정보 요청
7.2.3.1.1 필요시기
무선전력전송을 수행하기 전에 전력송신기가 무선전력전송 상황을 인지할 필요가 있는 경우에 필요하다.
7.2.3.1.2 효과
전력송신기가 모든 전력수신기로부터 필요 충전정보를 획득한다.
7.2.3.2 전력수신기정보 응답
7.2.3.2.1 필요시기
전력송신기로부터 요청 받은 전력수신기정보를 전달한 준비가 완료된 경우에 필요하다.
7.2.3.2.2 효과
전력송신기가 모든 전력수신기로부터 필요 충전정보를 획득하고 최적 무선전력전송을 제공하기 위한 관리 및 제어가 가능하다.
표 4
인자 유형 값 범위 설명
Freq 숫자 30kHz ~ 300MHz 여러 개의 무선전력전송 주파수 대역을 사용하는 시스템일 경우 해당 전력전송에서 사용예정인 주파수 정보
BattRemain 숫자 0% ~ 100% 수신기의 현재 배터리 잔여량
BattDischarge 숫자 0A ~ 1000A 배터리가 방전되는 정도
MaxPwr 숫자 -50dBm ~ 100dBm 수신기가 수용가능한 파워레벨 정보
Pwr 숫자 -50dBm ~ 100dBm 수신한 파워 수신레벨
Type 설명 수신기 타입 종류 수신기의 타입 종류를 구분할 수 있는 설명
RSSI 숫자 -80dBm ~ 100dBm 통신수신신호 세기
TBD
7.2.4 충전존/통신존 판별
전력수신기로부터 전달받은 정보를 기반으로 전력송신기가 모든 전력수신기의 충전존 또는 통신존의 소속여부를 판단하여 통보한다. 구성요소의 정의는 다음과 같다.
ATA-ZONE.inform {
Zone,
}
7.2.4.1 필요시기
전력송신기 관리자가 모든 전력수신기의 위치여부를 판단하여 전력송신기의 응용자에게 전달한 경우에 필요하다.
7.2.4.2 효과
모든 전력수신기가 자신이 속해있는 영역을 파악하고 전력송신기는 충전존에 속한 전력수신기에게는 무선전력전송제공을 준비하고 통신존에 속한 전력수신기는 무선전력전송 대기상태로 유지하며 충전존에 들어올 경우 무선전력전송을 제공한다.
표 5
인자 유형 값 범위 설명
Zone 이진판단 값 0 또는 1 0: 충전존1: 통신존
TBD
7.2.5 전력전송모드 정보 통보
7.2.5.1.1 필요시기
전력송신기 응용자에서 전력수신기 응용자에게 무선전력전송 모드를 선택하고 알리게 될 경우에 필요하다.
7.2.5.1.2 효과
전력수신기 응용자에서 무선전력전송 모드를 인지하고 전력송신기의 제어에 맞추어 준비가 가능하다.
7.2.5.2 전력전송모드 정보 수신 응답
7.2.5.2.1 필요시기
전력수신기 응용자가 전력송신기 응용자로부터 무선전력전송 모드를 수신하고 그에 대한 응답을 알리는 경우에 필요하다.
7.2.5.2.2 효과
전력송신기가 전력수신기의 응답을 확인하고 정해진 무선전력전송 모드를 시작한다.
표 6
인자 유형 값 범위 설명
CharMode 숫자 1 ~ 5 1 : 시분할 충전 모드2 : 동시충전 모드3~5 : TBD
TBD
7.2.6 스케줄링 정보
시분할 우선순위 충전모드에서 사용되는 정보로써 스케줄링 후에 각 전력수신기의 무선전력전송 순위 및 할당시간 정보를 포함한다. 구성요소의 정의는 다음과 같다.
ATA-SCHEDULING.inform {
Priority,
TimeAmount,
}
7.2.6.1 스케줄링 정보 알림
7.2.6.1.1 필요시기
전력송신기가 시분할 우선순위 충전모드에서 스케줄링 계산 후에 각 기기들에게 스케줄링 정보를 알리게 되는 경우에 필요하다.
7.2.6.1.2 효과
우선순위 정보를 통보함으로써 무선충전의 혼선을 막고 정확한 스케줄링을 수행하는 기반이 된다.
7.2.6.2 스케줄링 정보 응답
7.2.6.2.1 필요시기
전력송신기로부터 스케줄링 정보를 수신하여 전력송신기에게 수신확인을 응답하는 경우에 필요하다.
7.2.6.2.2 효과
전력송신기는 전력수신기의 응답을 확인하고 스케줄링 기반 무선전력전송을 진행 가능
표 7
인자 유형 값 범위 설명
Priority 숫자 1 ~ 100 각 수신기의 순번 정보
TimeAmount 숫자 1초 ~ 100000초 각 수신기가 충전 받을 시간 정보
TBD
7.2.7 돌발상황 관리 정보 및 커맨드
돌발상황이 발생 시에 전력송신기는 이를 인지하여 전력수신기에게 상황을 알리고 각 상황에 맞는 명령어에 대한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
ATA-ABNORMAL.inform {
Abnormal,
CharOff,
Pwr
}
7.2.7.1 돌발상황 관리 정보 및 커맨드 제공
7.2.7.1.1 필요시기
전력송신기가 돌발상황을 감지하고 이를 해결해야 할 경우에 필요하다.
7.2.7.1.2 효과
돌발상황 발생 시 전력송신기가 전력수신기를 제어하기 위한 정보 및 커맨드를 전력수신기 응용자에게 전달한다.
7.2.7.2 돌발상황 관리 정보 응답
7.2.7.2.1 필요시기
돌발상황을 해결하기 위해 전력수신기가 전력송신기에게 관측 값 및 필요 정보를 제공해야 하는 경우에 필요하다.
7.2.7.2.2 효과
전력송신기는 전력수신기로부터 해당 정보를 얻어 돌발상황에 대한 판단과 대처를 더욱 정확하고 신속하게 진행할 수 있다.
표 8
인자 유형 값 범위 설명
Abnormal 이진판단 값 0 또는 1 0 : 비 돌발상황1 : 돌발상황
CharOff 이진판단 값 0 또는 1 0 : 충전코일 오프1 : 충전코일 온
Pwr -50dBm ~ 100dBm 수신한 파워 수신레벨 수신파워
TBD
7.2.8 전력수신기 완충 통보
전력수신기가 무선전력전송 중 완충이 된 경우 이를 전력송신기에게 알리는 정보를 포함한다. 구성요소의 정의는 다음과 같다.
ATA-FULL.inform {
Full,
}
7.2.8.1 전력수신기 완충 통보
7.2.8.1.1 필요시기
전력수신기가 완충이 되어 전력송신기에게 이를 알려야 하는 경우에 필요하다.
7.2.8.1.2 효과
전력송신기에게 전력수신기의 완충을 알려 전력송신기는 해당 전력수신기에게 전력전송을 중단 및 향후 고려 대상에서 제외한다.
7.2.8.2 전력수신기 완충 통보 응답
7.2.8.2.1 필요시기
7.2.8.2.2 효과
전력수신기에게 응답여부를 알린다.
표 9
인자 유형 값 범위 설명
Full 이진판단 값 0 또는 1 0 : 비완충1 : 완충
TBD
7.2.9 전력전송 종료 통보
사용자의 요청으로 인하여 무선전력전송을 종료하는 경우 종료에 해당되는 정보를 포함한다. 구성요소의 정의는 다음과 같다.
ATA-END.inform {
End,
}
7.2.9.1 전력전송 종료 통보
7.2.9.1.1 필요시기
사용자의 요청으로 인하여 무선전력전송을 종료하는 경우에 필요하다.
7.2.9.1.2 효과
무선전력전송이 종료된다.
7.2.9.2 전력전송 종료 수신 응답
7.2.9.2.1 필요시기
전력송신기로부터 전력수신기가 무선전력전송 종료 통보를 받고 이에 대한 응답을 할 경우에 필요하다.
7.2.9.2.2 효과
전력수신기의 전력전송 통보 수신 응답 여부를 확인한다.
표 10
인자 유형 값 범위 설명
End 이진판단 값 0 또는 1 0 : 종료1 : 계속
TBD
7.3 전력송신기 응용자-관리자간 구성요소
전력송신기 응용자는 전력수신기로부터 받은 정보 등을 가지고 다수기기에게 효율적으로 무선전력전송을 제공하기 위한 관리 및 제어를 수행한다. 전력송신기에 대한 관리 및 제어는 응용자가 관리자와 함께 수행한다.
7.3.1 ID정보 확인
전력송신기 응용자는 전달받은 전력수신기 ID정보를 전력송신기 관리자에게 전달하여 해당 기기가 무선전력서비스를 받기에 적합한 기기인지를 파악한 후 이를 다시 응용자에게 알리며 이에 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CATM-QUALIFICATION.request {
Req_qualification,
Dev_id,
Rsp_qualification,
}
7.3.1.1 ID정보 확인 요청
7.3.1.1.1 필요시기
전력송신기 응용자가 전력수신기 응용자로부터 전력수신기의 ID정보를 받고 서비스제공여부를 판단해야 하는 경우에 필요하다.
7.3.1.1.2 효과
전력수신기 관리자가 전력송신기 응용자로부터 모든 전력수신기 ID정보를 전달 받아서, 서비스수신 적합여부를 판별한다.
7.3.1.2 ID정보 확인 응답
7.3.1.2.1 필요시기
전력송신기 관리자가 전력송신기 응용자로부터 전달 받은 전력수신기 ID정보를 기반으로 모든 전력수신기의 서비스수신 적합여부를 판별하고 이를 다시 응용자에게 알리는 경우에 필요하다.
7.3.1.2.2 효과
모든 전력수신기의 서비스 수신 적합 판단여부를 전력송신기 응용자에게 전송한다.
표 11
인자 유형 값 범위 설명
Req_qualification 설명 수신 자격여부 판단 요청 수신 자격여부 판단 요
Dev_num 숫자 0x00 ~ 0xFF 적격수신기에게 number 부여
Rsp_qualification 이진판단 값 0 또는 1 0 : 적합1 : 비적합
TBD
7.3.2 충전존/통신존 판별
전력송신기 응용자가 전력수신기 응용자로부터 전달받은 전력수신기 정보 중 수신신호세기 정보를 전력송신기 관리자에게 전달하면 전력송신기 관리자는 해당 정보를 기반으로 각 전력수신기의 충전존/통신존 위치여부를 판별하며 이에대한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CATM-ZONE.inform {
Req_Zone,
RSSI,
Rsp_Zone
}
7.3.2.1 충전존/통신존 판별요청
7.3.2.1.1 필요시기
전력송신기 응용자가 전력송신기 관리자에게 전력수신기 정보 중 수신신호세기 정보를 제공하여 전력수신기의 위치를 판별하는 경우에 필요하다.
7.3.2.1.2 효과
전력송신기 관리자는 전달받은 정보를 기반으로 각 전력수신기의 충전존/통신존 위치를 판별한다.
7.3.2.2 충전존/통신존 판별 응답
7.3.2.2.1 필요시기
전력송신기 관리자가 각 전력수신기의 충전존/통신존 위치 판별을 종료한 후 전력송신기 응용자에게 전달할 경우에 필요하다.
7.3.2.2.2 효과
판별 정보가 전력송신기 응용자에게 전달되면 전력송신기 응용자는 모든 전력수신기 응용자에게 충전존/통신존 위치 판별여부를 통보하고 전력송신기 응용자는 충전존에 속한 전력수신기들을 무선전력전송 서비스 제공 대상으로 인지하고 준비한다.
표 12
인자 유형 값 범위 설명
Req_zone 설명 존 판별 요청 충전존/통신존 판별 요청
RSSI 숫자 -80dBm ~ 100dBm 통신수신신호 세기
Rsp_zone 이진판단 값 0 또는 1 0 : 충전존1 : 통신존
TBD
7.3.3 무선전력전송 주파수 제어
여러 개의 무선전력전송 주파수 대역이 지원 가능한 전력송신기의 경우, 전력수신기로부터 충전 가능한 무선전력전송 주파수 정보를 얻게 되면 해당 주파수로 무선전력전송을 수행하기 위해 커플러의 세팅에 필요한 인자들을 생성 및 조절할 수 있도록 관리자에게 전달하는 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CATM-FREQ.control {
Dev_num,
Req_FreqControl,
}
7.3.3.1 필요시기
무선전력전송을 수행하기 전 현재 주파수에서 다른 주파수로 변경이 필요하다고 판단이 되는 경우에 필요하다.
7.3.3.2 효과
관리자에게 해당 주파수 정보를 통보하게 되고 관리자는 그 주파수에 해당되는 무선전력전송을 수행할 수 있도록 커플러를 제어한다.
표 13
인자 유형 값 범위 설명
Dev_num 숫자 0x00 ~ 0xFF 적격수신기 number
Req_FreqControl 숫자 30kHz ~ 300MHz 수신기가 지원가능한 주파수 정보
TBD
7.3.4 커플러 제어 및 커맨드
다수기기에게 상황에 맞게 무선전력전송을 제공하기 위해서는 해당 기기가 최고의 무선전력전송 효율로 전력을 수신할 수 있도록 전력송신기의 커플러를 제어해야 하며, 이를 수행하기 위해 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CATM-COUPLER.control {
Dev_num,
Req_FreqControl,
}
7.3.4.1 필요시기
무선전력전송을 수행하기 전에 현재 무선전력을 제공받는 전력수신기 또는 전력수신기들의 무선상황을 인지하여 최고의 무선전력전송 효율로 전력전송을 제공하는 경우에 필요하다.
7.3.4.2 효과
관리자에게 현재 커플러 제어를 위해 필요한 상황정보를 전달하게 되면 관리자는 전달받은 정보를 기반으로 커플러를 제어할 수 있는 인자들을 도출하고 관리 및 제어를 수행한다.
표 14
인자 유형 값 범위 설명
Dev_num 숫자 0x00 ~ 0xFF 적격수신기 number
Req_FreqControl 숫자 30kHz ~ 300MHz 수신기가 지원가능한 주파수 정보
TBD
7.3.5 출력파워 레벨 제어
전파법 및 인체유해성 기준을 초과하지 않고 전력수신기가 피해를 입지 않도록 전력송신기의 출력파워를 제어해야 하며 또한 전력수신기의 타입에 따라 각기 필요로 하는 전력의 레벨이 다르기 때문에 이를 반영하여 파워 제어를 수행하기 위해 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CATM-POWER.control {
Dev_num,
Req_PwrControl,
}
7.3.5.1 필요시기
전력수신기의 타입, 위치, 경사각 및 전파법 규정, 인체유해강도 등의 충전상황을 고려하여 전력송신기의 출력 파워를 제어하는 경우에 필요하다.
7.3.5.2 효과
관리자는 응용자로부터 충전상황 정보를 전달 받으면 해당 정보를 기반으로 출력파워를 산출하고 이를 커플러쪽에 알려 파워제어가 수행될 수 있도록 한다.
표 15
인자 유형 값 범위 설명
Dev_num 숫자 0x00 ~ 0xFF 적격수신기 number
Req_PwrControl 숫자 -50dBm ~ 100dBm 수신한 테스트파워 수신 레벨
TBD
7.3.6 스케줄링 정보
응용자로부터 모든 전력수신기들의 배터리 잔여량 및 배터리 방전률 정보를 전달 받으면 관리자는 해당정보를 기반으로 스케줄링에 필요한 인자 값들을 계산하고 도출된 결과 값을 다시 응용자에게 전달하는 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CATM-SCHEDULING.request {
Dev_num,
BattRemain,
BattDischarge,
Priority,
TimeAmount,
}
7.3.6.1 스케줄링 요청
7.3.6.1.1 필요시기
다수기기를 충전하기 위한 여러 가지 모드 중에서 우선순위 기반의 시분할 충전모드로 충전할 경우에 무선전력전송 서비스에 앞서서 여러 기기의 순번과 각 시간 할당량을 정할 경우에 필요하다.
7.3.6.1.2 효과
관리자는 배터리 잔여량 및 방전률의 정보를 기반으로 스케줄링 알고리즘을 수행하여 스케줄링에 필요한 인자 값들을 도출한다.
7.3.6.2 스케줄링 응답
7.3.6.2.1 필요시기
응용자로부터 스케줄링 요청을 수신하고 관리자가 스케줄링을 수행하여 결과 값을 다시 응용자에게 응답하는 경우에 필요하다.
7.3.6.2.2 효과
스케줄링 결과 값을 응용자에게 전달하여 모든 전력수신기에게 알리게 하고 또한 알고리즘에 맞춰 전력송신기의 커플러를 제어한다.
표 16
인자 유형 값 범위 설명
Dev_Num 숫자 0x00 ~ 0xFF 수신기 number 정보
BattRemain 숫자 0% ~ 100% 수신기의 현재 배터리 잔여량
BattDischarge 숫자 0% ~ 1000% 배터리가 방전되는 정도
Priority 숫자 1 ~ 100 각 수신기의 순번 정보
TimeAmount 숫자 1초 ~ 100000초 각 수신기가 충전 받을 시간 정보
TBD
7.3.7 전력송신기 전류/전압 센싱
전력송신기는 파워레벨 조절이나 임피던스 매칭을 위한 커플러를 제어하기 위해서 전류 및 전압 값 센싱을 필요로 하며 이를 수행하기 위한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CATM-SENSING.request {
Imp_change,
Current,
Voltage,
Impedance,
Change_inform,
}
7.3.7.1 전력송신기 전류/전압 센싱 요청
7.3.7.1.1 필요시기
전력수신기에게 무선전력전송 중에 항상 값을 읽을 수 있도록 설정한다.
7.3.7.1.2 효과
무선전력전송 시스템의 돌발상황을 감지하거나 출력파워레벨 제어나 임피던스 매칭을 수행한다.
7.3.7.2 전력송신기 전류/전압 센싱 응답
7.3.7.2.1 필요시기
측정값 및 산출한 임피던스 값이 기준값 보다 변화량이 커서 관리자가 응용자에게 알리는 경우에필요하다.
7.3.7.2.2 효과
관리자로부터 보고받은 전류 및 전압 값과 산출한 임피던스 값의 변화량을 가지고 돌발상황 감지, 출력파워레벨 제어, 임피던스 매칭등을 수행한다.
표 17
인자 유형 값 범위 설명
Imp_change 숫자 0옴 ~ 10000옴 측정된 전류/전압 값 기반 산출된 임피던스 값의 변화량
Current 숫자 0A ~ 1000A 측정 전류값
Voltage 숫자 0V ~ 10000V 측정 전압값
Impedance 숫자 0옴 ~ 10000옴 계산 임피던스 값
Change_inform 설명 변화량 알림 변화량이 기준값보다 크면 APP에 알림
TBD
7.3.8 전력수신기 완충
전력수신기가 완충을 통보하면 전력송신기는 현재 무선전력전송을 종료하고 다른 전력수신기에게 무선전력전송을 제공할 준비에 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CATM-Full.control {
Dev_Num,
Req_FullControl
}
7.3.8.1 필요시기
전력수신기 응용자로부터 전력송신기 응용자로 완충통보가 전달되었을 경우에 필요하다.
7.3.8.2 효과
전력송신기 응용자는 전력송신기 관리자에게 완충으로 인한 현재 무선전력전송 종료를 요청한다.
표 18
인자 유형 값 범위 설명
Dev_num 숫자 0x00 ~ 0xFF 수신기 number 정보
Req_fullControl 숫자 1 수신기 완충으로 인한 현재 무선전력전송 종료 제어
TBD
7.3.9 무선전력전송 종료
전력송신기 응용자가 사용자로부터 무선전력전송 종료 요청을 전달 받으면 현재 무선전력전송을 중단하고 종료에 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CATM-Full.control {
Req_EndControl
}
7.3.9.1 필요시기
전력송신기 응용자가 사용자로부터 무선전력전송 종료 요청을 받은 경우에 필요하다.
7.3.9.2 효과
전력송신기 응용자는 전력송신기 관리자에게 사용자의 무선전력전송 종료를 요청한다.
표 19
인자 유형 값 범위 설명
Req_EndControl 이진판단 값 0 또는 1 0 : 현재 유지1 : 종료
TBD
7.4 송신기 관리자-커플러 간 구성요소
전력송신기의 커플러 관리 및 제어에 필요한 관리자와 커플러간의 구성요소를 정의 한다.
7.4.1 무선전력전송 주파수 제어
커플러가 지원 가능한 여러 주파수 대역 중에서 현재 무선전력전송을 위해 필요한 주파수 대역 선정하는 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CMTC-FREQ.control {
Req_FreqControl,
}
7.4.1.1 필요시기
응용자로부터 주파수 변경을 요청 받은 관리자가 주파수 변경을 위한 인자 값을 산출하여 커플러에게 제공하는 경우에 필요하다.
7.4.1.2 효과
커플러에게 무선전력전송 주파수 제어하기 위해 필요한 인자 값들을 관리자가 산출하여 전달한다.
표 20
인자 유형 값 범위 설명
Req_FreqControl 숫자 30kHz ~ 300MHz 여러 개의 무선전력전송 주파수 대역을 사용하는 시스템일 경우 해당 전력전송에서 사용예정인 주파수 정보
TBD
7.4.2 커플러 제어
상황에 따라 급격히 변하는 임피던스 매칭을 최적화 하기 위해서는 커플러의 임피던스 매칭 제어가 필요하고 이를 위해 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CMTC-COUPLER.control {
Req_MatchingControl,
}
7.4.2.1 필요시기
응용자로부터 커플러 제어 변경을 요청 받은 관리자가 커플러 변경을 위한 인자 값을 산출하여 커플러에게 제공하는 경우에 필요하다.
7.4.2.2 효과
커플러에게 커플러 및 매칭 제어를 위해 필요한 인자 값들을 관리자가 산출하여 전달한다.
표 21
인자 유형 값 범위 설명
Req_MatchingControl 숫자 0옴 ~ 10000옴 매칭 값의 변화량
TBD
7.4.3 출력파워 레벨 제어
전력송신기의 출력파워 레벨 제어를 위해 관리자가 커플러 제어를 위한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CMTC-POWER.control {
Req_PwrControl,
}
7.4.3.1 필요시기
응용자로부터 출력파워 레벨 제어 변경을 요청 받은 관리자가 출력파워 레벨 변경을 위한 인자 값을 산출하여 커플러에게 제공하는 경우에 필요하다.
7.4.3.2 효과
커플러에게 출력파워 레벨 제어를 위해 필요한 인자 값들을 관리자가 산출하여 전달한다.
표 22
인자 유형 값 범위 설명
Req_PwrControl 숫자 -50dBm ~ 100dBm 출력파워 값의 변화량
TBD
7.4.4 스케줄링 제어
시분할 충전모드에서 우선순위 제어를 위해 관리자가 커플러 제어에 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CMTC-SCHEDULING.control {
Req_SchedulingControl,
}
7.4.4.1 필요 시기
응용자로부터 스케줄링을 요청 받은 관리자가 스케줄링에 필요한 인자 값을 산출하여 커플러에게 제공하는 경우에 필요하다.
7.4.4.2 효과
커플러에게 스케줄링 제어를 위해 필요한 인자 값들을 관리자가 산출하여 전달한다.
표 23
인자 유형 값 범위 설명
Req_SchedulingControl 설명 제어 명령 스케줄링을 위한 커플러 제어
TBD
7.4.5 전압/전류 센싱
돌발상황 감지, 매칭 제어의 관측 값으로 사용되는 전류/전압 센싱을 위해 관리자가 커플러 제어를 위해 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CMTC-SENSING.request {
Current,
Voltage,
}
7.4.5.1 전압/전류 센싱 요청
7.4.5.2 필요 시기
전력송신기가 무선전력전송 제공 중 항상 값을 읽는다.
7.4.5.3 효과
커플러에게 전압/전류 센싱을 위해 필요한 인자 값들을 관리자가 산출하여 전달한다.
7.4.5.4 전압/전류 센싱 응답
7.4.5.4.1 필요 시기
무선전력전송 중 관측한 전압/전류 값을 일정주기마다 관리자에게 제공하는 경우에 필요하다.
7.4.5.4.2 효과
관측한 전류/전압 값을 관리자에게 응답으로 전달한다.
표 24
인자 유형 값 범위 설명
Current 숫자 0A ~ 1000A 관측 전류 값
Voltage 숫자 0V ~ 1000V 관측 전압 값
TBD
7.4.6 전력수신기 완충
전력수신기가 완충을 통보하면 전력송신기는 현재 무선전력전송을 종료하고 다른 전력수신기에게 무선전력전송을 제공할 준비에 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
CMTC-Full.control {
Req_FullControl
}
7.4.6.1 필요시기
전력송신기 관리자가 전력송신기 응용자로부터 완충통보를 전달받은 경우에 필요하다.
7.4.6.2 효과
전력송신기 관리자는 전력송신기 커플러에게 완충으로 인한 현재 무선전력전송 종료를 요청한다.
표 25
인자 유형 값 범위 설명
Req_FullControl 이진판단 값 0 또는 1 0 : 현재 유지1 : 종료
TBD
7.4.7 무선전력전송 종료
전력송신기 응용자가 사용자로부터 무선전력전송 종료 요청을 전달 받으면 현재 무선전력전송을 중단하고 다음 사용자의 요청 수신까지 대기에 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
MTC-Full.control {
Req_EndControl
}
7.4.7.1 필요시기
전력송신기 관리자가 전력송신기 응용자로부터 사용자 무선전력전송 종료 요청을 받은 경우에 필요하다.
7.4.7.2 효과
전력송신기 관리자는 전력송신기 커플러에게 사용자의 무선전력전송 종료를 요청한다.
표 26
인자 유형 값 범위 설명
Req_EndControl 이진판단 값 0 또는 1 0 : 현재 유지1 : 종료
TBD
7.5 전력수신기 응용자-관리자 간 구성요소
전력송신기 응용자의 요청으로 전력수신기 응용자가 무선충전에 필요한 정보를 준비하거나 전력수신기의 커플러를 제어하기 위해서 수신기의 응용자와 관리자 간의 구성요소를 정의한다.
7.5.1 전력수신기 ID 정보
전력송신기의 ID정보 요청에 따른 전력수신기의 ID 정보 제공을 위한 준비에 대한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
DATM-DEVID.request {
Req_id,
Rsp_id,
}
7.5.1.1 전력수신기 ID 정보 요청
7.5.1.1.1 필요시기
전력송신기 응용자로부터 전력수신기 ID 정보요청을 받았을 경우에 필요하다.
7.5.1.1.2 효과
전력수신기의 응용자가 전력수신기의 ID 정보를 관리자에게 요청한다.
7.5.1.2 전력수신기 ID 정보 응답
7.5.1.2.1 필요시기
전력수신기 관리자가 전력수신기 응용자에게 ID 정보제공 준비 완료된 경우에 필요하다.
7.5.1.2.2 효과
전력수신기 응용자는 관리자로부터 전달받은 ID정보를 전력송신기의 응용자에게 전송하기 위한 준비를 한다.
표 27
인자 유형 값 범위 설명
Req_id 설명 ID정보 요청 ID정보 요청
Rsp_id 숫자 0x00 ~ 0xFF 수신기 ID로 인증 등의 용도로 사용
TBD
7.5.2 전력수신기정보
무선전력전송 상황을 인지하여 상황에 맞는 최적의 전력전송을 제공하기 위해 전력송신기의 요청에 따라 전력수신기가 준비 및 제공하는 정보를 포함한다. 구성요소의 정의는 다음과 같다.
DATM-DEVINFO.request {
Req_Devinfo,
Freq,
MaxPwr,
BattRemain,
BattDischarge,
Pwr,
Type,
RSSI,
}
7.5.2.1 전력수신기정보 요청
7.5.2.1.1 필요시기
전력송신기의 응용자로부터 전력수신기정보 요청을 수신한 경우에 필요하다.
7.5.2.1.2 효과
전력수신기의 응용자가 전력수신기의 관리자에게 전력수신기정보를 요청한다.
7.5.2.2 전력수신기정보 응답
7.5.2.2.1 필요시기
전력수신기 관리자가 전력수신기정보를 전력수신기 응용자에게 전달할 준비 완료 경우에 필요하다.
7.5.2.2.2 효과
전력수신기 응용자는 관리자로부터 전달받은 ID정보를 전력송신기의 응용자에게 전송하기 위한 준비를 한다.
표 28
인자 유형 값 범위 설명
Req_Devinfo 설명 수신기 정보 요청, 아래인자 모두 또는 선택적으로 요청할 수 있음 수신기 정보 요청
Freq 숫자 30kHz ~ 300MHz 여러 개의 무선전력전송 주파수 대역을 사용하는 시스템일 경우 해당 전력전송에서 사용예정인 주파수 정보
MaxPwr 숫자 -50dBm ~ 100dBm 수신기가 수용가능한 파워레벨 정보
BattRemain 숫자 0% ~ 100% 수신기의 현재 배터리 잔여량
BattDischarge 숫자 0A ~ 1000A 배터리가 방전되는 정도
Pwr 숫자 -50dBm ~ 100dBm 수신한 파워 수신레벨
Type 설명 수신기 타입 종류 수신기의 타입 종류를 구분할 수 있는 설명
RSSI 숫자 -80dBm ~ 100dBm 통신신호수신세기 레벨
TBD
7.5.3 스케줄링 제어
전력송신기 응용자로부터 전달받은 스케줄링 정보를 기반으로 전력수신기 응용자는 전력수신기 관리자를 통해 스케줄링에 맞도록 전력수신기 커플러 제어를 수행하며 이에 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
DATM-SCHEDULING.request {
Req_SchedulingControl
Priority,
TimeAmount,
}
7.5.3.1 필요시기
전력송신기의 응용자로부터 전력수신기가 스케줄링 정보를 수신한 경우에 필요하다.
7.5.3.2 효과
전력수신기 응용자는 전력수신기 관리자에게 수신한 스케줄링 정보를 기반으로 현재 커플러 제어를 위해 필요한 인자 값들을 산출할 수 있도록 수신 스케줄링 정보를 전달한다.
표 29
인자 유형 값 범위 설명
Req_SchedulingControl 이진판단 값 0 또는 1 0 : 현재 유지1 : 제어 요청
Priority 숫자 1 ~ 100 각 수신기의 순번 정보
TimeAmount 숫자 1초 ~ 100000초 각 수신기가 충전 받을 시간 정보
TBD
7.5.4 전류/전압 센싱
전력송신기 응용자로부터 수신파워레벨에 대한 요청이 들어온 경우 전류/전압을 센싱하여 파워계산을 한 후에 해당 정보를 전력송신기의 응용자에게 전달하기 위한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
DATM-SENSING.request {
Current,
Voltage,
Pwr,
}
7.5.4.1 전류/전압 센싱 요청
7.5.4.1.1 필요시기
전력송신기의 응용자로부터 테스트파워 수신레벨 및 수신파워레벨 요청을 수신한 경우에 필요하다.
7.5.4.1.2 효과
전력수신기의 응용자가 전력수신기의 관리자에게 수신파워레벨 정보를 요청하며 이는 전류/전압 센싱을 기반으로 이행된다.
7.5.4.2 전류/전압 센싱 응답
7.5.4.2.1 필요시기
전력수신기의 응용자로부터 요청을 받고 전류/전압 센싱을 통해 수신파워레벨을 산출한 경우에 필요하다.
7.5.4.2.2 효과
전력수신기의 관리자는 전력수신기의 응용자에게 전류/전압 센싱 정보 또는 수신파워레벨 정보를 전달하고 이 정보는 전력송신기의 출력파워제어에 사용된다.
표 30
인자 유형 값 범위 설명
Current 숫자 0A ~ 1000A 측정 전류값
Voltage 숫자 0V ~ 1000V 측정 전압값
Pwr 숫자 -50dBm ~ 100dBm 계산 파워값
TBD
7.5.5 돌발상황 제어
전력송신기 응용자로부터 전달받은 돌발상황 제어 정보를 기반으로 전력수신기 응용자는 전력수신기 관리자를 통해 돌발상황을 해결하기 위한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
DATM-ABNORMAL.request {
Req_AbnormalControl,
}
7.5.5.1 필요시기
전력송신기의 응용자로부터 전력수신기가 돌발상황 제어 정보를 수신한 경우에 필요하다.
7.5.5.2 효과
전력수신기 응용자는 전력수신기 관리자에게 수신한 돌발상황 제어 정보를 기반으로 현재 커플러제어를 위해 필요한 인자 값들을 산출할 수 있도록 수신 제어 정보를 전달한다.
표 31
인자 유형 값 범위 설명
Req_Abnormal 이진판단 값 0 또는 1 0 : 현재 유지1 : 제어 요청
TBD
7.5.6 전력전송 종료 제어
전력송신기 응용자로부터 전력전송 종료 제어를 수신하면 전력수신기 응용자는 전력수신기 관리자를 통해 전력전송 종료를 하도록 전력수신기 커플러 제어를 위한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
DATM-END.request {
Req_EndControl,
}
7.5.6.1 필요시기
전력송신기의 응용자로부터 전력수신기가 전력전송 종료 제어 정보를 수신한 경우에 필요하다.
7.5.6.2 효과
전력수신기 응용자는 전력전송 종료 제어를 할 수 있도록 전력수신기 관리자에게 제어 정보를 전달하여 커플러를 제어하도록 한다.
표 32
인자 유형 값 범위 설명
Req_EndControl 이진판단 값 0 또는 1 0 : 현재 유지1 : 제어 요청
TBD
7.5.7 완충통보
무선전력을 수신하던 전력수신기가 배터리가 완충이 되면 수신을 종료하고 해당 내용을 전력송신기에게 전달하여 전력전송을 종료하고 다음 무선전력전송부터는 해당 전력수신기로 고려하지 않도록 하는 정보를 포함한다. 구성요소의 정의는 다음과 같다.
DATM-FULL.request {
Inf_Full
Req_FullControl,
}
7.5.7.1 필요시기
전력수신기의 관리자가 배터리 완충을 확인한 경우에 필요하다.
7.5.7.2 효과
표 33
인자 유형 값 범위 설명
Inf_Full 이진판단 값 0 또는 1 0 : 비완충1 : 완충
Req_FullControl 이진판단 값 0 또는 1 0 : 현재 유지1 : 제어 요청
TBD
7.5.8 방전률 변화 통보
전력수신기가 배터리 방전률 변화를 감지하게 되면 해당 내용을 전력송신기에게 전달하여 스케줄링 및 파워제어에 도움이 되는 정보를 포함한다. 구성요소의 정의는 다음과 같다.
DATM-BATT.inform {
Inf_Batt,
Inf_BattChange,
}
7.5.8.1 필요시기
전력수신기의 관리자가 배터리 방전률 변화를 확인한 경우에 필요하다.
7.5.8.2 효과
전력수신기의 관리자가 전력수신기의 응용자에게 배터리 방전률 변화 및 변화량을 알린다.
표 34
인자 유형 값 범위 설명
Inf_Batt 숫자 0A ~ 1000A 현재 배터리 방전률 값
Inf_BattChange 이진판단 값 0 또는 1 0 : 변화없음1 : 변화
TBD
7.6 전력수신기 관리자-커플러 간 구성요소
전력수신기의 커플러 관리 및 제어에 필요한 관리자와 커플러 간 구성요소를 정의한다.
7.6.1 스케줄링 제어
전력수신기 관리자는 스케줄링에 맞게 전력수신기의 커플러를 제어하기 위해 수신한 제어 명령을 기반으로 커플러 제어에 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
DMTC-SCHEDULING.request {
Req_SchedulingControl
}
7.6.1.1 필요시기
전력송신기의 응용자로부터 전력수신기가 스케줄링 정보를 수신한 경우에 필요하다.
7.6.1.2 효과
전력수신기 관리자는 수신한 스케줄링 정보를 기반으로 현재 커플러를 제어한다.
표 35
인자 유형 값 범위 설명
Req_SchedulingControl 이진판단 값 0 또는 1 0 : 현재 유지1 : 제어 요청
TBD
7.6.2 전류/전압 센싱
전력수신기 관리자는 수신 네트워크 변화를 감지하거나 수신 파워를 산출하기 위해 전류/전압 센싱을 수행하며 이에 필요한 정보를 정의한다. 구성요소의 정의는 다음과 같다.
DMTC-SENSING.request {
Req_Sensing,
Current,
Voltage,
}
7.6.2.1 전류/전압 센싱 요청
7.6.2.1.1 필요시기
무선전력을 수신하는 동안 일정시간 마다 항상 센싱을 요청한다.
7.6.2.1.2 효과
전력수신기의 관리자가 전력수신 중에 전압과 전류를 센싱하기 위해 커플러에게 제어 명령을 보낸다.
7.6.2.2 전류/전압 센싱 응답
7.6.2.2.1 필요시기
전력수신기 관리자가 수신파워 산출을 위해 전류/전압 센싱을 요청하는 경우에 필요하다.
7.6.2.2.2 효과
전력수신기 커플러는 전류/전압 값을 측정하여 전력수신기의 관리자에게 전달한다.
표 36
인자 유형 값 범위 설명
Req_Sensing 이진판단 값 0 또는 1 0 : 요청 없음1 : 전송 요청
Current 숫자 0A ~ 1000A 측정 전류값
Voltage 숫자 0V ~ 1000V 측정 전압값
TBD
7.6.3 돌발상황 제어
전력수신기 관리자는 돌발상황을 해결하기 위해 산출한 인자 값들을 가지고 전력수신기의 커플러를 제어하며 이에 필요한 정보를 포함한다. 구성요소의 정의는 다음과 같다.
DMTC-ABNORMAL.request {
Req_AbnormalControl,
}
7.6.3.1 필요시기
전력수신기의 응용자로부터 돌발상황 제어 정보를 수신한 경우에 필요하다.
7.6.3.2 효과
전력수신기 관리자는 수신한 돌발상황 제어 정보를 기반으로 현재 커플러를 제어한다.
표 37
인자 유형 값 범위 설명
Req_AbnormalControl 이진판단 값 0 또는 1 0 : 변화 없음1 : 제어 요청
TBD
7.6.4 전력전송 종료 제어
전력수신기 관리자는 전력전송 종료 제어를 위해 커플러를 제어하며 관련 정보를 포함한다. 구성요소의 정의는 다음과 같다.
DMTC-END.request {
Req_EndControl,
}
7.6.4.1 필요시기
전력수신기의 응용자로부터 전력전송 종료 제어 정보를 수신한 경우에 필요하다.
7.6.4.2 효과
전력수신기 관리자는 수신한 전력전송 종료 제어 정보를 기반으로 현재 커플러를 제어한다.
표 38
인자 유형 값 범위 설명
Req_EndControl 이진판단 값 0 또는 1 0 : 변화 없음1 : 제어 요청
TBD
7.6.5 완충 통보
무선전력을 수신하던 전력수신기가 배터리가 완충이 되면 수신 종료를 위해 커플러 제어가 필요하며 관련 정보를 포함한다. 구성요소의 정의는 다음과 같다.
DMTC-FULL.request {
Req_FullControl,
}
7.6.5.1 필요시기
전력수신기의 관리자가 배터리 완충을 확인한 경우에 필요하다.
7.6.5.2 효과
전력수신기의 관리자가 전력수신기가 더 이상 전력수신을 하지 않도록 전력수신기의 커플러를 제어한다.
표 39
인자 유형 값 범위 설명
Req_FullControl 이진판단 값 0 또는 1 0 : 변화 없음1 : 제어 요청
TBD
8 무선전력전송 제어 인터페이스 프로토콜
8.1 일반사항
무선전력전송을 효율적으로 수행하기 위해 교환되어야 되는 정보이고 전력송신기와 전력수신기 간에 무선저력전송 네트워크 제어 및 관리를 위한 데이터를 프레임의 형식으로 정의하고 실제로 전달되는 메시지를 정의한다.
8.2 프레임 형식
8.2.1 프레임 구조
무선전력전송 제어를 위한 데이터를 포함한 프레임은 도 표42와 같은 요소들로 구성되어 있다. 표 1과 같은 구조로 구성된 프레임을 통해 전력송신기는 전력수신기에게 제어명령을 전달하고 전력수신기는 전력송신기에게 전력전송정보를 전달한다.
표 1- 프레임 구조
8.2.2 필드 설명
시작 필드는 1바이트로 구성되며 한 프레임의 시작을 나타내고 0x7E의 고정된 값을 갖는다.
전력수신기 번호 필드는 1바이트로 구성되며 전력송신기가 응용자단에서 전력수신기를 구분하기 위해 사용된다. 전력수신기 번호가 0xFF이면 모든 전력수신기를 의미한다.
코드 필드는 1바이트로 구성되며 전송하는 프레임의 종류를 구분하기 위하여 각 프레임의 종류 별로 할당된 코드이다. 자세한 내용은 3.3. 프레임 종류를 참조한다.
제어 필드는 1바이트로 구성되며 각 코드마다의 프레임 일련번호 정보, 그리고 페이로드 길이 정보를 제공한다. 일련번호는 메시지 전송 시 유실되는 프레임을 방지하기 위해 연속적인 각 코드 프레임마다 순차적인 번호를 부여한 것을 말한다. 페이로드 길이는 제어 필드 다음에 나오는 페이로드 필드의 길이를 바이트 단위로 나타낸다. 페이로드 필드는 0~N바이트의 가변적인 길이를 갖고 실제 전달되는 데이터를 담고 있는 부분이며 자세한 내용은 3.4. 페이로드 형식을 참조한다.
CRC 필드는 1바이트로 구성되며 프레임 바디가 오류 없이 수신되었는지 여부를 판별하기 위해 사용한다. 프레임 검사 수열을 만드는 표준 발생 다항식은 다음과 같다.
수학식 1
Figure PCTKR2012011319-appb-M000001
끝 필드는 1바이트로 구성되며 프레임의 마지막을 나타낸다. 시작 필드와 마찬가지로 0x7F의 고정된 값을 갖는다.
표 2 - 필드 설명 요약
8.3 프레임 종류
프레임 종류는 표 3과 같이 요청 프레임, 응답 프레임, 데이터 프레임, 수신확인 프레임 총 4 가지 종류의 프레임으로 정의되어 있다.
표 3-프레임 종류 값
8.3.1 요청 프레임
요청 프레임은 전력송신기가 요청 구간에서 특정 전력수신기에게 요청 패킷을 전송하거나 모든 수신기들에게 정보를 브로드캐스팅 할 때 사용한다. 요청 프레임 형식은 표 4와 같다. 요청 프레임을 브로드캐스팅 할 때는 프레임 헤더에서 전력수신기 번호가 0xFF인 경우이다.
표 4-요청 프레임
8.3.2 응답 프레임
응답 프레임은 전력송신기의 요청에 대한 전력수신기의 응답 패킷을 전송할 때 사용한다. 응답 프레임 형식은 표 5와 같다. 주로 전력수신기의 충전정보를 전력송신기의 요청에 의해 응답할 때 사용된다.
표 5 - 응답 프레임
8.3.3 데이터 프레임
데이터 프레임은 표 6과 같이 전력수신기가 전력수신기의 완충이나, 방전량의 변화 감지를 통해 이를 전력송신기의 요청이 없는 상황에서도 먼저 알리게 될 때 사용한다.
표 6 - 데이터 프레임
8.3.4 수신알림 프레임
수신확인 프레임은 수신 받은 충전모드, 시분할 순서, 충전종료에 대한 전력수신기의 수신확인과 완충통보에 대한 전력송신기의 수신확인 프레임이다. 데이터 수신확인 프레임은 표 7과 같이 프레임 바디 없이 프레임 헤더로만 구성된다.
표 7 - 수신알림 프레임
8.4 페이로드 형식
페이로드 형식은 요청 프레임, 응답 프레임, 데이터 프레임, 수신확인 프레임 등 프레임 종류에 따라 다르게 구성된다.
8.4.1 요청프레임
요청 프레임의 페이로드 형식은 표 8과 같이 길이, 요청코드, 하나 이상의 요청블록으로 구성된다. 프레임 헤더에서 전력수신기번호가 0xFF이면 모든 그룹의 전력수신기에게 응답을 요청하는 것이다. 각 블록은 요청 데이터 정보를 포함한다.
표 8 - 요청프레임 페이로드 형식
8.4.1.1 길이
길이 필드는 1 바이트로 구성되고 요청 블록 길이의 합을 나타내며 길이 필드의 값은 요청 블록의 길이와 개수에 따라 가변적이다.
8.4.1.2 요청 코드 및 요청 데이터
요청 프레임의 페이로드 내 요청 코드 및 해당 요청 코드의 요청 블록에 담기는 내용은 다음과 같다.
표 9 - 요청 코드 및 데이터
8.4.2 응답 프레임
응답 프레임의 페이로드는 요청에 대한 응답 데이터를 가지고 있다. 응답 프레임 페이로드는 그림 19에 나타나 있다. 처음 1 바이트는 그룹 주소, 다음 1바이트는 응답 데이터 길이(L), 응답 코드, 그 다음 L바이트가 응답 데이터이다.
표 10 - 응답프레임 페이로드 형식
8.4.2.1 길이
길이 필드는 1바이트로 구성되고 응답 데이터의 길이를 나타내며 응답 데이터의 종류에 따라 가변적이다.
8.4.2.2 응답 코드 및 응답 데이터
응답 프레임의 페이로드 내 응답 코드 및 해당 응답 코드의 데이터는 내용은 다음과 같다.
표 11 - 응답 코드 및 데이터
8.4.3 데이터 프레임
데이터 프레임의 페이로드는 전력송신기가 전력수신기의 요청 없이 전력수신기가 인지한 응급상황을 전력송신기에게 알리는 데이터를 가지고 있다. 응답 프레임 페이로드는 표 12에 나타나 있다. 처음 1 바이트는 데이터 코드, 그 다음 L바이트가 데이터이다.
표 12 - 데이터 프레임
8.4.3.1 데이터 코드 및 블록
데이터 프레임의 페이로드 내 데이터 코드 및 해당 데이터 코드의 데이터 내용은 다음과 같다.
표 13 - 데이터 코드 및 블록
8.4.4 수신알림 프레임
응답 수신확인 프레임 페이로드는 전력수신기의 무선전력전송 모드에 대한 수신알림, 수신 스케줄링 정보에 대한 수신알림 및 무선전력전송 종료 통보에 대한 알림의 경우와 전력송신기의 완충정보에 대한 수신알림의 경우에 프레임 페이로드 없이 헤더만 보냄으로 자신의 수신을 송신기에게 알린다. 향후 더 많은 경우에 적용될 수 있다.
표 14 - 수신알림 프레임
9 무선전력전송 제어 인터페이스 절차
9.1 일반사항
다수개의 전력수신기에게 무선전력전송 서비스를 제공하기 위한 인증, 전력전송, 종료 등의 과정이 있다. 전력수신기를 인식하고 인증하며 구별된 충전존과 통신존에서 수행되어야 되는 절차들과 동시전력전송 및 시분할 전력전송을 포함한 전력전송모드에서 무선전력전송을 위해 수행되는 절차들과 전력전송종료를 위한 절차 및 무선전력전송 중에 돌발상황이 발생시 수반되어야 되는 과정들이 포함된다.
9.2 전력수신기 인식/인증 및 충전존/통신존
전력송신기가 합류요청에 대한 통신신호(join request)를 보내게 되면 이 통신 신호를 수신한 전력수신기는 자신의 ID를 응답(join response)로 보내게 된다. 전력송신기는 수신한 전력수신기의 ID를 체크하여 무선전력전송 서비스 대상자가 아니면 대상자 부적격임을 알리게 되고 대상자이면 데이터를 요청한다. 데이터 요청을 받은 전력수신기는 전력수신기정보(배터리 잔여량, 배터리 방전률, 충전 주파수, 필요수신파워세기 등)를 전력송신기에게 data response로 보낸다. 전력수신기 정보를 수신한 전력송신기는 수신 데이터를 분석하고 특히 수신세기 정보를 기반으로 해당 전력수신기가 현재 충전존/통신존 위치여부를 파악한다. 전력수신기가 통신존에 있으면 이를 전력수신기에게 알리게 되고 전력수신기는 자신의 위치가 현재 무선전력전송 통신존에 있음을 사용자에게 알린다. 전력수신기가 충전존에 있다면 전력수신기에게 충전존에 있음을 알리고 전력송신기는 해당 전력수신기를 무선전력전송 서비스 제공 대상자로 고려한다.
그림 6 - 전력수신기 인식/인증 및 충전존/통신존
9.3 동시전력전송
동시전력전송 모드를 선택한 전력송신기는 실제무선전력전송을 수행하기에 앞서 우선적으로 최고의 무선전송효율을 발생하는 임피던스 매칭을 실시한다. 전력수신기정보로부터 얻은 무선전력전송 주파수로 주파수를 조정하고 테스트파워를 전송하여 전력송신기의 전류/전압 센싱 값을 통해 임피던스를 산출한다. 이를 통해 1차적인 임피던스 매칭을 수행하고 다시 테스트파워를 전송하고 전력수신기로부터 수신파워레벨을 수신하여 2차적인 세밀한 임피던스 매칭을 수행한다. 최적의 임피던스 매칭을 완료하면 무선전력전송 서비스 제공을 시작하며 돌발상황, 무선전력전송 종료 등까지 서비스 제공을 계속 진행한다.
그림 7 - 동시전력전송
9.4 시분할 전력전송
시분할 전력전송모드를 선택한 전력송신기는 전력수신기로부터 얻은 전력수신기정보를 기반으로 스케줄링 계산을 수행하여 순서와 시간을 산정하여 이를 모든 전력수신기에게 통보한다. 산출한 순서와 시간을 기반으로 각각의 전력수신기마다 실제 전력전송에 앞서 우선적으로 최고의 무선전송효율을 발생하는 임피던스 매칭을 실시한다. 전력수신기정보로부터 얻은 무선전력전송 주파수로 주파수를 조정하고 테스트파워를 전송하여 전력송신기의 전류/전압 센싱 값을 통해 임피던스를 산출한다. 이를 통해 1차적인 임피던스 매칭을 수행하고 다시 테스트파워를 전송하고 전력수신기로부터 수신파워레벨을 수신하여 2차적인 세밀한 임피던스 매칭을 수행한다. 최적의 임피던스 매칭을 완료하면 무선전력전송 서비스 제공을 시작하며 산정된 시간만큼 무선전력전송을 제공하고 스케줄링 순서에 맞춰 다음 전력수신기에게 무선전력전송을 제공한다. 무선전력전송 중 돌발상황, 무선전력전송 종료 등이 발생하면 현재 서비스를 종료한다.
그림 8 - 시분할전력전송
9.5 돌발상황
돌발상황을 인지하는 중요한 관측 값은 전류/전압 센싱 값이다. 측정한 전류, 전압, 및 산출한 임피던스 값의 변화가 심하면 돌발상황이 발생한 것으로 전력송신기는 판단하고 이물질, 전력수신기의 등장 또는 퇴장, 전력수신기의 완충 3가지 상황 중 하나임을 인지하는 절차를 수행하여 판단한 후에 나머지 절차에 맞게 조치를 취하게 된다.
9.5.1 이물질 제거
측정한 전류, 전압 및 산출한 임피던스 값의 변화가 심하면 충전환경 내에 돌발상황이 생겼다고 판단하고 현재 무선전력전송을 중단하고 모든 전력수신기에게 충전정보를 요청한다. 현재 모든 전력수신기가 존재하면 이물질로 판단한다. 이물질의 무선전력전송 방해여부가 일시적인 것인지 지속적인 것인지를 판단하기 위해 여러 번 무선전력전송을 통한 전류/전압 센싱을 수행하여 값이 지속적으로 유지가 되면 지속적인 이물질로 판단을 하여 사용자에게 이물질 존재여부를 알람기능을 통해 알리게 된다.
그림 9 - 이물질 제거
9.5.2 새로운 전력수신기의 등장 및 기존 전력수신기의 사라짐
측정한 전류, 전압 및 산출한 임피던스 값의 변화가 심하면 충전환경 내에 돌발상황이 생겼다고 판단하고 현재 무선전력전송을 중단하고 모든 전력수신기에게 충전정보를 요청한다. 현재 모든 전력수신기가 존재하지 않거나 추가가 된 전력수신기가 파악이 되면 이물질이 아닌 전력수신기의 등장 또는 사라짐에 의한 임피던스 변화로 간주하고 변화된 임피던스를 파악하여 최적의 매칭을 한 후 무선전력전송을 수행한다.
그림 10 - 새로운 전력수신기 등장 및 기존 전력수신기 사라짐
9.5.3 기존 전력수신기의 완충
전력수신기가 무선전력을 수신하는 중 배터리 완충을 감지한 경우에는 자신의 완충을 전력송신기에게 알리고 전력안테나는 차단을 하게 된다. 완충여부를 통보 받은 전력송신기는 완충을 알린 전력수신기는 더 이상 무선전력전송 고려대상으로 판단하지 않고 다른 전력수신기에게 무선전력 전송을 시작한다.
그림 11 - 기존 전력수신기 완충
9.6 전력전송 종료
사용자가 전력송신기에게 무선전력전송 종료를 요청하면 전력송신기는 현재 무선전력전송을 중단하고 대기모드에서 다음 요청을 기다린다.
그림 12 - 전력전송 종료
9.7 기기간 전력 전송
무선전력수신이 필요하지만 인접거리에서 전력송신기를 발견하지 못하는 전력수신기는 인접 전력수신기에게 무선전력전송을 요청할 수 있다. 이 때 자신의 기본 전력수신기 정보를 제공하여 무선전력전송 요청을 받는 전력수신기가 요청 전력수신기에게 전력전송이 제공한지 판별하고 사용자에게 알리게 된다. 사용자가 승인하면 무선전력 요청 응답을 보내고 요청한 전력수신기와 응답한 전력수신기 모두 사용자에게 전력수신기간 충전을 위한 필요사항과 방법을 알리게 된다. 방법에 맞도록 조건이 갖춰지면 전력수신기에서 전력수신기로 무선전력전송이 제공된다.
그림 13 - 기기간 전력 전송
9.8 배터리 방전률 변화 알림
전력수신기가 배터리 방전률의 변화를 확인하면 전력수신기 주변에 사람의 존재여부로 판단하고 해당 사실을 전력송신기에게 알려 전력송신기가 인체유해성을 넘어가지 않는 무선전력전송 출력파워로 제어할 수 있도록 한다. 무선전력전송 제공 중이면 잠시 중단하고 출력파워를 제어한 후 다시 전송한다.
그림 14-배터리 방전률 변화 알림
이상에서 바람직한 실시예를 기준으로 본 발명을 설명하였지만, 본 발명의 장치 및 방법은 반드시 상술된 실시예에 제한되는 것은 아니며 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서, 첨부된 특허청구의 범위는 본 발명의 요지에 속하는 한 이러한 수정이나 변형을 포함할 것이다.

Claims (16)

  1. 무선 전력송신 장치와 상기 무선 전력송신 장치와 이격되어 있는 다수의 무선 충전기기를 포함하는 멀티노드 무선 전력 전송 시스템으로서,
    상기 무선 충전기기가 통신만 가능한 세미차징존에 위치할 때에는 상기 무선 전력송신 장치는 상기 무선 충전기기로부터 수신한 ID를 기반으로 상기 무선 충전기기가 무선전력전송 서비스의 대상인지 판별하고,
    상기 무선 충전기기가 통신과 무선전력전송 모두 가능한 차징존에 위치할 때에는 상기 무선 충전기기에게 무선 전력전송 서비스를 제공하며,
    상기 무선 전력전송 서비스는 동시 전력전송 모드 또는 시분할 전력전송 모드로 제공될 수 있는 멀티노드 무선 전력 전송 시스템.
  2. 무선전력 송신장치와 상기 무선전력 송신장치와 이격되어 있는 다수의 무선 충전기기를 포함하는 다수기기 무선 충전 시스템에서 상기 무선전력 송신장치가 상기 무선 충전기기를 충전하는 방법으로서,
    상기 무선전력 송신장치가 상기 무선 충전기기로부터 식별정보를 수신하는 단계;
    상기 식별정보가 적격인 경우 상기 무선 충전기기로 데이터 요청을 송신하는 단계;
    상기 무선 충전기기로부터 배터리 정보, RSSI 정보, LF/DUAL 기기 정보를 포함하는 데이터를 수신하는 단계;
    수신된 상기 데이터를 분속하고 충전영역과 통신영역을 판별하는 단계;
    상기 판별하는 단계의 결과에 따라 상기 무선 충전기기로 충전영역 또는 통신영역을 알리는 단계를 포함하는 다수기기 무선 충전 시스템의 충전 방법.
  3. 제2항에 있어서,
    상기 판별하는 단계의 결과에 따라 상기 무선 충전기기가 상기 충전영역에 위치하는 경우 상기 무선전력 송신장치가 상기 무선 충전기기로 무선전력을 송신하는 단계를 더 포함하는 다수기기 무선 충전 시스템의 충전 방법.
  4. 제2항에 있어서,
    상기 판별하는 단계의 결과에 따라 상기 무선 충전기기가 상기 통신영역에 위치하는 경우 상기 무선 충전기기는 상기 무선 충전기기가 상기 통신영역에 위치함을 사용자에게 알리는 단계를 더 포함하는 다수기기 무선 충전 시스템의 충전 방법.
  5. 무선전력 송신장치와 상기 무선전력 송신장치와 이격되어 있는 다수의 무선 충전기기를 포함하는 다수기기 무선 충전 시스템에서 상기 무선전력 송신장치가 상기 무선 충전기기를 충전하는 방법으로서,
    상기 무선전력 송신장치가 상기 다수의 무선 충전기기로 제1 테스트 전력을 송신하고 상기 테스트 전력에 따른 상기 무선전력 송신장치의 전류 및 전압을 검출하여 제1 임피던스 매칭을 수행하는 단계;
    상기 무선전력 송신장치가 상기 다수의 무선 충전기기로 제2 테스트 전력을 송신하고 상기 다수의 무선 충전기기 각각으로부터 수신한 수신전력 정보에 기반하여 제2 임피던스 매칭을 수행하는 단계; 및
    상기 제2 임피던스 매칭 결과를 기반으로 상기 다수의 무선 충전기기로 동시에 전력을 송신하는 단계를 포함하는 다수기기 무선 충전 시스템의 충전 방법.
  6. 제5항에 있어서, 상기 제1 임피던스 매칭을 수행하는 단계 이전에,
    상기 무선전력 송신장치가 상기 다수의 무선 충전기기 중 적어도 하나로부터 수신한 무선 충전기기 정보로부터 얻은 무선전력 송신 주파수로 주파수를 변경하는 단계를 더 포함하는 다수기기 무선 충전 시스템의 충전 방법.
  7. 제5항에 있어서, 상기 제2 임피던스 매칭을 수행하는 단계에서는,
    상기 무선전력 송신장치가 상기 다수의 무선 충전기기로 제2 테스트 전력을 송신한 다음 상기 다수의 무선 충전기기로 상기 수신전력 정보를 요청하는 다수기기 무선 충전 시스템의 충전 방법.
  8. 제5항에 있어서, 상기 제2 임피던스 매칭을 수행하는 단계에서는,
    상기 무선전력 송신장치가 상기 다수의 무선 충전기기 각각으로부터 상기 수신전력 정보를 수신한 다음 상기 수신전력 정보에 기반하여 상기 다수의 무선 충전기기 각각의 무선전력 전송효율을 계산하는 다수기기 무선 충전 시스템의 충전 방법.
  9. 제5항에 있어서, 상기 동시에 전력을 송신하는 단계 이후에,
    충전이 종료되면 상기 무선전력 송신장치가 상기 다수의 무선 충전기기 각각에게 무선전력 송신 종료를 통보하는 단계를 더 포함하는 다수기기 무선 충전 시스템의 충전 방법.
  10. 제9항에 있어서, 상기 무선전력 송신 종료를 통보하는 단계 이후에,
    상기 다수의 무선 충전기기 각각이 전력 안테나를 오프하는 단계를 더 포함하는 다수기기 무선 충전 시스템의 충전 방법.
  11. 무선전력 송신장치와 상기 무선전력 송신장치와 이격되어 있는 다수의 무선 충전기기를 포함하는 다수기기 무선 충전 시스템에서 상기 무선전력 송신장치가 상기 무선 충전기기를 충전하는 방법으로서,
    상기 무선전력 송신장치가 상기 다수의 무선 충전기기에 대한 우선순위를 결정하는 단계;
    결정된 상기 우선순위를 상기 다수의 무선 충전기기 모두에게 전송하는 단계; 및
    결정된 상기 우선순위에 따라 상기 다수의 무선 충전기기에 순차적으로 무선전력을 송신하는 단계를 포함하며,
    상기 무선전력을 송신하는 단계는,
    무선전력을 송신하는 대상인 상기 무선 충전기기로 제1 테스트 전력을 송신하고 상기 테스트 전력에 따른 상기 무선전력 송신장치의 전류 및 전압을 검출하여 제1 임피던스 매칭을 수행하는 단계;
    상기 무선전력 송신장치가 상기 무선 충전기기로 제2 테스트 전력을 송신하고 상기 무선 충전기기로부터 수신한 수신전력 정보에 기반하여 제2 임피던스 매칭을 수행하는 단계; 및
    상기 제2 임피던스 매칭 결과를 기반으로 상기 무선 충전기기로 전력을 송신하는 단계를 포함하는 다수기기 무선 충전 시스템의 충전 방법.
  12. 제11항에 있어서, 상기 제1 임피던스 매칭을 수행하는 단계 이전에,
    상기 무선전력 송신장치가 상기 무선 충전기기로부터 수신한 무선 충전기기 정보로부터 얻은 무선전력 송신 주파수로 주파수를 변경하는 단계를 더 포함하는 다수기기 무선 충전 시스템의 충전 방법.
  13. 제11항에 있어서, 상기 제2 임피던스 매칭을 수행하는 단계에서는,
    상기 무선전력 송신장치가 상기 무선 충전기기로 제2 테스트 전력을 송신한 다음 상기 무선 충전기기로 상기 수신전력 정보를 요청하는 다수기기 무선 충전 시스템의 충전 방법.
  14. 제11항에 있어서, 상기 제2 임피던스 매칭을 수행하는 단계에서는,
    상기 무선전력 송신장치가 상기 무선 충전기기로부터 상기 수신전력 정보를 수신한 다음 상기 수신전력 정보에 기반하여 상기 무선 충전기기의 무선전력 전송효율을 계산하는 다수기기 무선 충전 시스템의 충전 방법.
  15. 제11항에 있어서, 상기 제2 임피던스 매칭 결과를 기반으로 상기 무선 충전기기로 전력을 송신하는 단계 이후에,
    상기 무선 충전기기에 대한 할당시간을 확인하고 무선전력 송신 종료를 통보하는 단계를 더 포함하는 다수기기 무선 충전 시스템의 충전 방법.
  16. 제15항에 있어서, 상기 무선전력 송신 종료를 통보하는 단계 이후에,
    상기 무선 충전기기가 전력 안테나를 오프하는 단계를 더 포함하는 다수기기 무선 충전 시스템의 충전 방법.
PCT/KR2012/011319 2011-12-23 2012-12-21 다수 기기 무선 충전을 위한 무선 전력 전송 시스템 및 방법 WO2013095065A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0141780 2011-12-23
KR1020110141780A KR101501485B1 (ko) 2011-12-23 2011-12-23 다수 기기 무선 충전을 위한 무선 전력 전송 시스템

Publications (1)

Publication Number Publication Date
WO2013095065A1 true WO2013095065A1 (ko) 2013-06-27

Family

ID=48668859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011319 WO2013095065A1 (ko) 2011-12-23 2012-12-21 다수 기기 무선 충전을 위한 무선 전력 전송 시스템 및 방법

Country Status (2)

Country Link
KR (1) KR101501485B1 (ko)
WO (1) WO2013095065A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780575B2 (en) 2014-08-11 2017-10-03 General Electric Company System and method for contactless exchange of power
EP3694081A1 (en) * 2015-05-28 2020-08-12 NIKE Innovate C.V. Transportation apparatus with nfc charger
CN112793458A (zh) * 2021-02-09 2021-05-14 北京电动生活信息技术有限公司 跨多个域进行无感充电的方法、系统和计算机可读介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150244199A1 (en) * 2012-09-11 2015-08-27 Yulong Computer Telecommunication Technologies (Shenzhen) Co., Ltd. Wireless charger and multi-terminal wireless charging method
EP2911266A1 (en) 2014-02-21 2015-08-26 Samsung Electro-Mechanics Co., Ltd. Transmitting and receiving power wirelessly
KR102199192B1 (ko) 2014-06-24 2021-01-06 에스케이플래닛 주식회사 무선 충전 장치와 단말, 그를 포함하는 무선 충전 시스템, 그 제어 방법 및 컴퓨터 프로그램이 기록된 기록매체
KR102144021B1 (ko) * 2014-04-11 2020-08-12 에스케이플래닛 주식회사 무선 충전 장치와 단말, 그를 포함하는 무선 충전 시스템, 그 제어 방법 및 컴퓨터 프로그램이 기록된 기록매체
WO2015156477A1 (ko) * 2014-04-11 2015-10-15 에스케이플래닛 주식회사 무선 충전 장치와 단말, 그를 포함하는 무선 충전 시스템, 그 제어 방법 및 컴퓨터 프로그램이 기록된 기록매체
KR102312355B1 (ko) * 2014-06-23 2021-10-13 에스케이플래닛 주식회사 무선 충전 장치와 단말과 서비스 제공 장치, 그를 포함하는 무선 충전 시스템, 그 제어 방법 및 컴퓨터 프로그램이 기록된 기록매체
US9882396B2 (en) 2014-07-07 2018-01-30 Samsung Electro-Mechanics Co., Ltd. Non-contact type power transmission apparatus and method thereof and location-based service system using the same
KR20160008086A (ko) 2014-07-07 2016-01-21 삼성전기주식회사 비접촉 방식 전력 송전 장치, 모바일 단말기, 서버 및 이를 이용한 위치 기반 서비스 시스템
KR102022707B1 (ko) 2014-11-03 2019-09-19 주식회사 위츠 비접촉 방식 전력 송전 장치, 모바일 단말기, 서버 및 이를 이용한 위치 기반 서비스 시스템
US10110030B1 (en) * 2018-04-09 2018-10-23 Apple Inc. Wireless charging systems with multiple power receiving devices
WO2020122329A1 (ko) * 2018-12-10 2020-06-18 주식회사 미로 가전기기의 비접촉 통신 모듈 및 이를 포함하는 제어 시스템
KR102361510B1 (ko) * 2018-12-12 2022-02-11 현대자동차주식회사 배터리 관리 시스템, 이를 포함하는 차량 및 차량의 제어 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975866B1 (ko) * 2008-06-19 2010-08-13 정춘길 무선광대역통신모듈이 내장된 무선 데이터 및 전력전송이 가능한 무선전력 송수신스테이션
KR20110032260A (ko) * 2009-09-22 2011-03-30 전자부품연구원 공진 및 자기장 통신을 이용한 무선 충전 시스템
KR20110050920A (ko) * 2009-11-09 2011-05-17 삼성전자주식회사 로드 임피던스 결정 장치, 무선 전력 전송 장치 및 그 방법
KR20110055903A (ko) * 2009-11-20 2011-05-26 전자부품연구원 공진자기유도 기반의 차량용 무선충전장치, 방법 및 시스템
KR101084904B1 (ko) * 2009-10-07 2011-11-18 삼성전기주식회사 통신 기능이 구비된 무선전력 송수신 장치 및 그 무선전력 송수신 방법
KR20110125755A (ko) * 2010-05-14 2011-11-22 삼성전자주식회사 이동체를 이용한 전력 및 데이터 전송 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975866B1 (ko) * 2008-06-19 2010-08-13 정춘길 무선광대역통신모듈이 내장된 무선 데이터 및 전력전송이 가능한 무선전력 송수신스테이션
KR20110032260A (ko) * 2009-09-22 2011-03-30 전자부품연구원 공진 및 자기장 통신을 이용한 무선 충전 시스템
KR101084904B1 (ko) * 2009-10-07 2011-11-18 삼성전기주식회사 통신 기능이 구비된 무선전력 송수신 장치 및 그 무선전력 송수신 방법
KR20110050920A (ko) * 2009-11-09 2011-05-17 삼성전자주식회사 로드 임피던스 결정 장치, 무선 전력 전송 장치 및 그 방법
KR20110055903A (ko) * 2009-11-20 2011-05-26 전자부품연구원 공진자기유도 기반의 차량용 무선충전장치, 방법 및 시스템
KR20110125755A (ko) * 2010-05-14 2011-11-22 삼성전자주식회사 이동체를 이용한 전력 및 데이터 전송 장치 및 방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780575B2 (en) 2014-08-11 2017-10-03 General Electric Company System and method for contactless exchange of power
EP3694081A1 (en) * 2015-05-28 2020-08-12 NIKE Innovate C.V. Transportation apparatus with nfc charger
US10944282B2 (en) 2015-05-28 2021-03-09 Nike, Inc. Transportation apparatus with NFC charger
US11923689B2 (en) 2015-05-28 2024-03-05 Nike, Inc. Carry case apparatus with wireless charger
CN112793458A (zh) * 2021-02-09 2021-05-14 北京电动生活信息技术有限公司 跨多个域进行无感充电的方法、系统和计算机可读介质
CN112793458B (zh) * 2021-02-09 2023-05-09 北京电动生活信息技术有限公司 跨多个域进行无感充电的方法、系统和计算机可读介质

Also Published As

Publication number Publication date
KR101501485B1 (ko) 2015-03-13
KR20130082952A (ko) 2013-07-22

Similar Documents

Publication Publication Date Title
WO2013095065A1 (ko) 다수 기기 무선 충전을 위한 무선 전력 전송 시스템 및 방법
WO2017164525A1 (ko) 무선 충전 시스템 및 그를 위한 장치
WO2014007415A1 (en) Method and apparatus for periodically changing frequency in wireless power transfer
WO2018030819A1 (en) Method and apparatus for supporting movement of user equipment in wireless communications
WO2016080594A1 (ko) 무선 전력 전송장치, 무선 전력 수신장치 및 무선 충전 시스템
WO2020197267A1 (ko) 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법
WO2016006892A1 (en) Wireless power transfer method, apparatus and system
WO2017030354A1 (ko) 무선 전력 송신기 및 이와 연결되는 차량 제어 유닛
WO2017209390A1 (ko) 무선 전력 전송 방식 스위칭 방법 및 장치
WO2015060570A1 (en) Wireless power transfer method, apparatus and system
WO2013111917A1 (ko) 무선 전력 전송에서의 주파수를 설정하는 방법 및 장치
EP3158622A1 (en) Wireless power transfer method, apparatus and system
WO2016024700A1 (en) Wireless power transfer system and wireless charging system
WO2013012111A1 (ko) 무선 전력 신호를 이용한 양방향 통신
WO2012157927A2 (ko) 무선 전력 송신 시스템에서의 송신기 및 수신기, 상기 장치들의 무선 전력 송수신 방법
WO2015119458A1 (en) Wireless power transfer and receive method, apparatus and system
WO2019208960A1 (ko) 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법
EP3172813A1 (en) Wireless power transfer method, apparatus and system
WO2021066515A1 (en) Master node, secondary node and user equipment in mobile communication network and communication methods therebetween
WO2018004116A1 (ko) 무선 충전 시스템에서의 무선 전력 송신 방법 및 장치
WO2013012114A1 (ko) 무선 전력 신호를 통한 무선 전력 수신기의 통신
WO2021150014A1 (en) Self-optimization method and device
WO2020197360A1 (en) Method and device for remote interference management in wireless communication system
WO2015194889A1 (en) Wireless power transfer method, apparatus and system
WO2015186991A1 (en) Wireless power transfer method, apparatus and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858904

Country of ref document: EP

Kind code of ref document: A1